
Digital Object Identifier (DOI) 10.1007/s00450-004-0157-5
Informatik Forsch. Entw. (2004) 18: 132–151

© Springer-Verlag 2004

Dealing with forward and backward jumps
in workflow management systems

Manfred Reichert1, Peter Dadam1, Thomas Bauer2

1 University of Ulm, Dept. Databases and Information Systems, 89069 Ulm, Germany;
E-mail: {reichert,dadam}@informatik.uni-ulm.de

2 DaimlerChrysler Research and Technology Ulm, Dept. RIC/ED, Postfach 2360, 89013 Ulm, Germany;
E-mail: thomas.tb.bauer@daimlerchrysler.com

Received: 6 October 2002 / Accepted: 8 January 2003

Abstract. Workflow management systems (WfMS) offer a
promising technology for the realization of process-centered
application systems.A deficiency of existing WfMS is their in-
adequate support for dealing with exceptional deviations from
the standard procedure. In the ADEPT project, therefore, we
have developed advanced concepts for workflow modeling and
execution, which aim at the increase of flexibility in WfMS.
On the one hand we allow workflow designers to model excep-
tional execution paths already at buildtime provided that these
deviations are known in advance. On the other hand authorized
users may dynamically deviate from the pre-modeled work-
flow at runtime as well in order to deal with unforeseen events.
In this paper, we focus on forward and backward jumps needed
in this context. We describe sophisticated modeling concepts
for capturing deviations in workflow models already at build-
time, and we show how forward and backward jumps (of dif-
ferent semantics) can be correctly applied in an ad-hoc manner
during runtime as well. We work out basic requirements, facil-
ities, and limitations arising in this context. Our experiences
with applications from different domains have shown that the
developed concepts will form a key part of process flexibility
in process-centered information systems.

Key words: Workflow management – Adaptive workflow –
Exception handling – Forward/backward jump

1 Introduction

E-Business has significantly increased the competitive pres-
sure companies must face [4]. To meet this challenge enter-
prises are developing a growing interest in supporting their
business processes more effectively and in streamlining their
application systems such that they behave “process-oriented”;
i.e., to offer the right tasks at the right point in time to the

This paper is a revised and extended version of [40]. The described
work was partially performed in the research project “Scalability in
Adaptive Workflow Management Systems” funded by the Deutsche
Forschungsgemeinschaft (DFG).

right persons along with the information and application func-
tions needed. Workflow management systems (WfMS) like
MQSeries Workflow, Staffware, or INCOME Workflow offer
a promising technology for this [33,58]. Designed for a dis-
tributed environment they increase the number of work pro-
cesses (workflow; abbr. WF) that can pass through an elec-
tronic workplace. For this purpose, the business process logic
is extracted from application code. So, instead of a large,
monolithic program package we obtain a set of WF activi-
ties which represent the application functions. The process
logic between them (i.e, control and data flow) is specified
in a separate WF schema. Usually, for WF modeling graphi-
cal formalisms like Petri Nets [1,38,58], Statecharts [32,60],
UML Activity Diagrams [16], or block-structured description
languages [13,36,41] are used. They allow the WF designer
to quickly define and modify WF schemes at a high seman-
tic level, and enable the buildtime components of the WfMS
to detect behavioral inconsistencies and errors in a very early
implementation stage [46,47,52,58].

Long regarded as technology for the automation of well-
structured, repetitive processes, showing only little varia-
tions in their possible execution sequences, WF management
is in the throes of transformation as more and more non-
traditional applications require comprehensive process sup-
port as well. In many domains, like hospitals, engineering
environments, or E-Commerce, however, process-oriented in-
formation systems will not be accepted if rigidity comes with
them [4,8,14,18,26]. Instead users must be able to flexibly de-
viate from the standard process (e.g., by skippingWF activities
or by working on a WF activity ahead of the normal sched-
ule), in particular to handle exceptional situations [45, 50].
(In this paper exceptions constitute events which may occur
during WF execution and which require deviations from the
standard business process.) In doing so, it is very important
that the use of the WfMS is not more cumbersome and time-
consuming than simply handling the exception by a telephone
call to the right person. As reported by several groups, insuf-
ficient flexibility and adaptability have been primary reasons
why many WfMS failed in process automation projects in the
past [17,19,41].

Generally, we have to differ between deviations that can
be pre-planned and deviations for which this is not possible.

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 133

Concerning pre-planned deviations, their context as well as
the actions necessary to handle them are known beforehand.
They, therefore, can be already considered at buildtime in or-
der to achieve a flexible WF execution behavior. As opposed
to this, deviations that cannot be pre-planned may become
necessary to deal with unforeseen events and must be dynam-
ically handled during WF execution. In practice, both kinds of
deviations frequently occur and must therefore be adequately
supported by WfMS.

The present work is embedded in the ADEPT project
which aims at the flexible support of enterprise-wide business
processes [5,14,41]. We have developed and implemented ad-
vanced concepts for the modeling, execution, and monitoring
of workflows as well as for the dynamic change of in-progress
WF instances. Our work is based on first-hand knowledge with
clinical as well as engineering workflows [8,14]. We have ob-
served that many exceptions are known in advance and can
therefore be considered already at buildtime, which decreases
the necessity of “expensive” ad-hoc interventions during run-
time. To enable users to cope with unforeseen exceptions as
well, additionally, we offer advanced concepts for dynamic
WF changes. They are based on theADEPTflex calculus which
enables authorized users to dynamically change the structure,
the state, and the attributes of in-progress WF instances in a
consistent manner and at a high semantic level [41].

In this paper we develop advanced concepts for both, the
increase of flexibility at buildtime and its enhancement dur-
ing runtime. Thereby, we focus on the support of forward and
backward jumps, which are indispensable to flexibly deal with
exceptions in WfMS [14]. While the former enable deviations
in forward direction (e.g., to skip unnecessary activities or to
work on a particular activity ahead of the normal schedule),
backward jumps make it possible to partially roll back the flow
to a previous execution state and to re-continue work in this
state (e.g., when activity execution fails). We present concepts
for both, the pre-modeling of jumps at buildtime and their dy-
namic application during runtime. To better understand related
issues and problems, we consider the viewpoint of the WF de-
signer as well as of the end user. In some respects forward and
backward jumps bear resemblance to GOTO statements in pro-
gramming languages. However, deviations from standard pro-
cedures concern exception handling at a higher semantic level,
which is indispensable for WfMS to cover a broad spectrum
of processes. (Note that the need for supporting jump opera-
tions has been approved by several other research groups as
well [1,27,36,42,50].) Nevertheless, jumps must not be com-
plicated for users or lead to an undefined execution behavior.
For this reason, ADEPT imposes several restrictions for their
use, which either have to be checked at buildtime (pre-planned
jumps) or must be ensured when applying the jump during
runtime (ad-hoc jumps). Backward jumps, for example, must
always result in a former state of the WF instance in order to
guarantee a consistent execution behavior. Forward jumps, in
turn, must not lead to activity program invocations with miss-
ing input data or to skipping of imperative activities. Finally,
jump operations must be properly integrated with respect to
authorization and documentation.

Although very important for realizing and adaptive work-
flows, forward and backward jumps do not cover all excep-
tion handling procedures needed in practice. As we have re-
ported in earlier papers [14,41], ADEPT provides other facil-

ities as well. Examples include the ad-hoc insertion or dele-
tion of WF activities, the late modeling of sub-workflows,
and the dynamic change of WF attributes (e.g., activity work
assignments). In addition, several research groups have used
the ADEPT WfMS for implementing sophisticated exception
handling procedures on top of it, like the automatic adapta-
tion of workflows or the dynamic creation of WF instances as
response to occurring exceptions [4,53]. In this context, ECA
rules (Event – Condition – Action) can be used to describe the
conditions leading to an exception and the actions necessary
to handle them [11,36]. Other exception handling approaches
are discussed in Sect. 5.

The outline of this paper is as follows: Sect. 2 furnishes ba-
sic information about WF modeling and execution in ADEPT
– background information which is necessary for a further un-
derstanding of this paper. Section Sect. ??forward describes
how pre-planned as well as ad-hoc forward jumps can be flex-
ibly realized in WfMS. In Sect. 4 we set out how backward
jumps have to be handled. We discuss related work in Sect. 5
and conclude with a summary in Sect. 6.

2 Background information

For each business process type to be supported, a correspond-
ing WF schema has to be defined and stored in the WfMS.
An example is depicted in Fig. 1. Among other things, the
diagrammed WF schema defines WF activities as well as the
control and data flow between them. The work presented in this
paper uses the ADEPT formalism [39, 41] for WF modeling
and execution. On the one hand this WF meta model is expres-
sive enough to adequately model real-world processes [14], on
the other hand, the resulting WF models are easy to understand
for WF designers as well as for end users. ADEPT allows to
model aspects like control and data flow, work assignments,
or time constraints. Furthermore it has proven itself by en-
abling correctness saving rules (e.g., no deadlocks, no data
losses, no temporal inconsistencies, no undefined work as-
signments), ad-hoc changes of in-progress WF instances [41],
and distributed WF execution [5, 6]. By implementing these
concepts in a powerful prototype [29], we have demonstrated
that they work in conjunction with each other as well. In the
meantime, the ADEPT prototype is used by research groups
from different application domains for the implementation of
flexible, process-centered information systems [4,53].

