
Ulm University | 89069 Ulm | Germany Faculty of Engineering,
Computer Science and
Psychology
Institute of Databases and
Information Systems

Developing an API to Supply Third-party
Applications with Environmental Data
Master’s thesis at Ulm University

Submitted by:
Fabian Widmann
fabian.widmann@uni-ulm.de

Reviewers:
Prof. Dr. Manfred Reichert
Dr. Rüdiger Pryss

Supervisor:
Johannes Schobel

2018

Version: 30th January 2018

© 2018 Fabian Widmann

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Satz: PDF-LATEX 2ε

Abstract

In healthcare, weather-sensitivity and the effect of environmental factors on various dis-

eases were subject to extensive research in the last decades. Mostly without discovering

statistically significant relationships between diseases and environmental parameters.

This is often attributed to a lack of scale for existing studies.

Currently, there are no openly available solutions that can support surveys in this regard.

Such solutions should be easy to integrate with an existing study platform. In turn,

environmental data needs to be fetched for multiple users. This fact led to studies

restricting participants in terms of their location or other factors. Consequently, this also

meant, that the size of the studies was limited due to the placed constraints. Through

the advance of technology, it is now possible to easily retrieve additional information

from participants via their mobile smart devices which can be used to fetch various other

types of data.

These circumstances led to the creation of an environmental data API described in this

thesis. It provides functionality to retrieve environmental data from various data sources

for a given tuple of latitude, longitude, and timestamp. The API facilitates adding new

data sources by simply extending the provided examples. There are no restrictions in

terms of spatial or temporal resolution or even source of the data. The resulting API

fetches environmental data from multiple sources. It also facilitates obtaining data from

other data sources and querying by researchers - including options to filter the data by

various parameters. Finally, the API also supports converting between different units.

iii

Contents

1 Introduction 1

1.1 Structure . 2

2 Related Work 5

3 Analysis 11

3.1 Scenario . 11

3.2 Proposed API Design . 13

3.3 Use-Cases . 15

3.3.1 Participants . 15

3.3.2 Researchers . 16

3.3.3 Administrator . 18

3.4 Principles . 19

4 Data Sources 21

4.1 Deutscher Wetterdienst (DWD) . 21

4.1.1 Available Data Sets . 22

4.1.2 Accessing Hourly Data . 24

4.2 European Centre for Medium-Range Weather Forecasts (ECMWF) 26

4.2.1 Available Data Sets . 26

4.2.2 Accessing the CAMS near-real-time Data 29

4.3 Additional Data Sources . 31

4.4 Challenges . 31

5 Architecture 33

5.1 Design Phase . 33

5.1.1 RESTful API . 33

5.1.2 PORTO Software Architectural Pattern 34

5.2 Tools and Frameworks . 37

v

Contents

5.3 Implementation . 38

5.3.1 Components of the API . 39

5.3.2 Authentication and Authorization 39

5.3.3 GeoLocation Container . 40

5.3.4 WeatherData Container . 40

5.3.5 Gateways to Weather Sources . 41

5.3.6 Retrieving Environmental Data with Queued Jobs 43

5.3.7 Complete Lifecycle of Retrieving Data and Task Scheduling 44

5.3.8 Querying Environmental Data . 45

5.3.9 Conversions between Units . 49

5.4 Copernicus Retrieval Wrapper & Microservice 50

5.4.1 Copernicus Retrieval Wrapper . 51

5.4.2 Implementation of the Microservice 56

5.5 DWD Hourly Crawler . 60

5.6 Converting Units . 63

6 Summary 65

6.1 The API in Numbers . 65

6.2 Current Status . 66

6.3 Future Work . 68

6.4 Conclusion . 70

A Code 81

A.1 Filtered Query to the WeatherData Endpoint 81

A.2 Conversion . 82

A.3 Converting Weather Data . 83

A.4 Customized Fetching of Environmental Data 84

A.5 Copernicus Output Example . 86

A.6 DWD Hourly Crawler Output Example . 88

A.7 Marshmallow Schema Definition . 89

A.8 Querying the Table Size of the Environmental Data Table 90

vi

Contents

B Additional Information 91

B.1 Available Hourly Parameters from the DWD Server 91

B.2 Available Conversions in the adapted Convertor units 93

B.3 Custom Convertor Units . 94

B.4 Copernicus Enums . 95

vii

1
Introduction

Many patients hold the belief, that the weather bears an influence on the perceived

symptoms of their disease. This, in turn, led to research on the influence of the en-

vironment on various diseases. Therefore, over the years, researchers performed a

number of studies to examine those claims. Earlier on, researchers had to rely mostly

on paper-based questionnaires filled out by the participants (cf. [1], [2], [3], [4], [5]). In

addition, researchers were able to only obtain environmental data from few select areas.

Consequently, data was obtained from mostly one weather source (e.g. around specific

areas) during the study (cf. [6], [7], [8], [9], [10], [11], [12]).

Through advances in modern technology, smart mobile devices, such as smartphones

or tablets, are more prevalent than ever before. These devices can potentially contain

a multitude of sensors that may provide contextual information about the user such as

acceleration, air pressure, gyroscope, magnetometer, location (via GPS), temperature

and more. Accordingly, the collected data can be integrated in various surveys by

retrieving environmental data for the specific point in time. This has already been done

by some studies, which did no longer place strict limitations in terms of residence or

locations on participants (cf. [13], [14]).

Combined with the increasing prevalence of publicly available data, location and time can

be used to obtain a multitude of environmental parameters from various data sources.

Accordingly, this results in new possibilities for general research on the influence of

weather on diseases. This, in turn, leads to the goal of this thesis: providing an extensible

API that allows researchers to easily integrate environmental data querying and retrieval

into their existing study platforms.

1

1 Introduction

Thus, to create a useful tool that can be adapted into various surveys, different data sets

need to be evaluated and compared. Afterwards, fitting data sets should be chosen to

serve as an example on how to integrate data sources into the API.

Consequently, the result of this thesis will be an API that can be integrated into already

existing study platforms. It will provide a means to collect environmental data from

various data sources based on a given location and timestamp. Depending on the data

sources used, this also removes restrictions regarding the residence of participants.

Additionally, it should be possible for the researchers to include and adapt data sources

that fit their needs regarding the study goal. Furthermore, the collected data needs

to facilitate being queried by researchers in various ways. This includes, for example,

applying filters to queries (e.g. filter by participants, data source, parameters, etc.) In

addition, support for converting between units or even shaping the output to the needs

of the researchers’ needs be added.

1.1 Structure

First, the thesis introduces related work in Chapter 2. This section describes the

methodology and results of several conducted studies pertaining to the influence of

environmental factors on diseases. Chapter 3 provides an analysis of possible scenarios

and illustrates the design for the proposed API. Specific use-cases for the participants,

researchers and technicians are introduced, followed by important principles this work

adheres to. The following 4th chapter provides an overview of various data sources and

their limitations. It then focusses on the DWD hourly and the ECMWF Copernicus At-

mospheric Monitoring Service data sets. Each of the mentioned data sets is introduced,

including limitations and access to the data. The chapter concludes with an outlook on

additional data sets and challenges that can arise when combining data from different

data sets or sources. Afterwards, the architecture of all created components is explained

in Chapter 5. It further explores various aspects of the architecture, ranging from the

design phase and used software architectural patterns to used tools, frameworks and

the specific implementations that were done in the scope of this thesis. Implemented

2

1.1 Structure

components include the environmental API itself, but also various utility projects that

retrieve data from the specific services or help with unit conversions. Chapter 6 starts

with a small section that explores the current API and data sets by proposing a scenario

that, in turn, is further examined by looking at the numbers the API must be able to

handle. Afterwards, it describes the current status and provides a look into the future.

The chapter ends with a conclusion that reiterates important aspects of this work.

3

2
Related Work

As of now, a multitude of links between environmental parameters and various diseases

have been examined by researchers. The examined diseases contain, among other

things, the emotional and mental health, headaches and migraines, but also various

rheumatic diseases. As time went on, the methods of the researchers advanced from

traditional questionnaires to acquiring data from specific weather stations to even more

customized retrieval and evaluation tools in recent studies.

Influence of Environmental Parameters on Diseases

Lots of surveys that explored links between various diseases and environmental para-

meters have been conducted throughout the years. While the influence of cold weather

on the common cold is well-established, other diseases are said to be influenced by

environmental parameters as well. Amongst others, this includes headaches, migraines

and various rheumatic diseases. Many patients that suffer from those diseases often

complain about being weather-sensitive1. This led to the development of a question-

naire that tried to assess weather-sensitivity. Earlier studies had a limited number of

participants and shorter timespans that have been monitored. The effect of weather

conditions on rheumatic diseases was examined by conducting a study in 1990 with

n=62 (50 women, 12 men) patients that suffer from various rheumatic diseases over one

month in Israel [6]. Patients were asked to complete daily questionnaires that rated joint

pain and swelling and the activity level on a three-point scale. Atmospheric pressure,

relative humidity, temperature and rain were recorded by the staff during the time of the

1Also known as meteoropathy: "a health condition or symptom caused by certain weather conditions" -
https://www.macmillandictionary.com/dictionary/british/meteoropathy, accessed:
2018-01-08

5

https://www.macmillandictionary.com/dictionary/british/meteoropathy

2 Related Work

study. This study resulted in the fact, that women were being more sensitive to weather

than men (62% vs 37%) and that the effect on perceived pain differed on the specific

rheumatic disease but influences were noted between barometric pressure, temperature

and rain.

Only a few years later, in 1992, a questionnaire was developed that provides a weather-

sensitivity index with a five-point scale [1]. It was used to evaluate the influence of

weather on chronic pain patients that suffered from musculoskeletal disorders (including

low back, neck and shoulder pain). Afterwards, a study was conducted with n=70 patients

at a university clinic in the USA. This resulted in the finding that 75% of their patients

had reported that temperature, humidity, precipitation and sudden weather changes

influenced their pain to some degree. Additionally, only three percent of the patients

reported no link between their pain and the weather. However, the patients were unable

to link specific symptoms which are consistently influenced by the weather over time.

The researchers, in turn, suggested that this effect of the weather on pain might be

mediated by psychological factors or the patient’s mood. Finally, they concluded, that

this does not minimize the need to assess patient believes about weather and their pain

but in fact, rather increases the need to further investigate this matter.

In 1994, a study [2] examined relationships between weather, disease severity and symp-

toms for patients suffering from fibromyalgia2. They assessed the participants’ beliefs

about the weather affecting symptoms and examined differences between individuals

reporting low and high weather-sensitivity by conducting a study with n=84 participants.

In turn, participants completed various questionnaires assessing pain, arthritis impact,

tender points and weather-sensitivity. Weather data was obtained from the National

Oceanic and Atmospheric Administration and was evaluated every 2 hours from 14:00 to

00:00 on the day of the assessment. While participants reported, that weather affected

their musculoskeletal symptoms predominantly, the strongest relationship they have

found was between weather beliefs and self-reported pain scores. Participants with high

weather-sensitivity tended to have a more functional impairment. The only other positive

2"Fibromyalgia is a common and complex chronic pain disorder that causes widespread pain and tender-
ness to touch that may occur body wide or migrate over the body" - https://www.fmcpaware.org/
aboutfibromyalgia.html, accessed 2017-12-18

6

https://www.fmcpaware.org/aboutfibromyalgia.html
https://www.fmcpaware.org/aboutfibromyalgia.html

relationship that has been found was the wind speed affecting the self-reported pain. A

modest negative relationship with the tender point index was also discovered.

Afterwards, as the previous studies have not shown clear indications, another study

[7] examined the reports of rheumatoid arthritis patients claiming that their pain was

influenced by the weather in a larger study in 1999. As previous studies were rather small

and short, their conducted study consists of n=75 participants (living in the USA) that

recorded their daily pain severity for 75 consecutive days. Specific weather parameters,

such as pressure, relative humidity and percentage of sunlight were obtained from a

local weather station. This study resulted in weak evidence for an association between

pain and weather. The Pain was most severe on cold days and on days with less sunlight,

and especially for patients that reported higher overall levels of pain. The magnitude of

the effects found, however, are not statistically significant for all participants.

Modern Research

Almost every group of researchers to date either guessed that the sample size was too

low to be able to find statistically significant links or that psychological factors might be

the cause for the patient’s belief, that weather has an influence on their disease. In

addition, most studies found links, but they were mostly not statistically significant. In

comparison to the researchers’ approach, another study tried to assess the prevalence

of weather-sensitivity in Germany [5]. It provided a basis for further research by finding

data about the prevalence of weather-sensitivity and its symptoms in 2002. This was

examined by conducting a survey with n=1064 citizens age 16 or older by embedding

a questionnaire in a representative multiple topic survey that was held in the form of

house interviews. As such, the results are representative of the population in Germany.

The study has shown, that 19.2% of the populations believe that weather influences

their health to a “high degree” and 35.3% believe, that weather has “some influence

on their health”. In addition, the authors of the study also found regional differences in

weather-sensitivity. Results also showed that Northern Germany had higher weather-

sensitivity when compared to other regions. This might be due to a more unsettled

weather in these regions compared to other parts of Germany. The most reported

symptoms have been headaches and migraines, lethargy, sleep disturbances, fatigue,

7

2 Related Work

joint pain, irritation, depression, vertigo, concentration problems and scar pain. About

one-third of the weather-sensitive participants were incapable of doing their regular work

because of the mentioned symptoms at least once in the past year.

In addition to the prevalence in rheumatic diseases, asthma can also be influenced by air

pollution. A study [15] examined the association between air pollution and admissions

to children’s hospitals in children under 15 years in Turkey. Data was obtained from a

nearby meteorological station. The results showed, that n=2779 admissions occurred

(14 children a day) with a significant association between admissions for asthma and

respiratory outcomes for all fractions of particulate matter. The highest association noted

was an 18% rise in asthma admissions correlated with a 10µg/m³ increase in coarse

particulate matter (PM10-2.5
3).

In 2011, an article came up about weather and migraine which raised the question,

whether so many patients can be wrong about their beliefs regarding weather-sensitivity

[16]. The author makes the point, that many patients report weather as a trigger for

migraines and some even call them “human barometer”. In turn, he examined various

studies regarding weather-sensitivity in patients and came up with potential reasons

that might have an influence on the significance of the resulting data. For a migraine

specifically, he listed the number of triggers that cause the migraines at about 6.7 on

average per patient. This huge amount of possible causes of a migraine makes it difficult

to pinpoint the specific trigger that caused a specific migraine instance. In addition,

a specific migraine trigger may not precipitate an attack on each exposure. He also

wagers, that the location of the study might influence the findings. This is done by citing

a study reporting an increase in migraines in a hotter climate, while another one did not

come to the same conclusion. This study was in Austria and was active during October

to March, but the maximum temperature was 21.5°C, which might not have been hot

enough to get the same results. He reasons, that another possible reason might be, that

the mechanisms by which (environmental) trigger factors precipitate migraines are not

well understood. It might be possible, that one factor is deemed to trigger a migraine

3 "Particulate matter (PM), also known as particle pollution, is a complex mixture of extremely small
particles and liquid droplets that get into the air. Once inhaled, these particles can affect the heart
and lungs and cause serious health effects." - https://www.epa.gov/pm-pollution, accessed
2017-12-09

8

https://www.epa.gov/pm-pollution

but the specific factor might have just influenced another one. The timing of weather

changes is also another point that might have to be examined further, as they do not

happen abruptly and may occur at different times in neighbouring locations. Finally, he

also reasons, that migraine populations are not homogeneous, some triggers might

only influence individuals but not others. This could even mean, that two individuals

might be sensitive to opposite environmental factors. Which might lead to cancelling

out the effect for the whole population. Due to the aforementioned reasons, the author

proposes that it might be necessary to monitor single patients over longer timespans,

instead of using larger groups. However, studies with even larger patient numbers and

prolonged follow-ups might unravel possible relationships between environmental factors

and migraine.

Recently Conducted Study

Summarizing, most studies either used questionnaires or required participants to be

inside of a specific radius around either a chosen weather station or a zone around one

hospital. A study from 2017, however, examined the relation between Ménière’s Disease4

and weather factors in the United Kingdom [14]. Participants (n=397) allowed research-

ers to map their GPS data to the closest available weather station. In turn, weather

data has been collected from their nearest active station. This included parameters, like

the air temperature, atmospheric pressure at the station level, atmospheric pressure

at sea level, visibility and wind speed. The mapping was done by using the Medical &

Environmental Data Mash-up Infrastructure project (MEDMI)5. This project allows users

to link and analyse complex meteorological, environmental and epidemiological data by

combining existing databases into a new framework. The study found strong evidence,

that changes in atmospheric pressure and humidity can be associated with symptom

exacerbation in Ménière’s disease. Lower atmospheric pressure or high humidity were

associated with higher odds of an attack and higher levels of vertigo, tinnitus and aural

fullness.

