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Abstract. Using data-centric process paradigms, small processes such
as artifacts, object lifecycles, or Proclets have become an alternative to
large, monolithic models. In these paradigms, a business process arises
from the interactions between small processes. However, many-to-many
relationships may exist between different process types, requiring careful
consideration to ensure that the interactions between processes can be
purposefully coordinated. Although several concepts exist for modeling
interrelated processes, a concept that considers both many-to-many re-
lationships and cardinality constraints is missing. Furthermore, existing
concepts focus on design-time, neglecting the complexity introduced by
many-to-many relationships when enacting extensive process structures
at run-time. The knowledge which process instances are related to which
other process instances is essential. This paper proposes the relational
process structure, a concept providing full support for many-to-many-
relationships and cardinality constraints at both design- and run-time.
The relational process structure represents a cornerstone to the proper
coordination of interrelated processes.
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1 Introduction

With the emergence of data-centric process support paradigms as, for example,
the object-aware [4] or artifact-centric [8] approaches, the focus has shifted away
from large, monolithic process models. Instead, the use of small processes show-
ing limited complexity is preferred. An example of such a small process may be
the lifecycle process of an artifact or object. With the advent of microservices,
which may be used to implement processes, and the vision that devices in the
Internet of Things become capable of running their own processes, small process
models are an enticing way of specifying business processes. In general, each of
these small processes does not constitute a business process by itself. Instead,
to reach a specific business goal, these processes need to interact and collabo-
rate, i.e., small processes are not executed in isolation, but are interdependent.
Therefore, a coordination mechanism is needed to properly manage these process
interactions. It is paramount for a coordination mechanism to be aware of every
process relationship at design-time and, especially, at run-time.

Existing approaches for the interaction-focused modeling of business pro-
cesses, e.g., Proclets [11], have investigated the multiplicity of process relation-



ships in the context of one-to-many relationships. These approaches use cardi-
nality constraints to manage the relations between different processes. However,
it is not possible to have the necessary awareness of process relationships by
solely using cardinality constraints. Furthermore, processes may exhibit many-
to-many relationships, which previously have not been considered. While the
challenges regarding many-to-many relationships in an artifact-centric business
process setting have been investigated, a solution that enables a coordination
mechanism to have complete awareness over all process relationships is still
missing. Specifically, [2] states an open challenge: The need for a coordination
mechanism to describe which processes interact with which other processes in set-
tings that use many-to-many-relationships. This challenge reveals its complexity
when considering the processes at run-time, i.e., when considering process in-
stances. In general, multiple instances of a process may be related to multiple
instances of another process. Figure 1 shows a schematic example of interrelated
process instances and their dependencies. Identifying the relations constitutes a
prerequisite to adequately resolve and consider these dependencies at run-time,
i.e., for coordinating processes. This challenge is central to every coordination
mechanism that considers one-to-many and many-to-many relationships.

Activity Dependency

Fig. 1: Processes and their dependencies at run-time

This paper proposes a concept that solves this challenge and enables process
relation awareness at both design- and run-time: the relational process struc-
ture. The complexities of managing and monitoring processes and their relations
are covered by the relational process structure, which may be used in a generic
fashion, i.e., the relational process structure is agnostic to specific coordina-
tion mechanisms or approaches. At design-time, the relational process structure
allows identifying processes and capturing the relations between them. It in-
herently supports many-to-many relationships between processes and considers
cardinality constraints. At run-time, the approach automatically keeps track of
instantiated processes and relations created between different process instances.
This enables a coordination mechanisms to apply queries to the relational process
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structure, e.g., to determine which processes are related to a particular object
instance. It also enforces the cardinality constraints of the different process rela-
tionships with the process instances. As the number of instances and, therefore,
the relational process structure may become large, different measures are em-
ployed to reduce query times. The run-time considerations set the relational
process structure apart form conventional approaches, e.g., ER diagrams.

The remainder of the paper is organized as follows. The problem statement
is elaborated in Section 2. Section 3 discusses the design-time aspects of the
relational process structure. Section 4 deliberates on the dynamic aspects and
functions of the relational process structure during run-time. Considerations
concerning the optimizations of a relational process structure at run-time are
examined in Section 5. Section 6 presents the application of the concept in the
PHILharmonicFlows prototype. Section 7 discusses related work before conclud-
ing the paper with a summary and an outlook in Section 8.