2.1 Control flow modeling and execution

The control flow schema of a WF is represented by an at-
tributed WF graph with distinguishable node and edge types.
As shown in [41] this enables efficient correctness checks (see
below) and eases the handling of loop backs. Formally, a con-
trol flow schema S corresponds to a tuple S = (N, E, ...)
with node set N and edge set E. To each control flow edge
e ∈ E an edge type ET (e) from the set EdgeTypes =
{CONTROL E, SYNC E, LOOP E} is assigned: CONTROL E
denotes “normal” order relations between activities, SYNC E
“wait-for” relations between activities of parallel branches,
and LOOP E loop backs. Similarly, each node n ∈
N has a node type NT (n) ∈ NodeTypes (with

134 M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems

Table 1. Predecessor and successor functions defined on WF graphs

c succ(n)/c pred(n) set of all direct successors/predecessors of activity n
considering control edges with type CONTROL E

c succ∗(n)/c pred∗(n) set of all direct or indirect successors / predecessors of activity n
considering control edges with type CONTROL E (transitive closure)

succ(n)/pred(n) set of all direct successors/predecessors of activity n
referring to control edges with type CONTROL E or SYNC E

succ∗(n)/pred∗(n) set of all direct and indirect successors/predecessors of activity n
referring to control edges with type CONTROL E or SYNC E

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientId

report

data element

AND join

data flow control flow

yes

no

role = doctor

role = radiologist

Actor =
Actor("peform examination")

STARTLOOP

AND split

ENDLOOP

write data edge

read data edge

loop backward edge
(ET =LOOP_E)

normal control edge
(ET =CONTROL_E)

Fig. 1. Workflow modeling in ADEPT

NodeTypes := {STARTFLOW, ENDFLOW, ACTIVITY,
STARTLOOP, ENDLOOP, AND Split, XOR Split, AND
Join, XOR Join}). Based on these ingredients, sequences,
parallel branchings (AND split, AND join), conditional
branchings (AND/XOR split, XOR join), and loops
(STARTLOOP, ENDLOOP) can be easily modeled. For this we
have adopted concepts from block-structured process descrip-
tion languages [15] and enriched them by additional control
structures. Branchings as well as loops have exactly one entry
and one exit node. Control blocks may be nested but are not
allowed to overlap. As this limits expressive power, in addi-
tion, the already mentioned synchronization edges are offered
to WF designers, which allows them to describe more com-
plex control structures if required. We have selected this block
structure because it is rather quickly understood by users, it
allows the provision of user-friendly, syntax-driven model edi-
tors, and it makes it possible to implement efficient algorithms
for control and data flow analyses. – Table 1 informally sum-
marizes predecessor and successor functions on WF graphs
which are needed for the following considerations.

Based on a given WF schema S new WF instances can
be created and started. To determine which activities are to
be executed next, for each WF instance we maintain infor-
mation about its current state by assigning markings NS(n)
and ES(e) to each activity node n and to each control edge
e. Corresponding to this, a WF graph with associated mark-
ings is denoted as a WF instance graph.1 An example is de-
picted in Fig. 2. It shows two WF instances created from the
WF schema from Fig. 1. Similar to Petri Nets [58], markings
are determined by well defined firing rules [41]. In doing so,
markings of already passed regions are maintained (except
loop backs). Furthermore nodes and edges belonging to non-
selected branches of a conditional branching will be explicitly
marked as SKIPPED and FALSE SIGNALED, respectively.
ADEPT ensures well-defined dynamic properties, including
the absence of deadlocks, the proper termination of the flow,
and the reachability of markings which enable activity execu-
tion (for details see [39,41]). The described block structuring
as well as the used node and edge types help us to accomplish
this in an efficient manner. Deadlocks, for example, can be
excluded if the WF graph does not contain cycles over control
and synchronization edges (see [39] for details).

State transitions of a single activity instance are depicted in
Fig. 3. Initially, the activity status is set to NOT ACTIVATED.
It is changed to ACTIVATED when all pre-conditions for ex-
ecuting this activity are met. In this case corresponding work
items are inserted into the worklists of authorized users (deter-
mined by role-based work assignments). If one of them selects
the respective item from his worklist, activity status changes to
RUNNING and respective work items are removed from other
worklists. Furthermore, an application component associated
with the activity is started. At successful termination, activity
status passes to COMPLETED.

2.2 Data flow modeling and data context management

Data exchange between activities is realized by the use of
global process variables (called data elements in the follow-
ing). Data elements are connected with input and output pa-
rameters of WF activities. Each activity input parameter is
mapped to exactly one data element by a read data edge and
each activity output parameter is connected to a data element

1 Note that this must not mean that for each WF instance a separate
WF graph is maintained. A WF instance graph represents a logical
view on a WF instance, and does not give any hint concerning its
physical representation.

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 135

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientID

report

LOOP_E true

false

user = "Dr. Quincy"

role = radiologist

WF instance graph I1

patientId = "Smith"

current value: "Smith"

NS=NodeState,

 NS = ACTIVATED

 NS = RUNNING

 NS = COMPLETED

ES = EdgeState

 ES = TRUE_SIGNALED

perform
examination

prepare
patient

make
appointment

inform
patient

order medical
examination

generate
report

validate
report

patientID

report

LOOP_E true

false

Actor = "Dr. Bond"

Actor = "Dr. Kitchen"

WF instance graph I2

patientID = "Major"

current value: "Major"

Actor = "Dr. Kitchen"

report = Id4763

patientID = "Major"

report = Id4763

Fig. 2. WF instance graphs (with different marking)

by a write data edge. An example is depicted in Fig. 1. Activity
“order medical examination” writes the data element “patien-
tID” which is read by the subsequent activity “perform exam-
ination”. The total collection of data elements and data edges
is called the data flow schema. For its modeling, a number
of correctness properties must be satisfied. The most impor-
tant one ensures that all data elements read by an activity X
must have been written by preceding activities before X can
be started, independently from the execution path leading to
activation of X. Note that this property is crucial for the proper
invocation of external activity programs during WF execution.
In particular, it must be ensured in conjunction with forward
jumps as well (cf. Sect. 3). Other correctness constraints con-
cern the avoidance of lost updates due to parallel or subsequent
write operations on data elements (see [39]). At runtime, if re-
quired, ADEPT stores different versions of a data object for
each data element. In more detail, for each write access to a
data element, always a new version of the data object is cre-
ated and stored in the WfMS database; i.e., data objects are
not physically overwritten. This allows us, for example, to use
different versions of a data element within different branches
of an AND-/XOR-branching (cf. Sect. 3). As we will see in
Sect. 4, however, maintaining data object versions is not only
important for the context-dependent reading of data elements
but also for the correct rollback of WF instances in case of
failures.

3 Forward jumps

In this section we present both, pre-planned and ad-hoc for-
ward jumps for exception handling. While the former are
known at buildtime and can therefore be captured in the WF
schema, ad-hoc jumps become necessary to deal with unfore-
seen events. That means they cannot be pre-modeled and must
therefore be defined by users at runtime. We motivate the need
for both kinds of forward jumps, discuss general issues related

f inish

start

start

select

disable

deselect

NOT_ACTIVATED ACTIVATED

WAITI NG

SUSPENDED STARTED

RUNNING

suspend

FAILED COMPLETEDSKIPPED

SELECTED

TERMINATED

enable

resume

abort

skip

disable

skip

skip

super state

(sub-) state

action leading to
state transit ion

Fig. 3. Statechart for activity state transitions

to them, and show how forward jumps of different semantics
have been realized in ADEPT.

3.1 Motivation

During WF execution it may be required to omit unnecessary
activities or to immediately execute activities though not all
steps normally preceding them in the flow of control have been
finished yet.

Example 1 ((Forward jumps in a flow):). The processing of
a medical examination for an inpatient normally comprises
several steps: The examination must be ordered, an appoint-
ment with the examination unit be made, the patient be pre-
pared and notified about potential risks, the intervention be
performed, and medical reports be generated, obtained and

136 M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems

validated. Even for this simple process chain, it must be pos-
sible for physicians and nurses to flexibly deviate from the
standard procedure, in particular to handle exceptional situ-
ations (e.g., if the patient’s state of health gets worse during
the process or the physician finds out that some preparatory
steps are unnecessary for the respective patient). In such cases
it must be possible to skip steps or to immediately perform the
examination; i.e., without making an appointment or waiting
until all preparatory steps (required in the normal case) have
been finished. Note that corresponding situations may occur
at any time during process execution. (A presentation of more
sophisticated examples is given in [49].)

Our experiences with clinical as well as engineering pro-
cesses [8,14,49] have shown that very often deviations from
standard processes can be pre-planned. If exceptional situa-
tions, in which a particular activity or a set of activities is to
be processed ahead of the normal schedule, are known in ad-
vance, it must be possible to capture them at buildtime. This, in
turn, enables the WfMS to offer respective activities as excep-
tional steps to users though the pre-conditions for their regular
execution have not been fully met; i.e., users may work “un-
timely” on these pre-scheduled activities, but the WfMS indi-
cates them that activity execution constitutes a deviation from
the preferred execution path in the current WF state. How this
can be accomplished is described in the following subsection.

3.2 Defining and changing execution priorities
for WF activities

In this section we introduce simple, but useful extensions of
the ADEPT base model, which allow the WF designer to dif-
ferentiate between normal and exceptional execution paths.

3.2.1 Defining activity priorities at build-time

To enable WF designers to express whether a scheduled ac-
tivity is to be offered as a “normal” or as an “exceptional”
step within worklists, we allow them to associate execution
priorities with activities. If an activity is to be treated as an
exceptional step when it is activated, priority EXCEPTIONAL
will have to be assigned to it at buildtime; otherwise the setting
REGULAR will be chosen as priority for this activity (default
setting). Internally, the WF engine schedules activities inde-
pendently from their execution priority; i.e., execution of an
activity with priority EXCEPTIONAL follows the same rules
(with respect to activation and termination) as execution of reg-
ular activities. The way how activities are offered in user work-
lists, however, may depend on the priority assigned to them
and is left to WF client applications. Possible worklist visual-
izations include the fade-in/fade-out of exceptional activities,
the use of different colors for activities with different priori-
ties, or the display of the work items related to these activities
within different windows. Combined with AND-split/XOR-
join branchings – calledAND-/XOR-branching for short – ac-
tivity priorities turn out to be very useful: When the AND-split
node of such a branching completes, its outgoing branches
are activated and can be worked on concurrently. As opposed
to parallel branchings (with AND-split/AND-join), however,

⇓ Completion of D (lower branch)

Activate E

A

B

D

C

E

Rollback upper branch

A

B

D

C

E
AND split XOR join

A

B

D

C

E

... and mark its nodes as SKIPPED

COMPLETED

ACTIVATED

RUNNING

TRUE_SIGNALED

SKIPPED

FALSE_SIGNALED

⇓

Fig. 4. Operational semantics of an AND-/XOR-branching

the workflow may proceed at the XOR-join as soon as one
of its incoming branches is terminated.2 In ADEPT, in such
a case activities from other branches are removed from user
worklists, aborted or compensated 3 depending on their cur-
rent state. An example showing the operational semantics of
an AND-/XOR-branching is depicted in Fig. 4.

Based on this, WF designers are able to differentiate be-
tween preferred execution paths and exceptional ones. A sim-
ple example is given in Fig. 5. In the depicted WF instance
graph activities B and X are concurrently active. Due to the as-
signed priorities B is offered as regular step in user worklists
whereas X is treated as exceptional activity. According to this,

2 Synchronization of incoming branches at an XOR-join is seri-
alized, i.e., there will be always one branch that terminates first. By
default, this branch is selected as “winner” and the other branches
are rolled back. Alternatively, ADEPT allows more than one incom-
ing branch to be completed such that the user can explicitly select
the most suited one (e.g., depending on the output data generated by
related activities).