4A disorder in the inner ear, characterized by vertigo, tinnitus and hearing loss - https://www.nidcd.
nih.gov/health/menieres-disease, accessed: 2017-12-18

5http://www.ecehh.org/research-projects/medmi/, accessed: 2017-12-10

9

https://www.nidcd.nih.gov/health/menieres-disease
https://www.nidcd.nih.gov/health/menieres-disease
http://www.ecehh.org/research-projects/medmi/

2 Related Work

The findings and methodology of this study indicate that it is possible, that previously

unrecognised links may be found with the help of now readily available technology. This

includes high precision geolocation that can be logged by using common smart mobile

devices. This can be achieved by providing potential participants of studies with apps

that directly replace the paper-diary approach of earlier studies and are able to log the

user’s location during runtime. As a next step, the gathered location can then be used

to query databases of various environmental data providers to retrieve a multitude of

readily available parameters. MEDMI is one example for such a platform that can provide

researchers with rich tools to obtain data, but due to its limitation to UK-based data, it

is, unfortunately, no option for researchers outside the United Kingdom. The project’s

homepage has very good points regarding caveats that can arise when using data from

its databases. The first point they made is, that the project’s data sets should be seen

as “hypothesis generating” with the need to explore discovered associations further.

Additionally, the project specifies that data has to be linked appropriately in both space

and time to make sure that the researcher knows what is measured. In addition, lag

periods should be considered (i.e., the time between exposure and effect). They also list

several interesting statistical issues that should be accounted for, such as seasonality,

multiple drivers, data linkage, random noise and more [17].

10

3
Analysis

One of the big problems of finding relevant links between our environment and diseases

is the ability to easily obtain and store data from various environmental data sources

such as weather stations or satellites. Naturally, this leads to the idea of providing

an environmental API that can be used in addition to already existing solutions. This

chapter will first provide information about possible scenarios, followed by use-cases,

the proposed design and finally a short section about collected data, data sources and

possible privacy concerns.

3.1 Scenario

Currently, lots of experiments and studies in the healthcare field involve new technology

to provide high-dimensional data to researchers. However, most of these studies choose

their own back-end technology stack to collect and aggregate such data. Consequently,

it will be important to allow future projects to either directly integrate the planned API

into their back-end or use the environmental data API as a stand-alone service. An

example for one of the aforementioned studies is Track your Tinnitus1. It consists of

mobile applications for the participant’s smartphone that provides the questionnaires

and a back-end that stores the collected data.

Track your Tinnitus launched with the goal of providing more data on a previously

detected link between emotional dynamics and psychopathology [18]. This has been

achieved by allowing users to track their own tinnitus perception and emotional state on

1https://www.trackyourtinnitus.org/, accessed: 2017-11-28

11

https://www.trackyourtinnitus.org/

3 Analysis

a daily basis using their own smart mobile devices. To achieve this, the users can create

a new entry in the mobile application by answering questionnaires about their current

mood and tinnitus perception. In turn, these entries provide a personal tinnitus diary for

the user to adapt their behaviour. In the future, it may also help their doctors to adjust the

tinnitus treatment. Users do need to register but do not have to enter any personal data.

In turn, the collected data is available to the participant and to the researchers at Tinnitus

Research2. The collected data, however, does not contain any personal information and

can be used for further research and publications.

Although Track your Tinnitus does not keep track of environmental factors, it might be

worthwhile to also store the data to be able to analyse whether a link between various

environmental factors and tinnitus perception might exist or not. As such, an optional

service that tracks the current location in addition to the already collected data could be

deployed to obtain various environmental parameters.

Another similar application is Manage My Pain3. The application allows participants to

track their pain. All participants can fill out a daily survey to keep track of their day in

terms of their perceived pain. The application allows the patients to find patterns and

have a history that might help with their pain management.

In addition, various studies attempted to incorporate environmental data into their design,

however, they were unable to find significant links between environmental factors and

specific diseases. Zebenholzer et al. performed a diary based study on 238 patients

around one specific meteorological station in Vienna. It evaluated the effect of 11

meteorological parameters on migraines and headaches [19]. While the data did show

several trends, the conclusion of the authors was that ‘the influence of weather factors

on migraine and headache is small and questionable’. As a result, Becker wonders,

whether a larger study might have shown statistical significance [16]. Furthermore,

the author elaborates, that putting the focus on specific environmental parameters is

difficult, due to the sheer number of possible parameters. In addition, the author also

mentions, that timing might be an issue, as the lag time between a trigger and a migraine

onset may be variable. As such, a link between environmental factors and diseases
2http://www.tinnitusresearch.org/, accessed: 2017-11-28
3https://www.managinglife.com/, accessed: 2017-10-11

12

http://www.tinnitusresearch.org/
https://www.managinglife.com/

3.2 Proposed API Design

can currently neither be confirmed nor denied scientifically. Surprisingly enough, many

patients already believe that those factors play a role in the (perceived) severity of their

diseases [16], and as such an additional ability to collect environmental data for every

participant benefits both patients and researchers in the future.

Thus, an API that is able to provide a multitude of environmental data by just receiving

the location and a date would be one of the first steps to allow researchers to conduct

larger studies on the influence of weather on various diseases without limiting the area

of the studies based on the data source.

3.2 Proposed API Design

Consequently, a design proposal can be derived from the description of the scenario.

The user should not have to disclose personal data to this additional API. Participation

should be handled as an opt-in procedure by asking for permission from the user. This

permission should include sharing the timestamps and geolocation of those personal

entries, but never personal information such as the name. This also requires a smart

mobile device that can retrieve the geolocation by any means and an existing mobile

application. In addition, the existing study platform will then forward the collected

geolocation and the date of the journal entry to the environmental data API. The latter

stores the data and will query the available data sources to retrieve environmental data

for each entry. The whole procedure is depicted in Fig. 3.1.

In contrast, a researcher should be able to query data from this API for one or more users

in a specific timeframe to retrieve environmental data. As for the timeline (cf. Fig. 3.2),

the API will return all available environmental data per geolocation and date combination

per-user. Comfort options, like filtering the data by participants, specific parameters or

time frames, should also be available to filter the available data. Additionally, a system

that converts from one to another unit (e.g., from ° C to ° K) should be also offered. This

will, in turn, allow researchers to directly use the data without having to convert them

manually after querying the API.

13

3 Analysis

Study participant

08.01.2018 29.01.201815.01.2018 22.01.2018

Journal Entry Missing Entry Entry Today Future Entries

... ...

Fetch & Store
Env. Data

Environmental API Data Sources

Researcher

Study Platform

Existing Functionality:
- User Management
- Role Management
- ...

Data Source
Adapter

Satelite

Weatherstation

...

Figure 3.1: Proposed procedure for the participants of the study by visualizing the (daily)
journal entries that consist of a geolocation and a date on a timeline. Those
entries, in turn, allow the API to provide environmental data to the user.

Pre-Conditions for Existing Study Platforms

The API will not store complete user data due to privacy concerns and to avoid storing

data redundantly. Thus, the study platform must provide its own user and role manage-

ment module, as the API itself will only store the participant’s id. This id can either be

identical to the one used in the existing study platform or a hashed version of it. It can

then be used to query the stored data on a per user basis.

Additionally, the existing study platform needs to provide additional routes that redirect

calls to the API, in order to act as an intermediary service. This has the benefit of

reducing the number of calls between the user and multiple services and can also be

used to keep the environmental data API on the local network, instead of opening it to

the public. The API should, in turn, prevent normal participants from calling the query

routes and restrict their access to the appropriate routes.

14

3.3 Use-Cases

Filtering Options

Find Queried
Data

Convert
Queried Data

Environmental APIStudy Platform

Existing Functionality:
- User Management
- Role Management
- ...

Researcher

15.01.2018 22.01.2018

Journal Entry

... ...

... ...

Figure 3.2: Proposed procedure for a researcher that includes querying the environ-
mental database to retrieve data for one or more participants and optionally
converting from one unit (e.g., ° C) to another one (e.g., ° K).

3.3 Use-Cases

This section will provide various use-cases that can be deducted from the described

scenario above. Each use-case will pertain one specific actor (i.e., participants, re-

searchers or administrators) and will consist of a description, preconditions, workflow

and a result.

3.3.1 Participants

The API will need a way to identify participants in a study. Either by providing duplicate

data that already exists or by storing an existing participant identifier that has been

assigned in the original study platform. In turn, participants need to be able to store

their geolocation which includes their current position (latitude and longitude) and a

timestamp per entry. Such an entry can then be used to query environmental data.

15

3 Analysis

Store Geolocation

Description: The participant of a survey needs to be able to store location data and a

timestamp for each produced journal entry. This data, in turn, is used by the API

to retrieve environmental data for this specific participant from all available data

sources.

Preconditions: User data has to be available on the existing study platform, including

a unique identifier for one user. In addition to that, the user needs to supply their

geolocation to the API. The timestamp of the journal entry also has to be shared

with the API.

Basic Flow: Create an entry in the API database to store the provided information.

3.3.2 Researchers

In comparison to the participants, the researchers will be able to only retrieve stored

data from the API. This involves several options to pre-filter data and convert the queried

data to other units. All filtering options that are specified in the following sections must

work in combination with each other.

Query all Environmental Data

Description: The researcher needs to be able to retrieve all stored environmental data

for all participants.

Preconditions: Queried environmental data exists.

Basic Flow: Researcher retrieves all existing environmental data for all participants.

Query Environmental Data for specific Participants

Description: The researcher can retrieve all stored environmental data for specific

participants.

16

3.3 Use-Cases

Preconditions: Queried environmental data exists. Additionally, participant ids are

specified.

Basic Flow: Researcher retrieves all existing environmental data for the specified

participants.

Exception Flow: When no participants with the given ids exist, this results in an empty

response.

Query Specific Parameters in the Stored Environmental Data

Description: The researcher needs to be able to retrieve specific stored environmental

data by specifying names of the required parameters.

Preconditions: Queried environmental data exists. Additionally, parameters that need

to be filtered have been specified.

Basic Flow: Researcher retrieves the requested parameters from the existing environ-

mental data in a universally known format.

Exception Flow: When no valid parameters are specified, this results in an empty

response.

Query all Data for a Specific Time Frame

Description: The researcher needs to be able to specify two markers that symbolize a

specific time frame to filter the stored environmental data.

Preconditions: Queried environmental data exists. Additionally, the user specifies a

time frame by providing dates for from or to.

Basic Flow: Researcher retrieves the requested parameters from the existing envir-

onmental data in a universally known format, who happened to have their journal

entry date between the specified from or to dates. When one of the dates is

missing, it is supplemented with the lowest date or the current date, depending on

which parameter was omitted.

17

3 Analysis

Convert Existing Environmental Data from one Unit to Another Unit

Description: The researcher needs to be able to convert queried environmental data

on the fly from one unit to another one.

Preconditions: Queried environmental data exists. Additionally, conversions have

been supplied by the researcher.

Basic Flow: Researcher retrieves the requested parameters from the existing environ-

mental data in a universally known format. All retrieved files have been converted

from their unit to another one if the conversion is applicable.

Exception Flow: When no conversion is valid, the data is returned without converting

it.

3.3.3 Administrator

In the context of this thesis, administrators are persons that can directly modify specific

parts of their existing study platform and the proposed API. They should be supported in

adding new environmental data sources to the API, change the way output is created

and adjust various settings for the data retrieval process.

Extend the API to Support Other Data Sources

Description: An administrator should have a clear way of adding a new environmental

data source to the API.

Preconditions: A new data source has been found. Additionally, the administrator is

able to extend a module that acts as an adapter for the new data source to the API.

Basic Flow: Use the provided templates to adopt new data sources to the API.

18

3.4 Principles

Adapt the API Output Format

Description: An administrator should have a clear way of modifying the output of the

API without having to know the code.

Preconditions: The administrator has a basic understanding of modifying files in the

used language to adapt it to their needs.

Basic Flow: Modify the corresponding classes that shape the output to the desired

format.

Adapt Settings of the API

Description: An administrator should have a way to adjust various API parameters,

such as polling rate, URLs to internal service and other aspects.

Preconditions: The administrator can edit specific configuration files in the project.

Basic Flow: Change values in the settings file of the API to adjust the values.

3.4 Principles

First and foremost, the API needs to be flexible and extensible. It should be possible to

adapt the output format to the need of users by providing a means to quickly and easily

change the output, without having to change anything in the business logic. Additionally,

it should be possible for other developers to quickly realize a small adapter between the

original environmental data source and the API to store the data. This process involves

two steps. The first one is retrieving the data, while the second one involves transforming

from the source format into the expected format. Which, in turn, allows decoupling of

both parts and allows asynchronous retrieval of the data.

In addition to the flexibility, privacy is another big concern. Instead of directly storing and

managing the users, the API should facilitate existing study platforms from those projects

in terms of user management and authorization. Those two topics are mostly custom to

19

3 Analysis

the study platform and adapting this API to the needs of various projects would mean

more work instead of being ready to use out of the box. On the one hand, this approach

reduces data duplication and the amount of HTTP calls the clients have to make. On the

other hand, it also means changes to the existing study platform have to be made, by

redirecting calls to the API routes.

Finally, when multiple users provide the same geolocation and almost the same time-

frame, it would be possible, to retrieve the environmental data object once and assign

it to the previously mentioned tuple (i.e., a combination of geolocation and timestamp).

Due to different temporal resolutions that various data sources might offer, this approach

might not work inside of the planned API. In turn, this might lead to a small amount of

duplicate data but simplifies storage procedures. Depending on the needed data sources

and their temporal resolutions, this might be one aspect that should be revisited.

20

4
Data Sources

The first step in providing various parameters of environmental data is to find suitable

sources of environmental data. First and foremost, the sources should provide the

data free of charge and available for everyone. This enables reuse and sharing of the

application including the data access methods for a multitude of different application

scenarios without adding constraints due to a difference in licensing models. Another

important aspect is the way the data is collected, as this may have a huge influence

on their availability and resolution. Which in turn leads to differences in the retrieval,

transformation and storage of the weather data.

This chapter will provide insight on which data sources are available and what differ-

entiates them from other available sources of environmental data. It will also include

a detailed look at the selected sources including topics such as available parameters,

restrictions and resolution of the data sets and a small outlook on available methods to

retrieve the data. Followed by a short summary of what needs to be done to integrate

the data into an application. In addition, other sources will be introduced briefly, which

could be integrated in the future as well.

4.1 Deutscher Wetterdienst (DWD)

The German Weather Service (DWD) is responsible for a multitude of topics, such as

providing meteorological services, safeguarding aviation and shipping and issuing official

warnings about dangerous weather phenomena [20]. Additionally, the DWD has public

weather data available as well on a publicly accessible server. As of July 2017 the

21

4 Data Sources

DWDG law [21][s. 4, par. 1] came into effect which commissioned the DWD to provide

climate and weather data largely free of charge to the public. This led to more data

being accessible to the public. As result, the data was placed under specific terms of

use which can be found in the GeoNutzV -act [22][s. 3, par. 1,2]. The latter basically

require that firstly the source must be included when using the data and secondly that

modifications of the data also need to be marked with the origin of the data. In some

cases, the source of the data may even require you to remove this reference in case of

modification of the data.

4.1.1 Available Data Sets

DWD data can be accessed on its new Open-Data Server free of charge. This server,

in turn, is split into two sections: climate and weather. The climate section is called

Climate Data Center (CDC) and contains raw data in multiple resolutions and formats

such as observed parameters from DWD weather stations, derived parameters at local

stations and much more. In comparison, the weather section contains alerts, charts,

forecasts, radar data and reports. According to the DWD data set introduction [23], the

observed parameters at the DWD stations are grouped into eight categories. Each of

those categories may contain one or more available parameters. Data is available in

multiple temporal resolutions, ranging from multi-annual values, monthly, daily up to an

hourly resolution. Currently, approximately 400 climate stations are active and provide

environmental data across Germany. Table 4.1 lists all available hourly categories and

provides a summary of contained parameters. Information about each category was

extracted from the included data descriptions (for example the description of the air

temperature data [24]) and an extensive list is provided in section B.1

List of DWD hourly Parameters In addition, each category also contains information

about the quality of the measured data at the time for each data point. The QN-parameter

defines the type of quality measurement e.g. QN8. One example for this is QN_8 for the

hourly cloudiness. This quality level, in turn, has a specific numeric value that encodes

22

4.1 Deutscher Wetterdienst (DWD)

Category Content
Air Temperature Contains two measured values: 2m air temperature and 2m

relative humidity.
Cloudiness Contains two measured values: index indicating whether the

measurement was done by a human or instrument and total
cloud cover in one eights.

Precipitation Contains three measured values: hourly precipitation, an
index to indicate whether there was precipitation and which
form of precipitation.

Pressure Contains two measured values: atmospheric pressure at sea
and station level.

Soil temperature Contains six measured values: soil temperature at 2cm, 5cm,
10cm, 20cm, 50cm, 100cm.

Solar Contains four values but data is about one month old at the
time of writing this thesis. Available data includes hourly
sums of long-wave downward radiation, diffuse solar radiation,
incoming solar radiation and sunshine duration per hour.

Sun Contains the duration of sunshine per hour.
Wind Contains two measured values: mean wind velocity in metres

per second and wind direction given in degrees.

