
Distributed and Parallel Databases, 16, 91–116, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Flexible Support of Team Processes
by Adaptive Workflow Systems∗

STEFANIE RINDERLE rinderle@informatik.uni-ulm.de
MANFRED REICHERT reichert@informatik.uni-ulm.de
PETER DADAM dadam@informatik.uni-ulm.de
University of Ulm, Computer Science Faculty, Dept. Databases and Information Systems, 89069 Ulm, Germany

Recommended by: Ahmed Elmagarmid

Abstract. Process-oriented support of collaborative work is an important challenge today. At first glance, Work-
flow Management Systems (WfMS) seem to be very suitable tools for realizing team-work processes. However,
such processes have to be frequently adapted, e.g., due to process optimizations or when process goals change.
Unfortunately, runtime adaptability still seems to be an unsolvable problem for almost all existing WfMS. Usu-
ally, process changes can be accomplished by modifying a corresponding (graphical) workflow (WF) schema.
Especially for long-running processes, however, it is extremely important that such changes can be propagated to
already running WF instances as well, but without causing inconsistencies and errors. The paper presents a general
and comprehensive correctness criterion for ensuring compliance of in-progress WF instances with a modified
WF schema. For different kinds of WF schema changes, it is precisely stated, which rules and which information
are needed at mininum for satisfying this criterion.

Keywords: workflow management, adaptive systems, schema evolution, compliance checks

1. Introduction

Computer supported team work has become more and more important during the last years
since humans and machines can share their power and spirit. The various software systems
to support collaborative work can be summarized as Computer Supported Cooperative Work
(CSCW) systems. CSCW systems can be classified, for example, according to the degree
of distribution of time and place the team members work at (cf. Table 1).

One of the most powerful technologies within this classification framework is offered
by Workflow Management Systems (WfMS). WfMS support team members working on a
complex task at distributed places and at different points in time. Furthermore, they offer a
promising technology for process-oriented coordination of (distributed) team work [13], i.e.,
they allow to organize team work in a process-oriented manner and across organizational
boundaries. For each workflow (WF) type to be supported (e.g., concerning the treatment of
patients in a hospital or the design of a sales promotion), a corresponding WF schema S has
to be defined. It comprises a set of activities with associated application components and

∗This work was done within the research project “Change management within adaptive workflow management
systems”, which is funded by the German Research Community (DFG).



92 RINDERLE, REICHERT AND DADAM

Table 1. Classification of CSCW [24].

Time of interaction

Presence of team members Same time Different time

Same place Meeting support Team room/shift work

Different places Desktop conferences E-Mail, collaborative editor
multicast seminar Workflow-Management

with explicitly defined control and data flow between them. At run-time, new WF instances
I1, . . . , In can be created from this WF schema and be executed according to the defined
process logic.

1.1. Problem description

Team-work processes may be of complex structure and long duration. As an example take
engineering processes or therapeutical treatments which may last for several months (up
to years). Therefore changes may take place very often. Consequently, the team-work
processes have to be rapidly adapted [1]. However, today’s WfMS lack almost totally of
supporting adaptive processes. Either they only allow changes at the WF schema level
without taking running WF instances into account1 (e.g., MQ Series Workflow and Vit-
ria BusinessWare) or they propagate such WF schema changes to running WF instances
without any consistency checks (e.g., Staffware). However, doing so very often leads to
heavy-weight consequences like deadlocks or program crashes due to the invocation of
activity components with missing input data. Although this fundamental problem has been
recognized in the WF literature (e.g. [5, 10, 12, 21]), the suggested solutions are either
too restrictive or not applicable in practice (cf. Section 6). Thus, when applying today’s
WF technology we lose just the flexibility which is indispensable for team-work needs. To
overcome this limitation, basically, we must efficiently support WF schema modifications
and their propagation to running WF instances.

A WF schema change can be propagated to a WF instance if this is not “contradictory” to
its previous execution and would not cause errors or inconsistencies. Then this instance is
said to be compliant with the modified schema. A straightforward solution would be to try to
replay all events that have taken place during the execution of this WF instance so far on the
changed WF schema as well. If this is possible, compliance can be guaranteed. Otherwise,
the change is in conflict with previous instance execution. Apart from the fact that replaying
all execution events may cause a performace penalty at the presence of a large number of
WF instances this approach works well as long as no loops have to be considered. However,
it is far too restrictive in conjunction with cyclic process structures (which are very typical
for team-work processes). More precisely, changes that may be applied in the current state
of a WF instance may be “contradictory” to previous loop iterations since the respective
execution history has already logged them without taking the change into account. Therefore
replaying this history on the changed WF schema is doomed to failure. To prohibit those
potentially long-running instances from migrating to the new WF schema, however, is out



FLEXIBLE SUPPORT OF TEAM PROCESSES 93

of touch with reality. Furthermore, using the whole information about previous execution
events is very expensive. Note that there are real-world applications with hundreds up to
thousands of WF instances of a given WF type. Each of them comprises extensive execution
history data (see e.g. [15]) of which much is not necessary for checking compliance.