2 Problem Statement

The primary challenge of achieving process relation awareness is keeping track
of process instances and their relations at run-time. In other words, it should
be possible to identify the number and specific identifiers of related process in-
stances at any point in time and for all process instances. The logistics process
described in Example 1 exhibits many of the characteristics of interrelated pro-
cesses. Moreover, the problem of interrelated processes may also be observed
in domains such as Human Resources or Healthcare [5], indicating the need for
keeping track of processes and their relations.

Example 1. (Simplified logistics process)
An online retailer has various products on offer. A customer may place

an order at the website of the retailer, requesting one or more products. The
retailer handles the order by creating a bill for the customer. Once the bill has
been paid, the retailer gets the ordered products from the storage and packages
them for delivery. An order may be split into multiple packages, which may be
distributed among multiple deliveries. A delivery may further comprise packages
from different orders. If packages cannot be delivered, they are assigned to a
subsequent delivery. The customer order is completed once all packages of the
order have been delivered.

Order, product, bill, package, and delivery represent the processes in this ex-
ample, i.e., they can be viewed as entities with a lifecycle process. The processes
are interdependent. For example, a product cannot be delivered without an ex-
isting order, a product must be packaged in order to be delivered, and an order
must have all its deliveries completed before it may be completed itself. Fur-
thermore, these processes exhibit one-to-many and many-to-many relationships.
For example, an order may contain one or more products, as does a package.
A delivery may contain multiple packages. An order may be distributed across
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deliveries, and a delivery may be associated with one or more orders, i.e., it con-
tains products from different orders, constituting a many-to-many relationship.
Therefore, relations also indicate a dependency between processes.

At run-time, an instance of an order is connected to specific product in-
stances. Other order instances may be connected to specific, but different product
instances. Later, product instances will establish relations to a specific package
instance. A delivery will obtain relations to specific package instances and, con-
sequently, will establish a relation to the order instances the packages belong to.
Furthermore, a delivery is not directly connected to instances of product, but
transitively via a path of relations. In particular, this means that dependencies
exist between processes having no direct relation, e.g., the execution of a deliv-
ery instance depends on the execution status of its transitively related product
instances. It is crucial that a coordination mechanism is aware of these relations.

Given the description of Example 1, it may be perceived as fairly static, with
little changes in the number of related process instances over time. In principle,
however, the nature of the run-time is highly dynamic. Process instances may
be created or deleted at any point in time. During this time, relations may be
established between process instances and, consequently, may be removed later.
Due to the existence of transitive relations, the creation of new relations may not
only make a connection to one process instance, but to an entire substructure of
related process instances. For example, with the creation of a relation between a
package and a delivery and assuming the package contains products, the delivery
is now related transitively to a specific number of product instances. In general,
this might have significant consequences for the coordination of these processes.

The concept of the relational process structure aims to provide a complete
map to the relations of different process instances at run-time. Further, it must
keep track of the dynamic changes that occur during run-time, delivering accu-
rate and up-to-date information to the coordination mechanism that manages
these interdependent processes. The relational process structure is intended as
a generic, but capable solution to this challenge. Any possible coordination ap-
proach is required to have process relation awareness. The relational process
structure serves as a foundation on which specialized approaches for coordinat-
ing interdependent process instances may build on.

To be capable of monitoring process instances and their relations, a design-
time model must first identify which types of processes may exist in a given
context and what relations may be established between them. This achieves
process relation awareness at design-time, and coordination mechanisms are able
to use the explicitly known process and relation types to define the coordination
needed between these processes.

3 Design-time Specification of the Relational Process
Structure

At design-time, a relational process structure serves to capture the types of pro-
cesses and relations that exist in the context of the overall business process. A
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relational process structure distinguishes between design-time entities, denoted
as types, and run-time entities, denoted as instances. At run-time, several in-
stances may be created by instantiating a type. The relational process structure
does not assume that processes have a specific structure or use a predefined
modeling notation; it is agnostic to the modeling paradigm and notation of the
process, as well as to the specifics of the coordination mechanism used.

