
Enabling Flexible and Robust Business Process
Automation for the Agile Enterprise

Manfred Reichert

Abstract During the last decade process-aware information systems (PAISs) have
become increasingly popular to digitize business processes and to effectively sup-
port them at the operational level. In many application domains, however, PAISs
will not be accepted by users if rigidity comes with them. Ensuring PAIS robust-
ness, in turn, becomes extremely complicated if high flexibility demands need to
be fulfilled. To cope with the dynamic nature of business processes, we developed
AristaFlow, a next generation process management technology that enables com-
prehensive process lifecycle support. In addition to standard process management
services, AristaFlow can handle exceptions, change the execution of running busi-
ness cases on the fly, efficiently deal with uncertainty, and support the evolution of
business processes over time. This paper discusses how AristaFlow assists the vari-
ous stakeholders of a PAIS to cope with errors and exceptional situations, while still
meeting robustness needs. In particular, we focus on new error handling procedures
and capabilities utilizing the flexibility provided by ad-hoc changes.

1 Introduction

In today’s dynamic business world, the success of an enterprise increasingly de-
pends on its ability to react to environmental changes in a quick and flexible way.
Examples of changes include regulatory adaptations (e.g., Sarbanes-Oxley), mar-
ket evolution, changes in customer behavior, redesigned business processes, and
strategic shifts. Therefore, enterprises have identified business agility as a competi-
tive advantage to address business needs like increasing product variability or faster
time-to-market as well as to tightly align business and IT. Improving the efficiency
and quality of their business processes and optimizing their interactions with part-
ners and customers have become crucial success factors for enterprises [15, 21].

Manfred Reichert, Ulm University, e-mail: manfred.reichert@uni-ulm.de

1



2 Manfred Reichert

Contemporary enterprise information systems, which are often organized in a
data- or function-centric way, lack process awareness hindering business agility.
In many cases, enterprises prefer abandonning new business initiatives rather than
attempting to adapt their enterprise software. To better support their business pro-
cesses and to manage them in a more flexible manner, however, enterprises are in-
creasingly interested in aligning their information systems in a process-centric way
offering the right business functions to the right users at the right point in time along
with the needed information and application services [25]. Along this trend, a new
generation of enterprise information systems–so-called process-aware information
systems (PAISs)–has emerged [21], which aim to overcome this inflexibility.

Examples of PAISs include workflow management systems, case handling tools,
and service orchestration engines [25]. In spite of several success stories on the
uptake of PAISs, the latter have not been widely adopted in industry yet [11]. A
major reason for their low use is the rigidity enforced by them, which inhibits the
ability of enterprises to respond to process changes or exceptions in an agile way
[22]. When efforts are taken to improve and automate the flow of business processes,
however, in many domains (e.g., healthcare) it is crucial not to restrict staff [18, 13].
For example, first attempts to change the function- and data-centric views on patient
treatment processes in hospitals failed whenever rigidity came with them [13, 16].
Variations in the course of a treatment process are inherent to medicine, and to
some degree the unforeseen event constitutes a ”normal” phenomenon [13]. Hence,
a sufficient degree of flexibility is needed to support dynamic process adaptations
in case of unforeseen situations. Finally, PAIS flexibility is required to accommodate
the need for evolving business processes [23, 22].

In general, a PAIS is aligned in a process-centric way, separating process logic
from application code (i.e., the implementation of the application services) and,
thus, providing an additional architectural layer [4]. In principle, this separation
makes PAISs more flexible compared to data- and function-centric information sys-
tems. However, it is not yet sufficient to meet the needs of agile enterprises. In
particular, traditional PAIS have focused on the support of predictable and repet-
itive processes, which can be fully described prior to their execution in terms of
formal models [27]. Accordingly, such PAISs require complete specifications (i.e.,
process models) of the business processes to be supported, which are then used as
the schemas for process execution. In practice, however, business processes have
become increasingly complex and dynamic, demanding for a more agile approach
acknowledging that in dynamic environments process models quickly become out-
dated and, hence, a closer interweaving of modeling and execution is required.
Therefore, PAISs not only need to be able to deal with exceptions [17], change
the execution of single business cases on the fly [18], efficiently deal with uncer-
tainty [7], and cope with variability [6, 1], but must also support the evolution of
implemented business processes over time [21].

The goal of this paper is to address the flexibility needs emerging in this context
and to give insights into technologies addressing them. Emphasis is put on key fea-
tures enabling process adaptation and evolution. Based on them, PAISs being able to
flexibly cope with real-world exceptions, uncertainty and changes can be realized.



Flexible and Robust Business Process Automation 3

2 Traditional Process-Aware Information Systems

A PAIS targets at the operational support of business processes at the IT level. To
accomplish this, the business processes need to be mapped to executable process
models. Thereby, a business process comprises a set of one or more connected ac-
tivities that collectively realize a particular business goal [15]. A process is linked
to an organizational structure defining functional roles and organizational relation-
ships. Furthermore, a business process may take place in a specific department, but
may also cross departmental borders or even involve different organizations [5]. Ex-
amples of business processes include insurance claim processing, order handling,
personnel recruitment, product engineering, and patient treatment.

2.1 Business Process Modeling

To provide additional value for the business, any process automation should be pre-
ceded by process reengineering and optimiztion efforts [15]; i.e., business processes
have to be (re-)designed to meet organizational goals in an economic and efficient
manner. Goals pursued may include shortening process cycle times, reducing pro-
cess costs, increasing customer satisfaction, and decreasing error rates.