3 Whether a completed activity can be compensated or not may
depend on the kind of activity as well as on the current state of the
WF.

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 137

Fig. 5. Activity priorities

the preferred activity sequence is defined by A, B, C, and D (in
the given order) whereas the sequence A, X, and D constitutes
an exceptional path (indicated by priority EXCEPTIONAL of
activity X); i.e., instead of B and C activity Xmay be executed.

3.2.2 Pre-planned changes of activity priorities
during run-time

Depending on the state of a WF instance it must be possible to
treat a particular activity differently with respect to its priori-
tization. Under certain circumstances its execution may con-
stitute a deviation whereas in other WF states it can be treated
as normal step. As an example, take an activity X which nor-
mally is to be executed after some preceding steps have been
finished. Due to exceptional situations, however, it may be-
come necessary to work on X ahead of the normal schedule.
In this case, execution of X constitutes a deviation from the
preferred activity sequence which must be indicated to users;
i.e., this exceptional state must be preserved as long as not all
activities normally preceding X in the flow have been com-
pleted. If the latter case occurs, however, priority of X is to be
changed accordingly.

Static priorities are not sufficient for modeling such cases.
In addition, it must be possible to dynamically modify pri-
orities during WF execution. In order to be able to capture
such priority changes in the WF model we introduce pri-
oritization edges as an additional modeling concept. A pri-
oritization edge ep = src → dst links two activities src
and dst, but without enforcing an execution order between
them. Each prioritization edge ep is associated with a prior-
ity ep

priority ∈ {REGULAR, EXCEPTIONAL} which has the
following semantics: When the source node src is completed,
edge ep is signaled as TRUE and the priority of its destination
node dst is modified to ep

priority . As an example take an ac-
tivity Y with (static) priority EXCEPTIONAL. If an incoming
prioritization edge (with priority REGULAR) of this activity is
signaled as TRUE during runtime, the priority of Y will be set
to REGULAR as well; i.e., from this point in time the execution
of Y no longer constitutes an exception.

Figure 6 shows an example for the combined use of pri-
oritization edges and activity priorities. In the WF instance
graph depicted in Fig. 6a, activities C and D are concurrently
active whereas C is treated as normal step and the execution
of D is considered as an exception (corresponding to the static
priorities assigned to C and D). After completion of C its out-
going prioritization edge C → D (with priority REGULAR) is
signaled as TRUE. According to this, priority of activity D is
changed from EXCEPTIONAL to REGULAR such that D can

Fig. 6. Changing priorities during the execution of a WF instance

be offered as normal step in user worklists (cf. Fig. 6b). Re-
capitulating this, the preferred activity sequence is A, B, C, D,
E, though D may be executed directly after completion of A.

3.3 Modeling forward jumps at buildtime

As motivated, it often becomes necessary to give priority to
execution of activities though the steps normally preceding
them have not been completely finished yet. ADEPT provides
the needed flexibility by allowing users to jump forward to
selected activities and, therefore, to bring forward their execu-
tion. To better understand the problems arising in this context,
we must consider both, the viewpoint of the designer and of the
end user. For the designer it must be possible to differentiate
between the normal course a workflow shall take and excep-
tional deviations. Furthermore, by incorporating pre-planned
jumps the clarity of the WF model must not suffer and the
complexity for its creation must not be significantly increased.
From the viewpoint of end users, it is very important that they
are able to differ between activities scheduled along the nor-
mal flow and activities whose execution (currently) constitutes
a deviation.

138 M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems

Fig. 7. Modeling shortcuts (viewpoint of the WF designer)

3.3.1 General issues

When deviating from the preferred activity sequence, one has
to decide how bypassed activities are to be treated. Generally,
they may either be skipped or be continued and finished con-
currently to the untimely executed activities. ADEPT supports
both variants as well as mixtures of them. In the following,
we show how the modeling concepts from Sect. 3.2 can be
used to define pre-planned forward jumps at buildtime. As a
prerequisite the WF states in which the forward jump shall
be applicable and the activities of which the execution shall
be brought forward due to the jump must be known in ad-
vance. Pre-planned jumps can be defined at a high semantic
level. For this, a graphical WF description language is offered
which comprises the elements of the ADEPT base model (cf.
Sect. 2) as well as modeling elements for defining jumps. For
the definition of forward jumps a special edge type – called
shortcut – can be used. Internally, a shortcut nSC

s → nSC
d is

transformed into a representation of the ADEPT base model
whereby a precise operational semantics can be guaranteed.

A simple example is depicted in Fig. 7. The diagrammed
shortcut A → F reflects a forward jump as it is modeled by
the designer. It has the following semantics: After successful
completion of source activity nSC

s (activity A in our example),
both, direct successors of nSC

s over normal control edges (ac-
tivity B in our example) and the target activity nSC

d of the
shortcut (activity F in our example) are activated. While B
is treated as a normal step (with priority REGULAR), the “un-
timely” execution of activity F is considered as an exceptional
case. This exceptional status is preserved as long as F is not
scheduled along the “normal” control flow. In our example, F
is offered as exceptional step (with priority EXCEPTIONAL)
in worklists until it will either be finished or its direct prede-
cessor E will be completed.

Independent of the semantics of a shortcut nSC
s → nSC

d
its transformation into an executable representation of the
ADEPT base model requires the following conditions:

• The source node nSC
s of the shortcut must be a predecessor

of its target nodenSC
d over normal control edges (with edge

type CONTROL E). Formally: nSC
d ∈ c succ∗(nSC

s)
• The shortcut must not partially overlap with a loop control

block (LoopStart, LoopEnd), but loop control blocks and
shortcuts may contain each other:4

nSC
s ∈ Lbody ⇔ nSC

d ∈ Lbody(with
Lbody := c succ∗(LoopStart) ∩ c pred∗(LoopEnd))

4 Concerning the schema from Fig. 1, for example, shortcut “order
medical examination” → “perform examination” would be allowed.
As opposed to this, it would not be possible to model a shortcut
leading from activity “order medical examination” to an activity suc-
ceeding the end node of the depicted loop.

Fig. 8. Forward jump (with skipping bypassed activities)

Assume that a user wants to follow shortcut nSC
s → nSC

d ;
i.e., he wants to jump forward to activity nSC

d and work on it
though not all steps normally preceding nSC

d have been fin-
ished yet. When deviating from the preferred execution order,
it must be clear how to deal with bypassed activities from the
jump region; i.e., with activities located between the source
and the target node of the shortcut (nodes B, C or D, E in our
example). We present two alternative approaches which either
allow to skip bypassed activities or to finish them concurrently
to activity nSC

d .

3.3.2 Skipping bypassed activities

One possibility to deal with bypassed activities is to undo,
abort, or abandon their execution depending on their current
state; i.e., if a user deviates from the preferred execution path
by following a shortcut nSC

s → nSC
d , all activities located

between the source and the target activity of the shortcut will
be compensated, aborted, or abandoned – these activities form
the jump region of the shortcut and are defined by the set
Nbypass := c succ∗(nSC

s)∩c pred∗(nSC
d) (nodesB,C,D, and

E in our example from Fig. 8). Afterwards, the execution of
the flow will proceed with node nSC

d (node F in our example).
The WF graph Wmod in Fig. 8a contains a shortcut (A

→ F) as it is modeled by the WF designer. The WF graph
Wtransform in Fig. 8b shows the transformation of this short-
cut into a representation of the ADEPT base model. As one
can easily see, this transformation is based on the combined
use of an AND-/XOR-branching (defined by nodes A and F
in our example) and activity priorities. In more detail, the up-
per branch of the created AND-/XOR-branching consists of
a single jump activity with priority EXCEPTIONAL and with
label <“Jump to ” + target node> (“Jump to F” in our exam-
ple). The lower branch, in turn, constitutes the jump region
and corresponds to that subgraph of Wmod induced by nodes
from the set Nbypass ({B,C,D,E} in our example). According
to Wtransform the jump activity (“Jump to F”) is selectable
(with priority EXCEPTIONAL) as soon as the source activity
of the shortcut (activity A in our example) is completed. If

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 139

the jump activity is executed the upper branch of the AND-
/XOR-branching will be immediately completed. According
to the specified operational semantics, the lower branch (i.e.,
the jump region) will then be aborted and rolled back. After-
wards the flow can proceed at the target activity of the shortcut
(node F in our example). As opposed to this, if activities from
the lower branch (B, C or D, E in our example) are finished,
activation of the jump activity will be cancelled and corre-
sponding work items be removed from worklists.

Mapping the shortcut into a representation of the ADEPT
base model at buildtime. Generally, the mapping of a short-
cut nSC

s → nSC
d (with the described semantics) into a repre-

sentation of the ADEPT base model can be accomplished by
applying Algorithm 1 (which has complexity O(n) where n
denotes the number of activity nodes of theWF graph; the same
complexity results from the algorithms necessary to check the
conditions described in Sect. 3.3.1).

Algorithm 1. Transforming a shortcut nSC
s → nSC

d (with
skipping of bypassed activities) into ADEPT base model:

1. If nSC
s corresponds to a split node, insert a null activity

n1 (i.e., an activity without associated action) which takes
over the output firing behavior and outgoing control edges
of nSC

s . Set the output firing behavior of activity nSC
s to

ONE Of ONE (i.e., nSC
s is no split node anymore) and add

control edge nSC
s → n1 (cf. Fig. 9a)

2. Set the output firing behavior of activity nSC
s to

ALL Of ALL; i.e., nSC
s is converted into an AND split

node (cf. Fig. 9b).
3. If nSC

d corresponds to a join node, insert a null activity
n2 which takes over the input firing behavior and incom-
ing control edges of nSC

d . Set the input firing behavior of
activity nSC

d to ONE Of ONE (i.e., nSC
d is no join node

anymore) and add control edge n2 → nSC
d (cf. Fig. 9c).

4. Set the input firing behavior of nSC
d to ONE Of ALL; i.e.,

nSC
d is converted into an XOR join node (cf. Fig. 9d).

5. Insert an additional branch between nSC
s and nSC

d which
contains a jump activity (with priority EXCEPTIONAL)
labeled as <“Jump to” + nSC

d >. The other branch, in
turn, corresponds to that sub-graph of Wmod induced by
the nodes of the jump region (cf. Fig. 9e).