Table 4.1: An overview of the available categories and parameters.

meaning. To stay with this example, Table 4.2 displays which information can be deduced

from the QN_8-value of a specific line.

QN8 Code Description
1 Formal examination.
2 Examined following specific criteria.
3 Old automatic examination and rectification.
5 Historic and subjective procedure.
7 Second examination done, pre-rectification.
8 Quality assurance outside of the routine.
9 Not all parameters have been rectified.

10 Quality assurance and rectification finished.

Table 4.2: QN8 quality index explained in the data set description [25]

The specific information can also be obtained in the data set description. For this example,

it can be found in the description pertaining precipitation [25]. As explained before, each

parameter may use different quality measurement methods - where precipitation uses

23

4 Data Sources

QN_8, the air temperature specifies the quality in QN_9 - which might lead to differences

in the interpretation of the data.

4.1.2 Accessing Hourly Data

CDC data is available on an open File Transfer Protocol (FTP) server provided by the

DWD and can be used with most modern browsers without using specific software.

Observed data can be retrieved in various time resolutions, which are stored in different

sub-folders with varying amounts of available parameters. The hourly directory con-

tains the previously mentioned eight parameter groups as single directories. This can be

seen on in Fig. 4.1 a. Each of those directories, in turn, is split into two subdirectories -

historical and recent data (Fig. 4.1 b). Those folders contain the environmental

data, a list of stations that produced the data and a description of the possible parameters

and other more specific details about the included data (Fig. 4.1 c). Finally, zip files can

be found that contain the measurements done by a specific station. One file, in turn,

contains various metadata in HTML or text format and one file that contains the actual

data which can be found in Fig. 4.2. This example also shows that the unpacked data

for this specific parameter total to about 630KB of data. Depending on the number of

active stations that are required this can lead to a large amount of data that needs to be

accessed daily.

Figure 4.1: Navigating the CDC public FTP Server to find hourly precipitation data.

The typical workflow to obtain data for a specific time and location can be split into

several single actions. First, obtain all stations that have been active in the respective

time-frame. Secondly, filter all stations by the distance to the given latitude and longitude

and find the nearest station. Third, download the zip archive, read the document that

24

4.1 Deutscher Wetterdienst (DWD)

contains the values and filter the data by retrieval date. Finally, transform the retrieved

data into the expected format. This simplified flow is also depicted in Fig. 4.3.

Figure 4.2: Content of the zip file that contains wind data for the station with the index
03402. Where the blue coloured part provides metadata and the green file
contains the measured environment data.

Additionally, there are already several unofficial libraries to handle this process for

different languages. With the caveat that none of them are official and can be outdated

as soon as the location of the file changes even a bit.

Figure 4.3: Simplified workflow to access the DWD Data. For a specific date and time,
load the list of all stations. Then filter the list to get the nearest active
station(s). Then download the data for this station and finally transform it into
the target data model.

25

4 Data Sources

4.2 European Centre for Medium-Range Weather Forecasts

(ECMWF)

ECMWF [26] is an independent intergovernmental organisation which is supported

by most states in the European Union that provides a multitude of different data sets

which are available to users under Regulation (EU) No 1159/2013 [27][p. 1-2]. As a

result, access to the data is available after free registration at the ECMWF. Logged in

users have access to all public datasets in two ways: access via the web interface or

programmatically, which includes using a specific library, provided by the ECMWF.

Earlier this year another satellite for the Copernicus project was launched into space.

Its task is to observe the earth and provide additional data about our environment in

several data sets. Provided data is clustered into various service-groups by the ECMWF.

One of those being the Copernicus Atmospheric Monitoring Service (CAMS) [28], which

has been set up to supply everyone with various atmospheric environmental data.The

collected data can, in turn, be used to determine the quality of air, formation of clouds,

rainfall and various other parameters that might influence life on earth. Due to the scope

of this application, the focus in this chapter lies on the obtainable data from CAMS, but

other available options will also be introduced in the following subsections.

4.2.1 Available Data Sets

In this section, a subset of three possible data sets will be introduced in detail including

limitations and resolutions. This also includes reasoning which one had the best fit for

the scope of this thesis. Additional regional data sets are available as well, but they

might provide fewer parameters than the CAMS near-real-time service and one other

source of local German weather data were chosen already.

CAMS Near-Realtime

This data set contains daily near-real-time analyses and forecasts of global atmospheric

composition [28]. It provides daily information on the global atmospheric composition by

26

4.2 European Centre for Medium-Range Weather Forecasts (ECMWF)

monitoring and forecasting various parameters [29]. Data is available from 2012-07-05

and is extended forward to real-time. Data is available in a 40km spatial (depiction of

spatial resolution in Fig. 4.4) resolution which, at the time of the project, was the finest

available resolution of the data sets available with a small delay of only five days. More

information can be found on the appropriate website [30].

Figure 4.4: Earth’s surface is divided into grids with variable cell counts that are determ-
ined by the spatial resolution of a data set. This, in turn, either enlarges or
shrinks the given cells in a grid. Based on Blank map of Europe1.

Additionally, data can be queried either as analysis or forecast. Analysis data is available

at four points during each day: 00:00, 06:00, 12:00 and 18:00 respectively, whereas

the forecast is using two base times to query data from either 00:00 or 12:00. These

base times can, in turn, be modified by specifying steps. Those steps can be seen as a

modifier for the base time. When choosing 00:00 as base time and three as a single step,

the queried data will contain measurements at the times 00:00 and 03:00 respectively.

An illustration of the difference between both analysis and forecast can be found in Fig.

4.5, where the forecast is selected with four steps 3, 6, 9, 12 to retrieve data from eight

points during the day. Steps can reach up to 120h into the future in steps of 3h which

can also be seen in Fig. 4.6 under the Select Step category.

1File:Blank map of Europe (with disputed regions).svg by maix Available: https:
//commons.wikimedia.org/wiki/File:Blank_map_of_Europe_cropped.svg, accessed:
2017-11-01

27

https://commons.wikimedia.org/wiki/File:Blank_map_of_Europe_ cropped.svg
https://commons.wikimedia.org/wiki/File:Blank_map_of_Europe_ cropped.svg

4 Data Sources

00:00 00:00

00:00 00:00

12:00
Forecast Base-Time

Step 3

Step 9

Step 6 Step 12

Step 12

Step 9

Step 6Step 3
00:00

Forecast Base-Time

Analysis at 00:00 Analysis at 12:00 Analysis at 18:00Analysis at 06:00

Figure 4.5: Available data types with the analysis being on top and the forecast below.
Analysis is footnote 4 points during the day, whereas forecasts can be
obtained in intervals of three hours.

European Reanalysis (ERA) Interim

This data set provides an atmospheric reanalysis. A reanalysis can span a long-time

period of multiple decades or more and often time provides huge data sets [31]. One

of the side effects of this type of data set is the low update rate compared to other

data sets. ERA-Interim is updated once every month and has a delay of two months

to allow for quality assurance. The spatial resolution of this data set is approximately

80km [32]. Temporal resolution is equal to the CAMS Near-real-time data set including

the possibility to query both, analyses and forecasts. Additionally, the licence of this

data set is restrictive in terms of forwarding the results of the analysis which also might

prove a problem in the long run and may need a special permit from the ECMWF

[33][s. 2]. In comparison to the CAMS Near-real-time data set, ERA-Interim provides

more environmental parameters at the cost of availability.

ERA5

This data set is currently under construction and will cover the period from the 1950s to

the present. As of writing, the most recent data available is from December 2016, which

will be extended to be near-real-time as well. Production of this data set started in 2016

and it contains hourly analyses and forecasts with a spatial resolution of 31km. Access

28

4.2 European Centre for Medium-Range Weather Forecasts (ECMWF)

to the set was opened recently in mid-2017 [34]. Compared to the CAMS Near-real-time

data set, it also contains more parameters and might be a suitable replacement as soon

as it hits the near-real-time status due to the higher spatial and temporal resolution. In

future, it might be necessary to re-evaluate the given terms of service to check if the

data set allows usage as intended by this thesis.

Conclusion

At the time of working on the thesis, the CAMS near-real-time data set seemed to be

the most suitable for the given premise. The five-day delay is bearable for this use-case,

and the resolution was the finest available with up to date data. Additionally, the licence

of the data set does not restrict reuse and modification of the data. This allows others

to use the application without having to worry about licensing by just registering at the

ECMWF to obtain access to the data set.

4.2.2 Accessing the CAMS near-real-time Data

Retrieving data from CAMS near-real-time service is possible in two ways. A user can

either get the data via the web interface (which is depicted in Fig. 4.6) or by using the

provided libraries to automate the retrieval data from the appropriate ECMWF servers.

As of the time of writing, only the python library (called ecmwfapi) is actively supported,

while the other options for different languages are marked as discontinued on the support

website [35]. The python library itself offers a simple way to retrieve weather data in

a special format called Gridded Binary or General Regularly-distributed Information in

Binary form (GRIB) designed by the World Meteorological Organization (WMO) [36]. In

addition, the ECMWF also released a library called ECCodes for Unix platforms and

three different programming languages: C, Fortran 90 and Python [37]. Which will

provide a means to access and manipulate the downloaded data files.

Access to both libraries leads to a workflow to obtain specific values for a given time

and latitude-longitude tuple. First, obtain the file containing the data either by using

the web API or via the ecmwfapi library. Second, parse the retrieved file by using the

ECCodes or other programs and find the data point whose location is closest to the

29

4 Data Sources

Figure 4.6: Catalogue of the CAMS near-real-time dataset, displaying the latest currently
retrievable date, the times for the specific subset and available parameters.

queried position (and time). When querying the data set to only obtain data inside of

Europe and analysis data only the typical GRIB file is about 135MB per day. One week

of data would, in turn, sum up to about 1GB. In turn, the forecast data would likely result

in even bigger space requirements, due to both the additional available parameters and

the finer temporal resolution of 3h instead of 6h.

After making a request to the ECMWF servers, it is possible to track the status of

the request, as seen in Fig. 4.7. This might be helpful if a request takes longer than

anticipated due to high load.

Figure 4.7: The ECMWF offers tracking for open requests on a separate website2

30

4.3 Additional Data Sources

4.3 Additional Data Sources

In addition to the sources mentioned before several other options exist that provide

environmental data for end-users. One of those being the Yahoo Weather API [38],

which provides data free of charge for use by individuals or non-profit organizations or

personal, non-commercial uses. There is no specific rate limit but an example of up to

2000 signed calls per day was given to retrieve data. When using data from the Yahoo

Weather Service an attribution is expected to fulfil the terms of service. Data can be

retrieved via their provided RESTful-API.

Another option would be the service provided by OpenWeatherMap [39], which provides

data under the Open Data Commons Open Database Licence (ODbL) [40] that allows

sharing, adapting and producing works from the database as long as the original is

attributed and the product is shared under the same licence. Several account types are

available, where the free membership has access to the current weather API as well as

several other services. A free account may only call the API 60 times per minute. When

this limit is reached, the user needs to go with one of the paid account types, which

provide more benefits but require monthly payments.

4.4 Challenges

When combining different data sources, some problems may occur. First of all, the

spatial and temporal resolution may vary greatly. One data source might be available

hourly, others may only offer one set of data every few days. When combining the

data for researcher those differences must be made visible by providing additional

information about the retrieval date and distance between the queried point and the point

of measurement.

In addition to that, different units might be problematic as well. When one of the weather

sources provides all temperatures in degrees Celsius and another one uses degrees

Kelvin, comparing or plotting values is taking more effort. Thus, the application would

2http://apps.ecmwf.int/mars-activity/, accessed: 2017-10-12

31

http://apps.ecmwf.int/mars-activity/

4 Data Sources

need to offer support to convert between different units to smoothen the problems with

embedded data.

Naming conventions are another problem which might make comparisons harder. Each

data source can provide different naming schemes for their provided data which might

make querying data harder. The application should provide at least basic support to

ease this problem.

Finally, integrating the data might be problematic as well as every data source can

provide data in different formats. Thus, the transformation between those different

formats needs to be implemented to allow usage of common interfaces between the

application and different weather sources. Storage in the application, in turn, can be

done either in separate models or in one common model. As such, the application

should be easily extensible to integrate more weather sources and provide an interface

which defines required and optional methods that might be needed for the integration of

other sources.

32

5
Architecture

This chapter provides insights into the design and implementation phase of the applica-

tion. While the first section provides reasoning on various design decisions, the second

part describes the various mechanics that are built into the API.

5.1 Design Phase

One of the first parts of any projects is finding suitable tools and solutions to previously

identified problems. The following section will introduce the paradigm and one architec-

tural pattern that is used in the project afterwards it provides information about used

programming languages, tools and frameworks.

5.1.1 RESTful API

The application is planned to be implemented as an API that uses the representational

state transfer (REST) paradigm. This paradigm is an abstraction that builds onto the

structure of the world wide web. Thus, REST is stateless, uses standard operations (GET,

PUT, PATCH, UPDATE and DELETE). It aims for performance, reliability and scalability

and was designed by Roy Thomas Fielding [41][p. 76ff] as a part of his doctoral thesis.

There are several architectural constraints that define a RESTful system:

• Client-Server: Separating the user interface from data storage concerns improves

portability of the UI and scalability by removing components on the server.

33

5 Architecture

• Statelessness: Each request from a client must contain all information necessary

to perform the action without using any stored context, removing the need to store

context.

• Cacheability: Resources should be labelled as cacheable or non-cacheable -

this, in turn, might eliminate some interactions between client and server with the

trade-off of having possible stale data stored.

• Uniform Interface: Decouples the server from the client implementation by using

the URI to identify a resource, manipulate data via the HTTP standard, providing

self-descriptive messages by using MIME Types and potentially provide hyperlinks

and URI templates to further decouple the client from a specific URI structure.

This is summarized under the term hypermedia as the engine of application state

(HATEOAS) [42][p. 142ff].

• Layered Systems: A system can consist of multiple layers with a single access

point for the end-user.

• Code on demand: The last and optional constraint consists of the possibility of

transmitting the code to the client for execution e.g. JavaScript code within an

HTML representation.

Those constraints provide an outline on how to apply the pattern to real-world applications

without going into the details on how to implement those constraints. In turn, it also

provides hints on how access to the implemented API could be structured.

5.1.2 PORTO Software Architectural Pattern

In addition to the RESTful approach, an architectural design pattern can be used to

facilitate loose coupling and re-use of code. Porto [43] is a pattern that describes an

alternative to the standard model-view-controller model widely used in applications. This

pattern can be applied to RESTful APIs as well as normal web applications.

At the core, it describes two layers — the Ship and Containers layer. Those layers can be

enhanced with an additional, optional set of components with predefined responsibilities,

which both sit above the base framework as depicted in Fig. 5.1.

34

5.1 Design Phase

Container Container Container

Ship

Framework

Figure 5.1: Overview about the different layers in the PORTO SAP1.

The Ship layer contains mid-level code which can be used by all containers but should

be kept thin. Commonly used business logic should reside encapsulated inside of single

containers. Thus, this layer should only contain, either, shared code or the core code,

which loads the containers and provides helper functions.

In contrast, the Container layer contains all business logic, through components, for a

specific use-case. Therefore, this layer can be seen as a means to bundle up function-

ality. For example, everything that pertains users, like registering, viewing the user’s

information, listing users and of course the user model itself should be implemented in

the User container. Whereas Authentication, in turn, would be a separate container

to check tokens or other forms of authentication and provide login and logout features

which depends on the User container. Using this approach leads to loosely coupled

packages which adhere to the single responsibility principle.

Additionally, Components can be used in either layer to provide functionality. They are

split into two categories main and optional components. Main components are essential

for web applications and contain elements such as routes, controllers, requests, tasks,

models, views, and transformers. In contrast to that, optional components are not

explicitly, needed but can provide further functionality. Some of those components are

repositories, exceptions, criteria or tests.

1Based on the original Layers Diagram by M. Zalt Available: https://github.com/Mahmoudz/
Porto#Layer-Diagram, accessed: 2017-11-20

35

https://github.com/Mahmoudz/Porto#Layer-Diagram
https://github.com/Mahmoudz/Porto#Layer-Diagram

5 Architecture

Lifecycle of a Request

One complete lifecycle of a request, be it from a web view, an API call or the command

line interface can be traced in Fig. 5.2. It begins when a call hits an endpoint that is

defined in a Route, as it will call a Middleware to handle the Authentication and

the corresponding Controller function. After this, the Request is injected into the

Controller and automatically applies all validation and authorization rules. Afterwards,

an action is called including any data from the Request that was expected. In turn, the

action might either handle the Request or call one or more Task to do that. With a

Task doing only a single portion of the main Action in itself or any Models. Afterwards

the Action prepares data the resulting data from processing the request back to the

Controller. Finally, the Controller builds the Response by either using a View for the

web or Transformer to return serialized information.

Model

API Middleware Request Controller Action

Task

Transformer

Task

WEB Middleware Request Controller Action

Task

View

Task

TaskCLI Action

Figure 5.2: Interactions between the Components in Porto SAP2.