1.2. Contribution

The paper presents a comprehensive and theoretically sound approach for compliance check-
ing in connection with WF schema changes. Comprehensive means that we do not needlessly
exclude WF instances from their migration to a changed schema (as described above). In
this context, a formal underpinning is indispensable to enable the WfMS to automatically
decide whether a given WF instance is compliant with the new WF schema or not; i.e.,
whether it can be smoothly migrated to it. In addition, it must be clear which information is
needed at minimum for compliance checking. In most approaches from research, however,
this is not precisely stated, hence leading to either (over) restrictive solutions or to “imple-
mentation holes” later on (for a detailed discussion see Section 6). Other approaches, in
turn, assume that all history data of a WF instance must be taken for checking compliance
[5, 12, 21] which is, in general, too expensive as described. In this paper, we proceed in two
major steps and make the following contributions:

– We first define a comprehensive compliance property which is independent from the used
WF meta model and its underlying operational semantics. Furthermore, it abolishes the
restrictions of existing criteria for dynamic change correctness, especially in conjunction
with loops and data flow.

– We precisely state under which conditions compliance of a WF instance with a changed
WF schema can be guaranteed. These conditions depend on the current state of WF
instances as well as on the kind of change operation applied. In any case, the needed
information is shrunken to a minimum size that way.

– By positioning formal theorems for compliance checking we establish the basis for a
complete solution avoiding “implementation holes” later on.

In previous publications concerning dynamic WF changes, we focused on ad-hoc changes
of individual WF instances and on related issues (ADEPTflex [16]). They include the pro-
vision of high-level change operations for users (e.g., to insert a new step between two sets
of activities or to shift steps), related graph transformation and reduction rules, strategies
for adapting data flow when a user deviates from the pre-modeled flow of control, and
the undoing of temporary changes when loop backs occur. In this paper, we contribute
on orthogonal issues. We develop the formal underpinning of our current work on WF
schema evolution, focussing on issues related to efficient compliance checks. In Section 2
we present a generic and comprehensive compliance property which abolishes the restric-
tions of present approaches. Sections 3 and 4 provide simple compliance checks for control
as well as data flow changes. We summarize further relevant issues in Section 5 and discuss
related work in Section 6. Finally, we sketch the main contributions presented in this paper
in Section 7.



94 RINDERLE, REICHERT AND DADAM

2. A comprehensive compliance property

In the following, we develop a universally valid correctness criterion for deciding whether
running WF instances are compliant with a changed WF schema or not. Universally means
that this criterion is independent of the underlying WF meta model. In this section, therefore,
we use terms like WF schema and WF instance only in an informal manner (as described in
the introduction part) to maintain the universally valid character of the presented criterion
(formal notions of how a WF schema or a WF instance is defined in our approach can be
found in Section 3).

To enable the WfMS to decide whether a particular WF instance can be correctly migrated
to a changed WF schema or not, we need appropriate rules. In addition, it is important
that these rules can be efficiently checked. Obviously, information about the execution
performed so far is needed for this purpose. Many WfMS log this information within an
execution history, which is kept for each WF instance. This history is also required, for
example, when tracking the execution of a WF instance or when (partially) rolling back
WF instances in case of failures [13].

A straightforward, but restrictive approach, which has been used by several groups (e.g.
[5, 21]), would be to check whether the complete execution history of a WF instance could
have been also produced when executing the WF instance based on the changed WF schema
(restrictive compliance property). First, this might cause a performance penalty due to the
possibly large volume of history data (see e.g. [15]) which has to be scanned. Second,
following this approach, WF instances might be excluded from migrating to the changed
schema, though this would not lead to inconsistencies or errors in the sequel.

Generally, the restrictive compliance property leads to problems when WF schema
changes affect loop structures. As an example take figure 1 with WF schema S, initially
consisting of a nested loop block with one external and one internal loop (including 3
activities and one data dependency). Assume that new activities plan blueprint and
prepare presentations (with one data dependency between them) shall be added to
WF schema S. This change can be easily accomplished in a correct and consistent man-
ner at the WF schema level. But how to treat in-progress WF instances (with schema S)
when applying the change? Assume that Instance 1 is described by the execution history
shown in figure 1(b). Following the restrictive approach, the intended change could not be
propagated to Instance 1 of schema S since no history entries for plan blueprint and
prepare presentations have been written within the first (completed) iteration of the
external and the internal loop. Hence, Instance 1 is not compliant with the new schema
when taking the restrictive compliance criterion. Only WF instances, which are in the first
iteration of both—the internal and the external loop—could be adequately treated in this
case. From a practical viewpoint, however, in most cases it will be too restrictive to prohibit
change propagation for in-progress or future loop iterations only because their previous
execution is not compliant with the new schema. Think of, for example, medical treatment
cycles running for months or years. Any WfMS which does not allow propagating schema
changes (e.g., due to the development of a new drug) to running instances (e.g., related
to patients expecting an optimal treatment) would not be accepted by a medical team at
all.



