
Universität Ulm | 89069 Ulm | Germany Faculty for
Engineering Sciences,
Computer Science and
Psychology
Institute of Databases and
Informationsystems

Developing a Complex User Interface
for Mobile Data Collection Applications
Bachelor Thesis at Ulm University

Submitted by:
Robin Martin
robin.martin@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert

Supervisor:
Johannes Schobel

2018

Fassung January 22, 2018

c© 2018 Robin Martin

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

The use of paper-based questionnaires for collecting data reveals several downsides,

including logistical, cost-related and data quality issues. Despite the increasing digitiza-

tion and the possibilities evolving from the latter, paper-based questionnaires remained

ubiquitous in many application domains. Reasons for this may be insufficient IT knowl-

edge from domain experts, the high development costs for dedicated digital solutions or

the lack of domain-specific functionality and ease of use in existing software. In order to

solve these issues, the QuestionSys framework aims to pursue a digital and easy-to-use

approach for collecting data in large-scale scenarios. By providing software solutions for

configuring digital questionnaires, executing those questionnaires on mobile devices and

evaluating collected results, the framework attempts to support the entire data collection

life cycle.

In the context of this thesis, a sophisticated user interface for the QuestionSys mobile

application was developed. Thereby, an in-depth look at common usability and user

interface guidelines for mobile operating systems is taken in this thesis. Further, this

thesis presents potential use case scenarios for such an application and their require-

ments. The user interface is discussed and explained alongside various screenshots of

the developed mobile application.

iii

Acknowledgment

At this point, I would like to thank everyone who supported and continuously motivated

me during the preparation of this thesis.

Most notably, I would like to thank my supervisor Johannes Schobel for his excellent

guidance and support throughout this thesis.

v

Table of Contents

1 Introduction 1

1.1 Outline . 2

2 Fundamentals 3

2.1 Usability . 3

2.2 Cross-Platform Mobile Development . 4

3 User Interface Guidelines 9

3.1 Visual Design . 9

3.2 Interaction Design . 16

3.3 Navigation . 21

4 Application Scenario 25

4.1 Use Case Scenarios . 25

4.2 Requirements . 27

4.3 Application Structure . 28

4.4 Visual Design . 29

4.5 Questionnaire Interface . 32

4.6 Administration Interface . 44

4.7 Client Interface . 51

4.8 Implementation . 52

5 Summary 53

5.1 Outlook . 54

vii

1
Introduction

Despite the wide dissemination of smart mobile devices over the past decade, the

use of paper-based questionnaires to collect data in various application fields, such as

psychology and healthcare, remained a common standard [1]. The latter may be caused

by a lack of IT knowledge in these fields or the cost intensity of developing sophisticated

mobile applications for data collection purposes. Also, digital solutions for data collection

might exist, but often lack of general ease of use or certain functionality required by

specific domains. However, the traditional paper-based data collection approach goes

along with numerous downsides. For example, the use of paper-based questionnaires

is more likely to be error-prone, resulting in reduced quality of data [2]. Thereby, errors

might occur when filling in a questionnaire (e.g., not following given instructions) or

when digitalizing gathered data in time-consuming manual transcription tasks [2]. Also,

logistical issues and high costs (e.g., for printing thousands of paper-sheets), especially

in large scale studies, must not be ignored [3].

To encounter these downsides, the QuestionSys framework, which is currently developed

at Ulm University, aims to pursue a digital approach, supporting the entire data collection

life cycle in an easy-to-use way [4]. Therefore, the framework attempts to provide a

set of tools and techniques, empowering domain experts to implement their own “data

collection applications” at a high level of abstraction [4]. Via an instrument configurator,

questionnaires can be created in the form of generic process-models. The latter can

be transferred to a client application, which allows to store and process transferred

questionnaires using mobile devices. Data collected using smart mobile devices is then

transferred back to a server for evaluation and data analysis purposes.

The aim of this thesis is to create a user interface for the aforementioned client mobile

1

1 Introduction

application. In particular, the interface should comply with common usability standards

for mobile operating systems in order to allow for an efficient and at the same time

user-friendly way to collect and manage collected data. Furthermore, the resulting user

interface should help eliminating some of the downsides, which arise with the use of

paper-based questionnaires to collect data.

1.1 Outline

Since this thesis is concerned with the development of an user interface for a mobile

application, it mainly deals with aspects regarding usability in mobile applications and

mobile application development itself.

To begin with, Chapter 2 gives an overview over fundamental aspects that might be

required for further understanding in later parts of the thesis. In Section 2.1, a general

introduction to usability and its importance in software applications is given. Further,

Section 2.2 introduces Cross-Platform Mobile Development, an alternative approach to

traditional mobile development strategies. Thereby, the focus is set on Hybrid Mobile

Applications (Subsection 2.2.1). Following, Chapter 3 is concerned with specific user

interface and usability guidelines, which (when followed properly) may lead further

towards the goal of achieving high usability in mobile user interfaces. A compilation of

guidelines in terms of visual design (Section 3.1), interaction design (Section 3.2) and

navigation in mobile applications (Section 3.3) is collected and discussed in this thesis.

In Chapter 4, potential use case scenarios for the QuestionSys mobile client application

are described. From these scenarios, a set of requirements, which need to be fulfilled by

the application and its user interface, is derived and presented in Section 4.2. Further,

this chapter presents the user interface of the resulting application, which follows the

guidelines and requirements elaborated in this thesis, in detail. Finally, a brief summary

of aspects covered in this thesis as well as an outlook on how future work regarding the

developed application might look like, is given in Chapter 5.

2

2
Fundamentals

This chapter introduces general aspects, which might be necessary for further under-

standing in later parts of the thesis. Section 2.1 is concerned with criteria that define

usability and gives insights on why usability in general is an important factor in nowadays

software applications. Also, an alternative mobile development strategy, the so called

cross-platform development approach, is presented in Section 2.2.

2.1 Usability

Usability is an important factor in software systems. The term usability describes a

quality attribute of user interfaces which indicates how easy they are to use. Also,

usability is often associated with specific methods to increase the ease-of-use of a user

interface during its design and development process [5].

For almost all software applications, such as websites, mobile applications or desktop

applications, the usability of the user interface is a key factor for success. If a user

interface is not designed to fit the needs of the target user group, it can be hard for them

to figure out how to accomplish their desired tasks. Thus, they are more likely to become

frustrated and less efficient working with the interface or even stop using the application.

In order to achieve a good and usable user interface, it is necessary to define what

makes an interface actually usable. Jakob Nielsen [5], therefore, defined usability by the

following five quality criteria:

• Learnability: A user interface should be easy to learn. The difficulty of accom-

plishing basic tasks when first being confronted with a design should be low.

3

2 Fundamentals

• Efficiency: Once a user has learned a design, he should be able to perform tasks

within a reasonable amount of time.

• Memorability: A user interface should be easy to remember. When returning to a

user interface after not using it for a period of time, the effort it takes to relearn it

should be minimal.

• Errors: A user interface should prevent users from making errors. Further, it

should help and make it easy for users to recover from occurring errors.

• Satisfaction: A user interface should be pleasant to use.

Fulfilling these aspects as far as possible leads further towards the goal of accomplishing

high usability in an application. Nonetheless, developing an interface that fulfills every

quality criteria equally is challenging and might not always be possible.

A majority of quality criteria depend on the user’s perception, prior knowledge and

abilities, which may differ depending on demographic or cultural background. As an

example, an interface that is easy to learn for younger people is not necessarily easy to

learn for elderly people and vice versa. Also, in some cases it might be the right choice

to focus on one quality criteria while neglecting another one as they can stand in direct

competition (e.g., Efficiency vs. Satisfaction).

To ensure fulfilling of the quality criteria, guidelines for user interfaces exist that can

be applied during the development process. Some of these guidelines are covered in

Chapter 3.

2.2 Cross-Platform Mobile Development

Nowadays, market share for mobile operating systems (OS) is divided between Apple’s

iOS and Google’s Android [6, 7]. For mobile application developers, this means that

in order to reach a majority of end-users, it is indispensable to provide an application

running on both platforms.

This imposes a massive workload upon developers, since each platform relies on a

particular set of specific patterns, rules and guidelines. To comply with platform-specific

4

2.2 Cross-Platform Mobile Development

standards, applications have to be developed individually by making use of the platform’s

native programming languages (Java/Kotlin for Android, Objective-C/Swift for iOS), de-

velopment environments and user interface guidelines.

From the end-user’s point of view, the most notable difference lies in the appearance

of the user interface. The two platforms make use of their own widgets and patterns to

provide the same functionality.

In order to avoid developing two separate platform-specific applications, especially to

speed up development time and decrease costs, one can pursue a so called cross-

platform development approach. By doing so, the same application is available across

multiple platforms. Making use of cross-platform mobile development tools and frame-

works, an application can be compiled for multiple target OS from a single code base [8].

Compared to the traditional, native mobile application development, the cross-platform

approach offers multiple benefits [8]:

• Reduction of required skills and knowledge: Developers are only required

to learn programming languages and API’s which are provided by the chosen

tools and frameworks. They do not have to deal with multiple, platform-specific

programming languages or API’s of target OS.

• Reduction of code: While developing native applications requires to write sepa-

rate applications for each target OS, the application source code in cross-platform

approaches is written once and then compiled for each target OS individually.

• Reduction of development effort: The previous mentioned benefits contribute

to decrease development time and long term maintenance effort, and, therefore,

reduce the overall development costs.

2.2.1 Hybrid Mobile Applications

There exist different types of developing such mobile applications that follow the cross-

platform approach. One of them is the hybrid mobile application. As the name suggests,

hybrid mobile applications are some kind of crossover between native applications and

web applications, including benefits from both sides. Web applications, in turn, run in a

5

2 Fundamentals

web browser, thus, have no platform dependencies. However, web applications have

limited access to a mobile device’s native functionality (e.g., sensors, services or inputs).

Hybrid applications, just like native applications, are able to access the underlying device

hardware [9]. Further, hybrid mobile applications can be distributed to and downloaded

from the platform-specific application marketplaces such as the App Store or the Google

Play Store.

Figure 2.1: Typical software architecture in hybrid mobile applications [10]

As Figure 2.1 shows, hybrid mobile applications consist of three major components [10]:

• Web Application : Typically, hybrid mobile applications are implemented as web

applications. While application logic is written in JavaScript, the user interface

relies on Hypertext Markup Language (HTML) and Cascading Stylesheets (CSS).

• Web View : The Web View can be seen as a slimmed down version of a mobile

device’s web browser. It is a native platform-specific component which provides a

run-time environment for the application.