Benefits

Consequently, the pattern provides tools to facilitate reuse of code and decouples the

business logic from the framework. In addition to that, the possible user interfaces are

also separated from the business logic, which makes them pluggable.

2Based on the original Main Components Interaction Diagram by M. Zalt Available: https://
github.com/Mahmoudz/Porto#Components-Interaction-Diagram, accessed: 2017-11-20

36

https://github.com/Mahmoudz/Porto#Components-Interaction-Diagram
https://github.com/Mahmoudz/Porto#Components-Interaction-Diagram

5.2 Tools and Frameworks

Summarizing, this pattern facilitates decoupling, as the business logic is completely

separated from the user interfaces and segregated in containers. This makes it easy to

extend the scope of an application from being an API to also offer a web-application or

command line interface by reusing already defined components. It also promotes single

responsibility of components when the pattern is used as described. Another point is the

ability to quickly find code when the pattern is taken to heart, as every component has a

pre-defined location in a project. Currently, there is one implementation of this pattern

available that is built on top of the Laravel3 PHP framework.

Implementation of the Pattern

Apiato [44] implements all aforementioned components and offers various, optional,

pre-made containers such as a generic user, authentication and authorization container.

This, in turn, allows rapidly developing new ideas by just providing business logic instead

of having to rewrite or reimplement reoccurring tasks. Despite being implemented with

the architecture pattern in mind, Apiato does not force developers to strictly follow the

Porto pattern. As such, developers can choose any way to implement their containers.

5.2 Tools and Frameworks

The API itself is developed in PHP, by utilizing the Apiato framework, and developed as a

RESTful application. This approach allows the project to be consumed by various clients

as all output will be in the form of JSON Responses utilizing the JSON API4 specification.

This allows the users to build their own clients on top of the provided project to further

process and aggregate the collected data. JSON API provides a common structure for

representing objects in JSON. Which can be used with a variety of ready to use libraries.

Additionally, the API also minimizes duplicate data, as information about users of specific

studies will not be collected. All calls to the application for a specific study should be

done via one registered user that is used as an intermediary between this application

3https://laravel.com/, accessed: 2017-11-20
4http://jsonapi.org/, accessed: 2017-11-20

37

https://laravel.com/
http://jsonapi.org/

5 Architecture

and existing study platforms to improve re-usability for clients. In turn, the existing study

platform needs to handle user management. This is needed to distinguish between

researchers that can obtain stored data or normal users that can only produce new

entries in this application. As a result, this also minimizes any privacy concerns as this

application will only know about the participant identifier that is explicitly shared without

storing additional information about participants.

Additionally, all developed containers should have minimal dependencies to other con-

tainers, so that other projects are able to plug the containers into study platforms to

collect environmental data without having to include a multitude of different containers to

get started. In addition, the provided containers might find use in other projects as well.

In addition to developing the RESTful application, it was also necessary to develop

libraries that would retrieve the data from the chosen data sources. Language and

Frameworks used differed based on the existing tools and frameworks.

MySQL 5.7.18 is used as the database for the environmental API. This specific version

was chosen due to the added JSON support for columns. Which allows easier storage

of data that will not be searchable or modifiable. The main use-case in this API is storing

additional information about the DWD weather stations that does not change much.

5.3 Implementation

At the start of the project, the first step consisted of exploring which data was available for

re-use, how to access the data, which constraints the data sources had and finally how

to access the data. Afterwards, the work on the API began when the aforementioned

parts were working as intended. This had the primary benefit of being sure, that retrieval

with the given sources is possible while also minimizing the need to switch between the

used programming languages. In contrast to that, this chapter will first introduce the work

done on the RESTful application and then provide details on the data retrieval helpers.

38

5.3 Implementation

5.3.1 Components of the API

All components of the API will be briefly introduced here, then in further detail in their

own section. Additionally, the Apiato project provides several inbuilt mechanisms that

can be plugged in as needed, which will be introduced as well. This application uses the

provided User, Authorization and Authentication containers to handle external

APIs as users. The API consists of two custom containers that contain the business logic.

They can be either used stand-alone or plugged into existing Apiato projects to provide

environmental data. Those containers are called GeoLocation and WeatherData.

Retrieval of data is handled via various Gateways that provide a loose coupling between

the API and the data source. This is done by scheduling jobs that retrieve data for one

specific GeoLocation inside of a queue. In addition, the API also supports on the fly

conversion between units, in case the user wants to convert either specific or all values

to specific units when applicable.

5.3.2 Authentication and Authorization

Both the authentication and authorization are inbuilt into Apiato and are shipped with the

framework including a container for users. This application utilizes those containers.

The Authentication container provides a ready to use authentication middleware

that is based on Laravel Passport5 and implements OAuth. This application uses the

password grant tokens to authenticate third-party applications. As such, a User

object is currently used to log into one survey - multiple surveys can be served with

one instance of this API. In turn, the resource owner credentials grant also requires

the admin of the API to register new application to the app manually by creating a new

client. After the registration, a user (in this case, the external API) is able to login with

the credentials and access the API.

In addition to that, the API also offers support for role-based access control (RBAC) inside

the Authorization container. This system provides measures to protect specific

routes by checking the roles associated with a user account. In addition to roles, the
5https://laravel.com/docs/5.5/passport, accessed: 2017-11-20

39

https://laravel.com/docs/5.5/passport

5 Architecture

container also supports specific permissions. Both, roles and permissions can

then be specified in the $access field of a Request. New users of the platform currently

need to be manually set to have the researcher role. Which, in turn, allows the external

API to also query the recorded data via the provided routes.

5.3.3 GeoLocation Container

Primarily, the GeoLocation container provides functionality to store, retrieve and delete

existing GeoLocations. This container also provides a GeoLocation model that

keeps track of user location (latitude and longitude), as well as a corresponding

timestamp. Additionally, it also contains the id of the user who created the entry and

a participant_id. Lastly, the model contains a flag which indicates whether the

GeoLocation has been used to obtain the environmental data.

A distinction between user and participant was introduced to minimize privacy concerns

and to reduce duplicate storage of user data. Registered users to this API are the

external applications that want to integrate this project into their work. It also provides a

means to limit access from one survey to others.

5.3.4 WeatherData Container

The main business logic of the project is implemented in this container. First of all, it

only provides routes to query the collected environmental data. This container provides

two models to store environmental data and additional information. One WeatherData

will store exactly one environmental data parameter that consists of the date of the

data point, distance to the queried point, latitude, longitude, unit and value. In addition

to that, a WeatherSource model is only used to provide additional metadata and

consists of the original (assigned by the data source), a source string and a data JSON

column. It is used to dump the retrieved additional data. It was designed this way, as

currently there was no need to ever update specific content inside the data column,

either the field content is rewritten completely or never changed. Currently, it is used to

provide information about the DWD Station that provided the retrieved data (cf. Section

40

5.3 Implementation

4.1 for more specifics regarding stations). Fig. 5.3 shows the relationships between

GeoLocations, WeatherData and WeatherSource.

This container also provides several utility options. First of all, it contains a command that

retrieves GeoLocations, which were not executed yet and for which the application

determined, that data can be retrieved for, from all sources. In that context, executed

means, that no environmental data has been received for the given GeoLocation. It

then schedules a job to retrieve environmental data for this specific GeoLocation to

the worker queue. Additionally, there is also a command to trigger the pre-fetching of

Copernicus data, as the ECMWF service might take a longer time to respond. Both

commands are scheduled to run at different intervals. Data retrieval will run every five

minutes and schedule a flexible amount of jobs and pre-fetching of Copernicus data

happens once daily at 00:00.

WeatherData

source_id: int
source: string
value: decimal
description: json
classification: string
distance: decimal
lat: decimal
lon: decimal
date: decimal
type: string
geo_location_id: int
unit: string

+ weatherSource(): WeatherSource
+ geoLocation(): GeoLocation

WeatherSource

original_id: string
source: string
data: json

GeoLocation

lat: decimal
lon: decimal
request_timestamp: date
user_id: int
participant_id: string
executed: bool

+ weatherData(): [WeatherData]

n:1

n:1

Figure 5.3: Class Diagram that shows how GeoLocations, WeatherData and
WeatherSource are connected. All public functions provide a means to
retrieve linked models.

5.3.5 Gateways to Weather Sources

In the developed application, a Gateway is introduced, to keep an abstraction between

the library that will retrieve environmental data, and the API. It provides a common set of

41

5 Architecture

functions that are expected to be implemented to ensure re-usability. An outline of this

adapter is given in AbstractDataRetrievalGateway and enforces subclasses to

implement various methods to standardise retrieval. In turn, it provides one publicly avail-

able template function getData($lat, $lon, Carbon $date, $geoLocationId). It

will return an array that consists of two items. First, it provides the environmental data

that has already been transformed into the expected WeatherData format and the

second one carries the additional information in the format of a WeatherSource. Sum-

marizing, the method encapsulates the retrieval and transformation steps. Subclasses

will only be able to provide sub-functions of this function without being able to override

the main functionality.

First of all each Gateway needs to provide a retrieve($lat,$lon,Carbon $date)

method. This method is expected to return an array that contains two items, with the first

being the raw weather data and the second providing raw source data. The latter can

also be an empty array.

After this, the user needs to override the parseToWeatherData($obj,$geoLocId)

function. This function takes one of the retrieved weather data objects and in turn will

transform it into a valid array representing a WeatherData model. It can either be

done manually or with the help of a Transformer. Those Transformers take one

object and transform the content into other representations [42][p. 62ff]. The default

parseToWeatherSource($obj) method will provide an empty array when called and

can be overwritten in case the data source provides additional metadata which should

be parsed into a WeatherSource.

Finally, each Gateway needs to provide the delay in days, which each data set inherently

carries in the getTimeDelayInDays() function. For the DWD hourly data set this value

would be 1 day, while the Copernicus (CAMS) set has 5 days of delay. Those values

are used later on, to determine the which GeoLocations can be scheduled for data

retrieval.

A class diagram of the existing Gateways can be seen in Fig. 5.4. Each child class im-

plements only the functions needed to provide the expected data to the template method

of the parent class. Depending on the weather source each subclass can decide to

42

5.3 Implementation

provide other means to pre-filter data. This can be seen in the DWDRetrievalGateway

where the variables determine which kind of data should be queued with the default

of retrieving all available environmental parameters.

Figure 5.4: Class Diagram showing the abstract parental class and the two subclasses
for DWD and Copernicus data.

To summarize, the AbstractDataRetrievalGateway provides a template method

that has to be reused when new data sources need to be introduced into the API. A new

Gateway needs to fill in the abstract methods for retrieving and transforming raw envir-

onmental data into the expected WeatherData-form. All the active Gateways need

to be added to the configuration file inside of Containers/WeatherData/Configs/

weather.php.

5.3.6 Retrieving Environmental Data with Queued Jobs

The gateways mentioned above are used inside of a queued Job. In turn, Laravel will

run those jobs in separate worker queues that are supported by multiple queue backends

either by using the database to enqueue jobs or using specialized queue backends [45].

Connections to the different backends provide the option to run multiple queues in them.

Queues also provide a means to prioritize jobs and group them by specifying a name.

It is also possible to specify the number of retries per job by adding an optional flag to

43

5 Architecture

the queue startup like this: php artisan queue:work --tries=1. This enables finely

granulated execution of jobs.

In turn, a Job has only one handle(...) function it has to implement, which contains

the complete business logic of this one job. Additionally, jobs can be set to expire after

running longer than anticipated by overwriting the retryUntil() method to return the

date at which it should expire (e.g. return now()->addSeconds(5);). This will set the

expiration date to job start plus five seconds. When a job hits this time limit it will fail and

it will be noted in the back-end and retried later on. In those cases it is also possible to

clean up after a job fails by overwriting the failed() method.

The API uses the concept of queued jobs to retrieve data from the implemented

Gateways inside of its DataRetrievalJob. One such job retrieves all active and

available Gateways from the aforementioned configuration file to retrieve the environ-

mental data for one GeoLocation. Afterwards, it opens a database transaction to

first store the additional metadata and then the environmental data. Should an error

occur then no data will be stored for the GeoLocation. It will also not be marked as

executed, which means that it will be re-queued during the next retrieval command.

Alternatively, when no errors occur, the environmental data for the GeoLocation is

stored inside of the database. Dependencies between all the models can be seen in Fig.

5.5.

5.3.7 Complete Lifecycle of Retrieving Data and Task Scheduling

The complete cycle of retrieving data can be seen in Fig. 5.6. First of all, Laravel is

able to schedule commands and jobs [46]. So instead of configuring cronjobs that fire

the specific modules it is possible to point only one cronjob 1© to the inbuilt scheduler.

Afterwards, scheduling commands is possible inside the ConsoleKernel 2© in the

ship section (e.g., $schedule->command(CopernicusRetrieval::class)->daily(),

to fetch the newest Copernicus data daily). In the depicted scenario, the timed trigger

calls the RetrieveWeatherDataCommand which will obtain the first n GeoLocations

which are not executed and with their timestamp being older than the current maximum

44

5.3 Implementation

Figure 5.5: ER Diagram of all models introduced by the two implemented containers.

delay of all known data sources 3©. Afterwards it will create a new job for each retrieved

GeoLocation and add it to the queue 4©.

Depending on the status of the queue, the job might reside in the queue for a while before

actually being processed. When one of those jobs becomes active 5©, it will retrieve

the environmental data from all active sources (e.g., DWD, ...) 6© and store the data in

a single database transaction 7©. When this process is finished, the GeoLocation is

marked as executed.

5.3.8 Querying Environmental Data

In addition to the detailed look at the application’s mechanisms to retrieve and store data,

the actual endpoint for researchers to obtain data is the other big component of this

container. The retrieval options for researchers implement all possibilities mentioned in

Chapter 3. The complete flow of one of those queries can be followed in Fig. 5.7. When

receiving a query to the WeatherData endpoint, the controller calls the appropriate

Action 1©.

45

5 Architecture

Trigger
Fetching

...

WeatherData

DWD
Gateway

Copernicus
Gateway

Other Provider
Gateway

DWD
Transformer

Obtain
GeoLocations

GeoLocation

Add Retrieval Job for
GeoLocation to Queue

...

Retrieval Job

DWD
Retrieval

Copernicus
Transformer

Copernicus
Retrieval

Copernicus
Transformer

Copernicus
Retrieval

1 2

3

4

5 6

7

Figure 5.6: Shows the complete cycle between a time triggered fetching of
GeoLocations up to the retrieval and storage of data inside one common
WeatherData table.

First, it will check the request for provided parameters and will add that to the payload

that is forwarded to the called Task. This can be done by using the so called magical call

[47], which allows execution of run(...) methods from anywhere. In addition to that it

also supports calling other methods beforehand, which can be used to provide additional

filtering options in a structured way. In this example, the corresponding Action will

add functions to run in the Task depending on the found url parameters and then call

run(...) 2©.

Afterwards, inside of the Task, each of those methods will add a new Criteria to the

repository responsible for retrieving the data. Criteria can be seen as an abstraction

for re-used queries that might occur more than once on a specific repository. Using

Critera has several benefits. First of all one specific Critera can be re-used for

several components inside of the application. In addition to that, it facilitates sharing

common query conditions like finding objects older than a specific date or querying a

specific row and comparing the value with a given value 3©. This has the benefit of

having to change the code for a specific database constraint only in a Critera instead

of explicitly writing the query directly inside of an Action or a Task.

Finally, the run(...) method inside of a Task is called and retrieves the queried data 4©.

Afterwards, if the user added the convert url parameter, a second Task is called. This

46

5.3 Implementation

conversion task will first parse the given conversion string and then find matches inside

of the previously retrieved data 5©. A detailed description of the conversion process can

be found in Section 5.3.9. The resulting data is then returned by putting it through a

Transformer to transform it into the expected JSON-API compliant format 6©. Then,

the data is sent back.

Controller Ac�on

Transform Output

Query
WeatherData

Find Data

Convert Units Optional: filter data
- Participant
- Parameter
...

2
1

3

4

56

Figure 5.7: Researcher querying the API for environmental data via the provided
endpoints.

Available Routes and Url Parameters

All parameters can be combined together to precisely extract only the required data.

Table 5.1 depicts all different options a researcher can specify to shape the output to

their specific needs. Two full-blown examples can be found in Section A.4, they contain

the query including different parameters and the shortened sample output.

Table 5.1: All currently available parameters for obtaining data from the API. Base URL:

GET host/weatherData HTTP/1.1

Option Explanation

?type=:type Filters data by the data type. Uses a like query with * as

wildcard. Multiple values must be separated by a semicolon.

An example would be the need to only obtain data pertaining

the wind by adding ?type=*wind*.

47

5 Architecture

Option Explanation

?participantId=:ids Filters data by pre-filtering the data to only retrieve data from

the given participant. The ids field can consist multiple valid

ids separated by semicolons.

?convert=:convert Tries to convert the filtered data. Either use * as wildcard to

match all data or specify explicit types as csv.