To discuss alternative designs with stakeholders and to evaluate the designed
processes, process knowledge must be captured in business process models [2]. The
latter describe business processes at a high level of abstraction, serving as a basis
for analysis, simulation and visualization. A business process model comprises the
process activities and their attributes (e.g., costs and time) as well as the control
and data flow between the activities. Activities may be manual ones without the
potential to be automated or system-supported activities requiring human or ma-
chine resources for their execution. In general, a distinction has to be made between
business process models on one hand and their executable counterparts (denoted as
executable process models) on the other [2]. The latter constitute the key artefacts
of a PAIS, realizing the automation of business processes and, in whole or part, the
implementation of their models. When interpreting an executable process model,
documents, data objects or activities are passed from one actor to another accord-
ing to pre-defined procedural rules [27]. In the following, we focus on executable
process models and their flexible support through PAISs.

2.2 Architectural Principles of a PAIS

A PAIS is a specific type of information system that offers advanced process sup-
port services. As opposed to data- or function-centric information systems, PAISs
enforce a strict separation of process logic and application code. In particular, pro-
cess logic is described explicitly in terms of executable process models providing the



4 Manfred Reichert

schema for process execution. Note that turning away from hard-coded process logic
towards explicitly specified process models significantly eases (model-driven) PAIS
development and maintenance. The core of the process layer of a PAIS, in turn, is
built by a process management system. Its buildtime and runtime components offer
generic software services for modeling, implementing, executing, and monitoring
business processes as well as for enabling user interactions with them (e.g., through
worklists). Workow management systems (e.g., ADEPT [4, 19], Staffware [25]) and
case handling tools (e.g., FLOWer [25], PHILharmonicFlows [10]) constitute exam-
ples of PAISs.

As a basic principle, PAISs foster the splitting of monolithic applications into
smaller services, which can then be orchestrated by its process engine. Maintain-
ability and traceability are significantly enhanced by this extended architecture.
Changes to one layer often can be performed without affecting the other layers.
For example, modifying the application service that implements a particular pro-
cess step (i.e., activity) does usually not imply any change to the process layer as
long as interfaces remain stable (i.e., the external observable behavior of the ser-
vice remains the same). In addition, changing the execution order of activities or
adding new activities to the process can, to a large degree, be accomplished without
touching the implemenation of any application service.

2.3 Process Enactment Based on Executable Process Models

As already mentioned, the business processes or the process parts to be automated
by the PAIS need to be captured in executable process models. At buildtime, these
models are created based on the elements provided by a process meta model (e.g.,
BPMN 2.0) using a graphical editor. Basically, an executable process model corre-
sponds to a directed graph that comprises a set of nodes–representing process steps
(i.e., activities) or control connectors (e.g, XOR/AND-Split, XOR/AND-Join)–and
a set of control edges between them. Control edges specify precedence relations be-
tween nodes. Further, the data flow between the activities (i.e., which activities read
or write which data elements) needs to be specified and the activities be associated
with resources (e.g., user roles). Activities can either be atomic or complex. While
an atomic activity is associated with an invokable application service, a complex ac-
tivity contains a sub-process or, more precisely, a reference to a sub-process model.
In turn, this allows for the hierarchical decomposition of process models. Moreover,
several executable process models may exist for a particular business process repre-
senting the different versions and the evolution of this business process over time. As
a benefit of the described model-driven approach, it can be formally checked (e.g.,
model checking) whether a process model can be properly executed during runtime
(e.g., guaranteeing for the absence of deadlocks and ensuring proper data flow).
Finally, at runtime the PAIS orchestrates multiple instances of a process model ac-
cording to the defined logic, also allowing for the integration of application services,
users, and other resources.



Flexible and Robust Business Process Automation 5

2.4 Traditional Process Lifecycle Support

Traditional PAISs enable process lifecycle support as depicted in Fig. 1: At build-
time, an initial representation of the process to be supported is created either by
explicitly modeling the process based on process analysis results or by discovering
its model through process mining [26] (1). At runtime, process instances are cre-
ated from the executable process model (2), each representing a concrete business
case. Process instances are executed based on the model they were originally de-
rived from. While fully automated activities are immediately executed when they
become enabled, non-automated activities are assigned to the worklists of qualified
actors (3). Execution logs record information about the start and completion of ac-
tivity instances as well as their chronological order (4). The analysis of logs by a
process engineer or process intelligence tools allows discovering malfunctions or
bottlenecks. In turn, this triggers the evolutionary change of the process model (5).

Model S‘: B
A

D

B

x xC


Model S:

A

D

B

x x EC



ro
ce
s 

s

D

Cr
ea
te
 P
r

In
st
an
ce
s

Process

Process engineer /
Process administrator


Instance I1

A

D

B

x x EC




Instance I1

A

D

B

x x EC




Process
Work Items

Process 

Arbeitsliste
Tätigkeit 1
Tätigkeit 2
Tätigkeit 3
Tätigkeit 4

Instance I1

A

B

x x EC




Execution 
Log

Process Monitoring, 
Analysis & Mining

D
participantD

Fig. 1 Process lifecycle support in traditional PAIS

2.5 Key Features of a Process-Aware Information System

In summary, a PAIS

• knows the logic of the supported processes; i.e., processes are explicitly de-
scribed in terms of executable process models.

• ensures that activities are executed in the specified order or considering the spec-
ified constraints (i.e., the PAIS manages the flow of control during runtime).

• controls the flow of data between the activities; i.e., the output data of a particular
activity can be consumed as input data by subsequent activities.

• knows the application service to be invoked when an atomic activity is started.



6 Manfred Reichert

• assigns work items related to human activities to the worklists of authorized users
and manages these worklists. Further, it reminds users to complete an activity
before reaching its deadline.

• enables end-users to monitor the progress of process instances and to trace their
previous execution.

• comprises build- and runtime components that support different stages of the
process lifecycle.