Formal pre-conditions and required checks at buildtime. Ob-
viously, when transforming a shortcut with the described se-
mantics into a representation of ADEPT base (cf. Algorithm
1), steps 1–5 generate an AND-/XOR-branching with two
branches: One corresponds to the jump activity (with excep-
tional priority) and the other to the jump region. In order to
ensure structural correctness (i.e., a proper block structuring
of the WF graph and the absence of cycles; cf. Sect. 2) and a
correct dynamic behavior of the flow (e.g., no deadlocks), in
addition to the already mentioned pre-conditions (see above),
the following restrictions must be met for the use of a shortcut
nSC

s → nSC
d :

• The subgraph induced by the node set Nskip := Nbypass∪
{nSC

s , nSC
d } must constitute a regular control block; i.e.,

nodes from branchings and loops are either not contained
within Nskip or they are completely covered by nodes from
this set.

Fig. 9. Shortcut transformation

• Different shortcuts nSC
s → nSC

d and mSC
s → mSC

d must
not overlap but may contain each other. Formally: nSC

s ∈
Mskip ⇔ nSC

d ∈ Mskip (with Mskip := c succ∗(mSC
s)∩

c pred∗(mSC
d))

Both conditions can be easily checked. If the shortcut is
applied to a correct control flow schema (i.e., proper block
structure, no cycles except loop backs) and if the above con-
ditions are satisfied, steps 1–5 of Algorithm 1 will result in
a correct control flow schema again; i.e., structural and dy-
namic properties as required by the ADEPT base model will
be further valid (for a formal treatment see [39]).

When transforming a shortcut into a representation of the
ADEPT base model, in addition, we have to check whether
the related data flow schema remains correct. As described in
Sect. 2, the most important correctness property requires that
all data elements read by an (arbitrary) activity X must have
been written by at least one preceding activity before X can be
started; in particular, this condition must hold independently
of the execution path leading to activation of X. This property
is ensured by corresponding data flow analyses at buildtime,
which make use of the presented block structure and which
have complexity O(n2). The presentation of algorithms, how-
ever, is outside the scope of this paper (see [39]).

Necessary data flow analyses can be reduced if the data
flow schema statisfies the above correctness property already
before the shortcut is defined. It is then sufficient to check
whether there are successors of nSC

d (incl. nSC
d) which are

data-dependent on (skipped) activities from the jump region.
Only for this case there may be missing input data due to the
defined shortcut. As an example take the scenario depcited in
Fig. 10a). The upper WF schema for which shortcut A → D is
defined contains data dependencies between A and C (C reads
the data element d1 written byA) as well as betweenD and E (E
reads the data element d2 written by A). As shown in the lower

140 M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems

Fig. 10. Checking data flow correctness when transforming a shortcut

WF schema, these dependencies persist when the shortcut is
transformed into an ADEPT representation. Furthermore, the
data flow schema remains correct since d1 (d2) will always
be written before C (E) is activated. This does not apply, for
example, with respect to the scenario from Fig. 10b). It is very
similar to the one shown in Fig. 10a) but takes E as target
activity of the shortcut instead of D. Since D is now contained
within the jump region it will be compensated, aborted or
skipped when applying the forward jump (“Jump to E”). This,
in turn, will lead to invocation of E or – more precisely – of
its associated activity program with missing input data, which
may cause inconsistencies (e.g., wrong outputs) or errors (e.g.,
program crashes). In ADEPT, therefore, the shortcut from A
to E will be either not allowed or the designer will have to
restore correctness of the data flow; e.g., by re-linking the
corresponding input parameter of E to another data element.

3.3.3 Finishing bypassed activities

When a user wants to apply a jump in order to bring forward
the execution of a certain activity, it is not always required to
skip activities of the jump region. Instead, it may be desired
to continue and finish them concurrently to the pre-scheduled
activities. With respect to activities from the jump region, this
means that the effects of already completed activities are to be
preserved, the execution of already started activities be contin-
ued, and activities not yet activated be scheduled as planned.
ADEPT allows the modeling of such forward jumps as well.
For this, the designer has to specify a shortcut nSC

s → nSC
d

and an activity nSC
n for synchronizing bypassed steps. At run-

time, authorized users may then bring forward the execution
of nSC

d as soon as nSC
s is completed. As opposed to the short-

cut semantics described above, activities from the jump region
are further processed in case the shortcut is followed. In do-
ing so, it is important to synchronize their execution with the
overall flow. As mentioned, for this a synchronizing activity
nSC

n has to be specified which then may be only activated if
its normal preconditions hold and – additionally to this – all

Fig. 11. Forward jump (with finishing bypassed activities)

activities from the jump region are completed. A simple ex-
ample is depicted in Fig. 11a). The WF graph Wmod contains
a shortcut A → F as it is modeled by the designer. In addition,
activity node nSC

s = H serves for synchronizing the execution
of bypassed activities. According to this, F (and its successor
G) may be executed ahead of the normal schedule (i.e., before
activity E is completed) as soon as A is finished. In case this
forward jump is followed, however, the processing of activi-
ties from the jump region (B, C or D, E in our example) must
be continued and finished before H can be activated.

The transformation of this shortcut is shown in Fig. 11
b). Activity A now represents an AND-split and H the cor-
responding AND-join. The execution behavior is as follows:
After completing A its successor B can be executed as ac-

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 141

tivity with priority REGULAR and the shortcut’s target F as
activity with priority EXCEPTIONAL. If no deviation from
the preferred execution order occurs during runtime (i.e., only
activities with priority REGULAR are processed), the lower
branch will be completed before F is started. For this case, the
outgoing prioritization edges of E are signaled as TRUE such
that the priorities of F and G are changed to REGULAR. As op-
posed to this, if a user starts F before E is completed this will
correspond to a deviation from the preferred activity sequence
(indicated by priority EXCEPTIONAL of activity F).

Mapping the shortcut into a representation of the ADEPT base
model at buildtime. Assume that shortcut nSC

s → nSC
d is to

be applied to a correct WF schema and bypassed activities are
to be finished before the (synchronizing) activity nSC

n may
be activated. This semantics can be realized by the combined
use the modeling concepts of the ADEPT base model and its
extensions as described in Sect. 3.2. To transform a shortcut
specification into an executable representation of the ADEPT
base model, Algorithm 2 (which has complexity O(n)) must
be applied (for an example see Fig. 12):

Algorithm 2. Transforming a Forward Jump (with Finishing
Bypassed Steps) into ADEPT base model:

1. Determine the minimal control block (nstart, nend) that
contains activities nSC

s , nSC
d , and nSC

n .
2. Create anAND split n1 which represents a null activity and

takes over the input firing behavior as well as the incoming
control edges (of type CONTROL E) of nstart. Link nstart

as a direct successor to n1.
3. Create an AND join node n2 corresponding to n1; n2 shall

represent a null activity and take over the output firing
behavior as well as the outgoing control edges of nend.
Link nend as a direct predecessor to n2.

4. Detach the subgraph induced by
Npreschedule := nSC

d ∪c succ∗(nSC
d)∩c pred∗(nSC

n)
from its current graph context, and insert it as additional
branch to the branching defined by (n1, n2). Let xstart:=
nSC

d be the start and xend be the end node of this subgraph
or branch.

5. Add two synchronization edges from nSC
s to xstart and

from xend to nSC
n .

6. Assign priority EXCEPTIONAL to each node from
Npreschedule and add prioritization edges (with edge pri-
ority REGULAR) from the end node of the jump region to
each node of this set.

7. Apply ADEPT reduction rules to eliminate unnecessary
nodes and edges (for details see [39,41]).

Formal pre-conditions and required checks at buildtime. For
the correct use of a shortcut nSC

s → nSC
d with described se-

mantics and its transformation into an executable representa-
tion of the ADEPT base model the following conditions must
be checked (corresponding algorithms make use of the block
structuring and have complexity O(n)):
• If nSC

d is contained within a branch of an XOR-branching,
node nSC

s must be contained within the same branch; i.e.,
it is not allowed to model a forward jump from an activ-
ity preceding an XOR-branching to an activity contained
within one of its branches.

• Let Npreschedule := {nSC
d } ∪ c succ∗(nSC

d) ∩
c pred∗(nSC

n) comprise activities that may be executed
ahead of the normal schedule according to the de-
fined shortcut (cf. Fig. 12). In order to obtain a proper
block structure we require that the subgraph induced by
Npreschedule itself constitutes a block (as it is the case in
Fig. 12 where the respective subgraph corresponds to a
sequence).

• Let N∗
preschedule be another set of activities that may be ex-

ecuted ahead of the normal schedule according to another
defined shortcut. Then Npreschedule and N∗

preschedule
must not partially overlap. Formally:

(Npreschedule ⊆ N∗
preschedule) ∨

(Npreschedule ⊃ N∗
preschedule) ∨

(Npreschedule ∩ N∗
preschedule = ∅)

For shortcuts with same target we require that these sets
are identical. This may be relevant for forward jumps from
different branches of an XOR-branching to the same target
activity.

If these restrictions are satisfied the structural and dynamic
properties of the WF graph (proper block structure, no cycles
except loop backs, no deadlocks, etc.) can be guaranteed for
the resulting control flow schema as well. Formal proofs can
be found in [39]. Concerning the data flow schema, we must
check whether the described transformations may lead to in-
vocation of activities with missing input data or may cause
data losses (due to lost updates). If the data flow schema is
correct before applying Algorithm 2 the following checks will
be sufficient:

• Checks for avoiding missing input data: Due to
the described transformations, activities from the sets
Npreschedule and Nbypass may now be executed concur-
rently to each other. For each activity x ∈ Npreschedule,
therefore, we must check whether data elements read by
x are further written by preceding steps. Obviously, if this
is the case before introducing the shortcut, it will be suffi-
cient to restrict these checks to those data elements written
by activities from Nbypass. Note that only order relations
of activities from this set are rearranged with respect to
nodes from Npreschedule.

• Checks for avoiding data losses due to lost updates:
Let Dbypass/Dpreschedule denote the set of data elements
to which activities from Nbypass/Npreschedule have write
access. Parallel write operations on data elements (and
data loss due to lost updates) will not arise, if Dbypass ∩
Dpreschedule = ∅ holds. If this does not apply, however,
the shortcut edge must either be removed or additional
synchronization edges between nodes from Nbypass and
Npreschedule have to be inserted.

3.3.4 Concluding remarks

The presented modeling concepts can be generalized. ADEPT
also allows the definition of hybrid forms of shortcuts. With
respect to nodes from the jump region, for each activity the de-
signer has the choice whether its execution is to be skipped or
continued when the jump is applied. Though the graph trans-
formations needed in this context are more complex, from the

142 M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems

Fig. 12. Transforming a shortcut into ADEPT base representation

conceptual point of view no new issues arise. We, therefore,
omit a more detailed presentation. In summary, pre-planned
deviations as described above form a key part of process flex-
ibility in WfMS. In addition, they do not require expensive
user interactions as it is the case for ad-hoc changes. Unfor-
tunately, it will not always be possible to capture all jumps
in the WF schema at buildtime. For this reason, we require
additional techniques that allow authorized users to perform
forward jumps in an ad-hoc manner as well if need be.