In principle, this enables a relational process structure to be used with any
approach that deals with multiple processes and their relations. At design-time,
the relational process structure is denoted as a relational process type structure.
A formal definition of a relational process type structure and the basic process
type definition are given in Definitions 1 and 2, respectively. The definitions
use shorthand notations to identify types and instances. Superscript notation T

denotes a design-time entity, i.e., a type, whereas superscript I denotes a run-
time entity, i.e., an instance. The dot (.) represents the access operator.

Definition 1. A relational process type structure dT has the form (n,ΩT , ΠT )
where

– n is a unique identifier (name) of the relational process type structure.
– ΩT is the set of object types ωT (cf. Definition 2).
– ΠT is the set of relation types πT (cf. Definition 3).

The relational process type structure defines the context in which process
types and relation types exist. Through ΩT and ΠT , it provides an entry point
for external clients, e.g., a coordination mechanism. It is represented as a graph
where process types are the vertices and relation types are represented as edges.

Definition 2. A process type ωT has the form (dT , n, θT ) where

– dT is the relational process type structure to which this process type belongs
(cf. Definition 1).

– n is the unique identifier (name) of the process type.
– θT is a process specification.

A process type requires an identifier, which has to be unique in the given
context dT , i.e, the relational process type structure. The identifier n may
be indicated as ωT

n . The details of the process specification θT is unimpor-
tant for the relational process structure, i.e., the relational process structure
is paradigm-agnostic. Regarding Example 1, the process types include ωT

Order,
ωT
Bill, ω

T
Delivery, ω

T
Package, and ω

T
Product. However, their relations have not been

identified yet. A process type stores two sets of relation types, identifying its
incoming and outgoing relations. A relation type is represented as a directed
edge between process types. A formal definition of a relation type is given in
Definition 3.

Definition 3. A relation type πT represents an m:n relation and has the form
(ωT

source , ω
T
target ,mupper,mlower, nupper, nlower) where

– ωT
source is the source process type, i.e., πT is directed.
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– ωT
target is the target process type.

– mupper is an upper bound on the number of process instances ωI
target with

which ωI
source may be related. Default: mupper =∞.

– mlower is a lower bound on the number of process instances ωI
target with

which ωI
source may be related. Default: mlower = 0.

– nupper is an upper bound on the number of process instances ωI
source with

which ωI
target may be related. Default: nupper =∞.

– nlower is a lower bound on the number of process instances ωI
source with which

ωI
target may be related. Default: nlower = 0.

A relation type possesses a source and a target process type, i.e., the relation
type is directed. It represents a many-to-many (m : n) relationship between its
source and target. The directed edges are used to indicate a semantic hierar-
chy among processes, which can often be observed (cf. Figure 2). Each of the
cardinalities m and n may be restricted by an upper and lower bound. Using
the cardinality restrictions, a relation type may also be reduced to a one-to-
many (1:n, m:1) or one-to-one (1:1) relationship. The actual number of process
instances related to each other at run-time is restricted by the lower and up-
per bounds. For example, the online shop from Example 1 may establish that
a delivery must contain at least 3 packages before it will be sent out, in order
to reduce shipping costs. A relational process type structure uses a cardinality
annotation for relation types of the following form:

mlower..mupper : nlower..nupper

Order

Product

Package

DeliveryBill

1 : 1

1 : n

1 : n

1 : n

m : n

Fig. 2: Relational process model of the
logistics process example

If the lower and upper bound
of a cardinality are equal, or each
bound possesses its default value,
the notation may be shortened ac-
cordingly or replaced by the arbi-
trary cardinality, i.e., m or n. Figure
2 shows the relational process type
structure for the processes from Ex-
ample 1. Relation types have been
identified and added between the pro-
cess types ωT

Order, ωT
Bill, ωT

Delivery,
ωT
Package, and ωT

Product. From Defi-
nitions 1-3, it can be seen that the
relational process structure supports
many-to-many relationships and car-
dinality constraints.