Example: a,b,c:C converts specific values a,b,c to ° C

whereas *:C converts all applicable values to °C. It is pos-

sible to provide multiple conversions by separating them with

a semicolon *:C;*:KM. If multiple compatible units are spe-

cified only the first conversion is applied so if the user would

specify *:C;*:K all values would be only converted to ° C and

the other conversion is skipped. In comparison, it is still pos-

sible to convert specific values to different units of the same

type: a:C;b:K will convert a to ° C and b to ° K. In addition,

it is possible to match parameters by specifying wild cards

inside of the specified parameter. An example would be find-

ing all parameters that contain wind somewhere in their type:

wind.

?from=:date

& ?to=:date

Allows the user to filter data inside of a specific date-range. If

only one of both options is applied, the other one is replaced

with either today in the case of to, or the lowest possible

date in the case of a missing from. In addition, multiple date-

formats are supported, ranging from year only up to ISO8601

timestamps. Example: ?from=2016&to=2017 will obtain data

all data between the current day in 2016 and current day in

2017.

48

5.3 Implementation

Option Explanation

?source=:source Filters the retrieved data to be from a specific source, which

is determined in the Gateways - e.g., ?source=DWD to only

retrieve DWD parameters.

?filter=:filter Provides an option to only display the values given in the

filter field. Example: ?filter=id,value,unit to only

obtain the three mentioned values from the parameter, sample

output can be found in listing A.1.

5.3.9 Conversions between Units

The conversion Task converts between different units and consists of two steps. First,

the received conversionString is parsed. This string can contain multiple conver-

sions which are separated by semicolons. Fig. 5.8 depicts one possible conversion

string.

?convert=2+metre+temperature,soil+temperature+in+50cm:K;*:C

a b

Parameters Target Unit

Figure 5.8: Explanation of a sample conversion string that contains two separate con-
versions, one using specific paramters and one that uses the wild card
notation.

It can be split into two separate conversions which are applied in the given order. In turn,

each conversion consists of two parts, one or more parameters that should be converted

including the option to use * as the wildcard for all applicable data separated by a colon

49

5 Architecture

followed by the target unit. For the example above this will result in the following array.

The units are being used as key and the values that need to be converted are inside of

an array.

a) K: [2 metre temperature, soil temperature in 50cm]

b) C: [*]

Afterwards, the algorithm loops through each of the conversions and tries to apply

the conversion from the existing unit to the target unit to every WeatherData model

(more information in Listing A.2). The conversion itself is handled in a separate PHP

library called Convertor [48] and adapted to the needs of this application, cf. Listing A.3.

In summary, while iterating through the WeatherData models, the application checks

whether a conversion is needed.

This check first makes sure, that the current item’s unit is not already equal to the target

unit and that it has not yet been converted. Additionally, it will check if the current item is

meant to be converted (either because it was explicitly meant to be converted or due

to the wildcard character). When all checks are passed, the item may be converted.

Should the check fail, the current item is skipped and the loop continues. Refer to Table

B.1 to see which of the available units are currently supported, valid target units can be

found on the documentation of the Convertor library [48], added target units are listed in

section B.2. New conversions can be added easily by writing your own conversion file

(cf. Section 5.6 for more information).

Finally, the converted data is sent back to the correct Action that called the method. In

turn, the data can then be transformed into the expected output format and returned to

the caller.

5.4 Copernicus Retrieval Wrapper & Microservice

Directly after finding out about the Copernicus environmental data and the way to access

it, wrapping the existing libraries in one new library that would abstract away some parts

seemed to be the way to go. This would facilitate the integration into other applications.

50

5.4 Copernicus Retrieval Wrapper & Microservice

Thus, the new library is wrapping both, the ecmwfapi library to fetch the raw data in the

GRIB format and ECCodes, to parse the files for specific data in one wrapper package.

In turn, the CopernicusRetrieval wrapper covers both tasks. The big benefit of the

wrapper is, that most of the things one would have to encode by hand after reading

the existing documentation are encoded into enums to be used directly. Those enums

include information about available retrieval times, steps, data sets and the parameters

per set.

Furthermore, a microservice which uses the wrapper had to be created, as it was

problematic to call a python script directly from PHP on the test platform. This has

several benefits. First of all, this microservice can run on another computer and does

not have to be handled by the same machine as the main API. Furthermore, it provides

a certain layer of abstraction as all communication is now based on the same principles.

Finally, it also allows interested users to use the microservice stand-alone instead of

having to create it themselves. In turn, the following sections will first provide specific

details about the wrapper library and afterwards about the microservice.

5.4.1 Copernicus Retrieval Wrapper

As already described, one of the main benefits of using the CopernicusRetrieval6

wrapper instead of utilizing the provided libraries is the ease of use it provides. It contains

several abstractions which facilitate ease of use. This wrapper was first intended to be

used by using PHPs option to do system calls which can be seen in the overview in Fig.

5.9.

Overview

The following sequence diagram shows the complete cycle of first retrieving files and

the retrieving specific data from the file and can be seen in Fig. 5.10. Both the

ECMWFDataServer and the ECCodes depict the interaction of this wrapper with both

ECMWF libraries. The get_nearest_value(...) method has been shortened, it does

6available on Github at https://github.com/FWidm/CopernicusRetrieval

51

https://github.com/FWidm/CopernicusRetrieval

5 Architecture

01.07.2017

02.07.2017

03.07.2017

_______... ...

03.07.2017

03.07.2017

03.07.2017

ECMWF
Copernicus Atmosphere

Monitoring Service

Fetch daily data

Trigger fetching

Binary Files
(GRIB Format)

Parse Binary File

Store
Copernicus Data

Parse
Parameters

Daily schedule

Parameters

Daily Journal
Entry

API DB
Get Parameters

Parameters

Study
participant

Fetch Data for
GeoLocation

par�cipant researcher

Figure 5.9: Planned Copernicus Wrapper including planned API access.

not only find the nearest data in the grib file, but also retrieves meta information such as

the used unit and type of parameters by calling retrieve_metadata(grib).

Retrieval

The retrieval process is available in two ways. One user of the wrapper can choose to

use the traditional way to configure the request by creating a dictionary with all expected

data and the wrapper will send this exact request to retrieve the required file. Conversely,

the other option is using the new method which contains several optional parameters

52

5.4 Copernicus Retrieval Wrapper & Microservice

API Parser

get_nearest_value(filename,point,params*,times*)

Retrieve
Copernicus
Wrapper

retrieve_file
(date*,dataset*,params*) retrieve_file(filename, date*, dataset*, params*)

filenamefilename

ECMWFData
Server

parse date

retrieve(setup)

file

retrieve_metadata(grib)

ECCodes

codes_grib_find_nearest(grib, lat, lon)

nearest: Array of nearest data points

format_data(nearest, metadata)

queried data

Figure 5.10: Sequence diagram depicting the API first retrieving a file with specific date,
dataset and parameters and then retrieving nearest data for a specific point.
All parameters that are denoted with an asterisk should be seen as the user
choosing the values for them.

to customize the retrieval without having to know a thing about the expected request

format. This function has only one non-optional parameter which is the file name. In

addition, it also takes a date (the default is today), the data set (as an enum, default

is the CAMS set), times (an enum representing the four available times: 00:00, 06:00

12:00, 18:00), the data type (analysis or forecast, default is analysis), the steps (zero,

per default) and finally a boolean flag which restricts the retrieved data to Europe (cf.

Section 4.2.2). Afterwards, the method constructs the request dictionary by using the

provided information and will retrieve the file for the user.

To be more specific about the ease of use this new function provides, think of the

following scenario. Instead of specifying the specific code for a parameter like this:

"param": "151.128/167.128"

53

5 Architecture

to retrieve the temperature and mean sea level pressure as a new file, the user can use

the wrapper method which per default retrieves all available parameters, while also being

able to provide specific required parameters in an array as an optional parameter when

it is specified in the function call:

params=[Enums.ParameterCAMS.TWO_METRE_TEMPERATURE,...]

retrieve.retrieve_file(..., parameters=params)

This is possible, as all CAMS parameters have been parsed into a dictionary form and

inserted as an entry to ParameterCAMS. This enum provides information about each

available parameter. In addition, various other important aspects of the retrieval and

parsing process have been encoded into similar enums such as the type of data (analysis

or forecast), available times (00:00, 06:00 ...), an enum that contains a function to retrieve

a classification for a specific parameter by its name and the available data sets including

their names, delay and used date-format.

Parse

After downloading one GRIB file, the user can parse it for the data by using a Parser

object. It provides a method to retrieve the nearest values by specifying the file, latitude

and longitude as tuple and optional parameters such as n to specify the number of

points to retrieve (either the nearest point or the four nearest points on the grid), which

parameter to parse with the default being all parameters, the requested time (per default it

includes all times) and whether the resulting dictionary should be grouped by parameters

or not (default being true).

The next step is parsing each item inside of the grib file by extracting the available

metadata if it matches the parameter the user wants to retrieve. This includes a

timestamp, unit, parameter id, name and various other variables. Afterwards,

both the data and metadata of the current item are combined in one dictionary, which

in turn is parsed into an instance of a CopernicusData object and is stored for later

retrieval. All parameters that are not required (not in the method arguments) are skipped.

The result of this function is a dictionary that has all available parameters as keys with

an array of the retrieved data as value. This can be seen in the provided example output

in Listing A.9.

54

5.4 Copernicus Retrieval Wrapper & Microservice

Additionally, the Parser objects also provide a method that will parse all parameters

inside of a GRIB file and produces a list of parameters equal to the one seen in Listing

5.1. This list can then be used to produce new enums for other data sets in the future.

Enums

Enumerations were chosen as a substitute for having to memorize or look up various

variables used for parsing and receiving data from various ECMWF data sets. All enums

are currently placed in one single file. Currently, there are five different enums which are

also depicted in the class diagram shown in Fig. B.1. ParameterERA5 is currently not

developed but still included as a placeholder.

Classification: Provides the utility to apply a custom classification based on the para-

meter name

DataType: The type of data, currently either forecast or analysis are supported.

Time: An enum that contains the available times for retrieval, contains a method to

parse a datetime or timestamp into an object of this enum.

ParameterCAMS: All available CAMS parameters for both analysis and forecast an

example can be found in Listing 5.1.

ParameterERA5: Currently unimplemented placeholder for ERA5 parameter informa-

tion.

DataSets: Information about the supported data sets resides in this enum. Entries are

dictionaries that contain the name of the set, the class as specified by the ECMWF,

the delay of the data set and if necessary the date format used.

Some of the listed enums also provide a method to retrieve a list of all entries inside of

the enum by calling the all() function if available.

55

5 Architecture

1 MEAN_SEA_LEVEL_PRESSURE = {'eraId': '151.128', 'shortName': 'MSL', 'id': 151, 'unit':

'Pa', 'description': 'Mean sea-level pressure'}↪→

Listing 5.1: Example enum entry including the available fields for the mean sea level
pressure of the CAMS data set.

5.4.2 Implementation of the Microservice

The microservice CopernicusAPI7, that facilitates the features provided in the wrapper

mentioned above is also written in Python and uses the Flask framework. Flask is a

lightweight web service framework that has the benefit of being easy to use, simple to

set up, but also scalable to fit future requirements. It has built-in support for logging,

caching and modular applications and in turn, provides a solid foundation for a RESTful

microservice.

The built microservice contains two routes, which are used to retrieve files from the

ECMWF servers by using the retrieval part of the CopernicusRetrieval library and

to parse files by wrapping the parser part of the previously mentioned library. In addition,

there are two utility routes. They provide information about locally stored files and a

means to check if the service is running at all.

Design Decisions

The application is using flasks blueprint system. A blueprint will extend the base

application and allows plugging sets of operations into the core application. In this

case, the blueprint system is used to decouple the routes to specific resources from the

main application. This means that all routes that exist for a specific resource share one

common blueprint. A blueprint acts like a Controller in the environmental data API

and will parse the request parameters and check necessary conditions before calling

the Actions that contain business logic to retrieve or parse a file. This structure was

chosen to partly emulate the Porto pattern described in Section 5.1.2 (cf. Fig. 5.11). In

addition, the action itself was separated from the route definition.

7available on Github at https://github.com/FWidm/CopernicusAPI

56

https://github.com/FWidm/CopernicusAPI

5.4 Copernicus Retrieval Wrapper & Microservice

ModelAPI Request Controller Action

Schema

Microservice Architecture

Figure 5.11: Adapted life-cycle similar to a minimalistic Porto implementation.

Available Routes

/ : this route will display a string and can be used to check whether the api is up and

running.

/files : lists all locally available files. The JSON response looks like this: "files":

["an-2017-09-18.grib"]

/retrieve : triggers the retrieval of files and expects the user to provide a valid

timestamp in the url.

• Example: GET host/retrieve?timestamp=ts HTTP/1.1

with ts=2017-09-18T15:21:20%2B00:00.

• Output 1: Response code 202 (File is not available/still downloading):

{

"message": "Download is currently in progress. Retry this operation to

retrieve the filename in a minute."↪→

}

• Output 2: Response code 200 (File is available, message contains additional

info e.g. cache hit):

{

"data": {

"fileName": "an-2017-10-25.grib"

},

"message": "Cache hit."

}

• Output 3: Response code 404 (Given date is not available currently, returns

the latest retrieval date)

57

5 Architecture

{

"data": {

"latest_retrieval_date": "2017-09-13"

},

"message": "Cannot retrieve files for this date."

}

/parse parses an available file. Expects various parameters that have to be provided

by the user.

• Example: GET host/parse?timestamp=ts&lat=la&lon=lo HTTP/1.1

with ts=2017-09-18T15:21:20%2B00:00, la=48.4 and lo=9.6.

• Output 1: Response code 404 (File is not available/still downloading):

{

"data": {

"files": [

"an-2017-09-25.grib",

...

]

},

"message": "Given filename=an-2017-12-25.grib could not be found in

the available files are attached."↪→

}

• Output 2: Response code 200 (File is available): (cf. Listing A.8). Currently

the output is identical to the one from the wrapper.

File Status

When starting the microservice, it needs to keep track of locally available files. This

could have been done by using a database, but due to the nature of the stored data, a

simple class holding a dictionary was sufficient. Consequently, the file_status class

contains one dictionary, which has the names of the available files as keys with their

boolean availability as value. When starting the microservice, a singleton of this class is

instantiated to keep track of all files in a pre-defined directory. Furthermore, it provides

methods to track new files, mark them as either available or not and remove files. In

turn, the only problem that could arise would be a user removing files from the directory

58

5.4 Copernicus Retrieval Wrapper & Microservice

while the API is running. This issue, however, would also not be solved by deploying a

database for file tracking.

Asynchronous Retrieval

In its current state, the asynchronous retrieval is using a ThreadPoolExecutor. Af-

terwards, the instantiated executor is imported into the retrieve_action. Should

a requested file not be available, the future filename is added to the file_status

(though not marked as available) and a download_action is submitted to the executor.

In turn, the application checks whether the download is finished or the file is marked as

available. In this case, the filename is returned, to indicate that the file exists. Contrarily,

it will return a message that will notify the user about the file still downloading.

The download_action itself is straight-forward and uses the Retrieve functionality

provided by the Copernicus Wrapper to download the file. When the download

finishes, the file is marked as available inside the file_status.

Experimental Caching

Additionally, the microservice facilitates the inbuilt SimpleCache, which is a memory

cache for single process environments as it is not fully thread-safe. When using it in

production, it would be necessary to either remove the implemented caching or switching

to another cache system. Currently, both the retrieval and parsing calls are cached by

storing the result of a call with the request.uri as key. In turn, within each route

definition, the microservice checks the cache for a hit before calling the action to speed

up the response time. Should this API be used in a production environment it might

be necessary to either remove caching completely or swapping the caching system by

simply instantiating another system instead of the used one in the cache.py script.

Transformation of Data

Experimental support for the transformation of output data is also available. It is possible

to pre-filter the output data in the wanted formats. This is possible by applying Marsh-

59

5 Architecture

mallow8 Schemas to the resources. To only output specific fields when querying the

parse endpoint, it is possible to add the following to the only parameter of the Schema

constructor:

schema = CopernicusDataSchema(many=True,only=('type','value'))

Currently, this microservice has two pre-defined Schemas. One for the generic mes-

sages and one for the CopernicusData output. They define a specific format that can

be applied to existing data. Refer to Listing A.11 to view the CopernicusDataSchema.

5.5 DWD Hourly Crawler

In addition to the Copernicus Wrapper, it was also necessary to create a similar tool

to retrieve the DWD data from their servers. There were many solutions available which

were either available for different languages or no longer maintained, as the paths to the

files may have changed. This led to the creation of the DWD Hourly Crawler library9.

It is written in plain PHP. An overview of the core functionality can be seen in Fig. 5.12.

The library is highly configurable to be easily adapted in case any of the paths on the

DWD servers change. A more detailed, technical view of the library is depicted in Fig.

5.13.