3.4 Performing dynamic forward jumps during runtime

Our experience with clinical workflows has shown that the WF
designer is generally not capable to predict all possible devia-
tions in advance and to capture them in theWF schema [14]. To
adequately cope with such unforeseen exceptions, in addition
to the described concepts, ADEPT supports ad-hoc deviations
from the pre-modeled WF schema at the instance level as well
(e.g., to insert, to delete, or to shift activities). In the following,
we restrict our considerations to dynamic forward jumps (e.g.,
skipping of a set of activities or immediate execution of an ac-
tivity though not all predecessors have been completed yet).
In this context, it is very important that change definition is
not complicated for users; i.e., all complexity associated with
missing activity input data (e.g., due to skipping of activities),
data losses (e.g., due to lost updates), deadlocks (e.g., due to
cyclic waits of activities), or state adaptations must be hidden
to a large degree from users. Instead, they must be able to de-
fine a dynamic forward jump at a high semantic level without
requiring that they are familiar with the used WF description
formalism.

3.4.1 Dynamic forward jumps in ADEPT

Generally, dynamic jumps make only sense if there is no risk
of activity program crashes, data losses, or any other obscure
system behavior. We have spent much effort on the design

of high-level change operations that allow users to adapt in-
progress WF instances while preserving the mentioned cor-
rectness properties (cf. Sect. 2). As response to a dynamic
change request, ADEPT, in essence, first checks data depen-
dencies and ordering constraints to detect whether the problem
of missing input values, lost updates, or cyclic waits (dead-
locks) may occur in the modified WF instance graph. In case
of missing input values, we offer the possibility to generate
an electronic form and to prompt users for these values (either
immediately or when needed). Only if no consistency problem
occur or if it is explicitly tolerated by the user the change re-
quest will be accepted and the necessary graph transformations
be performed. In addition, the markings of nodes and edges are
automatically adapted when the change is applied. In ADEPT,
users are not burdened with this. They may express a jump re-
quest in a rather declarative way and at a high semantic level
(e.g., “work immediately on X”, “skip X1,X2, ...,Xn”). For
this, high-level modification operators are offered which are
based on the combined use of basic change operations.

Move operation: The move operation constitutes a basic
change operation for the (dynamic) rearrangement of activi-
ties. In more detail, it allows to shift an activity (or a whole
block) from its current position in the WF instance graph to
another place provided that the actual state of the instance does
not prohibit this. The restructuring of the instance graph, nec-
essary in this context, may be more or less complex depending
on the target position the activity is to be re-inserted. For ex-
ample, an activity detached from its current position may be
re-inserted between two succeeding activities, between two
sets of succeeding activities, or parallel to a certain activity
or control block. A simple example for the use of the move
operation is depicted in Fig. 13. Assume that for the WF in-
stance from Fig. 13a) a user wants to work immediately on
activity C though B has not yet been finished. In principle,
this is possible since C is not data-dependent on B. Depending
on the concrete change scenario the user may desire to skip
execution of B, first execute C and then work on B (i.e., to
swap B and C), or continue the processing of B concurrently

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 143

A B C D

C

DA BA C B D

a) b) c)

d d

d

TRUE_SIGNALEDCOMPLETED ACTIVATED
AND split AND join

Fig. 13. a Original WF instance graph and WF instance graph resulting after moving C from its current position to the position, b ... located
between A and B, c ... located parallel to B

to C. While the skipping of B is internally based on the delete
operation [39] the other two changes can be realized by us-
ing the move operation. Figure 13b) shows the WF instance
graph after detaching activity C from its current position and
re-inserting it between A and B. Note that the re-evaluation of
the WF state, which is automatically done in ADEPT, results
in activation of C and deactivation of B. Figure 13c) shows the
WF instance graph as it results when C is moved to a position
parallel to B.

Concerning this example certain pre-conditions must be
met in order to correctly apply the move operation. For in-
stance, it would not be possible to move C to a position before
A since A and its predecessors have been already finished and
therefore an undefined marking would result. But even if ac-
tivity A had not yet been started, the desired operation would
be prohibited by ADEPT, since C would then be invoked with
missing input data.

Jump forward operation: Based on the sketched move
operation we have realized several high-level operations for
dynamic forward jumps. Generally, these jump operations
enable authorized users to pass the control or to jump for-
ward to an activity ntarget which has not yet been acti-
vated by the WfMS. When applying such a dynamic jump
different policies are offered to users in order to deal with
uncompleted activities from the jump region (i.e., uncom-
pleted activities preceding the node ntarget in the flow
of control): Nbypass := {n ∈ pred∗(ntarget)|NS(n) ∈
{NOT ACTIVATED, ACTIVATED, RUNNING}}.

Activities from this set may be aborted, skipped, or pro-
cessed anyway depending on what the user desires. In the
latter case, their execution must be synchronized with a dy-
namically specified activity nsync ∈ c succ∗(ntarget) similar
to the static case described in Sect. 3.3. In any case the applied
transformation steps lead to a proper block structure again in
which additional synchronization edges may be used if nec-
essary (see below). Since the structural constraints as well as
the graph transformations necessary to realize dynamic for-
ward jumps are very similar to the static case, we omit further
details at this point (a more comprehensive treatment can be
found in [39]). Instead, in the following subsection we present
an example working out important issues related to dynamic
forward jumps.

3.4.2 Example

Let us assume that at a certain point in time an instance graph
looks like as the one depicted in Fig. 14: A and B are com-
pleted and C is currently executed. Let us further assume that
an exceptional situation occurs which makes it necessary to

B

D E

F

G C
AND plit join

d1 d2 data elements

TRUE_SIGNALED COMPLETED RUNNING ACTIVATED

A H

Fig. 14. WF instance graph (for which a user wants to jump forward
to D)

Fig. 15. Dynamic forward jump – intermediate WF instance graph

immediately perform D (i.e., to jump forward to D) but to
maintain the order relationship between all other activities (E
after D; G after E and F, etc.).

At first, data dependencies for activity D are checked: D
is executable, in principle, because it receives its input data
from the already completed activity B and it does not produce
any output data such that no problem of lost updates occurs.
Thus the restructuring of the instance graph can be started. In
order to make it possible that D can be immediately activated,
D must no longer be a successor of C. Instead, D has to be
placed in a branch parallel to E. This means that the control
edge from C to D has to be removed and replaced by a control
edge from B to D.

Figure 15 illustrates how the (intermediate) WF instance
graph looks like at this point in time. D has become a parallel
step with respect to C, its direct predecessor now is B. This
transformation alone would not be correct, however, because
not all of the previously existing constraints are obeyed any
longer. It would be possible, for example, thatE is being started
(once C has been completed) in parallel or even before D.
To enforce the correct execution sequence, a synchronization
edge from D to E is introduced which enforces that E cannot
be started until D has been completed (cf. Fig. 15). Finally, the
WF state is reevaluated. In particular, the control edge from B
to D is marked with TRUE SIGNALED which means that D
can be immediately executed. The final WF instance graph is
depicted in Fig. 16.

144 M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems

Fig. 16. Dynamic forward jump – final WF instance graph

It is important to mention that, in general, the applicability
of a dynamic change depends on the current state of the WF
instance graph as well. Concerning a dynamic forward jump,
we require that its target activity has not yet been activated;
otherwise the application of this operation would not make
sense. With respect to other change operations, the required
state constraints may be more or less complex, depending on
the kind of change. For example, a new activity must not be in-
serted as a predecessor of an already running or completed step
and a completed step must not be deleted. This would cause
an inconsistent marking and therefore an undefined execution
behavior of the WF instance graph. It is therefore prohibited in
ADEPT. Generally, for each basic change operation ADEPT
defines formal and easy to check compliance rules with (com-
plexity O(n)) to decide whether the intended change can be
applied in the current WF state or not.

Also very challenging is the question how to adapt the
markings of a WF instance graph when a dynamic forward
jump or, more general, a dynamic change is applied. ADEPT
uses a sophisticated approach for setting markings of activity
nodes and edges, and for adapting them in a consistent man-
ner when a dynamic change is applied (an algorithm for this
with complexity O(n) is described in [43]). The correspond-
ing rules are independent from the kind of change, which en-
ables the WfMS to efficiently and automatically adapt mark-
ings even in case of complex changes. Taking our example
from Figs. 15 and 16, for instance, the newly inserted con-
trol edge B → D is evaluated to TRUE SIGNALED since B
has been already marked as COMPLETED. This, in turn, leads
to re-evaluation of activity D of which the marking is set to
ACTIVATED, such that users can now work on D. Note that
this is exactly the desired result. Generally, when introducing
a dynamic change, already activated activities may have to be
deactivated or vice versa. In doing so, ADEPT updates user
worklists accordingly.

3.5 Discussion

We have discussed general issues related to the support of
pre-planned as well as dynamic forward jumps. In particular,
we have shown how corresponding facilities can be offered to
users. Our most important goal was to ease the use of corre-
sponding facilities and to hide the complexity associated with
them from users. By allowing designers to describe deviations
already at buildtime, the flexibility of WF-based applications
can be significantly increased. In order to enable users to ad-
equately deal with unforeseeable events, in addition, ADEPT

provides support for dynamic changes and dynamic forward
jumps. Corresponding changes will be only allowed if they do
not violate the correctness properties set out by the ADEPT
base model. Furthermore, in the implemented ADEPT WfMS
all changes and deviations are properly integrated with respect
to authorization and documentation.

4 Backward jumps

In practice, it is very important to allow authorized users to
perform backward jumps to former execution states if need
be. In ADEPT, WF designers can model normal loop backs
as well as failure backward jumps (called backward jumps for
short). While loop backs specify iterative executions, back-
ward jumps can be used to partially roll back the flow as re-
sponse to semantic failures (cf. Example 2). More precisely,
a rollback operation (partially) resets the effects of previous
activity executions. Among other things this includes the re-
setting of markings, the undoing of write operations on data
elements, and the compensation of external effects if possible
and reasonable (e.g., by invoking compensating activities).
ADEPT allows the modeling of different kinds of backward
jumps. Additionally, to deal with unforeseen situations that
cannot be pre-planned at buildtime, it enables users to per-
form ad-hoc backward jumps.