Two process types are said to be
related, either transitively or directly,

if there exists any path of relation types between them. The existence of a path
may be determined with function pathT as set out in Definition 4. Note that a
path itself, as an entity, is defined as an ordered set of relation types, whereas
function pathT determines whether a path exists between two process types.
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Definition 4. Let dT = (n,ΩT , ΠT ) be a relational process type structure.
Then: function pathT : ΩT ×ΩT → B determines whether a directed path of
relations πT from ωT

i ∈ ΩT to ωT
j ∈ ΩT exists, i.e., if ωT

i , ω
T
j are related.

pathT (ωT
i , ω

T
j ) :=


true ∃πT

out ∈ wT
i .Π

T
out : π

T
out.ω

T
target = ωT

j

pathT (ωT
k , ω

T
j ) ∃πT

out ∈ wT
i .Π

T
out : π

T
out.ω

T
target = ωT

k ,

ωT
i 6= ωT

k 6= ωT
j

false otherwise

With function pathT , it becomes possible to define two sets LT
ωT and HT

ωT

(cf. Definition 5) that describe other processes in relation to a particular process
type ωT . The terms lower-level and higher-level hereby refer to the direction of
the relations of the respective paths. There terms may describe the kind of a
process relation directly, i.e., a process type may be a lower-level process of ωT .

Definition 5. Let ωT = (dT , n) be a process type.

a) The set of lower-level process types LT
ωT is defined as

LT
ωT = {ωT

k |ωT
k ∈ ωT .dT .ΩT , path(ωT

k , ω
T ) } ∪ {ωT }

b) The set of higher-level process types HT
ωT is defined as

HT
ωT = {ωT

k |ωT
k ∈ ωT .dT .ΩT , path(ωT , ωT

k ) } ∪ {ωT }

Function pathT and sets LT
ωT and HT

ωT can be defined for process instances
in the same way. For the sake of clarity, process type ωT in the subscript of
sets L and H may be replaced by the identifier ωT .n. The sets facilitate the
definition of several concepts in respect to process relations, and can be used for
a run-time optimization as proposed in Section 5.

A relational process structure is represented as a directed, acyclic graph.
Using directed edges to represent relations provides several benefits. First, the
direction of a relation corresponds directly to its cardinalities. The target process
type always possesses cardinality m, whereas the source process type always has
cardinality n, allowing for easy assignment of cardinalities in the relational pro-
cess structure. Second, directed edges allow two processes to be related to one
common process without the relational process structure containing a cycle. In
Figure 2, process types ωT

Order and ωT
Delivery are (transitively) related to process

type ωT
Product, i.e., ω

T
Order, ω

T
Delivery∈ LT

Product. With directed edges, the rela-
tions do not form a cycle. If undirected edges had been used, the same relational
process structure would contain a cycle. Acyclic graphs with undirected edges
correspond to trees, which are too restrictive to represent a relational process
structure, as they prohibit commonly found relations between processes, such as
the one involving ωT

Order, ω
T
Delivery, and ω

T
Product.

A relational process type structure interdicts the existence of cycles in its
graph, i.e., it is represented as an acyclic graph. The reason for the acyclicity of
the relational process structure is that cycles circumvent the cardinality restric-
tions of a relation type. This is caused by the fact that a relational process type
structure explicitly considers transitive relations. Assume that the graph of a
relational process type structure contains a cycle and a specific relation πT with

7



πT .nupper = 3 and πT .ωT
target = ωT

a is part of this cycle, as shown exemplarily
in Figure 3a. Then, a process instance ωI

a1 of type ωT
a could be related to more

than three process instances of type πT .ωT
source = ωT

b . Each relation type of the
cycle may be instantiated multiple times, first connecting ωI

a1 to an instance ωI
b1.

Subsequently, ωI
a is transitively connected to another instance ωI

a2 of the same
process type. The cycle can be repeated arbitrarily often, as shown in Figure
3b. Ultimately, ωI

a1 is transitively related to more than three instances of ωT
b

using relation type πT , which renders the cardinality restriction on πT moot.
With the acyclicity of the graph, the relational process structure ensures that
cardinality constraints must not be circumvented, as would be the case when
using ER-diagrams having undirected edges and cycles.