• Plugins : Due to the restricted access to device resources and functionality, hybrid

applications make use of dedicated plugins to access OS specific resources. Via

6

2.2 Cross-Platform Mobile Development

foreign function interfaces1, platform-specific native code can be invoked using

framework-specific JavaScript API calls.

To develop hybrid mobile applications, one can fall back on several development frame-

works. Those frameworks provide developers with all kinds of helpful tools and building

blocks to minimize development effort as well as to give the resulting application a native,

platform-specific look and feel using web technologies only. In Section 4.8, a more

detailed presentation of one hybrid development framework, namely the Ionic framework,

is given.

1A mechanism for applications written in one programming language to call routines or services written in
a foreign programming language

7

3
User Interface Guidelines

Developing user interfaces is a complex procedure, as various aspects have to be

considered in order to make it a good user interface. These aspects include, for example,

the actual device displaying the user interface, the OS running on the device, the context

an application is used in, and most importantly, the end-user, who is going to interact

with the user interface.

While in Section 2.1, quality criteria defining the usability of interfaces were presented,

this chapter is concerned with specific rules and guidelines leading to the fulfillment

of those criteria. In detail, these rules and guidelines are looked at in the context of

mobile applications, especially applications for the two major mobile OS, namely iOS and

Android. As already mentioned in Section 2.2, the user interface of mobile applications

for these platforms can differ greatly. Hence, their platform-specific user interface design

and usability guidelines, the iOS Human Interface Guidelines and the Material Design

Guidelines, are taken into consideration. Furthermore, principles and recommendations

from literature dealing with user interface design and usability in the context of mobile

applications and websites (as certain aspects are applicable to both), are summarized.

The objective of this chapter is to specify a set of general user interface and usability

guidelines that are applicable to mobile applications in the context of data collection.

3.1 Visual Design

In user interfaces, visual design refers to the way content is visually presented. Thereby,

different minor aspects, such as the use of colors or the choice of suitable typefaces,

contribute to an overall visual design. Further, a well thought visual design can have a

9

3 User Interface Guidelines

positive effect on usability in general, as for example an interface which is pleasant to

watch may also be pleasant to use.

3.1.1 Color & Contrast

In human-computer interaction, color plays a critical role, and, therefore, it does in user

interface design. Color can draw attention to certain interface elements, communicate

information by helping users to understand and interpret the application’s content, as

well as influence the user’s emotions and actions [11]. By applying colors in the right

way, the latter may increase usability of an interface dramatically, whereas, when applied

wrongly, they can act as a hindrance to usability.

A broad rule of thumb is, to use color sparingly. Overusing colors in user interfaces

is often perceived as distracting and fatiguing the human eyes. Since color is also

used to communicate information and indicate the importance of content displayed,

using too many colors leads to a decrease of importance of communicated information

[12]. In other words, using less color increases its ability to call attention to important

information or elements. Taking these aspects into consideration, iOS and Android

usability guidelines suggest to choose one primary color, that is dominant throughout

the overall user interface [12, 13]. To guide the user through the interface, highlighting

and drawing attention to specific user interface elements, one can either colorize those

elements in different gradations of the primary color, or use a secondary (complementary)

color to set accents. For example, accent colors can be used to highlight interactive

elements [12, 13], such as buttons, text input fields or sliders.

Further aspects have to be considered, when using color to communicate the state of

certain interface elements, for example to differentiate between enabled and disabled

interactive elements (e.g., buttons). First, the perceived meaning of certain colors can

differ depending on a user’s cultural background [12]. While, for example, in some

cultures, the color green has a positive connotation (e.g., success) and the color red a

negative one (e.g., error), the same colors are associated with opposite connotations in

other cultures. This can mislead users, to wrongly interpreting the meaning of elements

the respective color is applied to.

10

3.1 Visual Design

Figure 3.1: Normal Vision vs Colorblind Vision

Also, people with visual impairments have to be taken into account, when selecting

colors for user interfaces. For instance, approximately 1 out of 12 men (8%) and 1

out of 200 women (0.5%), worldwide, are affected by some kind of colorblindness [14],

making it hard for them to discriminate certain colors (mostly red-green or blue-yellow

color combinations [12, 15]). Further, due to physiological changes of aging, the visual

perception of elderly people can become restricted, making color-combinations that

are clearly distinguishable for young people indistinguishable for the elderly [16, 15]. In

Figure 3.1, potential effects of color selection for visually impaired people is visualized.

To avoid culture related and constitutional misunderstandings regarding color, one has

to make sure selected colors in a user interface are sending the appropriate message

and selected colors are clearly distinguishable by everyone. Furthermore, instead of

relying solely on color to communicate information or the state of certain elements (as it

is done in Figure 3.1), using different color-shape or color-text combinations can help

prevent previously mentioned misunderstandings [12].

Since tablets and smart phones are mobile devices, their users are not bound to a certain

place to use them, compared to, for example, PC users. This environmental complexity,

as well as limitations in visual perception of certain user groups, can lead to serious

issues regarding visibility and readability of displayed content in mobile user interfaces.

To ensure, that the mobile application’s content is clearly visible and accessible for every

11

3 User Interface Guidelines

user, under various conditions (e.g., lighting conditions outside), the contrast between

the content color and the color of the background it is displayed on should be as high as

possible. According to the World Wide Web Consortium [17], large text (e.g., headlines)

should have a contrast ratio of at least 3:1 against their background, whereas the contrast

ratio for normal sized text should be 4.5:1, at least. The same contrast ratios should also

be considered for displayed icons [18]. Such contrast ratios can be achieved by using

light colors for text on dark background and vice versa.

In Table 3.1, a brief summary of user interface guidelines discussed in this section is

presented.

ID Guideline

COL1 Use color judiciously

COL2 Use one primary color throughout the application and add a secondary color
to highlight important (interactive) elements

COL3 Avoid using color as standalone indicator to communicate the state of an
element

COL4 Avoid red-green and blue-yellow color combinations

CON1 Provide an adequate contrast ratio of at least 4.5:1 for normal sized and 3:1
for large text and icons

Table 3.1: User interface guidelines for color and contrast

3.1.2 Typeface

User interface design is mostly about communicating information towards the user. In

mobile applications, the most commonly used communication form is through the display

of textual content [19]. But there are substantial differences between reading text from a

display and reading text from paper. Reading text from a computer screen for example

takes about 25 percent longer than reading text from paper [19]. Regarding the limited

screen sizes and environmental complexity of mobile devices, they are more likely to

decrease the user’s ability to read text even further [19]. While in some contexts, the

12

3.1 Visual Design

loss of information due to bad readability does not lead to further problems, the loss of

information in the context of data collection scenarios is critical, since it can affect the

quality of collected data dramatically. Hence, to avoid readability issues, selecting an

appropriate typeface for displaying textual content is necessary.

By default, the typeface used in iOS applications is San Francisco [20], while most

Android applications rely on Roboto as their standard typeface [21]. Both are sans-serif

typefaces, which were invented specifically to be displayed in user interfaces. Although

the quality of screens increased over the last years, enabling the proper display of serif

typefaces, the use of serif typefaces in mobile user interfaces tends to impose readability

problems upon certain user groups dealing with visual impairments (e.g., elderly people

[16]). To avoid such issues, using sans-serif typefaces (e.g., Roboto, San Francisco or

Neue Helvetica) in mobile user interfaces might be the best choice.

To emphasize the importance of certain words or phrases, font type variations can be

applied [20]. For example the weight-variations of types can be used to reflect relative

importance of words the variation is applied to, compared to other texts. Therefore, page

titles and headlines should always have increased type weight, to match their importance.

However, type styles should be applied conservatively, as applying too many variations

and styles can, in turn, distract users and therefore hinder readability [21, 16].

Finally, longer text phrases should be displayed including capital, as well as, lower case

letters. Reading paragraphs containing capital letters only can slow down reading speed

by 10 percent [19], as the shape of certain words is no longer recognizable for the user

and the text has to be read word by word and letter by letter.

Table 3.2 is sums up the most important points, concerning the use of typography in

mobile user interfaces.

ID Guideline

TYP1 Use sans-serif instead of serif typefaces

TYP2 Emphasize important content by applying type variations

TYP3 Apply type variations conservatively

TYP4 Avoid using only uppercase letters in longer texts

Table 3.2: User interface guidelines for typography

13

3 User Interface Guidelines

3.1.3 Iconography

When designing user interfaces, relying on icons may bring numerous benefits. Icons,

by definition, are small, pictorial images, which are used to represent certain objects,

actions or ideas [22, 23], often in a metaphorical and abstract way. The type of icons

can, again, be subdivided into two groups [24]:

• Product icons are portrayals of the services, tools and products a brand is provid-

ing, whereas

• System icons are system specific representations of objects (e.g., a file or direc-

tory), commands (e.g., backwards arrow to return to previous page) and feasible

actions (e.g., plus (+) sign to add items)

Especially when designing interfaces for mobile applications, icons can unfold their full

potential. Their relatively small size allows multiple icons to be displayed in size limited

display areas (e.g., Tab Bars) while still being big enough to act as touch targets. Further,

when designed properly, icons are easy to recognize and easy to remember [22], which

can affect usability criteria such as learnability, memorability and efficiency in a positive

way. When selecting icons for a user interface, several aspects have to be considered in

order to make them work the intended way.

To begin with, understanding of icons is often based on a user’s prior experience from

other applications as well as the context the icon is used in [22]. In other words, the

recognition and understanding of the meaning of icons is faster, if users are already famil-

iar with certain icons, or, if the meaning of an icon in a specific context is self-explanatory.

Accordingly, relying on icons from platform-specific icon sets (where possible) is highly

suggested. Users are more likely to be familiar with the meaning of such icons, since

the latter are used in other applications across the platform as well. Nonetheless, one

should not apply platform-specific icons for the single purpose of applying them. If there

is no platform-specific icon representing an intended meaning or beahviour, it should not

be applied to represent that meaning, since this can lead to misunderstanding. In such

cases, one can decide to design specific icons representing the intended meaning best

[25]. Doing so, platform-specific design standards should be applied to remain aesthetic

14

3.1 Visual Design

consistency.

To avoid icons being misinterpreted by users, as well as to help users familiarizing with

the user interface, they should always go with a small, textual label [22, 25]. The label

should be displayed either at the bottom or besides the icon itself and contain the name

of the action that corresponds with the icon.

In spite of everything, when selecting icons for a user interface one should always

consider the five second rule. The rule states, that “if it takes [...] more than 5 seconds

to think of an appropriate icon for something, it is unlikely that an icon can effectively

communicate that meaning” [22].

A compilation of relevant guidelines concerned with the utilization of icons in mobile user

interfaces is presented in Table 3.3.