Overview

First, the user needs to specify, which of the available services he wants to use to query

the DWD data, by creating a DWDHourlyParameters object and adding the needed

parameters (l. 2; cf. Listing 5.2 for a real-world example). In addition, the user specifies

the retrieval data (l. 3-4). Afterwards, the user uses an instance of the DWDLib to retrieve

data, either in an interval, or the complete data for one day by calling the corresponding

function (l. 5). This object will then create the services from the given parameters and

pass them to an instance of DWDHourlyCrawler. The crawler will check each service

and call the parseHourlyData(...) method.
8https://marshmallow.readthedocs.io/en/latest/, accessed: 2017-11-20
9avilable on Github at: https://github.com/FWidm/dwd-hourly-crawler

60

https://marshmallow.readthedocs.io/en/latest/
https://github.com/FWidm/dwd-hourly-crawler

5.5 DWD Hourly Crawler

1 days before today

DWD
Climate Data Center FTP

Fetch daily data
for each known

location

Trigger fetching

Locally stored
Files

Find

Store
Parameters

Parse
Parameters

Daily schedule

Parameters

Parameters

Daily Journal
Entry

Study participant

Get Copernicus
Parameters

Parameters

Study
participant

DWD
Api DB

Station 1

Wind

Solar

Pressure

...

Station 2

Wind

Solar

Pressure

...

Station n

Wind

Solar

Pressure

......

Query nearest
active Stations

Location of the participant

Locations

today

...

Figure 5.12: Planned integration of the library onto the RESTful environmental API.

Afterwards, the crawler will go through each service and retrieve data for the parameter.

This is possible, as all services extend AbstractService, which, in turn, provides a

template method to retrieve and parse data. Each subclass must implement the corres-

ponding createParameter(...) method to parse the parameter and instantiate the

corresponding model. An overview of the provided methods can be seen in Fig. 5.14.

The resulting output data is put into an array (cf. Listing A.10). All retrieved parameters

have their own classes to store the data in a structured format, including the weather

stations themselves.

Retrieved files are currently stored on the file system and are not unpacked. Each

access to specific data will operate on the zip files themselves to save disk space.

61

5 Architecture

Figure 5.13: A short introduction to the inner workings of the library including core
components.

1 $coordinates=new Coordinate(48.3751,8.9801);
2 $vars = new DWDHourlyParameters();
3 $vars->addAirTemperature()->addWind()/*->add...*/;
4 $date=new Carbon()->modify("-4 days");
5 $out=$dwdLib->getHourlyByInterval($vars,$date,

$coordinates->getLat(),$coordinates->getLng());↪→

Listing 5.2: Usage of the DWD Hourly Crawler library. Retrieves data for one specific
point and date to retrieve temperature and wind data.

Functionality

The library queries all available hourly parameters on the DWD’s Climate Data Center

server (cf. Chapter 4.1.2). It provides ready to use models for each parameter and a

model for weather stations. In addition, each of the parameter models also contains a

method to split all contained variables into single objects. This is useful when one wants

to store single weather data entries without having to adhere to the given structure by

the DWD.

Finally, the library contains various safety mechanisms to make sure that the requested

data will be retrieved, even if the DWD data contradicts itself. Imagine querying data

for a specific location: It may happen, that the closest station to that point is marked

as active, but no data exists for the requested parameter. In such cases, the library

automatically tries to use the next available stations. This can lead to one query that will

provide data for all parameters but from various weather stations.

62

5.6 Converting Units

Figure 5.14: Class hierarchy of the service classes, with a selection of three out of eight
subclasses.

5.6 Converting Units

Finally, to add the ability to convert between different units, Convertor10 was chosen,

because of its easy to use approach. To convert a value from a specific unit to another

unit, the user only has to instantiate a new Convertor object that takes the value and

the unit as a string. After that, the user can either call the to($unit) method or the

toAll() function to convert from the base unit to either a specific other one or to all

other available units.

Adaptions

Unfortunately, the library at first did not support composer to be able to easily re-use the

package in other projects. This is the first minor adjustment to the library.

In addition, the library did not have custom Exceptions but just threw the one generic

\Exception provided by PHP for all possible causes. This was changed to be able to

differentiate between different types of errors that can occur. In turn, the library now has

different exceptions for various scenarios (e.g., when trying to convert from meters to

hours, a ConvertorDifferentTypeException is thrown).

Additionally, the unit conversions were hard-coded into the single library file. This

was fixed by allowing users to choose between different inbuilt conversions or to let
10Available at github: https://github.com/olifolkerd/convertor, accessed: 2017-11-20

63

https://github.com/olifolkerd/convertor

5 Architecture

them provide their own conversions in an array. This was necessary due to different

naming conventions of units, as the provided conversions used km2 for square kilometres,

whereas the ECMWF used the km**2 notation.

Finally, the newly added data set also provides conversions regarding area density. This

allows the user to convert from kilograms per square meter to various other formats.

64

6
Summary

This chapter will first provide insights on several statistics regarding the API, afterwards,

it will provide an overview of available features and finally the current limitations.

6.1 The API in Numbers

Taking a look back at the scenario described in Section 3.1, it is possible to determine

the amount of data that needs to be stored, as well as the number of requests the API

should be able to handle.

Imagine a new study branch for Track your Tinnitus that runs over a timespan of 6

months (183 days) for all participants, with N=300 participants. In addition to that, each

participant will most likely provide data once per day. Consequently, this results in about

300 requests per day. Each of those will, in turn, be used to retrieve environmental data

after waiting for the maximum required retrieval delay (cf. Section 5.3.7). Consequently,

each of those requests will be used to fetch 56 single environmental parameters (19

from the DWD hourly and 37 from the CAMS set). Accordingly, the API has to store

16.800 parameters daily, resulting in 3.074.400 parameters for the entire duration of the

study.

Looking at this scenario from a data storage point of view, the needed space differs

depending on the data source. Currently, the daily retrieved CAMS data provides all

weather data for Europe in the form of a ~134MB binary file. In comparison, the storage

costs for the DWD data varies depending on the participant’s locations. Should all

participants be near a minimum amount of stations, the storage costs are significantly

65

6 Summary

less compared to a more likely scenario where almost all the stations have to be queried.

In addition, instead of querying all the data, the DWD provides parameter groups which

have to be queried independently. In turn, one of those groups on average is about 65KB

compressed (~650KB uncompressed). This results in about 520KB of compressed data

per day for all parameter groups for one station. At the time of writing, about 506 stations

were marked as active by the DWD. This results in a worst-case scenario of ~257MB of

data that would need to be downloaded, should each station be queried once every day.

Consequently, over the duration of the study, this results in about ~24.5GB of ECMWF

raw binary data. The required space for the DWD is significantly lower, as each station’s

data file contains data for multiple days. So, while the data has to be transferred several

times, storage does not increase significantly over time and is mostly dependent on the

number of queried stations.

In addition, all raw data is transformed and stored in a separate table in the database of

the API. When looking at the current table design we can extract the size of the table at

various amounts of stored data (cf. Listing A.12 for the query). Table 6.1 shows the status

of the database table after retrieving data for 1, 21 and 42 different GeoLocations.

Note, this test was done by retrieving data for the same latitude, longitude and timestamp,

but without having compression enabled in the MySQL database.

GeoLocation Parameters Data Size Index Size Table Size

1 56 48.00 KB 32.00 KB 80.00 KB

21 1176 464.00 KB 32.00 KB 496.00 KB

42 2352 1.52 MB 128.00 KB 1.64 MB

Table 6.1: Size of the MySQL database table with various amounts of stored parameters.

6.2 Current Status

The developed environmental API allows anyone who is in the process of conducting

a study to additionally collect environmental data. The data itself is retrieved with the

help of additional libraries and is retrieved from two completely different data sets that

66

6.2 Current Status

are combined inside the API. One of those data sources is the DWD hourly data set

that collects data from a multitude of weather stations, while the other one uses the

Copernicus satellites to collect and aggregate data. Libraries for both aforementioned

data sets have been implemented in the scope of this thesis in order to collect and parse

the retrieved data.

Environmental API

In total, the API retrieves 56 environmental parameters 19 of them belong to the DWD

hourly data set and the rest comes from the CAMS Near-real-time data set by pro-

cessing stored GeoLocation objects. In addition, adding new data sources is easily

manageable by extending the provided AbstractDataRetrievalGateway. In turn,

the retrieval process is executed using a queue to allow asynchronous retrieval of the

environmental data. The retrieved data is then transformed into the expected format and

stored afterwards.

In turn, the API also supports having multiple studies on the platform at the same time

by using the inbuilt user to manage projects. One project is mapped to exactly one

user-entity and can, in turn, only access data from their own participants.

The querying process of the API offers various filtering options to the data and provides

a way to convert between different units. Data can be filtered by participant ids, the data

source string, the parameter type or a date range by specifying from and until.

Retrieval Libraries

Both libraries provide a simple way to retrieve data from their respective datasets and

have been developed to be integrated into the API. The DWD Hourly Crawler will access

the FTP server to retrieve the files from the hourly data set. The library is customizable

and also provides a way to modify it should parameters or path to the files change. The

output is configurable by the developer by either using the supplied transformers or

creating their own transformers.

In comparison, the Copernicus Retrieval wrapper wraps the supplied python libraries to

provide an easy-to-use alternative to using a website to get a valid download request.

67

6 Summary

In addition, it allows the extraction of specific parameters from the retrieved binary file.

Consequently, as the environmental API is written in PHP, it was necessary to provide the

wrapper functions by building a small microservice (CopernicusAPI; cf. Section 5.4.2)

around it. This microservice allows the user to retrieve and parse files for a requested

timestamp. In addition, the format of the returned data can be modified by changing the

schemas in the code.

6.3 Future Work

Several things are still on the list to either improve the performance or provide new

features for both the API and retrieval libraries.

Environmental API

First, instead of providing a dedicated user and role management itself, this API relies

heavily on the abilities of the existing study platform (e.g. Track Your Tinnitus). In future,

it should be an option to let this API handle user and role management. Due to the used

framework, this should not prove too difficult but leads to duplicate data between this API

and the existing study platform. Should this be implemented, it might also be necessary

to add a study group entity to be able to re-use existing configurations of researchers

and participants.

In the future, it might also be good to re-inspect the provided database templates.

Currently, many of the varchars are initialized to the default values and not to an

optimized length. As are most other fields, to be as non-restrictive as possible. In the

same vein, it might be worth it to let the application also handle database backups

for retrieved environmental data. The API could also schedule regular backups of the

database and facilitate restoring data. This would help the migration from one to another

platform and also help to keep the requests safe. Alternatively, the study platform that is

in place could back up all requests to the environmental API, as retrieval of environmental

data is possible multiple times.

68

6.3 Future Work

In addition, Apiato is not the fastest framework. Currently, a request directed to an inbuilt

route takes about 500-700ms. While this is fine for the use-case, it could be optimized

in the future to enhance the user experience by a huge margin. For a comparison, the

minimal microservice that was written in Flask, has response times between 50-400ms,

depending on the requested data without using the inbuilt caching.

Additionally, new Gateways may be made available to retrieve data from other data

sources. It might also be necessary to provide more documentation regarding the

implementation of such gateways and the expected input and output formats in order to

make sure they are as extendible as planned.

Retrieval Libraries

In addition to the above optimizations, there are several improvements for both libraries

used to retrieve data. The DWD Hourly Crawler does take about 4 seconds to parse

already downloaded files. One improvement for this might be to extract the files locally,

instead of accessing the content of the zip files in memory. In addition, it might be an

option to store the retrieved data in a database instead of storing the files themselves

to further optimize the retrieval process. This would probably reduce the processing

time per parameter by a noticeable amount but would result in higher data-overhead by

introducing another database.

Almost the same approach is applicable to the Copernicus Retrieval wrapper. However,

instead of storing the files locally, it might be worth it to parse the binary file once and

store the content in a database instead of having to access the file every time it is

requested. In addition, the wrapper can be enhanced by adding more data sets and

available parameters to query. Currently, it is also possible to request parameters that are

only available in forecasts when querying analysis data. In future, it would be a preferable

option to strictly divide the enumerations (enums) to avoid confusing developers that

want to use the wrapper.

Finally, the CopernicusAPI can be optimized by modifying the implemented caching

approach, adding authentication and allowing the developer to modify the requested data

schema via supplied parameters instead of having to adapt the code of the microservice

69

6 Summary

itself. Another addition would be supporting the JSON-API format to be consistent with

the environmental API, instead of using its own format.

Additionally, providing more methods to request and retrieve data could be implemented.

One of those options could be seen as a bulk retrieval mode that takes large amounts of

latitude, longitude and timestamp tuples and returns the requested environmental data.

Currently, due to the scope of this thesis, this API also does not support switching

between analysis and forecasts, which could be needed when having multiple surveys

running that use different datasets.

6.4 Conclusion

The goal of building a ready to use API, that handles retrieval of environmental paramet-

ers, while being easy to embed into existing study platforms, has been met. To achieve

this goal, two supporting stand-alone data retrieval libraries have been developed that

handle collecting of environmental data from data different data sets. Currently, both the

hourly data set provided by the DWD and the CAMS dataset from the ECMWF are being

supported by the API. The collected data is then stored in one common database after

being transformed into the required data format.

One of the main benefits of the current implementation is, that it has no pre-defined

time-scale for user entries. The granularity of the provided data is determined by the

chosen and available data sources. Currently, this is either hourly when looking at the

DWD data or every six hours for the CAMS set. In the future, when more fine-grained

data is available it is possible to add this new set to the API. Additionally, the current

solution is not locked to the given data sources. Currently one of the sources provides

data for Germany while the other has the option to retrieve data worldwide. As of now,

data is retrieved from inside of Europe only, but sources for the US or other countries

can be added easily by extending the provided template for new data sources.

In turn, researchers are then able to query, filter and convert this data to support them in

finding links between environmental factors and diseases. This allows the researchers

70

6.4 Conclusion

to obtain data for specific participants, periods of time and parameter types. Additionally,

data can be normalized in a way, so that the resulting data is converted into one common

unit instead of having to do this later on.

One of the next steps to advance the work started in this thesis would be to use the API

for a trial run. This includes gathering feedback from both administrators and researchers

on regarding the usability and provided functionality. Gathered feedback could then be

used to adapt specific parts of the API that requires more fine-tuning or even remodelling.

Most probably, this will also show bottlenecks and limitations of the current design when

working with a bigger number of participants compared to the imagined scenario (cf.

Section 6.1).

In addition, it might be helpful to provide a fork of this project that does not depend on

functionality from the existing study platform. As such, the fork would have to be extended

to provide user and role management but also a way to differentiate concurrently running

studies on the API.

Another addition would be providing more gateways to different data sets from various

sources. The used structure to integrate new gateways does facilitate this, but learning

about the data sets access, possibilities and limitations will take some time.

In summary, there are many points that can be adjusted and enhanced in the resulting

API. However, the current implementation allows studies to incorporate environmental

data by integrating the provided API into their existing study platform. In turn, this allows

researchers to possibly find links between specific environmental factors and diseases.

Which, in turn, might lead to a deeper understanding of the factors that may increase

or decrease the perceived severity of the disease. In the future, when links have been

found, it may also be an option to include weather forecast data as weather sources.

The data could then be used to provide users with predictions and helpful tips.

71

Bibliography

[1] M. S. Shutty, G. Cundiff, and D. E. DeGood, “Pain complaint and the

weather: weather sensitivity and symptom complaints in chronic pain

patients,” Pain, vol. 49, no. 2, pp. 199–204, May 1992. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/030439599290143Y [Accessed:

2017-07-18]

[2] K. J. Hagglund, W. E. Deuser, S. P. Buckelew, J. Hewett, and D. R.

Kay, “Weather, beliefs about weather, and disease severity among patients

with fibromyalgia,” Arthritis & Rheumatism, vol. 7, no. 3, pp. 130–135, Sep.

1994. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/art.1790070306/

abstract [Accessed: 2017-12-07]

[3] L. Robbins, “Precipitating Factors in Migraine: A Retrospective Review of 494

Patients,” Headache: The Journal of Head and Face Pain, vol. 34, no. 4, pp.

214–216, Apr. 1994. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1111/j.

1526-4610.1994.hed3404214.x/abstract [Accessed: 2017-07-18]

[4] H. Chabriat, J. Danchot, P. Michel, J. E. Joire, and P. Henry, “Precipitating factors of

headache. A prospective study in a national control-matched survey in migraineurs

and nonmigraineurs,” Headache: The journal of head and face pain, vol. 39, no. 5,

pp. 335–338, May 1999.

[5] P. Höppe, S. v. Mackensen, D. Nowak, and E. Piel, “Prävalenz von Wetterfühligkeit

in Deutschland [Prevalence of weather sensitivity in Germany],” DMW -

Deutsche Medizinische Wochenschrift, vol. 127, no. 01/02, pp. 15–20, Jan. 2002.

[Online]. Available: http://www.thieme-connect.de/DOI/DOI?10.1055/s-2002-19429

[Accessed: 2017-12-08]

[6] D. Guedj and A. Weinberger, “Effect of weather conditions on rheumatic patients.”

Annals of the Rheumatic Diseases, vol. 49, no. 3, pp. 158–159, Mar. 1990. [Online].