ωT 

ωT

πT

ωT

a

bc

(a) Relational process type
structure with cycle

ωI ωI ωI ωI

ωI ωI ωI ωI

ωI ωI ωI

a1 b1 c1 a2

b2 c2 a3 b3

c3 a4 b4

(b) A possible relational process instance struc-
ture resulting from the cyclic type structure

Fig. 3: Transitive relations at run-time with cyclic type structure

Note that a process instance may still be related to more instances of a
specific type than allowed by the cardinality restrictions on the direct relation
between them. There may be other relations that transitively connect to the
same process type, using a different path through the relational process type
structure graph. For example, ωT

Order in Figure 2 is connected to ωT
Product di-

rectly via πT
Order−Product and transitively via πT

Order−Delivery. As a consequence,
an order instance may be related to products of other orders sharing the same
delivery. It is therefore crucial to take specific relation types into account when
determining related instances of type ωT

Product at run-time. The ability to define
such sophisticated queries is only enabled by the relational process type struc-
ture. In turn, this also highlights the complexity that arises when considering
transitive one-to-many and, especially, many-to-many relationships.

Transitive relations also possess a cardinality, determined by the cardinality
of the relations on the path representing the transitive relation. It is possible
to determine the cardinality of all transitive relations by calculating the tran-
sitive closure of the relational process type graph, e.g., by using a modified
Floyd-Warshall Algorithm. Since the relational process type structure employs
directed edges to represent many-to-many relationships, the modified Floyd-
Warshall Algorithm needs to be employed twice: One time going in the direction
of the edges and the second time going against. Transitive cardinalities help to
discover modeling errors of the relational process structure at design-time.
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The relational process structure shows similarity to diagrams at design-time.
This may help a domain expert or process modeling expert to gain an entry to the
relational process structure and to use it effectively. A relational process struc-
ture captures process types and allows displaying the relations between them.
This enables process relation awareness at design-time. A coordination mecha-
nism may use this information to specify the necessary coordination restrictions
and enforce them at run-time. However, the relational process structure extends
beyond the design-time and also demonstrates benefits at run-time. The specifics
of these benefits will be discussed in Section 4.

4 Run-time Support of the Relational Process Structure

At run-time, the process and relation types may be instantiated. The created
process instances and the interconnecting relation instances form a relational
process instance structure (cf. Definition 6). At run-time, the continuous instan-
tiation of processes and relations creates a highly dynamic environment, in which
the relational process structure evolves dynamically as well.

Definition 6. A relational process instance structure dI has the form
(dT , ΩI , ΠI) where

– dT is the relational process type structure from which dI has been instanti-
ated.

– ΩI is the set of process instances ωI(cf. Definition 7).
– ΠI is the set of relation instances πI (cf. Definition 8).

Analogous to the relational process type structure, a relational process in-
stance structure provides context in which instantiated processes and relations
exist. In general, a multitude of different process instance structures, i.e., con-
texts, may exist in parallel during run-time. Furthermore, the graph of the rela-
tional process instance structure consists of process instances (cf. Definition 7)
as vertices and relation instances (cf. Definition 8) as edges.

Definition 7. A process instance ωI has the form (ωT , dI , l, θI) where

– ωT is the process type from which ωI has been instantiated.
– dI is the relational process instance structure to which this object instance

belongs (cf. Definition 6).
– l is the identifier (label) of the process instance. Default is ωT .n.
– θI is a process instance specification derived from ωT .θT .

Definition 8. A relation instance πI represents an m:n relation and has the
form (πT , ωI

source , ω
I
target) where

– πT is the relation type from which πI has been instantiated.
– ωI

source in the source process instance, i.e., πI is directed.
– ωI

target is the target process instance.
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As process and relation types may not just be instantiated once, but many
times, additional complexity ensues in comparison to the relational process type
structure. The process instances create a large and complex network, with pos-
sibly several independent sub-structures. However, in its basic structure, the
process instances and relations evolve according to the specification of the pro-
cess type structure. Thereby, a relational process instance structure resembles
the corresponding relational process type structure. Regarding Example 1 and
the relational process type structure depicted in Figure 2, one possible relational
process instance structure is depicted in Figure 4.