3 Enabling Process Flexibility at the Operational Level

The ability to efficiently deal with business process changes has been identied as
one of the critical success factors for PAISs [11, 22, 21]. Although PAISs facilitate
changes significantly through the separation of concerns, enterprises are reluctant to
change PAIS implementations once they are running properly. High complexity and
high costs of change are provided as major reasons for not fully leveraging the po-
tential of PAISs. In particular, more flexible PAISs are needed, which enable enter-
prises to operationalize their processes in a way not causing any mismatch between
the digital processes and those running in reality [21]. Moreover, a PAIS must not
”freeze” the implementation of business processes [25], but allow authorized users
to flexibly deviate from the pre-specified processes whenever required (e.g., to deal
with exceptions) as well as to evolve process implementations over time [17, 23].
Process changes should be enabled at a high level of abstraction [8, 9] without af-
fecting consistency and robustness of the PAIS [18]. Finally, PAISs must allow users
to cope with uncertainty by deferring decisions to the runtime if required [21].

Traditional PAISs do not support such advanced scenarios due to their inherent
brittleness and inflexibility [25]. What is needed are PAISs that allow both business
process implementations and process instances to be continually adapted and re-
formed to fit the actual needs and constraints of their environment and to fulfill the
goals of the involved process participants in the best possible way–we denote such
processes as adaptive. Traditional PAISs implicitly embrace the ”engineer–use” di-
chotomy [25] as inherited from traditional approaches to software engineering. This
dichotomy is based on the engineering principle that software systems are first engi-
neered and then, once deemed fit for purpose, are used (i.e., operated). Maintenance
and evolution tasks are not regarded as part of operation, but rather as interruptions
to the ”in use” state, which temporarily return the system to the ”being engineered”
state. In scenarios with dynamically emerging or disappearing requirements (e.g.
healthcare [16, 13]), this ”engineer–use” strategy is unworkable. The only feasible
way to cope with dynamism is to dissolve the fundamental distinction between en-
gineering and use and to seamlessly merge the entire service and process lifecycle
into a single encompassing framework [26]. In turn, this leads to a new class of
processes whose engineering and use is indistinguishable.



Flexible and Robust Business Process Automation 7

4 Adaptive Process-Aware Information Systems

This section reports on adaptive PAISs, a next generation technology enabling adap-
tive processes that abandon the ”engineer–use” dichotomy. Adapative PAISs must
not be confused with (self-)adaptive systems as recognized by the adaptive systems
research community [3]. Processes are adaptive in the sense that they are continually
evolving and reshaping to fit to the situation at hand, but unlike classical adaptive
systems (as understood in adaptive systems’ research) they are not expected to do
this themselves. On the contrary, the adaptation is performed with the help of the
user / engineer. In other words, in adaptive processes, human engineers and users
are part of the loop, and the use and adaptation of processes are seen as two sides
of the same coin. In this sense, adaptive processes have more in common with ag-
ile software development methods, which focus on encouraging human developers
to evolve software in a rapid and effective way. The following sections sketch how
adaptive processes and, thus, process flexibility can be realized in PAISs. Note that
we do not give detailed insights into formal or technical aspects of adaptive PAISs
(see [21, 23, 24, 22, 12]), but want to emphasize the perspectives offered by them,
illustrated along the AristaFlow BPM Suite we developed during the last decade.

4.1 The AristaFlow Process Management Technology

During the last decade, we developed the ADEPT2 next generation process man-
agement technology [18, 19, 23, 24] to tackle the flexibility challenges discussed
in Section 3. ADEPT2 is an adaptive PAIS dissolving the ”engineering–use” di-
chotomy and increasing ease of use for process implementers, application devel-
opers, system administators, and end users. Further, robustness of process imple-
mentations and the robust support of dynamic process changes were fundamental
project goals. To achieve them, a correctness-by-construction principle is applied
during process modeling. Furthermore, it is ensured that ad-hoc process instance
changes do not introduce any errors or inconsistencies in the following. Due to the
high interest of industry in the ADEPT2 technology, it was then transformed into an
industrial-strength process management technology called AristaFlow BPM Suite
[4, 20]. AristaFlow enables robust and flexible PAISs in the large scale. In particular,
it ensures error-safe and robust process execution even at the presence of exceptions
or dynamic process changes. AristaFlow was applied in a variety of application do-
mains (e.g. healthcare, disaster management, and software engineering).

4.2 Support for Process Adapation and Process Evolution

In general, process adaptations can be accomplished at two levels–the process type
and process instance level.



8 Manfred Reichert

Ad-hoc adaptations at the process instance level. Generally, it is not possi-
ble to anticipate all real-world exceptions and to capture their handling in an ex-
ecutable process model at buildtime. AristaFlow, therefore, enables users to situ-
ationally adapt single process instances (i.e., specific business cases) during run-
time if required; e.g., by inserting, deleting or moving activities [18]. In a medical
treatment process, for example, a patient’s current medication may have to be dis-
continued due to an allergic reaction. In general, the effects of ad-hoc changes are
instance-specific and must not affect other instances. Providing support for ad-hoc
deviations from a pre-specified process model, however, must not shift the responsi-
bility for ensuring PAIS robustness to end-users. Exactly for this reason, AristaFlow
provides comprehensive support for the correct, secure and robust handling of run-
time exceptions through ad-hoc process instance changes. [21] presents a taxonomy
for ad-hoc changes, discusses how the behavior of a process instance can be situa-
tionally adapted, and presents adaptation patterns that may be applied for this pur-
pose. Moreover, [21] shows how PAIS robustness can be ensured when dynamically
adapting process instances and how end-users can be assisted in defining changes.