ID Guideline

ICO1 Avoid using icons, if it takes too long to think of an appropriate icon

ICO2 Use icons in size limited display areas over plain text labels

ICO3 Make use of platform-specific icon sets

ICO4 Apply icons in a consistent way

ICO5 Provide small textual labels at the bottom or besides icons

Table 3.3: User interface guidelines for icons

3.1.4 Terminology

Every word and phrase used in a user interface is part of a conversation between

the user and the system. Therefore, the system should speak the users’ language to

make them feel comfortable and build trust in the system. This means, that rather than

using sophisticated, system-oriented wording, the language should be simple and user

oriented [26]. Technical or domain-specific jargon might of course be understood by

domain experts, but in the same way can intimidate a broader user audience [27].

Since users should be comfortable in using an application, the general tone of language

15

3 User Interface Guidelines

should be a user-centered, inviting and positive one. To achieve this, it is suggested

to speak in a second person conversational style, addressing the user directly using

pronouns such as “you” or “your”. Likewise, the pronoun “we” should be avoided in most

cases as it shifts the focus from what the user can do with an application towards what

the application can do for the user, which might be perceived as insulting or patronizing

[27, 28].

When it comes to interactive elements, users should immediately know, which action

a certain element invokes. This can either be achieved by applying appropriate icons,

as mentioned in Subsection 3.1.3, or by providing text labels for interactive elements.

These labels, however, should contain words that describe the action that is invoked,

using action verbs such as “download”, “upload” or “send” [27].

Table 3.4 briefly summarizes the most important guidelines from this section.

ID Guideline

TER1 Keep words and phrases simple and informative

TER2 Keep the tone of language polite, positive and user-centered

TER3 Avoid technical or domain specific jargon

TER4 Write phrases in second person conversational style, avoid first person

TER5 Use action verbs for labeling interactive elements

Table 3.4: User interface guidelines for terminology

3.2 Interaction Design

While Section 3.1 was mostly concerned with the visual presentation of content in mobile

applications, this section covers different aspects regarding the interaction between the

user and the application’s content. In detail, an overview of guidelines, enabling users to

perform tasks in a mobile application efficiently and with ease, are presented.

16

3.2 Interaction Design

3.2.1 Gestures

Before the widespread of touchscreen displays in mobile devices, physical buttons or

pointing devices (e.g., mouse) were the standard way of interacting with content on user

interfaces. Nowadays, in turn, a touchscreen display covers almost the entire front-side

of a mobile device, leaving no space for physical buttons. Also, pointing devices are

inconvenient to carry around and might get lost easy. Hence, touchscreen devices

rely heavily on gestural controls, using the human hands to interact with on-screen

content. Although there are many gestures relying on the mobile devices sensors (e.g.,

Accelerometer or Proximity sensor), the main focus of this section are touch-based

gestures. A set of standard gestures, provided by nearly every mobile OS is presented

in Figure 3.2.

Figure 3.2: Standard touch gestures for multitouch enabled devices [29, 30]

While mobile OS use almost the same gesture patterns, the outcome of the gestures can

differ between platforms. To clarify, Table 3.5 gives a brief overview of actions associated

with standard touch gestures on iOS and Android. However, the gestures presented in

Figure 3.2 and Table 3.5 only cover a small amount of possible gestures for multitouch

17

3 User Interface Guidelines

Gesture iOS Android

Touch / Tap
Activates screen element

Canceles / escapes current
task (dialog / menu)

Double touch / tap Zooms in / Zooms out

Long press
Displays view for cursor positioning

Enters a mode allowing items
to be rearranged

Enters a mode allowing items
to be selected

Pinch
Zooms in / Zooms out

Expands / Collapses content

Drag Moves element, scrolls / pans precisely

Flick / Fling Scrolls / Pans quickly

Swipe
Reveals off-screen content, Reveals hidden elements, Switch

between in-content views, Refreshes content

Returns to previous view

Table 3.5: Actions associated with standard gestures on iOS and Android [29, 30]

enabled devices. Gestures can appear in more complex forms, for example, by combining

standard gestures or relying on alternative patterns (e.g., drawing symbols on screen to

perform certain actions). The latter allows to have various additional functionality, while

saving screen real estate. Nonetheless, the more complex a gesture gets, the harder it

gets to discover, learn and remember, as there is no on-screen reminder indicating that

a certain gesture can be performed [31]. Therefore, it is suggested to rely on standard

gestures. The chances are high that the user is already familiar with these gestures

from prior experiences with other applications from the same platform [29], resulting in

reduced additional learning effort for the user.

Further, when making use of standard gestures, one should apply them to be used in the

intended way (see. Table 3.5), defined by the corresponding platform. Using standard

gestures to perform non-standard actions can lead to confusion and, therefore, should

18

3.2 Interaction Design

be avoided [29]. Since there is no visual indicator for gestures one can not expect a

user to know that a gesture can be performed in a certain context. When possible, there

should exist visual shortcuts to supplement these gestures [29]. As an example, to

supplement a “long press” – gesture in a list view, which enters a selection mode, a

“select” – button could be used in the same view, to provide the same action in a more

discoverable way.

Finally, due to the nature of large touchscreens on mobile devices, people often activate

certain gestures by mistake (e.g., accidental button click) [31]. The effects of accidentally

triggering a gesture can range from harmless (e.g., accidental scroll down) to critical

(e.g., accidental deletion). To prevent critical outcomes when activating gestures by

mistake, one has to make sure that gestures are reversible, for example, by presenting

confirmation alerts.

The rules and guidelines regarding gestures are summarized in Table 3.6.

ID Guideline

GES1 Avoid using too complex gestures, rely on standard gestures

GES2 Avoid using standard gestures for non-standard actions

GES3 Provide discoverable shortcuts to supplement gestures

GES4 Make gestures reversible

Table 3.6: User interface guidelines for gestures

3.2.2 Data Entry

In many mobile applications, entering data is an essential form of interaction. Especially

for applications in which data must be acquired from user inputs and then be processed

accordingly, this form of interaction comes to focus. Mobile applications for data collection

purposes, thereby, embody the upper extremity, as their main intent is to gather and

process data entered by users. Hence, it is from great importance to design data entry

interactions to be pleasant and efficient to be performed by the user, on the one hand.

On the other, the validity of entered data may be ensured by diminishing incorrect inputs.

19

3 User Interface Guidelines

To accomplish data input tasks on touchscreen devices, most mobile OS provide virtual,

on-screen keyboards. While virtual keyboards eliminate the necessity to carry around

physical keyboards, multiple problems can arise when making use of them. The key

sizes of virtual keyboards depend on the dimensions of the display. As a result, the key

size of virtual keyboards is often smaller compared to physical keyboards, which can

lead to a loss in typing efficiency, especially when entering longer texts [32]. In general,

typing efficiency will increase with frequent usage of virtual keyboards, as it is heavily

based on practice. In this context, especially novices will have problems in finishing data

input tasks in an adequate time. Also, motor impairments (e.g., decreasing pointing

ability) can affect typing efficiency in a negative way. To avoid data entry inefficiency,

input methods requiring a virtual keyboard should be kept to a minimum. Rather than

using text fields to acquire data, data entry processes can be simplified and accelerated

by relying on alternative input methods (e.g., date picker, dropdown fields, radio button

groups) [33]. The latter allow users to choose from a predefined set of available options

instead of typing in a response, making it more comfortable for a user to input data

and reducing errors in resulting data (e.g., wrong date format). Further, by pre-filling

input fields with data that can be automatically gathered from the system or by providing

reasonable default values, the amount of typing a user has to perform can be decreased

dramatically [33, 34].

However, sometimes the usage of text input fields is inevitable, for example, when options

for an input can not be predefined (e.g., textual descriptions) or when the amount of

available options for an input is from such height, that looking for one specific option

would take much longer, than just typing the respective value. In such cases, steps have

to be taken in order to minimize the effort it takes for a user to enter data.

To begin with, input fields should always go with a label or placeholder, indicating the

purpose of the input it is applied to [33]. Additionally, applying prefixes or suffixes to

input fields can help to put them in a certain context, by, for example, clarifying the unit of

numerical inputs [35]. To make input fields visually stand out from surrounding content

and, therefore, making it easier for users to identify them as such, one can apply a

transparent rectangular fill, which encloses an input label or text [35].

Another possibility to minimize the input effort for a user, is to display different keyboard

20

3.3 Navigation

layouts according to the type of an input [34]. Mobile OS mostly provide multiple keyboard

layouts by default, making characters, which are often used in a certain context (e.g.,

At(@)-sign for e-mail inputs or a set of numbers for numerical inputs), easier to access.

Using appropriate keyboard layouts diminishes the number of steps it takes for a user to

reach desired characters, and can improve input efficiency dramatically.

Lastly, a user should always be aware of the current state of an input field. Not evaluating

input fields until a user tries to proceed, can easily lead to frustration, as in the worst

case, multiple inputs have to be revised. Therefore, input fields should be validated

dynamically, giving the user an instant feedback about the validity of a given input [33]. If

a user input does not match certain constraints imposed for its validity (e.g., exceeding

maximum length of text input), the user should be notified by, for example, displaying an

error message with useful instructions on how to change the input to be valid [35].

Table 3.7 briefly summarizes the most important guidelines described in this chapter.

ID Guideline

DAT1 Keep data entry tasks requiring keyboard input to a minimum

DAT2 Provide alternative input forms enabling users to choose from a set of available
options

DAT3 Prepopulate input fields where possible

DAT4 Make input fields easily discoverable

DAT4 Provide labels and placeholders to communicate the purpose of an input field

DAT5 Display suitable keyboard layouts for different input types

DAT6 Always communicate the current state of an input field

Table 3.7: User interface guidelines for data entry

3.3 Navigation

The limited display size of mobile devices is making it hard to display many information

in a single view, while still remaining clarity and structure. As a result, information is

21

3 User Interface Guidelines

often organized in hierarchical structures throughout the application. In order to reach

certain information or application functionality, the user has to navigate through different

views of an application. Thus, the question arises how to implement such a navigation,

so that users can navigate through an application in an intuitive and easy way.

Figure 3.3: Flat structure (left) vs deep structure (right)

There are two main types of navigation structure used in mobile applications and websites

(see Figure 3.3), flat and deep navigation structures [36, 37]:

• Flat navigation structure: Content is logically grouped into categories, where

each category has its own top level view. To navigate between categories, the user

can easily switch between those top level views.

• Deep navigation structure: One choice per screen has to be taken in order to

navigate to the next deeper hierarchy level, until a certain endpoint (c.f., Figure 3.3,

leafs in tree) is reached. To navigate to another destination, either every step taken

has to be retraced (e.g., via Breadcrumb navigations), or navigation has to be

restarted from the root view.