Available: http://ard.bmj.com/content/49/3/158 [Accessed: 2017-12-06]

73

http://www.sciencedirect.com/science/article/pii/030439599290143Y
http://onlinelibrary.wiley.com/doi/10.1002/art.1790070306/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.1790070306/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1526-4610.1994.hed3404214.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1526-4610.1994.hed3404214.x/abstract
http://www.thieme-connect.de/DOI/DOI?10.1055/s-2002-19429
http://ard.bmj.com/content/49/3/158

Bibliography

[7] A. A. Gorin, J. M. Smyth, J. N. Weisberg, G. Affleck, H. Tennen,

S. Urrows, and A. A. Stone, “Rheumatoid arthritis patients show weather

sensitivity in daily life, but the relationship is not clinically significant,”

Pain, vol. 81, no. 1, pp. 173–177, May 1999. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S030439599900010X [Accessed: 2017-

07-20]

[8] H. Walach, A. Schweickhardt, and K. Bucher, “Hat das Wetter Einfluss auf

Kopfschmerzen? Does weather modify headaches? An empirical evaluation

of bio-weather categorization,” Der Schmerz, vol. 16, no. 1, pp. 1–8, Feb.

2002. [Online]. Available: https://link.springer.com/article/10.1007/s004820100066

[Accessed: 2017-12-06]

[9] J. Vergés, E. Montell, E. Tomàs, G. Cumelles, G. Castañeda, N. Marti, and I. Möller,

“Weather conditions can influence rheumatic diseases,” Proceedings of the Western

Pharmacology Society, vol. 47, pp. 134–136, 2004.

[10] P. J. Villeneuve, M. Szyszkowicz, D. Stieb, and D. A. Bourque, “Weather and

Emergency Room Visits for Migraine Headaches in Ottawa, Canada,” Headache:

The Journal of Head and Face Pain, vol. 46, no. 1, pp. 64–72, Jan. 2006. [Online].

Available: http://onlinelibrary.wiley.com/doi/10.1111/j.1526-4610.2006.00322.x/

abstract [Accessed: 2017-07-18]

[11] M. J. H. Huibers, L. E. de Graaf, F. P. M. L. Peeters, and A. Arntz, “Does the weather

make us sad? Meteorological determinants of mood and depression in the general

population,” Psychiatry Research, vol. 180, no. 2, pp. 143–146, Dec. 2010. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0165178109003618

[Accessed: 2017-07-18]

[12] E. H. Bos, R. Hoenders, and P. de Jonge, “Wind direction and mental

health: a time-series analysis of weather influences in a patient with

anxiety disorder,” BMJ Case Reports, vol. 2012, Jun. 2012. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543179/ [Accessed: 2017-12-07]

74

http://www.sciencedirect.com/science/article/pii/S030439599900010X
http://www.sciencedirect.com/science/article/pii/S030439599900010X
https://link.springer.com/article/10.1007/s004820100066
http://onlinelibrary.wiley.com/doi/10.1111/j.1526-4610.2006.00322.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1526-4610.2006.00322.x/abstract
http://www.sciencedirect.com/science/article/pii/S0165178109003618
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543179/

Bibliography

[13] K. D. Ricketts, A. Charlett, D. Gelb, C. Lane, J. V. Lee, and C. A.

Joseph, “Weather patterns and Legionnaires’ disease: a meteorological study,”

Epidemiology & Infection, vol. 137, no. 7, pp. 1003–1012, Jul. 2009. [Online].

Available: https://www.cambridge.org/core/journals/epidemiology-and-infection/

article/weather-patterns-and-legionnaires-disease-a-meteorological-study/

30898B91EAD54C578927BA0AA7082078 [Accessed: 2017-12-06]

[14] W. Schmidt, C. Sarran, N. Ronan, G. Barrett, D. J. Whinney, L. E. Fleming,

N. J. Osborne, and J. Tyrrell, “The Weather and Ménière’s Disease: A

Longitudinal Analysis in the UK,” Otology & neurotology: official publication of

the American Otological Society, American Neurotology Society [and] European

Academy of Otology and Neurotology, vol. 38, no. 2, pp. 225–233, Feb.

2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224697/

[Accessed: 2017-11-29]

[15] L. H. Tecer, O. Alagha, F. Karaca, G. Tuncel, and N. Eldes, “Particulate Matter

(PM2.5, PM10-2.5, and PM10) and Children’s Hospital Admissions for Asthma

and Respiratory Diseases: A Bidirectional Case-Crossover Study,” Journal of

Toxicology and Environmental Health, Part A, vol. 71, no. 8, pp. 512–520, Mar.

2008. [Online]. Available: https://doi.org/10.1080/15287390801907459 [Accessed:

2017-07-20]

[16] W. Becker, “Weather and migraine: Can so many patients be wrong?”

Cephalalgia, vol. 31, no. 4, pp. 387–390, Mar. 2011. [Online]. Available:

https://doi.org/10.1177/0333102410385583 [Accessed: 2017-11-29]

[17] European Centre for Environment and Human Health University of Exeter Medical

School and Royal Cornwall Hospital Truro, “Caveats for interpreting data.” [Online].

Available: https://www.data-mashup.org.uk/data/interpretation-of-data/ [Accessed:

2017-12-07]

[18] B. Langguth, R. Pryss, T. Probst, and W. Schlee, “Emotion dynamics

and tinnitus: Daily life data from the “TrackYourTinnitus” application,”

Scientific Reports, vol. 6, p. srep31166, Aug. 2016. [Online]. Available:

https://www.nature.com/articles/srep31166 [Accessed: 2017-11-22]

75

https://www.cambridge.org/core/journals/epidemiology-and-infection/article/weather-patterns-and-legionnaires-disease-a-meteorological-study/30898B91EAD54C578927BA0AA7082078
https://www.cambridge.org/core/journals/epidemiology-and-infection/article/weather-patterns-and-legionnaires-disease-a-meteorological-study/30898B91EAD54C578927BA0AA7082078
https://www.cambridge.org/core/journals/epidemiology-and-infection/article/weather-patterns-and-legionnaires-disease-a-meteorological-study/30898B91EAD54C578927BA0AA7082078
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224697/
https://doi.org/10.1080/15287390801907459
https://doi.org/10.1177/0333102410385583
https://www.data-mashup.org.uk/data/interpretation-of-data/
https://www.nature.com/articles/srep31166

Bibliography

[19] K. Zebenholzer, E. Rudel, S. Frantal, W. Brannath, K. Schmidt, Ç. Wöber-Bingöl,

and C. Wöber, “Migraine and weather: A prospective diary-based analysis,”

Cephalalgia, vol. 31, no. 4, pp. 391–400, Mar. 2011. [Online]. Available:

https://doi.org/10.1177/0333102410385580 [Accessed: 2017-07-20]

[20] DWD, “Wetter und Klima - Deutscher Wetterdienst - Sphere of Tasks.” [Online].

Available: https://www.dwd.de/EN/aboutus/tasks/task_node.html [Accessed: 2017-

10-23]

[21] “Erstes Gesetz zur änderung des Gesetzes über den Deutschen Wet-

terdienst,” Bundesgesetzblatt Teil I, no. 49, p. 2642, Jul. 2017. [Online].

Available: http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&

jumpTo=bgbl117s2642.pdf [Accessed: 2017-10-23]

[22] Bundestag, “Verordnung zur Festlegung der Nutzungsbestimmungen für die

Bereitstellung von Geodaten des Bundes vom 19. März 2013 (BGBl. I S.

547).” Mar. 2013. [Online]. Available: http://www.gesetze-im-internet.de/geonutzv/

BJNR054700013.html [Accessed: 2017-07-25]

[23] Deutscher Wetterdienst, “Datensatzbeschreibung - Historische stündliche

Stationsmessungen der Wolkenabdeckung für Deutschland,” Jun. 2017.

[Online]. Available: ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/

hourly/cloudiness/historical/BESCHREIBUNG_test_obsgermany_climate_hourly_

cloudiness_historical_de.pdf [Accessed: 2017-06-22]

[24] DWD, “Data Set Description Air Temperature.” [Online]. Available: ftp:

//ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/air_temperature/

recent/DESCRIPTION_obsgermany_climate_hourly_tu_recent_en.pdf [Accessed:

2017-10-16]

[25] ——, “Data Set Description Precipiation.” [Online]. Available:

ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/precipitation/

recent/DESCRIPTION_obsgermany_climate_hourly_precipitation_recent_en.pdf

[Accessed: 2017-10-16]

76

https://doi.org/10.1177/0333102410385580
https://www.dwd.de/EN/aboutus/tasks/task_node.html
http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl117s2642.pdf
http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl117s2642.pdf
http://www.gesetze-im-internet.de/geonutzv/BJNR054700013.html
http://www.gesetze-im-internet.de/geonutzv/BJNR054700013.html
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/cloudiness/historical/BESCHREIBUNG_test_obsgermany_climate_hourly_cloudiness_historical_de.pdf
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/cloudiness/historical/BESCHREIBUNG_test_obsgermany_climate_hourly_cloudiness_historical_de.pdf
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/cloudiness/historical/BESCHREIBUNG_test_obsgermany_climate_hourly_cloudiness_historical_de.pdf
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/air_temperature/recent/DESCRIPTION_obsgermany_climate_hourly_tu_recent_en.pdf
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/air_temperature/recent/DESCRIPTION_obsgermany_climate_hourly_tu_recent_en.pdf
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/air_temperature/recent/DESCRIPTION_obsgermany_climate_hourly_tu_recent_en.pdf
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/precipitation/recent/DESCRIPTION_obsgermany_climate_hourly_precipitation_recent_en.pdf
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/precipitation/recent/DESCRIPTION_obsgermany_climate_hourly_precipitation_recent_en.pdf

Bibliography

[26] ECMWF, “Who we are | ECMWF.” [Online]. Available: https://www.ecmwf.int/en/

about/who-we-are [Accessed: 2017-10-21]

[27] Council of European Union, “Council regulation ({EU}) no 1159/2013,” 2013.

[Online]. Available: http://www.copernicus.eu/sites/default/files/library/Commission_

Delegated_Regulation_1159_2013.pdf [Accessed: 2017-10-20]

[28] ECMWF, “Copernicus Atmosphere Monitoring Service | ECMWF.”

[Online]. Available: https://www.ecmwf.int/en/about/what-we-do/copernicus/

copernicus-atmosphere-monitoring-service [Accessed: 2017-07-25]

[29] Copernicus Website, “Copernicus Atmosphere Monitoring Service,” Dec. 2014.

[Online]. Available: http://copernicus.eu/main/atmosphere-monitoring [Accessed:

2017-10-21]

[30] ECMWF, “What data is available through CAMS (Copernicus Atmosphere

Monitoring Service)? - Copernicus Knowledge Base - ECMWF Confluence Wiki.”

[Online]. Available: https://software.ecmwf.int/wiki/pages/viewpage.action?pageId=

56659592 [Accessed: 2017-10-21]

[31] ——, “Climate reanalysis | ECMWF.” [Online]. Available: https://www.ecmwf.int/en/

research/climate-reanalysis [Accessed: 2017-10-22]

[32] ——, “ERA-Interim | ECMWF.” [Online]. Available: https://www.ecmwf.int/en/

research/climate-reanalysis/era-interim [Accessed: 2017-10-22]

[33] ——, “Use of data from this server - License Agreement.” [Online]. Available:

http://apps.ecmwf.int/datasets/licences/copernicus/ [Accessed: 2017-10-20]

[34] ——, “ERA5 data documentation.” [Online]. Available: https://software.ecmwf.int/

wiki/display/CKB/ERA5+data+documentation [Accessed: 2017-07-25]

[35] ——, “Web-API Downloads - ECMWF Web API.” [Online]. Available: https:

//software.ecmwf.int/wiki/display/WEBAPI/Web-API+Downloads [Accessed: 2017-

10-21]

77

https://www.ecmwf.int/en/about/who-we-are
https://www.ecmwf.int/en/about/who-we-are
http://www.copernicus.eu/sites/default/files/library/Commission_Delegated_Regulation_1159_2013.pdf
http://www.copernicus.eu/sites/default/files/library/Commission_Delegated_Regulation_1159_2013.pdf
https://www.ecmwf.int/en/about/what-we-do/copernicus/copernicus-atmosphere-monitoring-service
https://www.ecmwf.int/en/about/what-we-do/copernicus/copernicus-atmosphere-monitoring-service
http://copernicus.eu/main/atmosphere-monitoring
https://software.ecmwf.int/wiki/pages/viewpage.action?pageId=56659592
https://software.ecmwf.int/wiki/pages/viewpage.action?pageId=56659592
https://www.ecmwf.int/en/research/climate-reanalysis
https://www.ecmwf.int/en/research/climate-reanalysis
https://www.ecmwf.int/en/research/climate-reanalysis/era-interim
https://www.ecmwf.int/en/research/climate-reanalysis/era-interim
http://apps.ecmwf.int/datasets/licences/copernicus/
https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation
https://software.ecmwf.int/wiki/display/CKB/ERA5+data+documentation
https://software.ecmwf.int/wiki/display/WEBAPI/Web-API+Downloads
https://software.ecmwf.int/wiki/display/WEBAPI/Web-API+Downloads

Bibliography

[36] W. World Meteorological Organization, Manual on Codes - International Codes,

Volume I.1, Annex II to the WMO Technical Regulations: part A- Alphanumeric

Codes, 2011th ed., ser. WMO. WMO, 2016.

[37] ECMWF, “ecCodes Home.” [Online]. Available: https://software.ecmwf.int/wiki/

display/ECC/ecCodes+Home [Accessed: 2017-10-23]

[38] Yahoo, “Yahoo Weather API.” [Online]. Available: https://developer.yahoo.com/

weather/ [Accessed: 2017-10-23]

[39] OpenWeatherMap, “Weather API - OpenWeatherMap.” [Online]. Available:

https://openweathermap.org/api [Accessed: 2017-10-23]

[40] “Open Data Commons Open Database License (ODbL),” Feb. 2009. [Online].

Available: https://opendatacommons.org/licenses/odbl/ [Accessed: 2017-10-23]

[41] R. T. Fielding, “Architectural Styles and the Design of Network-based Software

Architectures,” Doctoral dissertation, University of California, Irvine, 2000. [Online].

Available: https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.

pdf [Accessed: 2017-10-30]

[42] P. Sturgeon, Build APIs You Won’t Hate: Everyone and their dog wants an API, so

you should probably learn how to build them, 1st ed. S.l.: Philip J. Sturgeon, Aug.

2015.

[43] M. Zalt, “Porto is a Modern Software Architectural Pattern,” Oct. 2017, original-date:

2016-02-29T04:31:00Z. [Online]. Available: https://github.com/Mahmoudz/Porto

[Accessed: 2017-10-30]

[44] ——, “Welcome to Apiato.” [Online]. Available: https://github.com/apiato/apiato/

[Accessed: 2017-11-02]

[45] Laravel Documentation, “Queues - Laravel - The PHP Framework For Web

Artisans.” [Online]. Available: https://laravel.com/docs/5.5/queues#class-structure

[Accessed: 2017-11-12]

[46] ——, “Task Scheduling - Laravel - The PHP Framework For Web Artisans.” [Online].

Available: https://laravel.com/docs/5.5/scheduling [Accessed: 2017-11-12]

78

https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home
https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home
https://developer.yahoo.com/weather/
https://developer.yahoo.com/weather/
https://openweathermap.org/api
https://opendatacommons.org/licenses/odbl/
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://github.com/Mahmoudz/Porto
https://github.com/apiato/apiato/
https://laravel.com/docs/5.5/queues#class-structure
https://laravel.com/docs/5.5/scheduling

Bibliography

[47] M. Zalt, “Magical Call.” [Online]. Available: https://github.com/apiato/apiato/

miscellaneous/magical-call/ [Accessed: 2017-11-13]

[48] O. Folkerd, “Convertor.” [Online]. Available: http://olifolkerd.github.io/convertor/

[Accessed: 2017-11-13]

79

https://github.com/apiato/apiato/miscellaneous/magical-call/
https://github.com/apiato/apiato/miscellaneous/magical-call/
http://olifolkerd.github.io/convertor/

A
Code

A.1 Filtered Query to the WeatherData Endpoint

1 {
2 "data": [
3 {
4 "type": "WeatherData",
5 "id": "4a670vyzzwm3wngd",
6 "attributes": {
7 "value": "9.700000",
8 "type": "2 metre temperature",
9 "unit": "C"

10 },
11 "relationships": {
12 "source": {
13 "data": {
14 "type": "WeatherSource",
15 "id": "zwn0ydvezv4kg9jx"
16 }
17 }
18 }
19 },
20],
21 "included": [
22 {
23 "type": "WeatherSource",
24 "id": "zwn0ydvezv4kg9jx",
25 "attributes": {
26 "data": {
27 "id": "03402"
28 }
29 }
30 }
31]
32 }

Listing A.1: Response to a query pertaining the WeatherData filtered to only show the id,
type, unit and value.