Process model evolution and instance migration. Business processes evolve
over time due to changes in their legal, technical, or business environment, or as a
result of organizational learning [14, 15]. Consequently, PAIS implementations need
to be adapted accordingly. We denote this as process model evolution, i.e., the evolu-
tion of executable process models over time to accommodate changes of real-world
processes. In general, process model evolution might require change propagation
to already running process instances, particularly if the latter are long-running. For
example, let us assume that, due to a new legal requirement, patients have to be
informed about potential risks before a surgery takes place. Let us further assume
that this change is also relevant for patients for which the treatment has already been
started. In such a scenario, stopping all ongoing treatments, aborting them and re-
starting them is not a viable option. As a large number of treatment processes might
be running at the same time, applying this change manually to all ongoing treatment
processes is also not feasible. AristaFlow, therefore, provides efficient support to add
this step to all patient treatments for which this is still feasible (e.g., if the surgery has
not yet started). For this purpose, it offers techniques for dealing with already run-
ning process instances and their on-the-fly migration to the changed process model,
without violating any correctness and soundness properties. In this context, well-
known process adaptation patterns may be applied, which provide precise pre- and
post-conditions for ensuring syntactical correctness and behavioral soundness of a
process model, i.e., a correctness-by-construction principle is applied [18, 4]. De-
ficiencies that cannot be prohibited by this approach (e.g., correctness of the data
flow schema) are checked on-the-fly and are continuously reported to the user.

In general, process model evolution and instance-specific ad-hoc changes have
to be handled in combination with each other [23, 24, 26]. Moreover, AristaFlow
provides built-in-flexibility allowing process engineers to leave parts of the process
model unspecified at buildtime and to add the missing information during runtime.
Especially, this approach is useful in case of uncertainty as it allows deferring deci-
sions from build- to runtime.



Flexible and Robust Business Process Automation 9

4.3 Advanced Process Lifecycle Support in Adaptive PAIS

The described ability of AristaFlow for enabling ad-hoc changes in a controlled,
correct and secure way as well as for the controlled evolution of process models
(including process instance migrations) leads to a revised process lifecycle [26] (cf.
Fig. 2): At buildtime, an initial representation of a business process is created, ei-
ther by modeling the process or by discovering its model through process mining
(1). New process instances can be derived at runtime from this executable process
model (2). Instances are executed according to the original process model they were
derived from, and activities are assigned to process participants to perform the re-
spective activities (3). However, when unanticipated exceptional situations occur
during runtime, process participants may deviate from the pre-specified model by
applying ad-hoc changes (4). While execution logs record information about ac-
tivities (3), process changes are recorded in change logs and may be semantically
represented as cases (4). The latter enables the reuse of ad-hoc changes in similar sit-
uations [26]. The analysis of these logs by process engineers or process intelligence
tools allows for the discovery of malfunctions or bottlenecks, which often leads to
an evolution of the process model (6). The latter is supported through versioning as
well as the ability of dynamically migrating already running process instances.

Examine
patient

Make 
appointm
ent

Ente
r 
orde
r

Inform 
patient

Make 
appointm
ent

Schema S:

A B C ED

Examine
patient

Make 
appointm
ent

Ente
r 
orde
r

Inform 
patient

Make 
appointm
ent

Schema S‘:

A B D
X

C E

st
an

ce
s



C
re

at
e 

In
s



Process designer /

Instance I1
Execution
Log

Arbeitsliste
Tätigkeit 1
Tätigkeit 2
Tätigkeit 3
Tätigkeit 4

Process
Execution Instance I1 with ad-hoc 

change

Process administrator



oc
es

s 
pr

ov
em

en
t

Actor
Change
Log


Instance-

specific Ad-
hoc Change



Pr
o

Im
p

Process 
Monitoring & 
Mining

Case Base
Reuse Changes

Fig. 2 Process lifecycle support in adaptive PAIS

4.4 Making Process Implementations Flexible and Robust

We now focus on a fundamental pillar of any robust process implementation, i.e.,
error handling. In particular, we show how the presented process adaptation features
can be utilized to make business process implementations flexible and robust.



10 Manfred Reichert

4.4.1 Error Prevention

AristaFlow targets at error prevention, which is achieved by applying a correctness-
by-construction principle during process modeling and service composition as well
as by guaranteeing correctness and robustness in connection with dynamic process
changes. The latter means that none of the PAIS correctness properties ensured by
respective checks at buildtime may be violated due to a dynamic process change.
This was probably the most inuential challenge for our research. It also had sig-
nicant impact on the development of the AristaFlow BPM Suite. In particular, we
try to detect as many errors as possible at buildtime (e.g., flaws in the data flow
or deadlocks) to exclude their occurence during runtime. As discussed, however,
errors cannot be always prevented. Therefore, another important aspect of PAIS ro-
bustness concerns its exception handling features. We will show that the AristaFlow
BPM Suite provides an easy, but yet powerful way to handle exceptions during run-
time. In this context, the ability to support ad-hoc process changes is very useful.
By utilizing such dynamic changes, it becomes possible to even cope with severe
process failures and to continue and complete respective process instances.

We will use an example to demonstrate how errors can be handled in the
AristaFlow BPM Suite. Consider Fig. 3, which shows a simple process of an on-
line book store. In the first step, a customer request is entered and required data is
collected. Next the bookseller requests pricing offers from his suppliers. In the given
scenario, he will request an offer from Amazon using a web service and another of-
fer from a another vendor using e-mail. After receiving the pricing offers from both
suppliers, the bookseller checks whether he can find a special offer for the requested
books in the Internet. Finally, he makes a corresponding offer to his customer.

this context ad-hoc process changes are extremely helpful. By utilizing them it
becomes possible to even cope with severe process failures and to continue and
complete respective processes.

The paper is structured as follows: In Section 2 we introduce a simple ap-
plication scenario which we use as running example. Section 3 introduces the
AristaFlow BPM Suite. In Section 4 we demonstrate how AristaFlow copes with
errors that are encountered during process life and how to do this in a flexible
way. Section 5 discusses related work and Section 6 concludes with a summary
and outlook.