Often, these structures do not appear in their initial form, but rather in a mixture of both.

Thereby, in applications with a flat navigation structure, each category can have multiple

sub levels.

The application should support users in reaching desired information or functionality as

easy and fast as possible. Therefore, one has to figure out first, how important certain

content, information or functionality is, from the user’s point of view, and how often it is

needed on a regular basis [38]. Important information and main functionality then should

22

3.3 Navigation

be placed higher regarding the navigation hierarchy, enabling users to reach it faster. In

turn, side functionality and less important information can be nested in deeper levels of

the hierarchy. In general, it is suggested to keep hierarchies as flat as possible, since

the deeper content is located, the less discoverable it becomes for the user [36].

Regardless of the application’s underlying navigation structure, users should be aware

of their current location inside the application at any time [37, 39]. Otherwise, not only

new users, but also those not using the application on a regular basis, can get lost

and, as a result, work less efficient with the application. To achieve location awareness,

pages should be titled consistently, indicating the current location. Further, menus for

navigating, (e.g., Tab Bar or Navigation Drawer) highlighting the user’s current position,

can be used. Additionally, when navigating to sub level views, one should always be

able to return to a previous view, located higher in the navigation hierarchy. To achieve

this, the different platforms rely on various patterns. On iOS devices for example, going

back to a parent view can be implemented as a swipe gesture [29]. Though, this gesture

is hard to discover for users that are not familiar with the platform, as there is no visual

indicator. On Android devices, one can use the hard- / software back button to return to

previous views. While this pattern is easy to discover (as the button is always visible), it

is not solely used for screen-to-screen navigation in an application. It also supports other

behaviors (e.g., dismissing floating windows, contextual action bars or returning to the

home screen from a root view) [40]. One commonly used pattern, across platforms, for

returning to a parent view from a child view is a dedicated button in a top left position on

nested views (“Up”-Button on Android, “Back”-Button on iOS). In this position, it is easy

to discover for the user and provides predictable behavior throughout the application.

The user interface guidelines derived from this chapter are summarized in Table 3.8.

ID Guideline

NAV1 Implement navigation in a way that supports the user in reaching desired
content or functionality with ease

NAV2 Avoid the navigation structure to become too deep

NAV3 Always indicate the user’s current location inside the application

NAV4 Always equip sub level views with a “Back”/“Up” button to indicate the possibility
to return to its parent view

Table 3.8: User interface guidelines for navigation

23

4
Application Scenario

Taking the guidelines, gathered in Chapter 3 into account, a mobile application for data

collection purposes was developed. The target platforms, therby, were iOS and Android.

This chapter gives insights into the development process of the aforementioned ap-

plication’s user interface. In the first place, potential use case scenarios for such an

application are circumscribed. Next, requirements to the application and its user inter-

face, that can be derived from these circumscriptions are defined. Finally, a presentation

of actual design decisions that were made to satisfy requirements, using guidelines from

the previous chapter, is given.

4.1 Use Case Scenarios

By now, the main focus of the QuestionSys – Framework are the clinical and psycho-

logical domains. However, the range of use cases is not limited to the latter. Besides

application in scientific research, the system could also find usage in institutional or

industrial fields.

One real-world application scenario, where digital questionnaires were used to conduct a

trial in the field of clinical psychology, is described in [3]. The intention of this trial, which

took place in rural areas in Burundi, was to investigate the Post-Traumatic Stress Disor-

der (PTSD) of ex-combatants and soldiers. Due to logistical issues (i.e., transporting

large numbers of paper-based questionnaires) and governmental impositions (regarding

privacy and security issues), an electronic questionnaire application was developed.

Using this application, the international team of psychologists was able to fill in the

25

4 Application Scenario

questionnaire, during an interview with a participant, in about 2-3 hours. Corresponding

results were encrypted, stored on the device and could later be decrypted and evaluated.

In [41], multiple potential application scenarios for the QuestionSys client application

were described. The scenario application for asylum, thereby describes how the applica-

tion could be used to facilitate and speed up the application process for asylum seekers,

as well as to diminish operating expenses for the responsible institutions. The motivation

behind this scenario is the rising number of refugees, seeking for asylum. Often, respon-

sible offices are unable to cope with the large number of applications, which can lead to

several months of processing time until a final decision can be made. Institutions could,

therefore, provide tablets with the QuestionSys client application, enabling refugees

to fill out the application themselves. Furthermore, it would be possible, to give a first

assessment about the success of the application, based on given answers.

Another related work [42] dealing with application scenarios for digital questionnaires de-

scribes the usage of the latter for POS (Point of Sale/Service)-Surveys. In POS-Surveys,

consumers of certain products or services, a business provides, are interviewed directly

at the place of purchase about relevant parameters concerning the provided product or

service. For businesses, such surveys can be a major indicator for customer satisfaction

and can further help increasing product and service quality. The corresponding use

case in [42], describes a hotel business, using paper-based questionnaires to measure

their guests satisfaction with provided services in order to continuously increase service

quality. With hotel guests decreasingly paying attention to such questionnaires, the

hotel decides to exchange paper-based with digital questionnaires in order to make

the fill-in process more pleasant for their guests and as a result have more guests to

fill-in questionnaires. By providing smart-devices, guests could make use of on-board

sensors (e.g., camera or microphone), for example, to capture defects or shortcomings.

This would, in turn, enable hotel personal to identify and remedy occurring issues more

effectively and, therefore, increase service quality.

26

4.2 Requirements

4.2 Requirements

Considering the versatile fields of application, including those mentioned in Section 4.1,

multiple quantitative as well as qualitative requirements, that the mobile application has

to fulfill in order to be suitable for each possible scenario, arise.

• A user should be able to log in to the application with an existing QuestionSys-

Account.

• A user should be able to download and execute questionnaires linked with his

QuestionSys-Account.

• Due to potentially long lasting interview sessions, a user should be able to pause

and later resume to a questionnaire instance.

• Collected results should be stored locally.

• A user should be able to manage and view collected results.

• A user should be able to upload collected results to the QuestionSys-Server.

• A user should be able to modify relevant application settings.

• The application interface should be designed in a neutral way in order to be used

across various domains.

• The user interface of the application should be self-explanatory.

• The fill-in process of a questionnaire should be pleasant and time-efficient, as

often users participation in surveys is voluntary.

• The application should allow for customizations in the user interface, to fit the

user’s needs and to enable application providers to support their branding.

• The application should support multiple questionnaire modes (e.g., interview or

self-rating).

• The application should support multiple languages.

27

4 Application Scenario

4.3 Application Structure

The basic structure of the application (see. Figure 4.1) is a result of analyzing functional

requirements described in Section 4.2. The application is divided into two main parts, a

public area (green) and an area for administration purposes (orange), which requires

further authentication to access. Regarding the requirement for different questionnaire

modes, this split allows to fill in questionnaires in self-rating mode, with unauthorized

users not being able to manipulate or have insight into already collected data. When

being in the public area, a user is only able to execute specific questionnaires and

view the application’s imprint, whereas accessing the administration area makes further

application functionality available for the user. In this area, application content is logically

Figure 4.1: Abstract representation of the application structure

grouped according to the specified requirements. The application provides top level

views for managing questionnaires and their collected results, overview and resuming

questionnaire instances as well as one for configuring settings. As Figure 4.1 shows,

some of the top level views have nested views to provide more detailed information

about, for example, specific questionnaires or results. Due to the logical grouping, the

resulting navigation structure of the application is rather flat than deep (complying with

NAV2), with a maximum of two nested views per top level view.

The structure and design of the views themselves, as well as the navigation between

them is presented in the following sections.

28

4.4 Visual Design

4.4 Visual Design

During the development of the user interface, the guidelines from Chapter 3, regarding

the visual design in mobile applications, were taken into consideration. Most of these

guidelines were applied globally (e.g., guidelines concerned with color) to remain visual

consistency throughout the application. Insights on how the guidelines were implemented

in detail, are given in the following sections.

4.4.1 Colors

Regarding the requirement to empower users to customize the application interface, a

set of predefined color schemes is provided (see Figure 4.2). These themes can be

switched according to personal preferences. Thereby, the themes mainly differ in terms

of their primary and secondary color. Throughout the user interface, the primary colors

were used to colorize the header bar as well as interactive elements (e.g., buttons) , in

order to give each page a consistent look (COL2).

Figure 4.2: Overview of available color schemes

Further, they are partially used to supplement state indications of certain interface

elements. However, in conflicting cases (e.g., indicating the currently active header

bar segment) the primary color is replaced by a secondary color (COL2). To avoid

color related misunderstandings (e.g., for people having problems discriminating certain

colors), colors are never used as a standalone indicator to communicate an element’s

state (COL3). Such indications are always combined with a second characteristic (e.g.,

29

4 Application Scenario

different shape or text). To comply with COL4 it was taken care that no red-green and

blue-yellow color combinations exist between chosen primary and secondary colors.

In order to ensure proper contrast ratios between textual content and its background

(CON1), and, therefore, increase readability, text color is mostly set to black (or grada-

tions of black). In turn, the background color remains white (highest possible contrast

ratio 21:1). For textual content on colorized backgrounds, text color suggestions from

the Material Palette [43] were taken into account.

Further insights on how color is applied inside the application’s user interface can be

taken from the screenshots in the following sections.

4.4.2 Typeface

Throughout the application, textual content is displayed using sans-serif typefaces

(TYP1). Furthermore, when running on Android devices, the default typeface Roboto is

applied to comply with platform standards. In turn, when running on iOS devices, textual

content is displayed using the standard San Francisco typeface.

Regarding TYP4, most of the application’s textual content consists of mixed case letters,

with only one exception. The Material Design style-guide suggests for button texts to be

capitalized. Accordingly, when running on Android devices, text on buttons is displayed

using capital letters only.

4.4.3 Iconography

The application often relies on icons in order to save screen space (ICO2), for example

inside the tab or header bar, as well as for esthetic purposes. Furthermore, according to

the underlying mobile OS, platform-specific icon sets were used (ICO3). This way, the

same icon might have a slightly different appearance on Android compared to iOS. To

remain consistency inside the application as well as across the respective platform, it

was tried to use icons for the purpose they were designed for (e.g., “gearwheel”-icon

for settings or “trash bin”-icon for deletion). Moreover, the same icon is never used to

30

4.4 Visual Design

communicate different actions in another context (ICO4). Since the application context

might be fairly specific, regular icon sets do not contain icons, which communicate the

intended meaning for questionnaire related objects (e.g., paused instances or results).