Example 2. (Semantic Failure of an Activity Execution): We
refer to Example 1. Regarding the described workflow, a med-
ical examination may fail due to several reasons. For instance,
it may not be possible to examine the patient if preparatory
measures have been omitted or the patient does not agree with
the intervention. Depending on the concrete reason of a se-
mantic failure, the actions necessary for exception handling
may vary. For example, the workflow may have to be aborted
or it may be sufficient to suspend its execution, to roll back the
flow to a former state, and then to resume work in this state.

4.1 Semantic failures and failure backward edges

For handling (semantic) activity failures (cf. Example 2) and
for the modeling of related backward jumps, we introduce two
additional concepts: failure codes and failure backward edges.

To each activity the WF designer may assign an ar-
bitrary number of failure codes provided that correspond-
ing semantic failures are known at buildtime. In our ex-
ample, activity “perform examination” may be associated
with the two failure codes OMITTED PREPARATIONS and
MISSING AGREEMENT. Generally, a failure code corre-
sponds to a semantic failure that may occur during activity ex-
ecution and that makes it impossible to successfully complete
this activity. The task of the WF designer is to identify these
semantic failures and to define adequate exception handling
actions for them. Possible reactions supported by ADEPT in-
clude the repetitive execution of failed activities, the execu-
tion of alternative steps, the skipping of the failed activity, the
(partial) rollback of the flow, or its controlled abortion. In the
following we concentrate on issues related to partial rollback.

For the definition of rollback operations, failure back-
ward edges (called failure edges for short) are offered. A

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 145

A

C

B

start D

H I

J K end

F

failure edge

E G

failure edge failure edge

ec1

XOR split XOR join/
AND split

AND join

Fig. 17. Modeling backward jumps with failure edges

failure edge f = nfail → nbwd links two activities nbwd

and nfail together (in backward direction) and is associated
with a failure code ec of the source activity nfail. If this
activity fails and returns ec as failure code, the processing
of the WF instance will be (partially) suspended, the fail-
ure edge f be signaled, and the flow be rolled back to the
state that had been valid before the execution of nbwd was
started. In doing so, the scope of the rollback is limited to
activities from the backward region which corresponds to
that subgraph induced by the nodes from the set Nbwd with
Nbwd := (c succ∗(nbwd) ∩ c pred∗(nfail)) ∪ {nbwd, nfail}.

Examples for the use of failure edges are depicted in
Fig. 17:

• I → H describes a partial rollback whose scope is re-
stricted to a branch of the parallel branching (D, I); i.e.,
Nbwd = {I, H}. The signaling of I → H does not affect
the processing of other branches.

• K → F defines a partial rollback from an activity outside
a parallel branching (K in our example) back to activity F,
which is located within a branch of this branching (Nbwd =
{F, G, J, K}). If K → F is signaled at runtime, activities
J, G, and F will be reset and the flow will continue with
F. Note that activities from the lower branch (H and I) are
not affected by this partial rollback.

• A special semantics is captured by the failure edge B →
start. It links a failure code of B with a rollback oper-
ation to the start activity of the flow (Nbwd = {start,
A, B}). When signaling this edge the flow will be aborted
and its execution be completely rolled back.

How the state markings and data elements of aWF instance
graph are reset when a failure edge is signaled is shown in
Fig. 18. To ensure a correct WF execution behavior afterwards,
the use of a failure edgenfail → nbwd must meet the following
restrictions:

• The target activity nbwd of the backward jump must pre-
cede the source node nfail in the (normal) flow.

• If nbwd is contained within a branch of an XOR-branching
nfail must be contained within the same branch. Other-
wise the backward jump may refer to an activity that was
not previously executed and therefore lead to an unde-
fined state. Formally: Let j be the XOR-join of an XOR-
branching with corresponding split node s. Then we re-
quire:
nbwd ∈ Z := c succ∗(s) ∩ c pred∗(j) ⇒ nfail ∈ Z

• If nbwd is contained within a loop body we require that
nfail must be contained within the same subgraph. Other-
wise it remains unclear to which iteration of the loop the
WF is to be rolled back.

These conditions can be easily checked; algorithms with
complexity O(n) are presented in [39].

4.2 Automatic backward jumps

Automatic backward jumps can be linked to semantic fail-
ures of WF activities. They can be simply modeled by the use
of failure edges and codes. When performing the backward
jump at runtime, markings of nodes from the backward region
(i.e., nodes from the set Nbwd) will be reset. This becomes
necessary in order to correctly proceed with the flow after-
wards. Furthermore, for all completed or running activities
from the backward region, write operations on data elements
will be undone. In addition, external effects of these activi-
ties (e.g., modifications of application data) may have to be
undone as well by invoking corresponding compensation pro-
grams. However, whether compensation is possible or not is
highly dependend on the respective application. Concerning
compensation and data context management, ADEPT follows
an approach similar to Sagas [21] and Contracts [42]. In the
following, however, we put the focus on modeling aspects; a
treatment of transactional properties and other runtime issues
is outside the scope of this paper.

An example for a pre-planned, automatic backward jump
is depicted in Fig. 18. Let us assume that during the execution
of K a semantic failure (with failure code ec1) occurs. This,
in turn, leads to the signaling of the failure edge K → F,
which causes a partial rollback of the flow. In more detail,
activity K is aborted and activities J, G, and F are undone (by
invoking associated compensation steps). In doing so, their
effects on state markings as well as on data elements are reset.
For example, the write operation of activity F on d is undone
and the old value of d (written by activity D) is restored. Note
that the rollback defined by K → F only concerns nodes from
the backward region (Nbwd = {F, G, J, K}) and therefore
does not affect activities from the lower branch of the parallel
branching (H and I in our example).

4.3 User-initiated backward jumps

Up to now, we have only dealt with automatic backward jumps
which are applied when an activity execution fails. In excep-
tional situations, for authorized users it must be also possible
to directly intervene in the control of a flow by aborting the WF
instance or by jumping back to already passed regions. Since
corresponding jumps are very often performed as response to
external events they can be more or less determined with re-
spect to context and predictability. Depending on this, we have
to differentiate between (user) backward jumps, which can be
pre-planned and therefore be captured in the WF schema at
buildtime, and ad-hoc backward jumps.

Example 3. (User-initiated Backward Jumps): We refer to Ex-
ample 1. Assume that the patient’s state of health gets worse
or the physician wants to revise previous decisions concerning
patient treatment. In such cases it must be possible for him or
her to regain control and to jump back to previously executed
steps. (This should at least be possible as long as the medical
examination has not taken place.) This, in turn, may require
that running activities (e.g., “preparation of the patient”) may
have to be aborted or completed ones (e.g., “making an ap-
pointment”) may have to be undone. In many cases, the context
for the application of such user initiated backward jumps is

146 M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems

Fig. 18. Partial rollback of a flow
due to the signaling of a failure
edge. a Adaptation of state mark-
ings and b reset of write operations
on data elements

known in advance such that they can be considered at build-
time.

4.3.1 Pre-planned user backward jumps

Similar to shortcuts, ADEPT offers a special edge type to de-
signers – called regainControl – for the modeling of user-
initiated backward jumps.A regainControl nRC

s → nRC
d links

an activity nRC
s with a preceding activity nRC

d ∈ pred∗(nRC
s)

and has the following semantics: After completing nRC
d and

before activating nRC
s , users may initiate a rollback of the flow

to the state which had been valid before nRC
d was started. An

example is depicted in Fig. 19a). Comparable to the model-
ing of shortcuts it shows the viewpoint of the WF designer. A
backward jump from C to A is defined by the regainControl
edge C → A. It is selectable after completing A and before ac-
tivating C. If the backward jump is chosen by a user, the flow
will be rolled back to the state that had been valid before A
was started. Similar to a shortcut, a regainControl is internally
transformed into a representation of the ADEPT base model
in order to guarantee a precise and correct execution behavior
(cf. Fig. 19b). Since the basic principles of such a transforma-
tion have been already discussed in conjunction with shortcuts,
we omit a more detailed presentation at this point. The same
applies with respect to pre-conditions that must hold for the
correct applicability of a regainControl.

4.3.2 Ad-hoc backward jumps

Generally, it will not always be possible to foresee and to
pre-model all semantic failures that might occur during WF
execution. Furthermore there are backward jumps for which a
pre-modeling is not possible or is too complex. As an example
take a backward jump to an activity that is contained within
a branch of an XOR-branching. Since at buildtime it is not
known whether the corresponding branch will be selected for
execution, the pre-modeling of such a backward jump does

Fig. 19. RegainControl (modeler view) and its internal realization in
ADEPT

not make sense. To adequately deal with such cases as well,
ADEPT allows authorized users to perform ad-hoc backward
jumps in order to roll back the WF to a previous execution state
if need be. Basic to such an ad-hoc deviation (in backward
direction) are the WF instance graph, the execution history,
and the data element history of the respective WF instance.
The execution history, for example, logs data about start and
completion of activity executions, which can be used when a
rollback has to be performed (cf. Fig. 20). To initiate an ad-
hoc backward jump the user may dynamically select a target

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 147

activity from the list of already completed or running activities.
Afterwards the flow can be rolled back to the state that had
been valid before this activity instance was started. It is also
possible to roll back the WF instance to earlier iterations of
a loop, i.e., the scope of the rollback may comprise activity
executions from different loop iterations. A simple example
illustrating this is depicted in Fig. 20. Note that markings have
to be adapted in case of a backward jump as well.

4.4 Discussion

The presented concepts allow us to capture a broad spectrum
of pre-planned as well as dynamic backward jumps. Concern-
ing transactional guarantees in combination with backward
jumps, usually, for long-running workflows we cannot ensure
full ACID properties (and we also do not need this in most
cases in practice). We, therefore, have adopted concepts from
the field of extended transaction models [21, 42] by allow-
ing the WF designer to (optionally) associate activities with
compensation programs, which are then invoked in case these
activities have to be undone due to a rollback. Currently, we are
working on several other issues arising in this context. They
include the handling of backward jumps in modified WF in-
stance graphs (e.g., backward jump to a previously inserted
activity), the undoing of temporary changes (e.g. modifica-
tions caused by a dynamic forward jump) in connection with
rollback operations, and the definition of compensation scopes
in order to flexibly adapt the compensation behavior of WF
instances depending on their state.