2 Application Scenario

We will use a simple example to demonstrate how errors can be handled in the
AristaFlow BPM Suite. Consider Fig. 1, which shows a simple process of an
online book store. In the first step a customer request is entered and required
data is collected. Next the bookseller requests pricing offers from his suppliers.
In this example he will request an offer from Amazon using a web service and
another offer from a second company using e-mail. After he has received the
pricing offers from both suppliers the bookseller checks whether he can find a
special offer for the requested books in the Internet. Finally he makes an offer
to his customer for the requested books.

Fig. 1. Scenario: A simple process calling a web service (in BPMN notation)

As we will show, this scenario contains several sources of potential errors.
Some of them can be detected and prevented at buildtime while others cannot.
Assume, for example, that the process implementer does not foresee a way to
enter the offer from SnailMailSeller into the system. In this case the final ac-
tivity might fail or produce an invalid output since its input parameters are not
provided as expected. Another source of errors might be the Amazon web ser-
vice; e.g. it might be not available when making the request and therefore the
Get Amazon offer activity might fail during runtime. Respective errors can be
foreseen and hence considered at buildtime. However non-expected errors might
occur as well; e.g., activity Check Special offers might fail due to troubles with
the user’s Internet connection.

In summary the following requirements for error-safe and robust process ex-
ecution exist: On the one hand errors should be avoided during buildtime, on
the other hand PAIS must enable users to effectively deal with expected and un-
expected errors during runtime. In the following we show how AristaFlow BPM
Suite meets these requirements.

Fig. 3 Scenario: A simple process calling a web service (in BPMN notation)

The scenario contains several sources of potential errors. While some of them
can be addressed at buildtime, others cannot. For example, assume that the process
implementer does not foresee a way to enter the offer from SnailMailSeller into
the system. Then, the final activity might fail or produce an invalid output as its
input parameters are not set properly. Another source of error might be the Amazon
web service, e.g. it might not be available when making the request and, therefore,
activity Get Amazon offer might fail at runtime. Such errors can be foreseen and,
hence, be considered at buildtime. However, unexpected errors might occur as well;
e.g., Check Special offers might fail due to troubles with the Internet connection.



Flexible and Robust Business Process Automation 11

The following requirements for error-safe and robust process execution exist: On
one hand, errors should be avoided at buildtime, on the other, PAIS should enable
users to effectively deal with both expected and unexpected errors during runtime.

4.4.2 Error and Exception Handling in the AristaFlow BPM Suite

We consider the above example from the perspectives of the process implementer
(i.e., the process engineer), the system (i.e., the PAIS), the end user (i.e., the process
actor), and the system supervisor (i.e., the PAIS administrator). We discuss how each
of these parties can contribute to the handling of errors.

Process implementer perspective

Fig. 4 shows a part of the process from Fig. 3, as it can be modeled using the
AristaFlow Process Template Editor. For process implementation, the idea of pro-
cess composition in a plug & play style is pursued and supported by comprehensive
correctness checks. The latter aims to exclude runtime errors during process exe-
cution. As prerequisite, for example, the data flow dependencies among application
services have to be made explicit to the PAIS.

Problems View

Data element not supplied 
at read access

Fig. 2. AristaFlow Process Template Editor

the correctness by construction principle. In AristaFlow, all kinds of executables
that may be associated with process activities are first registered in the Activity
Repository as activity templates. An activity template provides all information to
the Process Template Editor; e.g., about mandatory and optional input/output
parameters or data dependencies to other activity templates. The process imple-
menter just drags and drops an activity template from the Activity Repository
Browser window of the Process Template Editor onto the desired location in the
process graph.

One major advantage of this approach is that common errors, e.g. missing
data bindings, can be completely prevented at buildtime. Therefore the time
needed for testing and debugging can be significantly reduced; i.e., AristaFlow
guarantees that process models without any detected deficiencies are sound and
complete with respect to the activity templates used.

System perspective: The approach described above ensures that in principle
the process model is executable by the system in an error-safe way. As always,
this might not hold in practice. Again, consider the scenario from Fig. 1: the
web service involved by activity Get Amazon offer might not be available when
the process is executed, leading to an exception during runtime. Such errors can
neither be detected in advance nor completely be prevented by the system.

Failures of the Amazon web service might be anticipated by the process
implementer. Thus he can assign specific error handling procedures to the re-
spective activity. Following the workflow paradigm, AristaFlow uses processes
to handle exceptions, i.e., AristaFlow provides a reflective approach in which
error handling is accomplished using a workflow being executed by AristaFlow.
A simple error handling process is shown in Fig. 3. Depending on whether or
not the failure of the process activity was triggered by the user (e.g. through
an abort button) either the system supervisor is notified about the failure or

Fig. 4 AristaFlow Process Template Editor

AristaFlow provides an intuitive graphical editor and composition tool to process
implementers (cf. Fig. 4). Further, it applies a correctness-by-construction principle



12 Manfred Reichert

by providing at any time only those change operations to the user, which allow trans-
forming a sound process model into another one; i.e., change operations are enabled
or disabled depending on which region in the process graph is marked for apply-
ing an operation. Deficiencies not prohibited by this approach (e.g., regarding data
flow) are checked on-the-fly and are reported continuously in the problem window
of the Process Template Editor. An example is depicted in Fig. 4, where AristaFlow
detects that data element Customer price per unit is read by activity Write Customer
offer, but not written by any preceding activity.

In general, one should not require detailed knowledge from process implementers
about the internals of the application services they may assign to the activities of an
executable process model. However, this should not be achieved by undermining the
correctness-by construction principle. In AristaFlow, all kinds of executables (e.g.,
web services, SQL procedures, Java Apps), which may be assigned to process activ-
ities, first have to be registered in the Activity Repository as activity templates. An
activity template, in turn, provides all information to the Process Template Editor,
e.g., information about mandatory and optional input/output parameters of activities
or data dependencies to other activity templates. The process implementer just drags
and drops an activity template from the Activity Repository Browser window of the
Process Template Editor onto the desired location in the process graph.