Hence, the icons depicted in Figure 4.3 were added to the system icon set of the

respective platform. For actions or objects, which were hard to visualize as icons (e.g.,

local or available questionnaires), icons were forgone and replaced with text labels

(ICO1). In cases, where the meaning of an icon might not be self explanatory, but its

understanding is critical for the user (e.g., tab bar icons used for navigation purposes),

icons are supplemented with small textual labels indicating their intended purpose (ICO5).

The screenshots of the application in the following sections give further insights on how

(and where) icons were applied.

Figure 4.3: Icons for Questionnaires, Sessions and Results

4.4.4 Terminology

Since fields of appliance for the application may go further than scientific research, it

was tried to keep the amount of domain specific jargon to a minimum (TER3). Words

and phrases in dialogues with the user (e.g., confirmation alerts) are kept short and

informative using a general, polite and positive tone of language (TER1 & TER2). By

writing phrases in second person conversational style (TER4), a more user-centered

tone is achieved. Further, interactive elements (e.g., buttons) are either labeled with

an icon communicating the meaning of an action which is triggered or with an action

31

4 Application Scenario

verb (TER5) describing the triggered action (e.g., “DELETE”). Example dialogues are

presented in Figure 4.4.

Figure 4.4: Dialogues for leaving questionnaire execution (left) and entering the adminis-
tration area (right)

4.5 Questionnaire Interface

This section focuses on the interface, which is displayed when executing a questionnaire

instance. While the actual content of questionnaires might differ, each questionnaire

consists of a set of pages. Each page, in turn, is a composition of different elements

(e.g., headlines, texts or questions). Figure 4.5, thereby, shows the representation of

a single questionnaire page inside the application. To begin with, a fixed header bar

resides on top of the screen. The bar itself contains the title of the questionnaire, which is

executed at the moment, as well as an “Up/Back” -button, which allows the user to exit the

questionnaire instance. The header bar is contained by every single page of a respective

questionnaire, making users not only able to stop the execution of a questionnaire at any

given point of time, but also aware of the questionnaire they are filling in at the moment.

To avoid users accidentally stopping the questionnaire execution, a confirmation alert is

displayed when trying to exit (GES4). Underneath the header bar is where the actual

content of a questionnaire page, namely the set of questions, resides. Questions are

displayed one above the other, with each question always taking up the full display width.

The height of a question element, however, is calculated dynamically according to the

respective question’s content. As Figure 4.5 shows, the content of a question element

is divided up into two main parts, a descriptive part and an interactive part. For proper

32

4.5 Questionnaire Interface

Figure 4.5: Basic Structure of a Questionnaire Page

distinction, these parts are separated by a horizontal divider. Inside the descriptive part,

the actual question is displayed. Further, error messages concerning the question as

a whole (e.g., the answer is mandatory) reside in this part. The interactive part of a

question element can again be subdivided into a toolbar section and a data entry section.

To clarify, the toolbar might not always be displayed. Toolbar elements are displayed

only, if additional information may be provided by the element. If, for example, a question

holds further instructional information, the “instructions” button is displayed. Clicking the

button reveals a popover containing the instruction text. For non-mandatory questions

whose data entry type does not allow an answer to be undone by default (e.g., radio

buttons), an “undo” button is displayed, allowing users to clear their previous answer

(GES4). In the data entry section, different, interactive input elements are displayed,

according to the type of the corresponding question. Using these elements, a user is

33

4 Application Scenario

able to provide his answer to a given question.

To give users the ability to proceed to the next page of a questionnaire, each page

contains a proceed bar. The proceed bar is always displayed beneath the last question

of a questionnaire page. However, for pages containing not enough questions to fill the

entire screen, the bar is pushed to the bottom of the page, making it easier for users

to interact with it. By giving this bar a relative instead of an absolute, always visible,

position, it is ensured, especially for pages exceeding the vertical screen size, that a

user is exposed to each question at least one time, before trying to proceed.

The following sections present an overview over the different types of questions that

exist for a questionnaire, as well as their implementation inside the user interface.

4.5.1 Choice Question Types

The first type of questions are choice questions. Choice questions share one character-

istic, where a user chooses his answer based on a set of predefined options. However,

the categories of choice questions differ in the number of options, which can be selected,

as well as in their visual representation.

Single Choice Question

As their name implies, single choice questions only allow for selecting a single answer out

of a set of available ones. Available answers are stacked on top of each other, with each

row containing the answer itself on the left, as well as a selection indicator, highlighting if

a certain answer is currently selected or not, on the right. Thereby, the entire row acts

as a touch target, making the selection of an answer easy and accessible. While when

running on Android, selection indicators are represented as radio buttons (see Figure 4.6,

left), the iOS version relies on a small hook to indicate that an answer is selected (see

Figure 4.6, right). To further highlight a selected answer, its text is colorized to differ from

non-selected answers. Available answers are separated by horizontal dividers to allow

proper distinction between them. Since it is from great importance that the entire answer

34

4.5 Questionnaire Interface

is visible for the user, answers exceeding the maximum width of a row are continued in

a new line. In such cases, the selection indicator is re-positioned to remain vertically

centered.

Figure 4.6: Single Choice Question for Android (left) and iOS (right)

Multiple Choice Question

Compared to single choice questions, which are restricted to a single answer, multiple

choice questions allow for multiple answers to be selected. Still, their visual representa-

tion remains nearly identical. The only visual differences are in terms of appearance and

placement of their respective selection indicators. Multiple choice questions make use

of checkboxes, placed on the left side of a corresponding answer. The appearance of

the latter thereby differs, according to the underlying mobile OS, which can be seen in

Figure 4.7. An answer can be selected by tapping the corresponding row. Vice versa,

tapping an already selected answer, deselects the latter.

Figure 4.7: Multiple Choice Question for Android (left) and iOS (right)

35

4 Application Scenario

Dropdown Question

While the general automatism for dropdown questions resembles the one of single

choice questions, they differ in their visual representation and interaction pattern when

selecting an answer. For dropdown questions, the available answers are not visible at

a glance. In turn, a selection field, asking the user to choose an option is presented.

By tapping the selection field, a centered popover, overlaying the actual content is

displayed (see Figure 4.8). Unlike single choice questions, which select the tapped

answer instantaneously, answers in dropdown questions are only visually marked as

selected and require user confirmation via the “OK”–button in order to be actually

selected. Alternatively, the selection can be aborted by tapping the “CANCEL”–button.

To avoid a loss of context, as the actual question is likely to be hidden by the popover,

the question text is displayed in the popover title.

Figure 4.8: Dropdown Question for Android (left) and iOS (right)

36

4.5 Questionnaire Interface

Buttongrid Question

Buttongrid questions present a visual alternative to multiple choice questions. Instead

of stacking answers on top of each other, the latter are arranged in a grid of buttons.

To communicate interactivity, each answer is surrounded by a colorized border. To

allow proper distinction between selected and deselected answers, color is applied to

the background of selected answers and the text color becomes inverse to deselected

answers. Since this type of question does not make use of platform specific components,

there exist no visual differences between button grid questions on Android and iOS.

However, differences in terms of layout exist for varying screen sizes (see Figure 4.9).

While on tablets, each grid row can hold a maximum of five answers, this number is

reduced to three, on smart phones, to provide adequate sized touch targets. Nonetheless,

this type of question might not be suitable for longer answers, as the available space for

each answer is fairly limited.

Figure 4.9: Buttongrid Question on Tablet vs. Smart Phone

4.5.2 Free Input Question Types

Free input questions allow users to provide answers themselves instead of choosing

from predefined options. Therefore, most of them rely on a virtual keyboard to enter

data. As the latter might not comply with DAT1, it has to be clarified that the person

configuring a questionnaire is responsible to select appropriate question types and must

not necessarily make use of free input questions. However, it has been tried to make

data entry tasks requiring a keyboard as comfortable for the user as possible, since

37

4 Application Scenario

they are unavoidable in some cases. Regarding DAT5, if defined in the questionnaire

model, placeholders and units (e.g.,for numerical inputs) are applied to communicate the

purpose and context of a certain field. To make them stand out among other questions

(DAT4), especially if no placeholder or unit is given, a transparent rectangular fill is

applied, making it fairly easy for users to identify them. Further, as shown in Figure 4.10,

the current state of the input field is always communicated towards the user (DAT6).

By tapping an input field, it becomes active, which is indicated by a colorized border

and the cursor is set inside the field. Furthermore, the input field gets shifted above the

expanding keyboard, enabling users to always be aware of what they are currently typing.

User input is validated dynamically, according to constraints imposed by the creator of

the questionnaire. If a user input, at any point, does not match a certain constraint, the

input field goes into an invalid state. Thereby, the border color changes and a message,

communicating the reason of invalidity, is displayed underneath the input field.

Text

For common text input, two different question types exist, with one of them making use of

a regular, single-line text input field (see Figure 4.10) and the other one using a multi-line,

text area. According to the expected input length, either the first or the second one can

be chosen. Constraints for these questions may be a minimum or maximum number of

input characters.

Figure 4.10: Input Field States for Text Input

38

4.5 Questionnaire Interface

Numbers

For the input of numbers, the application provides two question types, which allow for

input of either integers or floating point numbers. While the visual representation of the

latter shows almost no differences to questions types for textual input, question types for

numerical input can additionally hold a unit, emphasizing the meaning of an input. The

unit is displayed on the right side of the corresponding input (see Figure 4.11). To comply

with DAT5, data entry tasks for these fields are done using a platform-specific numerical

keyboard layout. Possible constraints for user inputs may be a specific minimum or

maximum value.

Figure 4.11: Numerical Input Question

Dates

As the input of dates using regular text fields tends to be error-prone and might be

tedious to perform for users, this question type uses an alternative input method. Date

entry tasks rely on platform-specific picker widgets, which overlay the currently active

user interface. The respective values for day, month and year can be selected by verti-

cally scrolling through a list of available values. The currently selected date is thereby

colorized, when running on Android (see Figure 4.12, left), and enclosed by horizontal

boarders, when running on iOS (see Figure 4.12, right). Buttons to confirm the selection

or abort the input task are placed on top of the widget.

39

4 Application Scenario

Figure 4.12: Date Input for Android (left) and iOS (right)

4.5.3 Ranking Question Types

Ranking questions, in general, enable users to bring a list of options in a specific order

according to their personal preference. The application provides two variants, which

slightly differ in their ranking mechanism and through that in their visual representation.

Ranking Question

This type of question displays answers as a list of items. Each item consists of a number

on the left, representing the current rank of an answer, the actual answer text and

a platform-specific “reorder”-icon on the right. Thereby, answers are displayed in a

hierarchy, on top of each other, depicting the current ranking, with the highest ranked

answer on top and the lowest ranked answer on the bottom of the list (cf. Figure 4.13).