Order 5

Product 10

Bill 4

Order 4

Product 9

Package 6

Delivery 5Bill 3

Product 8
Product 7

Package 5

Product 6

Package 4

Delivery 4Bill 2

Order 3

Product 5

Package 3

Delivery 3

Product 4

Bill 1

Order 2

Product 3

Package 2

Product 2

Delivery 2

Order 1

Product 1

Package 1

Delivery 1

Fig. 4: Relational process instance struc-
ture for the logistics example

As instances of processes and re-
lations may only be created if a
corresponding type has been speci-
fied, tracking instances at run-time is
greatly facilitated. When creating a
relation πI between two process in-
stances ωI

i and ωI
j , it is first checked

with the type structure whether the
cardinality constraints of the rela-
tion type permit creating more re-
lation instances between these spe-
cific process instances. The corre-
sponding check can be performed ef-
ficiently, as process instances store
their incoming and outgoing relation
instances. By counting the number of
relations instances πI in dI .ΠI where
πI .ωI

target = ωI
i that are instantiated

from type πT . This number can then
simply be checked against the cardinality restrictions of πT ; the relation type
may then be instantiated accordingly. By checking the minimum cardinality, the
relational process type structure is capable of determining whether additional
instances are needed.

The relational process instance structure keeps track of all instances by inter-
connecting them through πI .ωI

target and πI .ωI
source and storing them in dI .ΠI

By keeping track which process types have been instantiated and what relation
instances have subsequently been created between them, the relational process
instance structure has full process relation awareness.

The relational process instance structure evolves over time and alters shape.
When a coordination mechanism makes a query, e.g., about which products are
contained in a specific package, the relational process instance structure is able to
provide a reliable result. Subsequent additions to the package, i.e., new products
are instantiated and new relations are created between them and the package,
alter the result of the query. Should the same query be made at a later point in
time, the relational process instance structure returns the updated result. Re-
garding the relational process structure, the term “query” is used to indicate the

10



extraction of data from the relational process structure by an external agent.
It is assumed that the agent corresponds to the coordination mechanism that
requires the knowledge of process relationships to properly coordinate the pro-
cess instances involved. Regarding the formal specification of queries, this paper
remains intentionally vague to avoid unnecessary limitations, also regarding fu-
ture extensions of the concept. However, examples are given throughout this
paper, and the query “Which process instances are related to process instance
ωI?” serves as a reference.

The main run-time benefit of the relational process structure is the pro-
vision of detailed information on the relations of any given process. The cre-
ation of the graph representing the relational process instance structure comes
at very little cost in terms of computation time. However, querying the graph
in order to obtain desired information is, in general, computationally expen-
sive. Some kinds of queries can be answered efficiently by the relational pro-
cess instance structure, e.g., obtaining all directly related process instances of
specific process instance ωI

a requires the aggregation of all source processes
{ωI |ωI ∈ dI .ΩI , ∃πI : πI .ωI

target = ωI
a ∧ πI .ωI

source = ωI}. However, as tran-
sitive relations constitute integral parts of the structure, most queries require
a depth-first search or breadth-first search of the relational process structure.
These possess time complexity of O(|Ω| + |Π|), in terms of processes Ω and
relations Π of the relational process structure. Obviously, the time needed for
queries increases when the relational process structure instance grows. For the
remainder of the paper, it is assumed that queries use a depth-first search.

Bill 1

Product 3

Package 2

Product 2

Delivery 2

Order 1

Product 1

Package 1

Delivery 1

(a) Sub-structure A

Product 8
Product 7

Package 5

Product 6

Package 4

Delivery 4Bill 2

Order 3

Product 5

Package 3

Delivery 3

(b) Sub-structure B

Order 5

Product 10

Bill 4

Order 4

Product 9

Package 6

Delivery 5Bill 3

(c) Sub–structure C

Product 4

Order 2

(d) Sub-structure D

Fig. 5: Sub-structures of the overall process instance structure

The main problem, however, is a different one. The continuously evolving
process instance structure requires that a coordination mechanism also queries
the relational process instance structure continuously in order to keep updated.
Figures 5a-5d show different sub-structures of the relational process instance
structure from Figure 4. The sub-structures show all interrelated process in-
stances. When any of these sub-structures are altered, e.g., by adding a new
relation to another process instance, another query must be made so that a co-
ordination mechanism can discover the change. The sub-structures may even be
combined, e.g., by connecting Delivery 5 in Figure 5c with Order 2 in Figure 5d.
A significant change in (transitive) process relations may be observed, requir-
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ing even more queries to discover the specific changes in regard to each process
instance involved.