As a major advantage of this approach, common errors (e.g., missing data bind-
ings) can be already detected at buildtime. Consequently, the time needed for testing
and debugging process implementations can be signicantly reduced; i.e., AristaFlow
guarantees that executable process models without any detected deficiencies are
sound and complete with respect to the activity templates used.

System perspective

The described approach ensures that, in principle, the process model is executable
by the PAIS in an error-safe way. As always, this might not hold in practice. Again,
consider the scenario from Fig. 3. The web service referred by activity Get Amazon
offer (i.e., the service implementing this activity) might not be available when the
process is executed, leading to an exception during runtime. Note that such errors
neither can be detected in advance nor be completely prevented by the PAIS.

Failures of the Amazon web service might be anticipated by the process imple-
menter. Thus, he may assign specific error handling procedures to the respective
activity. Following a strict process paradigm, AristaFlow itself uses processes to
coordinate exeception handling, i.e., a reflective approach is taken in which error
handling is accomplished by a specific process executed in AristaFlow. A simple
error handling process is depicted in Fig. 5. Depending on whether the failure of the
activity was triggered by the user (e.g. through an abort button) either the system
supervisor is notified accordingly or the process silently terminates. Generally, er-
ror handling processes can become arbitrarily complex and long-running. Note that
AristaFlow treats error handling processes the same way as any other process. Thus,
they may refer to any activity registered in the repository. Note that this allows for



Flexible and Robust Business Process Automation 13

error handling at a higher semantical level, involving users whenever required. If an
activity fails, the respective error handling process is initiated and equipped with all
the data necessary to identify and handle the error, e.g. the ID of the failed activity
instance, the actors responsible for the activity, or the cause of the error (cf. Fig. 5).

the process silently terminates. Generally, error handling processes can be arbi-
trarily complex, long running processes. It is important to note that AristaFlow
treats error handling processes the same way as any other process. Thus they
can contain any activity available in the repository. Note that this enables error
handling of higher semantical level, involving users where required. If an activity
fails, the respective error handling process is initiated and provided with all the
data necessary to identify and handle the error, e.g. the ID of the failed activity
instance, the agents responsible for the activity and the process, the cause of the
error, etc. (cf. Fig. 3).

User assigned to
the selected activity

Input parameters of the 
process template

Properties of the
selected activity

Fig. 3. A simple error handling process

After an error handling process has been created and deployed to the AristaFlow
Server it can be assigned to an activity or process by simply selecting it from a
list of processes. Whether or not a process is suitable as error handling process
is decided based on its signature, i.e. the input and output parameters of the
process.

It is also possible to assign an error handling process to a complete process
instead of an activity. In this case this general error handling process will be
used if no other error handling process is associated with the failing activity. In
case there is no error handling process assign to either the activity or the process
a system default error handling process will be used.

One of the advantages of using processes for error handling is that standard
process modeling tools and techniques can be used for designing error handling
strategies as well. Therefore process implementers do not need to learn any new
concept to provide error handing. Another important advantage is that error
handling at a higher semantical level can be easily achieved. For example, it is
also possible to use more complex error handling strategies like compensation or
to apply ad-hoc changes to replace parts of the failed process.

Fig. 5 A simple error handling process

After creating an error handling process and deploying it to the AristaFlow
Server, it can be assigned to an activity or process by simply selecting it from a
list of processes. Whether or not a process is suitable as error handling process is
decided based on its signature, i.e., the input and output parameters of the process.
Note that it is also possible to assign an error handling process to a complete process
model instead of assigning it to a specific activity. Then, this general error handling
process will be used if no other error handling process is associated with a failed
activity. If no error handling process is assigned to the activity and process, in turn,
a system default error handling process will be used instead.

As a considerable advantage of using processes for error handling, standard pro-
cess modeling tools and techniques can be used for designing error handling strate-
gies. Therefore, process implementers need not learn any new concept to provide
sophisticated error handing procedures. As another important advantage, error han-
dling at a higher semantical level becomes possible. For example, one may also
realize more complex error handling strategies like compensation or apply ad-hoc
changes to replace parts of the failed process.



14 Manfred Reichert

End user perspective

The error handling process from Fig. 5 might not be always appropriate as it in-
creases the workload of the system supervisor. Most standard errors can be handled
in a (semi-)automatic way by the actor executing the activity. Upon failure of the ac-
tivity, the actor responsible for its execution could be provided with a set of possible
error handling strategies among which he may choose. An example of such a more
complex error handling process is shown in Fig. 6. Here, the user may choose be-
tween a variety of ways to handle the error, e.g., retrying the failed activity, aborting
the entire process instance, or applying pre-specified ad-hoc changes to fix or com-
pensate the error. Moreover, the error handling strategies suggested in a particular
context may depend on the background of the respective user, i.e., on his knowl-
edge, organizational position, and various other factors. Depending on the selected
user, the respective strategy is chosen and applied to handle the error.

End user perspective: In certain cases the simple error handling process from
Fig. 3 might be not appropriate since it increases the workload of the system
supervisor. Most standard errors can also be handled in a (semi-)automatic way
by the agent executing the activity. Upon failure of the respective activity the
agent responsible for executing this activity could be provided with a set of
possible error handling strategies he can choose from. An example for such more
complex error handling process is shown in Fig. 4. Here the user can choose
between a variety of ways to handle the respective error: retrying the failed
process step, aborting the whole process instance or applying predefined ad-hoc
changes to fix or compensate the error.

Fig. 4. A more complex error handling process involving the user

Additionally, suggested error handling strategies may depend on the back-
ground of the respective user, i.e. his knowledge and position in the organiza-
tional model and various other factors. Based on the selection of the user the
respective strategy is then applied to handle the error.