81

A Code

A.2 Conversion

1 private function convert(&$weatherData, &$converted, $targetUnit, $values = [])

2 {

3 //Convert single value

4 if (get_class($weatherData) == WeatherData::class) {

5 $this->convertWeatherData($weatherData, $targetUnit);

6 return;

7 }

8 if (is_iterable($weatherData)) {

9 foreach ($weatherData as $item) {

10 try {

11 //figure out if we can skip the conversion

12 if ((count($values) > 0 && !in_array($item->type, $values))

//searching for specific values: check if values are set,

then check if its not in the searched values

↪→

↪→

13 || in_array($item->id, $converted) || (strtoupper($item->unit)

== strtoupper($targetUnit))) // already converted OR unit

is already the same.

↪→

↪→

14 continue;

15 $this->convertWeatherData($item, $targetUnit);

16 } catch (ConvertorInvalidUnitException |

ConvertorDifferentTypeException | ConvertorException $exception)

{

↪→

↪→

17 continue;

18 }

19 $converted[] = $item->id;

20 }

21 return;

22 }

23 //If the weatherData content is neither of type WeatherData::class nor an

iterable, this conversion fails.↪→

24 throw new \InvalidArgumentException("...")); //shortened

25 }

Listing A.2: The function checks whether it gets a single value or an iterable. Depending
on the received type it either applies the conversion directly or iterates through all items.
Afterwards, the conversion is applied. Should the conversion fail for a single item it will
continue with the next one.

82

A.3 Converting Weather Data

A.3 Converting Weather Data

The function shown below takes one instance of a WeatherData model as a reference

and the target unit and applies the conversion by using the Convertor library.

1 public function convertWeatherData(&$item, $targetUnit)

2 {

3 $conv = new Convertor($item->value, strtolower($item->unit));

4 $item->values = $conv->to(strtolower($targetUnit));

5 $item->unit = strtoupper($targetUnit);

6 }

Listing A.3: Response to a query pertaining the WeatherData filtered to only show the id,
type, unit and value.

83

A Code

A.4 Customized Fetching of Environmental Data

Example 1 Obtain wind and temperature data from one specific participant. Then

convert everything to °C and only output the id, value and unit.

GET api.apiato.dev/v1/weatherData?type=*wind*;*temperature*&participantId=test

&convert=*:C&filter=id;value;unit;type HTTP/1.1

1 {
2 "data": [
3 {
4 "type": "weatherdatas",
5 "id": "4a670vyzzwm3wngd",
6 "attributes": {
7 "value": "9.700000",
8 "type": "2 metre temperature",
9 "unit": "C"

10 },
11 "relationships": {
12 "source": {
13 "data": {
14 "type": "weathersources",
15 "id": "zwn0ydvezv4kg9jx"
16 }
17 }
18 }
19 },
20 ...
21],
22 "included": [
23 {
24 "type": "weathersources",
25 "id": "zwn0ydvezv4kg9jx",
26 "attributes": {
27 "data": {
28 "data": {
29 "id": "03402"
30 }
31 }
32 }
33 }
34],
35 "meta": {
36 "include": [
37 "participant"
38]
39 }
40 }

84

A.4 Customized Fetching of Environmental Data

Example 2 Obtain all values that contain pressure or end with temperature with a fixed

participant and convert everything to bar if possible.

GET api.apiato.dev/v1/weatherData?type=*pressure*;*temperature&participantId=test

&convert=*:BAR HTTP/1.1

1 {
2 "data": [
3 {
4 "type": "weatherdatas",
5 "id": "qdgw4xv3gomr7a63",
6 "attributes": {
7 "object": "WeatherData",
8 "created_at": {
9 "date": "2017-10-05 14:50:13.000000",

10 ...
11 },
12 "updated_at": { ... },
13 "source": "DWD",
14 "value": "1025.300000",
15 "description": { ... },
16 "classification": "Atmosphere",
17 "distance": "24.901572",
18 "lat": "48.441800",
19 "lon": "9.921600",
20 "date": { ... },
21 "type": "mean sea level pressure",
22 "geo_location_id": "ze6bqg8wlv3r7pan",
23 "unit": "BAR",
24 },
25 "relationships": {
26 "source": {
27 "data": {
28 "type": "weathersources",
29 "id": "zx6ow3v798qdg975"
30 }
31 }
32 }
33 },
34]
35 }

85

A Code

A.5 Copernicus Output Example

1 {
2 "TWO_METRE_TEMPERATURE": [
3 {
4 "index": 45048,
5 "description": {
6 "dataTime": 0,
7 "name": "2 metre temperature",
8 "date": 20170816,
9 "step": 0,

10 "units": "K",
11 "shortName": "2t",
12 "paramId": 167,
13 "convertedUnit": "C"
14 },
15 "classification": null,
16 "distance": 16.327599462504207,
17 "longitude": 10.0,
18 "date": "2017-08-16T00:00:00+00:00",
19 "value": 290.118896484375,
20 "latitude": 48.29265233053008,
21 "type": "2 metre temperature"
22 }
23]
24 }

Listing A.8: Example JSON output for parsing a grib file that contains the 2 metre
temperature parameter.

86

A.5 Copernicus Output Example

1 {

2 'TWO_METRE_TEMPERATURE': [

3 CopernicusData: {

4 'index': 45048,

5 'description': {

6 'dataTime': 0,

7 'name': '2 metre temperature',

8 'date': 20170901,

9 'step': 0,

10 'units': 'K',

11 'shortName': '2t',

12 'paramId': 167,

13 'convertedUnit': 'C'

14 },

15 'classification': 'Temperature',

16 'distance': 16.327599462504207,

17 'longitude': 10.0,

18 'date': datetime.datetime(2017, 9, 1, 0, 0, tzinfo=<UTC>),

19 'value': 285.4701843261719,

20 'latitude': 48.29265233053008,

21 'type': '2 metre temperature'

22 }

23]

24 }

Listing A.9: Example internal python representation after parsing a grib file that contains
the 2 metre temperature parameter.

87

A Code

A.6 DWD Hourly Crawler Output Example

1 array (size=2)

2 'values' =>

3 array (size=7)

4 'air_temperature' =>

5 array (size=1)

6 0 =>

7 object(FWidm\DWDHourlyCrawler\Model\DWDAirTemperature)[43]

8 ...

9 'stations' =>

10 array (size=3)

11 'station-02074' =>

12 object(FWidm\DWDHourlyCrawler\Model\DWDStation)[625]

13 private 'id' => string '02074' (length=5)

14 private 'from' =>

15 object(Carbon\Carbon)[624]

16 ...

17 private 'until' =>

18 object(Carbon\Carbon)[623]

19 ...

20 private 'height' => string '522' (length=3)

21 private 'latitude' => string '48.3751' (length=7)

22 private 'longitude' => string '8.9801' (length=6)

23 private 'name' => string 'Hechingen' (length=9)

24 private 'state' => string 'Baden-Wuerttemberg' (length=18)

25 private 'active' => boolean true

26 ...

Listing A.10: Output of the crawler after finding data for a specific location and date.

88

A.7 Marshmallow Schema Definition

A.7 Marshmallow Schema Definition

1 from marshmallow import Schema, fields

2

3

4 class CopernicusDataSchema(Schema):

5 index = fields.Number()

6 type = fields.Str()

7 latitude = fields.Number()

8 longitude = fields.Number()

9 date = fields.DateTime()

10 description = fields.Dict()

11 distance = fields.Number()

12 value = fields.Number()

13 classification = fields.Str()

Listing A.11: The Schema definition that is applied to all weather data returned by the
microservice.

89

A Code

A.8 Querying the Table Size of the Environmental Data Table

1 SELECT

2 CONCAT(FORMAT(DAT/POWER(1024,pw1),2),' ',SUBSTR(units,pw1*2+1,2)) DATSIZE,

3 CONCAT(FORMAT(NDX/POWER(1024,pw2),2),' ',SUBSTR(units,pw2*2+1,2)) NDXSIZE,

4 CONCAT(FORMAT(TBL/POWER(1024,pw3),2),' ',SUBSTR(units,pw3*2+1,2)) TBLSIZE

5 FROM

6 (

7 SELECT DAT,NDX,TBL,IF(px>4,4,px) pw1,IF(py>4,4,py) pw2,IF(pz>4,4,pz) pw3

8 FROM

9 (

10 SELECT data_length DAT,index_length NDX,data_length+index_length TBL,

11 FLOOR(LOG(IF(data_length=0,1,data_length))/LOG(1024)) px,

12 FLOOR(LOG(IF(index_length=0,1,index_length))/LOG(1024)) py,

13 FLOOR(LOG(IF(data_length+index_length=0,1,data_length+index_length))

14 /LOG(1024)) pz

15 FROM information_schema.tables

16 WHERE table_schema='environmental_api'

17 AND table_name='environmental_data'

18) AA

19) A,(SELECT 'B KBMBGBTB' units) B;

Listing A.12: Query that retrieves the size of the data, index and the complete
environmental_data table in the environmental_api DB. Source: https://
stackoverflow.com/q/6474591, accessed: 2017-11-03

90

https://stackoverflow.com/q/6474591
https://stackoverflow.com/q/6474591

B
Additional Information

B.1 Available Hourly Parameters from the DWD Server

• Air temperature - Contains two measured values:

– TT_TU: air temperature 2m from the ground in degrees Celsius (° C).

– RF_TU: relative humidity as percentage (%)

• Cloudiness - Contains two measured values:

– V_N_I: index to differentiate measurements done by human observation or a

device.

– V_N: vloudiness differentiation is described by eights - and lies between 0

and 8. Which includes -1 as the value if it is not recognisable.

• Precipitation - Contains three measured values:

– R1: hourly precipitation in millimetres (mm).

– RS_IND: index of precipitation states whether there was or was no precipita-

tion (bool, 0 or 1).

– WRTR: form of precipitation.

• Pressure - Contains two measured values:

– P: atmospheric pressure at sea level in hector Pascal (hPA).

– P0: atmospheric pressure at station level in hector Pascal (hPA).

• Soil temperature - Contains six measured values:

91

B Additional Information

– V_TE002: soil temperature depth at 2 centimetres (cm).

– V_TE005: soil temperature depth at 5 centimetres (cm).

– V_TE010: soil temperature depth at 10 centimetres (cm).

– V_TE020: soil temperature depth at 20 centimetres (cm).

– V_TE050: soil temperature depth at 50 centimetres (cm).

– V_TE100: soil temperature depth at 100 centimetres (cm).

• Solar - Contains 4 values but data is about a month old at the time of writing (2017,

July).

– ATMO_STRAHL: hourly sum of long-wave downward radiation in J/cm2.

– FD_STRAHL: hourly sum of diffuse solar radiation in J/cm2.

– FG_STRAHL: hourly sum of incoming solar radiation in J/cm2.

– SD_STRAHL: hourly sum of Sunshine duration per hour in minutes.

• Sun - Contains one measured value:

– SD_SO: sunshine minutes per hour (min).

• Wind - Contains two measured values:

– F: mean wind velocity in metres per second (m/s).

– D: mean wind direction measured in degrees (°).

92

B.2 Available Conversions in the adapted Convertor units

B.2 Available Conversions in the adapted Convertor units

Table B.1: The following table contains all currently used units inside of the api and

marks all units that can be converted using the adapted Convertor Library.

More information about the implementation can be found in Section A.2.

Unit Supported

(0 - 1)

%

% (n/8 where -1 means error)

∼

bool (0 no precipitation, 1 precipitation)

C x

deg

hPA x

integer (0-9)

K x

kg m**-2 x

kg s**2 m**-5

m s**-1

m**2 s**-2

min x

mm x

Pa x

93

B Additional Information

B.3 Custom Convertor Units

Table B.2: Additional area density units defined to allow conversion. To use the unit in

query urls replace spaces in the unit name with +.

Unit Name Unit

kg m**-2 (base unit) kg
m2

kg km**-2
kg

km2

kg cm**-2
kg

cm2

kg mm**-2
kg

mm2

g m**-2
g

m2

mg m**-2
mg
m2

st m**-2
st

m2

lb m**-2
lb

m2

oz m**-2
oz
m2

94

B.4 Copernicus Enums

B.4 Copernicus Enums

Figure B.1: All available enums inside of the wrapper including available methods and
fields.

95

List of Figures

3.1 Proposed procedure for the participants of the study by visualizing the

(daily) journal entries that consist of a geolocation and a date on a timeline.

Those entries, in turn, allow the API to provide environmental data to the

user. 14

3.2 Proposed procedure for a researcher that includes querying the envir-

onmental database to retrieve data for one or more participants and

optionally converting from one unit (e.g., ° C) to another one (e.g., ° K). . . 15

4.1 Navigating the CDC public FTP Server to find hourly precipitation data. . 24

4.2 Content of the zip file that contains wind data for the station with the index

03402. Where the blue coloured part provides metadata and the green

file contains the measured environment data. 25

4.3 Simplified workflow to access the DWD Data. For a specific date and

time, load the list of all stations. Then filter the list to get the nearest active

station(s). Then download the data for this station and finally transform it

into the target data model. 25

4.4 ECMWF Spatial squared grid. 27

4.5 Available data types with the analysis being on top and the forecast below.

Analysis is footnote 4 points during the day, whereas forecasts can be

obtained in intervals of three hours. 28

4.6 Catalogue of the CAMS near-real-time dataset, displaying the latest cur-

rently retrievable date, the times for the specific subset and available

parameters. 30

4.7 The ECMWF offers tracking for open requests on a separate website . . . 30

5.1 Overview about the different layers in the PORTO SAP 35

5.2 Interactions between the Components in Porto SAP 36

97

List of Figures

5.3 Class Diagram that shows how GeoLocations, WeatherData and

WeatherSource are connected. All public functions provide a means to

retrieve linked models. 41

5.4 Class Diagram showing the abstract parental class and the two subclasses

for DWD and Copernicus data. 43

5.5 ER Diagram of all models introduced by the two implemented containers. 45

5.6 Shows the complete cycle between a time triggered fetching of GeoLocations

up to the retrieval and storage of data inside one common WeatherData

table. 46

5.7 Researcher querying the API for environmental data via the provided

endpoints. 47

5.8 Explanation of a sample conversion string that contains two separate

conversions, one using specific paramters and one that uses the wild card

notation. 49

5.9 Planned Copernicus Wrapper including planned API access. 52

5.10 Sequence diagram depicting the API first retrieving a file with specific date,

dataset and parameters and then retrieving nearest data for a specific

point. All parameters that are denoted with an asterisk should be seen as

the user choosing the values for them. 53

5.11 Adapted life-cycle similar to a minimalistic Porto implementation. 57

5.12 Planned integration of the library onto the RESTful environmental API. . . 61

5.13 A short introduction to the inner workings of the library including core

components. 62

5.14 Class hierarchy of the service classes, with a selection of three out of

eight subclasses. 63

B.1 All available enums inside of the wrapper including available methods and

fields. 95

98

List of Tables

4.1 An overview of the available categories and parameters. 23

4.2 QN8 quality index explained in the data set description [25] 23

5.1 All currently available parameters for obtaining data from the API. Base

URL: GET host/weatherData HTTP/1.1 47

6.1 Size of the MySQL database table with various amounts of stored para-

meters. 66

B.1 The following table contains all currently used units inside of the api and

marks all units that can be converted using the adapted Convertor Library.

More information about the implementation can be found in Section A.2. . 93

B.2 Additional area density units defined to allow conversion. To use the unit

in query urls replace spaces in the unit name with +. 94

99

Name: Fabian Widmann Matriculation number: 750836

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die an-

gegebenen Quellen und Hilfsmittel verwendet habe.

Declaration of Authorship

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect

sources and tools used are correctly acknowledged.

Ulm, 30th January 2018: .

Fabian Widmann

	Introduction
	Structure

	Related Work
	Analysis
	Scenario
	Proposed API Design
	Use-Cases
	Participants
	Researchers
	Administrator

	Principles

	Data Sources
	Deutscher Wetterdienst (DWD)
	Available Data Sets
	Accessing Hourly Data

	European Centre for Medium-Range Weather Forecasts (ECMWF)
	Available Data Sets
	Accessing the CAMS near-real-time Data

	Additional Data Sources
	Challenges

	Architecture
	Design Phase
	RESTful API
	PORTO Software Architectural Pattern

	Tools and Frameworks
	Implementation
	Components of the API
	Authentication and Authorization
	GeoLocation Container
	WeatherData Container
	Gateways to Weather Sources
	Retrieving Environmental Data with Queued Jobs
	Complete Lifecycle of Retrieving Data and Task Scheduling
	Querying Environmental Data
	Conversions between Units

	Copernicus Retrieval Wrapper & Microservice
	Copernicus Retrieval Wrapper
	Implementation of the Microservice

	DWD Hourly Crawler
	Converting Units

	Summary
	The API in Numbers
	Current Status
	Future Work
	Conclusion

	Code
	Filtered Query to the WeatherData Endpoint
	Conversion
	Converting Weather Data
	Customized Fetching of Environmental Data
	Copernicus Output Example
	DWD Hourly Crawler Output Example
	Marshmallow Schema Definition
	Querying the Table Size of the Environmental Data Table

	Additional Information
	Available Hourly Parameters from the DWD Server
	Available Conversions in the adapted Convertor units
	Custom Convertor Units
	Copernicus Enums