While the relational process instance structure is responsible for increasing
the query count due to dynamic changes and therefore prolonging the individual
query execution time, another factor has not been considered yet. A coordina-
tion mechanism is not only affected by dynamic changes in process relations and
process instance count, but also by changes regarding the progress of process
instance execution. In principle, the progress of process instances is independent
from the evolution of the relational process instance structure, i.e., process in-
stances may change their execution status while the relational process instance
structure remains unchanged. However, to discover changes in process status,
additional queries must be issued to determine execution status changes of pro-
cess instances. In general, not only process status, but any metadata might be
queried. An optimization to address this problem is presented in Section 5.

5 Query Performance Optimization

For alleviating the problem of continuously querying the relational process in-
stance structure and the resulting degraded performance due to the many depth-
first searches, the caching of query results is not feasible. The continuous changes
to the relational process instance structure and the progress of the process in-
stances frequently require the invalidation of the cached query results. For this
reason, a practical use of query result caching would have negligible performance
benefits. As the query count lies outside the control of the relational process
structure, reducing this number to improve overall performance is impossible.

However, as many queries are likely to include the determination of related
process instances, reducing individual query time becomes necessary. Therefore,
caching the related process instances for each process instance would reduce
the number of depth-first searches that have to be performed. In effect, for each
process instance ωI

i ∈ dI .ΩI , sets LI
i and HI

i (cf. Definition 5) cache the result of
depth-first searches and, thereby, maintain references to the current lower- and
higher-level process instances. We denote this as related process caching. Then, a
query may use these sets directly while the relational process structure remains
unchanged. If the cache can be used, the query complexity is O(|LI | + |HI |)⊂
O(|Ω| + |Π|). If only one of the sets is used for the query, the query time is
reduced accordingly. This allows speeding up query execution time significantly
by reducing the number of depth-first searches.

In fact, it is feasible to eliminate depth-first searches entirely by maintaining
LI
i and HI

i for each process instance i along the construction of the relational
process instance structure. The basic idea is as follows: when a relation is newly
instantiated, the sets of the target and source objects are updated with the newly
related process instances. If this is done beginning with the first instantiated
relation, the overall state of the relational process instance structure is always
kept consistent. The construction of the relational process instance structure
with related process caching and its correctness will be shown exemplarily for
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set LI . The construction works analogously for set HI . In the beginning, suppose
two process instances ωI

a and ωI
b have been instantiated and no relation exists.

Then LI
a = {ωI

a} and LI
b = {ωI

b}. Without loss of generality, a relation is created
with ωI

b as source and ωI
a as target. Accordingly set LI

a = LI
a ∪LI

b = {ωI
a, ω

I
b} is

obtained. This is correct, as ωI
b now has a path to ωI

a. Set LI
b remains unchanged,

as ωI
b has gained to new lower-level instances. In the general case, if a new relation

is created with ωI
j as source and ωI

i as target, and with the postulation that both
sets LI

i and LI
j contain the correct process instances, set LI

i = LI
i ∪ LI

j . Every
ωI
k ∈ LI

j now fulfills pathI(ωI
k, ω

I
i ) due to the newly created relation.

While LI
i is correct, the overall process instance structure is inconsistent, as

higher-level process instances of ωI
i , i.e., set HI

i , are related to the new lower-
level process instances in LI

j . Therefore, LI
j must be propagated to the process

instances in HI
i , i.e., ∀ωI

h ∈ HI
i : LI

h ∪ LI
j . As can be seen, the overall process

instance structure is consistent, i.e., every process instance has the correct lower-
level process instances cached. Consequently, querying may be performed faster.
As a drawback, the related process instance caching increases the time for creat-
ing a new relation between process instances. However, as the number of newly
instantiated relations is expected to be significantly lower than the number of
queries, a significant overall performance increase can be achieved.