Such a semi-automatic, user-centered approach offers many advantages. Since
for each process activity a predefined set of possible strategies can be provided
to users, they do not need to have deep insights into the process to handle
errors appropriately. This allows to significantly reduce waiting times for failed
instances since users can handle errors immediately by their own and do not
have to wait for a probably busy helpdesk to handle errors for them. This in
turn allows to relieve the helpdesk from the tedious task of handling simple
process errors.

System supervisor perspective: Certain errors cannot be handled by the
user. For example they might not have been foreseen at buildtime, i.e., no ap-
propriate error handling process exists; or it might be simply not possible to
handle errors in an easy and generic way. In such cases the system supervisor
can use the AristaFlow Process Monitor shown in Fig. 5 to take a look at this
process instance, to analyze its execution log, and decide for an appropriate er-
ror handling. Additionally the system supervisor can use the AristaFlow Process
Monitor to keep track of failed instances; e.g., he may intervene if a web service
becomes unavailable permanently.

Consider again our bookseller example from Fig. 1. Assume that a process
instance wants to issue a request for a book using Amazon’s web service facilities,

Fig. 6 A more complex error handling process involving the user

The described semi-automatic approach provides several advantages. As for each
activity a predefined set of strategies can be offered to users, they need not have deep
insights into the process of properly handling errors. This allows reducing waiting
times for failed activity instances as users themselves can handle errors immediately
without waiting for a busy helpdesk. In turn, this relieves the helpdesk from the
tedious task of dealing with simple process errors.

System supervisor perspective

Certain errors cannot be handled by the user. For example, errors might not have
been foreseen at buildtime, i.e., no appropriate error handling process exists, or it
might be simply not possible to handle errors in an easy and generic way. In such
cases, the system supervisor may use the AristaFlow Process Monitor as shown in
Fig. 7 to take a look at this process instance, to analyze its execution log, and to de-
cide for an appropriate error handling strategy. Additionally, the system supervisor
may use the AristaFlow Process Monitor to keep track of failed instances; e.g., he
may intervene if a web service becomes unavailable permanently.



Flexible and Robust Business Process Automation 15

Finding Instances 
with failed activities

Execution log

Fig. 5. Process Monitor: Monitoring Perspective

but then fails in doing so. The system administrator detects that the process
is in trouble and uses the AristaFlow Process Monitor to take a look at this
process instance (cf. Fig. 5). Analyzing the execution log of the failed activity
he detects that its execution failed because the connection to Amazon could not
be established. Let us assume that he considers this a temporary problem and
just resets the activity so that it can be repeated once again. Being a friendly
guy, he takes a short look at the process instance and its data dependencies,
and sees that the result of this and the subsequent activity is only needed when
executing the Choose offer activity. Therefore, he moves these two activities
after activity Check Special Offers; i.e., the user can continue to work on this
process instance before the PAIS tries to re-connect to Amazon (cf. Fig. 6).
To accomplish this change he would switch to the Instance Change Perspective
of the Process Monitor which provides the same set of change operations as the
Process Template Editor. In fact, it is the Process Template Editor, but it is aware
that a process instance has been loaded and, therefore, all instance-related state
information is taken additionally into account when enabling/disabling change
operations and applying correctness checks. The system administrator would
now move the two nodes to their new position by using the respective standard
change operation. The resulting process is depicted in Fig. 6. Assume now that
the web service problem lasts longer than expected and, therefore, the user wants
to call Amazon by phone to get the price that way. In this case he would ask
the system administrator to delete the activities in trouble and to replace them
with a form-based activity which allows to enter the price manually.

Fig. 7 AristaFlow Process Monitor: Monitoring Perspective

Reconsider the bookseller scenario from Fig. 3. Assume that a process instance
wants to issue a request for a book using Amazon’s web service facilities, but then
fails in doing so. The system administrator detects that the process instance is in
trouble and uses the AristaFlow Process Monitor to take a look at it (cf. Fig. 7).
Analyzing the execution log of the failed activity, he detects that its execution failed
because the connection to Amazon could not be established. Let us assume that he
considers this as a temporary problem and just resets the activity such that it can
be repeated once again. Being a friendly guy, he takes a short look at the process
instance and its data dependencies, and realizes that the result of this and the sub-
sequent activity is only needed when executing the Choose oer activity. Therefore,
he dynamically moves these two activities after activity Check Special Oers; i.e.,
the user may continue working on this process instance before the PAIS tries to
reconnect to Amazon (cf. Fig. 8).

To realize the described change, he can switch to the Instance Change Perspec-
tive of the AristaFlow Process Monitor, which provides the same set of change oper-
ations as the Process Template Editor. In fact, it is the Process Template Editor being
aware that a process instance has been loaded and, therefore, instance-related state
information is additionally taken into account when enabling/disabling change op-
erations and applying correctness checks (e.g., the application of changes to already
passed regions of the respective process model would be prohibited). The system
administrator would now move the two activities to their new position by applying
the respective change operation. The resulting instance is depicted in Fig. 8. Assume
now that the web service problem lasts longer than expected and, therefore, the user
wants to call Amazon by phone to get the price that way. In this case, he would ask



16 Manfred Reichert

Move Nodes 
Change Operation

Fig. 6. Process Monitor: Instance Change Perspective

5 Related Work

Besides ADEPT, YAWL [3] has been one of the first workflows engines to sup-
port some sort of “correctness by construction” as well as correctness checks at
buildtime. jBPM [4] rudimentarily supports ad-hoc deviations of running process
instances, but without any correctness assurance as provided by the AristaFlow
BPM Suite. Most BPEL-based workflow engines like Websphere Process Server
[5] support error handling processes using fault handlers, but without the possi-
bility to structurally change process instances during runtime.

6 Summary and Outlook

Due to its “correctness by construction” principle and its comprehensive support
of ad-hoc changes during runtime, as well as the possibility to define arbitrary
error handling processes, AristaFlow is well suited to enable robust process im-
plementations while preserving the possibility to flexibly react to exceptional
situations during runtime. Currently, we investigate the handling of other kinds
of errors (e.g. time related errors).