In order to change the order of a certain answer, the item can be dragged across the

list and then dropped again in the desired place. On drop, the ranking number for each

40

4.5 Questionnaire Interface

answer is recalculated to match its current position in the list. To further indicate the

possibility of performing drag gestures on items, additional to the “reorder”-icon, shadows

are applied to each item. By this means, the item appears to lie free rather than being

tied to the background.

Figure 4.13: Ranking Question

Distribution Question

Different to ranking questions, which rank answers by order from 1 to n, the ranking in

distribution questions is done by distributing a certain number of points between possible

answers. In the course of this, the higher the number of points an answer obtains, the

higher it is ranked. The distribution of points, thereby, is realized with an inline numerical

input field on the right side of the corresponding answer (see Figure 4.14). Since inputs

are restricted to numerical values, a numerical keyboard layout is used for data entry. In

order to save calculation effort for the user, each input field possesses a placeholder,

displaying the maximum number of points a user is currently able to assign to this answer.

During user input, these placeholders are dynamically recalculated.

41

4 Application Scenario

Figure 4.14: Distribution Question

4.5.4 Slider Question Types

For numerical inputs, instead of relying on keyboard input (as described in Section 4.5.2),

one can make use of Slider Questions. In the course of this, data entry is done by

dragging either one or two “knobs” on a horizontal number line, which is limited by given

minimum and maximum values, displayed on the left and right side of the line (see

Figure 4.15 and Figure 4.16). While dragging a “knob”, a small label, representing the

current position on the number line, is displayed above it. Since the latter disappears,

when releasing the “knob”, Slider Questions hold an always visible label, displaying the

current position of the “knob”, to enable users to see their answer at any time. Slider

Questions allow for either the entry of a single value or the entry of a number range.

Single Slider Question

To obtain a single numerical value from the user, one can use a Single Slider Question.

The latter allows to move a single “knob” upon the number line in order to choose an

answer value between the given minimum and maximum values. Thereby, dragging the

“knob” to the left decreases the value and the other way round. In order to highlight the

user’s selection, the segment of the number line, ranging from the minimum value up

until the selected value, is colorized.

42

4.5 Questionnaire Interface

Figure 4.15: Slider Question for Android (left) and iOS (right)

Range Slider Question

Compared to Single Slider questions, which allow for selection of a single numerical

value, Range Slider questions enable users to specify a range between a given minimum

and maximum value. As Figure 4.16 shows, this question type uses two “knobs” in order

to select a specific range. By dragging the “knobs” apart from each other, the answer

range is expanded while by dragging them towards each other the range decreases. The

number line segment enclosed by the “knobs” (answer range) is highlighted in color.

Figure 4.16: Range Slider Question for Android (left) and iOS (right)

4.5.5 Matrix Question

A question type, which is often used in questionnaires, is the so called Matrix question.

It consists of multiple rows (i.e., items) and columns (i.e., choices). The user, thereby,

is asked to evaluate the row items by using the same set of available column choices

for each row. The application displays Matrix questions as tables, with header fields

containing respective row and column descriptions and data fields containing selection

widgets (i.e., radio buttons), enabling users to select an answer out of the column

choices for each corresponding row. Since only one answer for each row is allowed, the

selection mechanism is equal to the mechanism of Single Choice questions (described in

43

4 Application Scenario

Section 4.5.1), using radio buttons on Android and tiny hooks on iOS (see Figure 4.17).

As the number of available column choices can vary, there might be too many choices to

fit into the display area reserved for the columns. Therefore, if the width of the columns

exceeds the available display space, the latter become horizontally scrollable, which

is indicated by applying slight inner shadows to the left and right border of the column

container. However, the row descriptions remain static when scrolling columns in order

to ensure context awareness.

Figure 4.17: Matrix Question for Android (left) and iOS (right)

4.6 Administration Interface

The application provides a dedicated area for administration purposes. This area allows

authenticated users to download new questionnaires, making the latter available in the

public application area and manage questionnaire related data, such as unfinished

questionnaire instances or corresponding results. Further, application settings may be

configured in this area.

4.6.1 Navigation and Menu

As already described in Section 4.3, the underlying structure of the application is rather

flat than deep, organizing application functionality into logical groups with each group

44

4.6 Administration Interface

having its own top-level view. To navigate between top-level views in flat hierarchies,

suitable menu options might be a navigation drawer or a tab bar. Since the application is

mainly designed to run on tablets, which, due to their display size, can tolerate the loss of

some screen space, it was chosen to use an always visible tab bar, on the bottom of the

screen, for top-level navigation. In this way, users are able to navigate efficiently (NAV1),

as it only takes a single tap to switch between views. Further, using a tab bar contributes

to NAV3, since the current location inside the application is communicated towards the

user (e.g., by highlighting the respective tab bar icon in color). Considering NAV3 and

NAV4, sub level views are titled properly and equiped with a “Back/Up” button to remain

location awareness as well as to indicate the possibility to return to a previous view. In

order to familiarize users with the navigation structure, animations are applied when

transitioning between views. By this means, when navigating between top level views,

horizontal page transition animations are applied. In turn, when navigating to sub level

views or vice versa, the application makes use of vertical page transition animations.

4.6.2 Managing Questionnaires

The first view for users entering the administration area is the questionnaire overview.

This view is divided into two segments, for local and available questionnaires (see

Figure 4.18). Inside the local segment (Figure 4.18, left), the questionnaires, which are

currently stored locally on the device, are displayed. The latter are ordered chronologi-

cally according to their download date, with the most recently downloaded questionnaire

residing on top. Questionnaires, thereby, are displayed as cards. This allows for a clear

and organized presentation of content, including information about the questionnaire

itself as well as main actions associated with a certain questionnaire. Each card, in

turn, consists of a header, a content area and a footer. The header contains the title

of the questionnaire as well as a favourite button (star -icon) in the top-right corner. By

activating this button, a questionnaire can be added to the list of public questionnaires,

which are displayed in the public area of the application. The current state of a certain

questionnaire is indicated by the color of the corresponding icon. By default, question-

naires are private, which is indicated by an outlined icon.

45

4 Application Scenario

Figure 4.18: Overview of locally stored (left) and available (right) questionnaires

Inside the content area, the description of respective questionnaires is displayed. As the

latter might be a longer text, its display is limited to a maximum of three lines, avoiding

a questionnaire to take the entire screen space. In order to read the entire description

and, furthermore, get additional information (e.g., version or contact information) to the

questionnaire, a tap on the card navigates to a page displaying detailed information

about the questionnaire.

To start processing a questionnaire, the “START” button in the card footer has to be

tapped. Beforehand, the language for this execution can be changed via a selection

menu besides the button, which holds an option for each language a specific question-

naire provides. By switching the language, the questionnaire title and description are

automatically changed to match the chosen language.

If the device is connected to the Internet, one can find questionnaires assigned via the

46

4.6 Administration Interface

QuestionSys platform inside the “AVAILABLE” segment (Figure 4.18, right). In order to

view detailed information (e.g., available questionnaire versions) or download a specific

questionnaire version to the device, a tap on the “DETAILS” button reveals a view, which

allows for the latter.

A user can switch between the above mentioned segments by activating their respective

button inside the header bar.

4.6.3 Managing Questionnaire Instances

Due to the potentially time-consuming questionnaires, users might decide not to fill a

questionnaire in a single sitting. Hence, one should be able to pause questionnaires and

resume them at a later point in time. Therefore, the application provides a dedicated

view, which allows for managing (i.e., resuming) paused questionnaires. As can be seen

in Figure 4.19, the paused questionnaire instances are displayed as cards, grouped by

the corresponding questionnaire.

The card header displays the questionnaire title, the amount of instances associated

with the questionnaire as well as a button, which reveals a hidden menu. The options in

this menu allow users to directly navigate to results of the questionnaire or to remove all

questionnaire instances from the device.

Beneath, the corresponding instances are listed, containing an identifier of the instance

and additionally a timestamp, referring to the latest point of execution. In order to save

screen space, a maximum of three instance items are visible at a peek. However, if

the number of instances per questionnaire exceeds that maximum, the card can be

expanded by tapping the arrow in the card footer in order to display the entire list (c.f.,

Figure 4.19, first item).

Inside each list, instances are ordered according to their timestamp from most recently

executed to older instances. By tapping an item, one can resume this specific question-

naire instance. Sliding an element to the left, however, reveals the option to delete the

targeted questionnaire instance.

47

4 Application Scenario

Figure 4.19: View for managing Questionnaire Instances

4.6.4 Managing Results

Besides the execution of questionnaires, another important functionality may be the

management of collected results. As the number of collected results might be significantly

higher than the one of available questionnaires or instances, it was decided to go with a

hierarchical, list-based layout for managing results instead of relying on cards. The three

levels of hierarchy can be seen in Figure 4.20.

In order to manage results, the entry point is a screen displaying a list of all local available

questionnaires (Figure 4.20, left). Each list item contains the respective questionnaire’s

title, followed by the number of collected results associated with it. In this view, results

are managed on a questionnaire level, meaning that actions performed on the items

48

4.6 Administration Interface

affect every result associated with the corresponding questionnaire. Thereby, actions

may be the upload or deletion of results of selected questionnaires. In order to be able

to select questionnaires, one can either perform a long press gesture on a list item or,

alternatively, activate the selection button inside the header bar to enter selection mode

(GES3). Once entered, the header bar is replaced by a contextual toolbar, providing

shortcuts for performable actions. Further, each list item contains a checkbox on the left,

to indicate if a questionnaire is currently selected or not.

To navigate to the overview of a specific questionnaire’s results (Figure 4.20, middle),

its item has to be tapped. Similar to the parent view, this screen displays results as

a list of items in ascending order, according to the date of collection. In this context,

every result holds the corresponding participant’s identifier as a title, followed by its

collection date. Underneath the latter, space for colorized markers, which can be set by

the interviewer in order to add context (e.g., participant needs to be interviewed again

) to certain results, is left out. The right end of the item is, where status icons (e.g.,

result is already uploaded or result contains errors) reside. Furthermore, for already

uploaded results, the background is grayed out in order to be properly distinguishable

from unsynchronized results.

Figure 4.20: Managing results

49

4 Application Scenario

In addition to the actions, which can be performed when enabling the selection mode

(equal mechanisms as parent view but on a result level rather than the questionnaire

level), buttons for sophisticated functionality, such as flagging results as test, applying

color markers or deleting a single result, can be revealed by swiping the corresponding

item to the left.

In order to reach the deepest level of hierarchy (Figure 4.20, right), namely the actual

resulting answers to a questionnaire, the belonging result item needs to be tapped.