5 Related work

A widespread formalism for WF modeling is offered by Petri
Nets [38,58]. Petri Nets have proven themselves as very useful
if structural and dynamic properties of WF models have to be
analyzed and verified (e.g., liveness, reachability of marking
situations, net invariances). Concerning exception handling,
many approaches assume that all exceptions which might oc-
cur during WF execution are known in advance and can there-
fore be captured in the Petri Net model [37]. Most of them,
however, do not offer special modeling elements for this. In
particular, backward jumps as described in this paper have not
been addressed at all. Instead, exceptions and deviations have
to be described with the same language elements that are used
for modeling the “standard” token flow. Very often this leads
to complex net structures, which are difficult to understand
and to maintain for users [19]. The adaptation of nets is addi-
tionally aggravated by the fact that Petri Nets formalisms very
often lack a clear separation between control and data flow
and do not provide concepts for the explicit modeling of loop
backs. Recent work from the field of Petri Nets has picked up
this criticism and has offered more flexible concepts for ex-
ception handling. In detail, these approaches support the late
binding and modeling of WF subnets [24, 25], the dynamic
adaptation of net markings during WF execution [1, 20], the
ad-hoc migration of a WF instance between two net config-
urations [3,55], or the dynamic change of the net structure
during runtime [18,19,56,57].

Simple, but useful approaches are offered by HOON [25]
and MOVE [24]. HOON uses high-level Petri Nets for WF
modeling and execution. In particular, late binding of activity
components or subnets is supported to increase flexibility. De-
viations from the pre-modeled net or dynamic changes, how-
ever, are not possible once a subnet is bound to an activity. A
more advanced approach is offered by MOVE, which supports
late modeling of subnets [24]. At buildtime, the designer may
specify activity nodes for which a subnet may be dynamically
defined or modified during runtime as long as the correspond-
ing activity is not activated. While this approach is sufficient
for supporting dynamically evolving workflow structures, it
does not provide the necessary flexibility to deal with excep-
tional situations. MOBILE [28] follows a descriptive approach
for WF modeling. In particular, the WF designer may omit
those aspects of a WF model (e.g., the order of tasks), which
have to be defined by end users during run-time. Although
this approach allows to combine activities in a very flexible
way, it is only applicable as long as the activity programs are
encapsulated and autonomous such that they may be executed
in arbitrary order.

One of the first approaches for the dynamic adaptation
of net markings has been offered by MWMS [1,2]. MWMS
uses a simple Petri Net formalism. In particular, MWMS al-
lows users to apply backward and forward jumps within a
net instance during runtime. Such “roll forwards” and “roll
backs” [1] can be applied without violating the consistency
of the flow (e.g., no deadlocks). This is achieved, however,
by abandoning important elements needed for WF modeling
in practice (e.g., no loops, no conditional branchings, no data
flow tokens). Though this approach is interesting from a the-
oretical point of view, due to its restrictive WF meta model it
will not work in real-world environments.

One of the first frameworks for dynamic WF changes has
come from the Petri Net community [19] as well. For WF
modeling so-called flow nets are used. A dynamic change is
accomplished by substituting a marked subnet (old change re-
gion) by another marked net (new change region). The most
interesting issues arising in this context are how to adapt net
markings at all and how to accomplish this in a consistent man-
ner; i.e., without causing an undesired dynamic behavior (e.g.,
deadlocks) in the sequel (cf. Fig. 21). Many of the proposals
made in this context assume that users are familiar with Petri
Nets or that they are able to manually shift tokens from the old
to the new net or to add new tokens, if required [20]. Concern-
ing clinical workflows, for example, such an approach does not
work in practice. Apart from this, correctness and consistency
checks necessary in this context require expensive reachabil-
ity analyses for each WF instance. To avoid “dynamic change
bugs” [54,57], several proposals have been made: In [54], for
example, the authors require that instances of a given net may
be only changed if they are not currently executed on modifica-
tion hit regions. To correctly adapt net markings, in addition,
it is proposed to introduce functions that map markings be-
tween the old and the new net [55]. Corresponding mapping
functions either have to be specified by the designer or are
limited to special kinds of changes (i.e., completeness is not
ensured). In our experience this is not realistic when looking
at real-world processes.

As opposed to these approaches, ADEPT automatically
preserves the consistency of markings when a jump operation

148 M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems

Fig. 20. Dynamic backward jump and concomitant adaptation of state markings

a)

B A C D E

Old Change Region Token

activity

D A

B

C

E

New Change
Region

b)

DEADLOCK!

arrange B and C as
parallel steps!

Fig. 21. Dynamic structural changes in Petri nets and the problem of
adapting markings

is applied. In particular, node and edge markings are auto-
matically adapted in an efficient and consistent way. Basic
to this are the described execution properties of the ADEPT
base model and the chosen marking rules. When compared

to existing approaches, ADEPT covers a broader spectrum of
deviations. In addition, we have dealt with many challenging
issues that have not been systematically addressed in the WF
literature so far (e.g., concerning the modeling of backward
and forward jumps, the correct application of jump operations
in connection with loops and conditional branchings, the sup-
port of jump operations with different semantics, or the use of
automatic jumps).

Several approaches use State- and Activity-Charts for WF
modeling [22, 51, 60]. HieraStates [51], for example, tries to
increase flexibility by allowing users to dynamically add new
states or state transitions during runtime. Furthermore, simple
forward jumps can be modeled by the use of a special tran-
sition type. As opposed to ADEPT, backward jumps cannot
be expressed in a direct way, and dynamic jumps are not sup-
ported at all. Another interesting approach has been presented
in [22]. It uses Statecharts for WF modeling and deals with
issues related to semantic preserving changes. This may be
of interest, for example, when more complex modifications
become necessary.

Other approaches from the literature combine graphical
WF description formalisms with ECA rules in order to increase
flexibility [11,12,30,36]. AgentWork [36], for example, uses
global rules to enable the WfMS to dynamically restructure
the control flow of a WF instance at the occurrence of logi-
cal exceptions. The implementation of AgentWork has been
partially based on the ADEPT prototype [29, 53]. Hence the
two approaches complement one another. In MOKASSIN [30]
rules serve as the basis for extending the WF meta model by
user-defined constructs, if need be. In addition, WF designers
may configure the WF behavior (e.g., with respect to dynamic
changes) in a very flexible manner. Although this approach
provides a great flexibility for WF designers, it will be not
applicable in many application domains, since no correctness
or consistency guarantees can be made.

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 149

In the WF community, several other work on is-
sues related to dynamic WF changes has been done
(e.g., [9,10,17,26,31,35,48,59]). WIDE [10], TRAM [31],
WASA2 [59] and BREEZE [48], for example, focus on WF
schema evolution and on the migration of in-progress WF in-
stances to the new schema, if possible and desired. In Obli-
gations [9] a WF instance graph is dynamically composed of
multiple process templates which reflect different views on
the WF instance. Exception handling is possible through the
dynamic addition or removal of templates. Correctness issues
are not discussed. Finally, in CONSENSUS [4] combined e-
negotiations are modeled and enacted using WF technology.
To support dynamism, runtime WF modifications are sup-
ported. Like AgentWork, CONSENSUS has used the ADEPT
WfMS for implementation purposes.

Finally, several other proposals for the support of adaptive
workflows have been made in the literature. They are based on
different formalisms, like graph grammars [9,27,44], process
grammars [23], planning techniques [7], inheritance mecha-
nisms [56], or transactional models [17,21,34].

6 Summary

We have presented a sophisticated approach for the flexi-
ble support of pre-planned as well as dynamic deviations in
WfMS. For WF designers, high-level concepts are offered for
the modeling of forward and backward jumps. By transform-
ing them into an executable representation of the ADEPT base
model, a correct and efficient execution by theADEPT WF en-
gine can be ensured. Furthermore, the separation of standard
process descriptions from exceptional paths contributes to a
better structuring of the WF models. We have shown that a
flexible execution behavior can be achieved when capturing
deviations in WF models at buildtime provided that they are
known in advance.To increaseWfMS flexibility at runtime and
to enable users to deal with unforeseen exceptions, in addition,
we offer high-level operations to dynamically intervene into
the control of in-progress workflows. Authorized users may
work on activities ahead of the normal schedule by jumping
forward to them or they may roll back the flow to a former ex-
ecution state by applying a corresponding backward jump. In
any case, ADEPT ensures that the correctness and consistency
of the flow is preserved when applying such a jump and that
the complexity arising from the support of dynamic changes
is hidden to a large degree from users.

In this paper we have concentrated on issues related to for-
ward and backward jumps inWfMS. How to define other kinds
of changes, how to “physically” perform them, how to adapt
state markings and user worklists in this context, or how to deal
with concurrent change definitions (and with synchronization
issues arising in this context) are other important questions
addressed by our research as well. Some of them have been
already reported in other papers of our group (e.g. [41, 43])
and been considered in our prototypical WfMS implementa-
tion as well [29]. Indeed, the ADEPT prototype proves that
one can really build a flexible and robust WfMS which offers
the described functionality within one system.

Acknowledgements. We would like to thank the anonymous review-
ers and our colleague Stefanie Rinderle for their valuable suggestions.

References

1. Agostini, A., De Michelis, G.: Simple workflow models. In:
Proc. of the Workshop on Workflow-Management: Net-bases
Concepts, Models, Techniques, and Tools., Lissabon, Juni 1998,
pp. 146–163

2. Agostini, A., De Michelis, G.: Improving flexibility of workflow
management systems. In: Proc. Business Process Management
(BPM’2000), LNCS 1806, Lissabon, June 2000, pp. 218–234

3. Badouel, E., Oliver, J.: Reconfigurable nets – a class of high level
petri nets supporting dynamic changes. In: Proc. of the Work-
shop on Workflow-Management: Net-bases Concepts, Models,
Techniques, and Tools, Lissabon, Juni 1998, pp. 129–145

4. Bassil, S., Benyoucef, M., Keller, R., Kropf, P.: Addressing dy-
namism in e-negotiations by workflow management systems. In:
Proc. DEXA Workshop, September 2002

5. Bauer, T., Dadam, P.: Efficient distributed workflow manage-
ment based on variable server assignments. In: Proc. CAiSE
’00, Stockholm, June 2000, pp. 94–109

6. Bauer, T., Reichert, M.: Dynamic change of server assignments
in distributed workflow management systems. Datenbank Spek-
trum, 2(4): 59–67, 2002

7. Beckstein, C., Klausner, J.: A planning framework for workflow
management. In: Proc. Workshop on Intelligent Workflow and
Process Management., Stockholm, August 1999

8. Beuter, T., Dadam, P., Schneider, P.: The WEP model: Adequate
workflow-management for engineering processes. In: Proc. Eu-
rop. Concurrent Engineering Conf. 1998, Erlangen, April 1998

9. Bogia, D.: Supporting Flexible, Extensible Task Descriptions In
and Among Tasks. PhD Thesis, University of Urbana, Illinois,
1995

10. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution.
Data and Knowledge Engineering, 24(3): 211–238, 1998

11. Casati, F., Fugini, M., Mirbel, I.: An environment for designing
exceptions in workflows. Information Systems, 24(3): 255–273,
1999