6 Application to the Object-aware Approach

To provide a first evaluation of the relational process structure, it is applied to
the object-aware process support paradigm [4]. The relational process structure
is used to organize object types and their corresponding lifecycle processes, ex-
tending the previous data model with many-to-many relationships. The lifecycle
processes of different objects are coordinated using semantic relationships [9],
a concept that explicitly requires the identification and monitoring of relations
between objects. Thereby, the object-aware approach takes full advantage of the
capabilities of the relational process structure. The specification of semantic re-
lationships requires the identification of relation types at design-time, i.e., it uses
the relational process type model. At run-time, the exact relations between ob-
jects are crucial for a proper coordination. The necessary information is provided
by the relational process instance structure.

The relational process structure, as presented in this paper, has been fully
realized in the implementation of the object-aware approach, named PHILhar-
monicFlows. More precisely, the rudimentary implementation of the data model
has been replaced with the relational process structure, offering many-to-many
relation support. This replacement also improved the run-time capabilities of
PHILharmonicFlows significantly, offering full-fledged run-time support. Various
preliminary test results of the performance of the PHILharmonicFlows system
show that the optimizations presented in Section 5 reduces query time by or-
ders of magnitude, while increasing the time for creating a relation instance only
moderately. A thorough evaluation with reliable numbers of PHILharmonicFlows
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performance will be presented in a future publication. Currently, PHILharmon-
icFlows, and with it the relational process structure, is moving towards a highly
scalable architecture using microservices [1].

7 Related Work

The coordination of large process structures with focus on the engineering do-
main is considered in [6,7]. The COREPRO approach explicitly considers process
relations with one-to-many cardinality. However, it does not consider many-to-
many relationships and transitive relations. Furthermore, relationships cannot
be restricted by cardinality constraints.

Artifacts consist of a lifecycle model and an information model [8] . The
lifecycle model is described suing the Guard-Stage-Milestone (GSM) metamodel
[3]. The information model may store any information required for the operation
of the artifact. While relations of artifacts play a significant role in the specifica-
tion of a business process, a concept similar to the relational process structure
is missing. Nonetheless, process modelers may use the information model and
the GSM lifecycle to replicate the same functionality. However, it creates high
efforts for the process modeler and is error-prone. Leveraging the functionality
of the relational process structure is therefore beneficial and easily realizable.

Proclets [10,11] are lightweight processes with a focus on process interac-
tions. They interact via messages called performatives. Proclets allow specifying
the cardinality for a message multicast, i.e., the number of Proclets receiving a
performative. However, this number is fixed at design-time. The specification of
Proclets does not include many-to-many-relationships between Proclets. Each
Proclet requires a direct channel to exchange a performative. For this reason,
transitive relations are not considered in the Proclet approach. While Proclets
specify cardinality constraints, the exact recipients of a performative at run-
time are unknown. Common to all these approaches is that their focus is almost
exclusively on design-time issues. The many challenges arising from providing
run-time support are not considered.

8 Summary and Outlook

The concept of the relational process structure allows modeling processes and
their relations at design-time, accounting for many-to-many relationships, tran-
sitive relations, and cardinality constraints between processes. At run-time, the
design-time information is used to automatically track process instances and
their relations to other process instances. Thereby, the cardinality constraints
may be enforced. At any point in time it is possible to obtain accurate infor-
mation about process instances and their relations. Optimizations for increasing
performance during run-time have been proposed. The whole relational process
structure has been implemented in the PHILharmonicFlows system.

The relational process structure, as presented in this paper, allows track-
ing many-to-many relationships and enforcing cardinality constraints. However,
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several extensions to enhance the functionality and performance may be added
in the future, e.g., restricting the overall number of process instances of a cer-
tain type, which also poses new challenges. While the implementation in PHIL-
harmonicsFlows shows the applicability and general viability of the relational
process structure concept, an evaluation with user studies and performance as-
sessments of the system will be conducted to ascertain and solidify the benefits
of this concept.
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