To avoid having to navigate back in order to view another participants answers, one

can make use of a horizontal swipe gesture. By swiping rightwards, the next recently

collected result is shown, whereas by swiping leftwards, the next oldest collected result

is displayed. An increasing and decreasing index inside the header bar, thereby, clearly

communicates the currently displayed result. Besides viewing results, users are able

to perform result related actions, such as changing the language of displayed content,

send a result as HTML document via e-mail or marking the result, using the floating

action buttons, which are attached to the bottom left and right corners of the screen.

4.6.5 Configure Application Settings

Like most other applications, the application developed in the context of this thesis

allows authenticated users to adjust application settings to fit their specific needs, by

providing a Settings menu. Options to be adapted may include changing the overall

application appearance (e.g., changing the color scheme or the application language).

Further, more sophisticated adjustments like allowing unauthenticated users to resume to

questionnaire instances or gathering debug information during questionnaire execution

can be made. In order to remain clarity, settings are logically grouped into system

settings and settings associated with the execution of questionnaires. The settings page

is shown in Figure 4.21.

50

4.7 Client Interface

Figure 4.21: Settings Page in Administration Area for Android (left) and iOS (right)

4.7 Client Interface

Users without permission to enter the administration area (e.g., participants of a study)

are still able to execute questionnaires from the public area. However, available ques-

tionnaires in this area are restricted to those, which were pinned by an administrator

(c.f., Subsection 4.6.2). Like in the administration area, questionnaires are displayed

using cards, though in a more reduced version. Besides the questionnaire title and

description, which is restricted to three lines, cards only display a dropdown menu for

language selection and “START” button to begin questionnaire execution. A tap on the

card, thereby, expands the latter in order to display the entire questionnaire description.

In turn, a tap on an expanded card contracts it again.

As participants might not be familiar with the application’s language, the latter can be

changed via a dropdown menu, which is located inside the header bar. By changing

the application language, not only application related text labels (e.g., button labels) but

also the title and description of displayed questionnaires (if available in the selected

language) change to match the selected language.

Through a menu, which appears upon interaction with a button inside the header bar,

unauthenticated users are able to navigate to the application’s imprint, whereas adminis-

trators can additionally log into the administration area.

51

4 Application Scenario

4.8 Implementation

The application, which interface was described in the previous sections, was developed

as hybrid application, in order to benefit from advantages a cross-platform development

approach offers (as described in Section 2.2). In the process, it was made use of the

Ionic framework [44], an open-source web framework for hybrid application development,

based on Angular and Apache Cordova. As imposed by Angular, the application is written

using HTML, SASS, a CSS pre-processor, and TypeScript, a superset of JavaScript,

which goes along with concepts such as static types and class inheritance. In this

context, a component-based approach is pursued, where each part of the application

is implemented as a component, which itself consists of a set of smaller components

again. Each component is, thereby, defined by its own interface and execution and

validation logic, making components easily interchangeable and adding modularity to

the whole application. Especially for the questionnaire scenario, the component-based

approach contributes benefits, as, for example, each question type can be defined as a

self-executing component with its own unique interface and execution logic.

The Ionic framework itself provides a predefined set of Angular components [45], which

were applied throughout the application. These components (e.g., pages, list items,

cards, icons or input widgets) mimic the appearance and functionality of their native

equivalents according to the OS the application is currently running on. By making use

of Ionic components, a native look and feel may be guaranteed.

In order to gain access to OS functionality (e.g., camera, sensors or databases), one can

make use of Ionic Native Plugins [46], which provide TypeScript wrapper interfaces for

Apache Cordova Plugins. The latter, in turn, allow to invoke native routines and services,

via JavaScript method calls.

52

5
Summary

This chapter briefly summarizes the relevant findings of this thesis. Further, an outlook

on how future work, built on the findings and implementations in the course of this thesis,

could look like.

In Chapter 2, fundamental aspects regarding usability criteria in software systems

(Section 2.1) and cross-platform mobile development (Section 2.2), with special focus

on hybrid mobile applications, were introduced.

Subsequently, specific rules and user interface guidelines for mobile devices (e.g., smart

phones and tablets) were collected, presented and discussed in Chapter 3. In the course

of this, the style guides and usability guidelines of the two major mobile platforms, namely

iOS and Android, as well as work related with user interface design and development,

were taken into consideration. Aspects ranging from visual design (Section 3.1), over

interaction design (Section 3.2), up to navigation in mobile applications (Section 3.3)

were covered in this chapter.

Chapter 4 deals with the practical part of this thesis, more specific, the development of a

user interface for mobile data collection purposes that follows the described guidelines.

In order to gain insight into the requirements such an user interface or, in general,

such an application, needs to satisfy, potential use case scenarios are circumscribed

in Section 4.1. The actual requirements derived from these use cases were listed in

Section 4.2.

The latter is followed by a detailed description of the user interface developed in the

context of this thesis, which goes alongside with screenshots of the resulting mobile

application. Furthermore it is described how specific guidelines from Chapter 3 and

requirements from Section 4.2 were applied and realized inside the user interface.

53

5 Summary

5.1 Outlook

As by now, the application developed in the context of this thesis is still in an early state.

The question types that exist to the present only cover a set of basic question types,

which are already known from paper-based questionnaires. At this stage, it might be

useful to conduct first tests in real-world scenarios, in order to evaluate, whether or not

the design decisions made actually work out the intended way. Insights on how such

tests for data collection applications could look like, are described in [47].

Future work may deal with the development of more sophisticated question types, taking

advantage of the possibilities mobile devices provide. Additional question types might

include different media types (e.g., images, audio or video) or make use of the mobile

device’s built-in sensors and interfaces, for example to gather data from external devices

(e.g., blood pressure monitor) via bluetooth. For such question types, suitable visual rep-

resentations and interaction methods have to be elaborated in order to design the data

collection process to be as easy as possible for end-users working with the application.

Further, additional features, such as an instant evaluation of finished questionnaires

according to constraints defined by the designer of the questionnaire, could be added to

the application. This would allow participants, for example of a medical study, to have an

instant feedback about their health status based on given answers.

However, the most important aspect is to convince people and organizations (e.g.,

research institutes), who currently rely on paper-based questionnaires to conduct stud-

ies, from the numerous benefits of the digital data collection approach, not only for

themselves, but also for participants of their studies.

54

Bibliography

[1] Schobel, J., Schickler, M., Pryss, R., Reichert, M.: Process-Driven Data Collection

with Smart Mobile Devices. In: 10th International Conference on Web Information

Systems and Technologies (Revised Selected Papers). Number 226 in LNBIP.

Springer (2015) 347–362

[2] Schobel, J., Pryss, R., Schlee, W., Probst, T., Gebhardt, D., Schickler, M., Reichert,

M.: Development of Mobile Data Collection Applications by Domain Experts:

Experimental Results from a Usability Study. In: 29th International Conference

on Advanced Information Systems Engineering (CAiSE 2017). Number 10253 in

LNCS, Springer (2017) 60–75

[3] Schobel, J., Pryss, R., Reichert, M.: Using Smart Mobile Devices for Collecting

Structured Data in Clinical Trials: Results From a Large-Scale Case Study. In:

28th IEEE International Symposium on Computer-Based Medical Systems (CBMS

2015), IEEE Computer Society Press (2015) 13–18

[4] Schobel, J., Pryss, R., Schickler, M., Ruf-Leuschner, M., Elbert, T., Reichert,

M.: End-User Programming of Mobile Services: Empowering Domain Experts

to Implement Mobile Data Collection Applications. In: 5th IEEE International

Conference on Mobile Services (MS 2016), IEEE Computer Society Press (2016)

1–8

[5] Nielsen, J.: Usability 101: Introduction to Usability. https://www.nngroup.

com/articles/usability-101-introduction-to-usability/ (2012)

Accessed: 2017-10-13.

[6] Gartner: Global mobile OS market share in sales to end users from 1st quarter 2009

to 1st quarter 2017. (https://www.statista.com/statistics/266136/

global-market-share-held-by-smartphone-operating-systems/)

Accessed: 2017-11-07.

55

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

Bibliography

[7] Strategy Analytics: Tablet operating systems market share worldwide from

1Q’16 to 2Q’17. (https://www.statista.com/statistics/273840/

global-market-share-of-tablet-operating-systems-since-2010/)

Accessed: 2017-11-07.

[8] Palmieri, M., Singh, I., Cicchetti, A.: Comparison of cross-platform mobile develop-

ment tools. In: 16th International Conference on Intelligence in Next Generation

Networks (ICIN), IEEE (2012) 179–186

[9] Xanthopoulos, S., Xinogalos, S.: A Comparative Analysis of Cross-platform De-

velopment Approaches for Mobile Applications. In: Proceedings of the 6th Balkan

Conference in Informatics, ACM (2013) 213–220

[10] Apache Cordova: Architectural overview of Cordova platform - Apache Cordova.

(https://cordova.apache.org/docs/en/latest/guide/overview/

index.html#architecture) Accessed: 2017-10-15.

[11] Babich, N.: The Underestimated Power Of Color In Mobile App Design

— Smashing Magazine. https://www.smashingmagazine.com/2017/01/

underestimated-power-color-mobile-app-design/ (2017) Accessed:

2017-10-16.

[12] Apple Inc.: Color - Visual Design - iOS Human Interface Guidelines.

(https://developer.apple.com/ios/human-interface-guidelines/

visual-design/color/) Accessed: 2017-10-17.

[13] material.io: Color - Style - Material Design. (https://material.io/

guidelines/style/color.html) Accessed: 2017-10-17.

[14] Leavitt, M.O., Shneiderman, B.: Research-Based Web Design & Usability Guide-

lines. (2006)

[15] AgeLightLCC: Interface design guidelines for users of all ages. http://www.

agelight.com/webdocs/designguide.pdf (2001)

[16] Holt, B.: Creating senior-friendly web sites. Issue brief (Center for Medicare

Education) 1 (2000) 1–8

56

https://www.statista.com/statistics/273840/global-market-share-of-tablet-operating-systems-since-2010/
https://www.statista.com/statistics/273840/global-market-share-of-tablet-operating-systems-since-2010/
https://cordova.apache.org/docs/en/latest/guide/overview/index.html#architecture
https://cordova.apache.org/docs/en/latest/guide/overview/index.html#architecture
https://www.smashingmagazine.com/2017/01/underestimated-power-color-mobile-app-design/
https://www.smashingmagazine.com/2017/01/underestimated-power-color-mobile-app-design/
https://developer.apple.com/ios/human-interface-guidelines/visual-design/color/
https://developer.apple.com/ios/human-interface-guidelines/visual-design/color/
https://material.io/guidelines/style/color.html
https://material.io/guidelines/style/color.html
http://www.agelight.com/webdocs/designguide.pdf
http://www.agelight.com/webdocs/designguide.pdf

Bibliography

[17] w3.org: Understanding Success Criterion 1.4.3 | Understanding

WCAG 2.0. (https://www.w3.org/TR/UNDERSTANDING-WCAG20/

visual-audio-contrast-contrast.html) Accessed: 2017-10-17.