12. Chiu, D., Li, Q., Karplapalem, K.: A meta modeling approach to
workflow management systems supporting exception handling.
Information Systems, 24(2): 159–184, 1999

13. Curbera, F., Goland,Y., Klein, J., Leymann, F., Roller, D., Thatte,
S., Werawarana, S.: Business Process Execution Language for
Web Services (V 1.0). Initial Public Draft Release, 2002, see
http://www.ibm.com/developerworks/library/
ws-bpel, 2002

14. Dadam, P., Reichert, M., Kuhn, K.: Clinical workflows – the
killer application for process-oriented information systems? In:
Proc. 4th Int’l Conf. on Business Information Systems (BIS ’00),
Poznan, Poland, 2000, pp. 36–59

15. Dijkstra, E.: Cooperating sequential processes. In: Genuys, F.
(ed.) Programming Languages. Academic Press, 1968

16. Dumas, M., ter Hofstede, A.H.M.: UML activity diagrams as
a workflow specification language. In: Proc. Int’l Conf. on the
Unified Modeling Language, Toronto, 2001

17. Eder, J., Liebhart, W.: Contributions to exception handling in
workflow-management. In: Proc. EDBT Workshop on Workflow
Management Systems, Valencia, 1998, pp. 3–10

18. Ellis, C.A., Keddara, K.: A workflow change is a workflow. In:
Proc. Business Process Management (BPM’2000), LNCS 1806,
2000, pp. 201–217

19. Ellis, C.A., Keddara, K., Rozenberg, G.: Dynamic change within
workflow systems. In: Proc. Int’l Conf. on Org. Comp. Sys.,
Milpitas, CA, August 1995, pp. 10–21

20. Ellis, C.A., Maltzahn, C.: The Chautauqua workflow system. In:
Proc. 30th Int’l Conf. on System Science, Maui, 1997

150 M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems

21. Elmargarmid, A.K. (ed.): Database Transaction Models for Ad-
vanced Applications. Morgan Kaufmann Publ., 1992

22. Frank, H., Eder, J.: Equivalence transformations on statecharts.
In: Proc. 12th Int’l Conf. on Software and Knowledge Eng.,
Chicago, July 2000, pp. 150–158

23. Glance, N., Pagani, D., Pareschi, R.: Generalized process struc-
ture grammars (gpsg) for flexible representations of work. In:
Proc. 7th Intl Conf. on Computer Supported Cooperative Work
(CSCW96), Boston, MA, 1996, pp. 180–189

24. Hagemeyer, J., Hermann, T., Just-Hahn, K., Striemer, B.: Flex-
ibility in workflow management systems. In: Proc. Software-
Ergonomie’97, Dresden, Germany, 1997, pp. 179–190 (in Ger-
man)

25. Han,Y.: Software Infrastructure for Configurable Workflow Sys-
tems. PhD Thesis, TU Berlin, 1997

26. Han, Y., Sheth, A.: On adaptive workflow modeling. In: Proc.
4th Int’l Conf. on Information System Analysis and Synthesis,
Orlando, 1998

27. Heimann, P., Joeris, G., Krapp, C., Westfechtel, B.: DYNA-
MITE: Dynamic task nets for software process management.
In: Proc. 18th Int’l Conf. Software Engineering, Berlin, 1996, p.
331341

28. Heinl, P., Schuster, H., Stein, K.: Support of ad-hoc workflows
in the mobile workflow model. In: Proc. Softwaretechnik in Au-
tomation und Kommunikation, Munich, March 1996, pp. 229–
242

29. Hensinger, C., Reichert, M., Bauer, T., Strzeletz, T., Dadam,
P.: ADEPTworkflow – advanced workflow technology for the
efficient support of adaptive, enterprise-wide processes. In: Proc.
Software Demonstration Track (EDBT ’00), Konstanz, March
2000

30. Joeris, G.: Defining flexible workflow execution behaviors.
In: Proc. GI-Workshop, Enterprise-wide and Cross-enterprise
Workflow-Management (Informatik ’99), October 1999, pp. 49–
55

31. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolu-
tion based on workflow type versioning and workflow migration.
In: Proc. CoopIS ’99, Edinburgh, September 1999, pp. 104–114

32. Lei, Y., Singh, M.P.: A comparison of workflow metamodels.
In: Proc. ER’97 Workshop on Behavioral Models and Design
Transformations, Los Angeles, 1997

33. Leymann, F., Roller, D.: Production Workflow. Prentice Hall,
2000

34. Liu, L., Pu, C.: Methodical restructuring of complex work-
flow activities. In: Proc. 14th Int’l Conf. On Data Engineering
(ICDE98), Orlando, Florida, 1998, pp. 342–350

35. Luo, Z., Sheth, A.: Defeasible workflow, its computation and ex-
ception handling. In: Proc. CSCW’98 Workshop Towards Adap-
tive Workflow Systems, Seattle, WA, November 1998

36. Müller, R., Rahm, E.: Dealing with logical failures for collabo-
rating workflows. In: Proc. Int’l 5th Conf. on Cooperative Infor-
mation Systems, Eilat, 2000, pp. 210–223

37. Oberweis, A.: Specification of techniques for handling excep-
tions with petri nets.Automatisierungstechnik – at, 40(1): 21–30,
1992 (in German)

38. Oberweis, A.: Modeling and Execution of Workflows Based on
Petri Nets. Teubner, 1996 (in German)

39. Reichert, M.: Dynamic Changes in Workflow-Management-
Systemen. PhD thesis, University of Ulm, 2000 (in German)

40. Reichert, M., Bauer, T., Fries, T., Dadam, P.: On modeling pre-
dictable deviations in workflow management systems. In: Proc.
Modellierung ’02, pp. 183–194, Tutzing, March 2002 (in Ger-
man)

41. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic
changes of workflows without losing control. JIIS, Special Issue
on Workflow Management Systems, 10(2): 93–129, 1998

42. Reuter, A., Schwenkreis, F.: Contracts – a low-level mechanism
for building general-purpose workflow management systems.
IEEE Bulletin of the Technical Committee on Data Engineering,
18: 4–10, 1995

43. Rinderle, S., Reichert, M., Dadam, P.: Efficient compliance
checks and automatic migration of workflow instances to sup-
port workflow schema evolution. Informatik, Forschung und En-
twicklung, 17(4): 177–197, 2002 (in German)

44. Rozenberg, G.: Handbook of Graph Grammars and Computing
by Graph Transformation – Volume 1: Foundations. 1997

45. Saastamoinen, H.: On the Handling of Exceptions in Information
Systems. PhD thesis, University of Jyvaskyla, Finland, 1995

46. Sadiq, S.: On Verification Issues on Conceptual Modeling of
Workflow Processes. PhD thesis, University of Queensland,Aus-
tralia, 2001

47. Sadiq, S., Orlowska, M.: Analyzing process models using graph
reduction techniques. Information Systems, 25(2): 117–134,
2000

48. Sadiq, S., Orlowska, M.: On capturing exceptions in workflow
process models. In: Proc. 4th Int’l Conf. on Business Information
Systems (BIS ’00), Poznan, Poland, April 2000

49. Schultheiss, B., Meyer, J., Mangold, R., Zemmler, T., Reichert,
M.: Process design for therapeutic treatment of inpatients. DBIS-
5, University of Ulm, November 1995 (in German)

50. Strong, D., Miller, S.: Exceptions and exception handling in com-
puterized information processes. ACM ToIS, 13(2): 206–233,
1995

51. Teege, G.: Flexible workflows. In: Proc. Workshop Flexibilität
und Kooperation in Workflow-Management-Systemen, p. 1321,
1998 (in German)

52. ter Hofstede, A.H.M., Orlowska, M., Rajapakse, J.: Verification
problems in conceptual workflow specifications. Data & Knowl-
ege Engineering, 24(3): 239–256, 1998

53. Rahm, E., Greiner, U.: Webflow: A system for the flexible exe-
cution of web-based, cooperative workflows. In: Proc. Database
Systems For Business, Technology and Web (BTW’2003),
Leipzig, February 2003 (in German)

54. van der Aalst, W.M.P.: Exterminating the dynamic change bug:
A concrete approach to support workflow change. Information
Systems Frontiers, 3(3): 297–317, 2001

55. van der Aalst, W.M.P.: How to handle dynamic change and cap-
ture management information: An approach based on generic
workflow models. Int’l Journal of Computer Systems, Science,
and Engineering, 16(5): 295–318, 2001

56. van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: An
approach to tackling problems related to change. Theoretical
Computer Science, 270(1–2): 125–203, 2002

57. van der Aalst, W.M.P., Jablonski, S.: Dealing with workflow
change: Identification of issues an solutions. Int’l Journal of
Comp. Systems, Science and Engineering, 15(5): 267–276, 2000

58. van derAalst,W.M.P., van Hee, K.:Workflow Management. MIT
Press, 2002

59. Weske, M.: Flexible modeling and execution of workflow ac-
tivities. In: Proc. 31st Int’l Conf. on System Sciences, Hawaii,
1998, pp. 713–722

60. Wodtke, D., Weikum, G.: A formal foundation for distributed
workflow execution based on state charts. In: Proc. Int’l Conf.
on Database Theory (ICDT’97), Delphi, Greece, 1997

M. Reichert et al.: Dealing with forward and backward jumps in workflow management systems 151

Manfred Reichert is assistant professor
in the Department Databases and Infor-
mation Systems at the University of Ulm,
Germany. He finished his PhD thesis on
flexible workflow management in May
2000. He is author and co-author of many
articles and conference papers on hospital
information systems and workflow man-
agement. Current research topics include
enterprise-wide and cross-organizational

workflows, enterprise application integration and workflow, and dif-
ferent aspects related to workflow technology.

Peter Dadam has been full professor at the
University of Ulm and director of the De-
partment Databases and Information Sys-
tems since 1990. Before he came to the
University he had been director of the re-
search department for Advanced Informa-
tion Management (AIM) at the IBM Hei-
delberg Science Center (HDSC). At the
HDSC he managed the AIM-P project on
advanced database technology and appli-

cations. Current research areas include distributed, cooperative in-
formation systems, workflow management, and database technology
and its use in advanced application areas.

Thomas Bauer is a researcher at the
DaimlerChrysler Research Centre in Ulm
where he is working in the area of en-
gineering process management. Before,
he was a member of the Department
Databases and Information Systems at the
University of Ulm where he finished his
PhD thesis on the efficient management of
enterprise-wide workflows in 2001. Cur-
rent research areas include engineering

processes, workflow management, and enterprise application inte-
gration.