References

1. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware informa-
tion systems. LNCS Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC) 2 (2009) 115–135

2. Dadam, P., Reichert, M.: The ADEPT project: A decade of research and develop-
ment for robust and flexible process support - challenges and achievements. Com-
puter Science - Research and Development 22 (2009) 81–97

3. Russell, N., ter Hofstede, A.H.M.: Surmounting BPM challenges: the YAWL story.
Computer Science - R&D 23 (2009) 67–79

4. Koenig, J.: JBoss jBPM (whitepaper) (2004)
5. Kloppmann, M., Konig, D., Leymann, F., Pfau, G., Roller, D.: Business process

choreography in websphere: Combining the power of BPEL and J2EE. IBM Systems
Journal 43 (2004) 270–296

Fig. 8 AristaFlow Process Monitor: Instance Chance Perspective

the system administrator to delete the activities being in trouble and to replace them
with a form-based activity allowing him to enter the price manually.

5 Conclusions

Adaptive processes fundamentally change the way in which human stakeholders in-
teract and collaborate as they dissolve the distinction between process engineers and
end-users. To date, business process support technologies have focused on enhanc-
ing and automating the way in which process users collaborate and interact, but have
not significantly changed the way in which the processes themselves are engineered
(i.e. defined and maintained). It has been assumed that this is done by IT specialists
in a distinct engineering phase with little or no connection to the execution of the
processes or the normal operation of the enterprise. However, with adaptive pro-
cesses this distinction will blur (if not entirely disappear) and process engineers will
become process users and vice versa. Stated differently, process engineering will be
also regarded as a normal adaptive process involving the collaboration of multiple
stakeholders.

References

1. Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: VIVACE: A framework for the
systematic evaluation of variability support in process-aware information systems. Inf Softw
Techn, Elsevier, 57, 248-276 (2015)

2. Buchwald, S. et al: Bridging the gap between business process models and service composi-
tion specifications. In: Service Life Cycle Tools and Technologies, 124-153 (2011)



Flexible and Robust Business Process Automation 17

3. Cheng, B., et al.: Software engineering for self-adaptive systems: A research roadmap. In:
Software engineering for self-adaptive systems, Springer, 1-26 (2009)

4. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for
robust and flexible process support. Comp Sci Res Develop, Springer, 23(2), 81-97 (2009)

5. Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in process chore-
ographies: design and implementation of propagation algorithms. Inf. Sys., 49, 1-24 (2015)

6. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the
Provop approach. J Softw Maint Evol, Wiley, 22(6-7), 519-546 (2010)

7. Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera, J., Weber, B.:
Understanding Declare models: strategies, pitfalls, empirical results. Softw Sys Modeling,
Springer, 15(2), 325-352 (2016)

8. Kolb, J., Kammerer, K., Reichert, M.: Updatable process views for user-centered adaption of
large process models. In: Proc. ICSOC’12, Springer, LNCS 7636, 484-498 (2012)

9. Kolb, J., Reichert, M.: A flexible approach for abstracting and personalizing large business
process models. Appl. Comp. Review, ACM SIGAPP, 13(1), 6-17 (2013)

10. Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-aware pro-
cess management. J Softw Maint Evol, Wiley, 23(4), 205-244 (2011)

11. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: fundamental require-
ments and their support in existing approaches. J Inf Sys Modeling Design, 2(2), 19-46 (2011)

12. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems.
Requirments Engineering, Springer, 19(2), 113-141 (2014)

13. Lenz, R., Reichert, M.: IT support for healthcare processes - premises, challenges, perspec-
tives. Data Knowledge Engineering, Elsevier, 61(1), 39-58 (2007)

14. Li, C., Reichert, M., Wombacher, A.: Mining business process variants - challenges, scenar-
ios, algorithms. Data Knowledge Engineering, Elsevier, 70(5), 409-434 (2011)

15. Lohrmann, M., Reichert, M.: Effective application of process improvement patterns to busi-
ness processes. Softw Sys Modeling, Springer, 15(2), 353-375 (2016)

16. Reichert, M.: What BPM technology can do for healthcare process support. In: Proc.
AIME’11, Springer, LNAI 6747, 2-13 (2011)

17. Reichert, M., Dadam, P., Bauer, T.: Dealing with forward and backward jumps in workflow
management systems. Softw Syst Modeling, 2(1): 37-58 (2003)

18. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows without
losing control. J Intellig Inf Sys, 10(2), 93-129 (1998)

19. Reichert, M., Dadam, P.: Enabling adaptive process-aware information systems with
ADEPT2. In: Handbook of Research on Business Process Modeling, IGI, 173-203 (2009)

20. Reichert, M., et al: Enabling Poka-Yoke workflows with the AristaFlow BPM Suite. In: Proc.
BPM’09 Demonstration Track, CEUR Workshop Proceedings 489 (2009)

21. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems: Chal-
lenges, Methods, Technologies. Springer, Heidelberg (2012)

22. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.
ToPNoC, Springer, LNCS 5460, 115-135, (2009)

23. Reichert, M., Rinderle, S., Dadam, P.: On the common support of workflow type and instance
changes under correctness constraints. In: Proc. CooplS ’03, Springer, LNCS 2888, 407-425
(2003)

24. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes: challenges,
solutions, applications. In: Proc. CooplS’04, Springer, LNCS 3290, 101-121 (2004)

25. Weber, B., Mutschler, B., Reichert, M.: Investigating the effort of using business process
management technology: results from a controlled experiment. Sci. Comp. Prog., 75(5), 292-
310 (2010)

26. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life cycle support in
process-aware information systems. J Coop Inf Sys, World Sci Publ, 18(1), 115-165 (2009)

27. Weske, M.: Business Process Management - Concepts, Languages, Architectures, 2nd Edi-
tion, Springer (2012)