[18] material.io: Accessibility - Usability - Material Design. (https:

//material.io/guidelines/usability/accessibility.html#

accessibility-color-contrast) Accessed: 2017-11-20.

[19] Hoober, S., Berkman, E.: Designing Mobile Interfaces. 1st ed edn. O’Reilly Media,

Sebastopol, CA (2012)

[20] Apple Inc.: Typography - Visual Design - iOS Human Interface Guidelines.

(https://developer.apple.com/ios/human-interface-guidelines/

visual-design/typography/) Accessed: 2017-10-21.

[21] material.io: Typography - Style - Material Design. (https://material.io/

guidelines/style/typography.html#) Accessed: 2017-10-21.

[22] Harley, A.: Icon Usability. https://www.nngroup.com/articles/

icon-usability/ (2014) Accessed: 2017-10-18.

[23] Galitz, W.O.: The Essential Guide to User Interface Design: An Introduction to GUI

Design Principles and Techniques. 3rd ed edn. Wiley Pub., Indianapolis, IN (c2007)

[24] material.io: Icons - Style - Material Design. (https://material.io/

guidelines/style/icons.html) Accessed: 2017-11-10.

[25] Apple Inc.: System Icons - Icons and Images - iOS Human Interface Guidelines.

(https://developer.apple.com/ios/human-interface-guidelines/

icons-and-images/system-icons/) Accessed: 2017-11-13.

[26] Nielsen, J.: 10 Usability Heuristics for User Interface Design. https://www.

nngroup.com/articles/ten-usability-heuristics/ (1995) Accessed:

2018 - 01 - 09.

[27] Apple Inc.: Terminology - Visual Design - iOS Human Interface Guidelines.

(https://developer.apple.com/ios/human-interface-guidelines/

visual-design/terminology/) Accessed: 2017-10-23.

57

https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://material.io/guidelines/usability/accessibility.html#accessibility-color-contrast
https://material.io/guidelines/usability/accessibility.html#accessibility-color-contrast
https://material.io/guidelines/usability/accessibility.html#accessibility-color-contrast
https://developer.apple.com/ios/human-interface-guidelines/visual-design/typography/
https://developer.apple.com/ios/human-interface-guidelines/visual-design/typography/
https://material.io/guidelines/style/typography.html#
https://material.io/guidelines/style/typography.html#
https://www.nngroup.com/articles/icon-usability/
https://www.nngroup.com/articles/icon-usability/
https://material.io/guidelines/style/icons.html
https://material.io/guidelines/style/icons.html
https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/system-icons/
https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/system-icons/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://developer.apple.com/ios/human-interface-guidelines/visual-design/terminology/
https://developer.apple.com/ios/human-interface-guidelines/visual-design/terminology/

Bibliography

[28] material.io: Writing - Style - Material Design. (https://material.io/

guidelines/style/writing.html#) Accessed: 2017-10-23.

[29] Apple Inc.: Gestures - User Interaction - iOS Human Interface Guidelines.

(https://developer.apple.com/ios/human-interface-guidelines/

user-interaction/gestures/) Accessed: 2017-11-18.

[30] material.io: Gestures - Patterns - Material Design. (https://material.io/

guidelines/patterns/gestures.html) Accessed: 2017-11-24.

[31] Nielsen, J.: Tablet Usability. https://www.nngroup.com/articles/

tablet-usability/ (2013) Accessed: 2018-01-15.

[32] Kim, J.H., Aulck, L., Thamsuwan, O., Bartha, M.C., Johnson, P.W.: The Effects

of Virtual Keyboard Key Sizes on Typing Productivity and Physical Exposures.

Proceedings of the Human Factors and Ergonomics Society Annual Meeting 57

(2013) 887–891

[33] Apple Inc.: Data Entry - User Interaction - iOS Human Interface Guidelines.

(https://developer.apple.com/ios/human-interface-guidelines/

user-interaction/data-entry/) Accessed: 2017-12-09.

[34] Budiu, R.: A Checklist for Designing Mobile Input Fields. https://www.nngroup.

com/articles/mobile-input-checklist/ (2015) Accessed: 2017-12-09.

[35] material.io: Text fields - Components - Material Design. (https://material.

io/guidelines/components/text-fields.html#) Accessed: 2017-12-09.

[36] Whitenton, K.: Flat vs. Deep Website Hierarchies. https://www.nngroup.com/

articles/flat-vs-deep-hierarchy/ (2013) Accessed: 2017-10-26.

[37] Apple Inc.: Navigation - App Architecture - iOS Human Interface Guidelines.

(https://developer.apple.com/ios/human-interface-guidelines/

app-architecture/navigation/) Accessed: 2017-11-15.

[38] material.io: Navigation - Patterns - Material Design. (https://material.io/

guidelines/patterns/navigation.html) Accessed: 2017-11-15.

58

https://material.io/guidelines/style/writing.html#
https://material.io/guidelines/style/writing.html#
https://developer.apple.com/ios/human-interface-guidelines/user-interaction/gestures/
https://developer.apple.com/ios/human-interface-guidelines/user-interaction/gestures/
https://material.io/guidelines/patterns/gestures.html
https://material.io/guidelines/patterns/gestures.html
https://www.nngroup.com/articles/tablet-usability/
https://www.nngroup.com/articles/tablet-usability/
https://developer.apple.com/ios/human-interface-guidelines/user-interaction/data-entry/
https://developer.apple.com/ios/human-interface-guidelines/user-interaction/data-entry/
https://www.nngroup.com/articles/mobile-input-checklist/
https://www.nngroup.com/articles/mobile-input-checklist/
https://material.io/guidelines/components/text-fields.html#
https://material.io/guidelines/components/text-fields.html#
https://www.nngroup.com/articles/flat-vs-deep-hierarchy/
https://www.nngroup.com/articles/flat-vs-deep-hierarchy/
https://developer.apple.com/ios/human-interface-guidelines/app-architecture/navigation/
https://developer.apple.com/ios/human-interface-guidelines/app-architecture/navigation/
https://material.io/guidelines/patterns/navigation.html
https://material.io/guidelines/patterns/navigation.html

Bibliography

[39] Kurniawan, S., Zaphiris, P.: Research-derived web design guidelines for older

people. In: Proceedings of the 7th international ACM SIGACCESS Conference on

Computers and Accessibility, ACM (2005) 129–135

[40] developer.android.com: Navigation with Back and Up . (https://developer.

android.com/design/patterns/navigation.html) Accessed: 2017-11-

18.

[41] Reidel, A.: Entwicklung eines Designkonzepts für unterschiedliche Anwen-

dungsszenarien eines generischen Fragebogensystems. Bachelor thesis at Ulm

University (2015)

[42] Joachim, J.: Entwicklung neuer Anwendungsszenarien für ein prozessorientiertes

Fragebogensystem. Masters thesis at Ulm University (2017)

[43] materialpalette.com: Material Design Colors. (https://www.

materialpalette.com/colors) Accessed: 2018-01-14.

[44] ionicframework.com: Build Amazing Native Apps and Progressive Web Apps with

Ionic Framework and Angular. (https://ionicframework.com/framework)

Accessed: 2018-01-12.

[45] ionicframework.com: Ionic Component Documentation. (https://

ionicframework.com/docs/components/) Accessed: 2018-01-12.

[46] ionicframework.com: Ionic Native . (https://ionicframework.com/docs/

native/) Accessed: 2018-01-12.

[47] Bandic, J.: Evaluierung einer mobilen Anwendung zur flexiblen Datenerhebung

anhand einer Benutzerstudie. Bachelor thesis at Ulm University (2017)

59

https://developer.android.com/design/patterns/navigation.html
https://developer.android.com/design/patterns/navigation.html
https://www.materialpalette.com/colors
https://www.materialpalette.com/colors
https://ionicframework.com/framework
https://ionicframework.com/docs/components/
https://ionicframework.com/docs/components/
https://ionicframework.com/docs/native/
https://ionicframework.com/docs/native/

List of Figures

2.1 Typical software architecture in hybrid mobile applications [10] 6

3.1 Normal Vision vs Colorblind Vision . 11

3.2 Standard touch gestures for multitouch enabled devices [29, 30] 17

3.3 Flat structure (left) vs deep structure (right) 22

4.1 Abstract representation of the application structure 28

4.2 Overview of available color schemes . 29

4.3 Icons for Questionnaires, Sessions and Results 31

4.4 Dialogues for leaving questionnaire execution (left) and entering the ad-

ministration area (right) . 32

4.5 Basic Structure of a Questionnaire Page 33

4.6 Single Choice Question for Android (left) and iOS (right) 35

4.7 Multiple Choice Question for Android (left) and iOS (right) 35

4.8 Dropdown Question for Android (left) and iOS (right) 36

4.9 Buttongrid Question on Tablet vs. Smart Phone 37

4.10 Input Field States for Text Input . 38

4.11 Numerical Input Question . 39

4.12 Date Input for Android (left) and iOS (right) 40

4.13 Ranking Question . 41

4.14 Distribution Question . 42

4.15 Slider Question for Android (left) and iOS (right) 43

4.16 Range Slider Question for Android (left) and iOS (right) 43

4.17 Matrix Question for Android (left) and iOS (right) 44

4.18 Overview of locally stored (left) and available (right) questionnaires 46

4.19 View for managing Questionnaire Instances 48

4.20 Managing results . 49

4.21 Settings Page in Administration Area for Android (left) and iOS (right) . . 51

61

List of Tables

3.1 User interface guidelines for color and contrast 12

3.2 User interface guidelines for typography 13

3.3 User interface guidelines for icons . 15

3.4 User interface guidelines for terminology 16

3.5 Actions associated with standard gestures on iOS and Android [29, 30] . 18

3.6 User interface guidelines for gestures . 19

3.7 User interface guidelines for data entry . 21

3.8 User interface guidelines for navigation . 23

63

Name: Robin Martin Matrikelnummer: 857754

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Robin Martin

	Introduction
	Outline

	Fundamentals
	Usability
	Cross-Platform Mobile Development

	User Interface Guidelines
	Visual Design
	Interaction Design
	Navigation

	Application Scenario
	Use Case Scenarios
	Requirements
	Application Structure
	Visual Design
	Questionnaire Interface
	Administration Interface
	Client Interface
	Implementation

	Summary
	Outlook