FLEXIBLE SUPPORT OF TEAM PROCESSES 95

Figure 1. Team-oriented creation of a marketing concept (Example).

Additionally, the restrictive compliance property is not always suitable when consider-
ing data flow changes as well. As an example consider Instance 2 with the execution
history shown in figure 1(c). Activity develop blueprint has been already started and
therefore has read data element requirements. Assume that the read data link of activity
develop blueprint is re-mapped from requirements to another data element. For this
instance, the activity component associated with activity develop blueprint is run with
requirements as input data element though the respective data link is not present any
longer in the new schema.

In summary, the support of loops is indispensable for any WfMS. To enable the WfMS
to invoke arbitrary application components, it is also important to adequately handle data
flow and data flow changes. The challenge is to define a compliance property, which em-
braces these aspects in a uniform manner as well. The key to solution with respect to
loops is to be able to differentiate between completed and future executions of loop it-
erations. From a formal point of view there are two possibilities. One approach is to
logically treat loop structures as being equivalent to respective linear sequences. Do-
ing so allows to apply the restrictive compliance property (with full history informa-
tion). The other approach is to maintain the loop construct but to restrict the evalua-
tion to the relevant parts of the execution history. We have adopted the second approach



96 RINDERLE, REICHERT AND DADAM

since it facilitates the handling of nested loops and of loops with an unknown number of
iterations.

Definition 1 (Reduced Execution History Hred). Let I be a WF instance with complete
execution history H= 〈e0, . . . , ek〉, where e0, . . . , ek denote start and end events of all
activity executions related to I . (In conjunction with loop executions there may be several
entries for one activity.)—The reduced execution history Hred is obtained as follows: In
the absence of loops Hred is identical to H. Otherwise, it is derived from H by discarding
all history entries related to other loop iterations than the last one (completed loop) or the
actual iteration (running loop).

Figure 1(d) depicts the reduced execution history derived from the execution history
shown in figure 1(b). From this example we can also see how Definition 1 works in con-
junction with nested loops. Taking Definition 1 we now present a comprehensive compliance
property for WF schema evolution. According to this property, a WF instance is compliant
with a changed schema iff the reduced execution history can be produced on the modified
schema as well. In the following, we assume that a correct WF schema is always trans-
formed into another correct WF schema. Thereby, the correctness of a WF schema depends
on the underlying WF meta model. Examples are constraints like the acyclic graph structure
of activity nets (as for example used in MQ Series Workflow) or the bipartite net structure
of Petri Nets. However, a discussion of WF schema correctness is outside the scope of this
paper.

Axiom 1 (Comprehensive Compliance Property). Let I be a WF instance on WF schema
S with execution history H and reduced execution history Hred. Assume further that a
change � transforms the WF schema S into the correct WF schema S′. Then I is said to be
compliant with S′ iff

– Hred can be replayed on S′ as well, i.e., Hred could have been produced by a WF instance
running according to S′ as well.

– each started or finished activity (of the respective WF instance) would have read and
each finished activity would have written the same data element values also on the new
schema.

Axiom 1 is valid for all WF execution models which store information about previous
execution of WF instances. Examples include activity nets as used by MQ Series Workflow,
Well-Structured-Marking Nets (WSM-Nets) as used in our approach (cf. Section 3), and the
WF meta models applied in BREEZE [21] and WASA2 [25]. Approaches only maintain-
ing state information about currently activated or running activities (e.g., Petri Nets) are
discussed in Section 6.

We have now introduced a universally valid correctness criterion for ensuring compli-
ance of WF instances with a changed WF schema, which is fundamental for any adap-
tive WfMS. The challenging question is how to quickly decide Axiom 1 without need
for taking the (whole) extensive history information into account.2 One approach which



FLEXIBLE SUPPORT OF TEAM PROCESSES 97

is worth to follow is to design the WF execution model (including its formal and op-
erational semantics) in such a way that efficient compliance checks avoiding access to
the complete execution history become possible. For this, at the WF instance level we
use a sophisticated marking approach where activity markings represent a consolidated
and compact view on the execution history of a particular WF instance. In addition,
when checking compliance we exploit the semantics of the applied change operations.
Due to lack of space, in this paper we discuss relevant issues along our WF meta model.
The presented concepts, however, are not restricted to it. Basic design principles and the
achieved compliance criteria can be transferred to other WF meta models (see above) as
well.

3. Checking compliance with control flow changes

In this section we provide easy to check state conditions for WF instances which al-
low the WfMS to ensure compliance according to Axiom 1. Before stating these rules
in Section 3.2 we present necessary background information in Section 3.1. We give an
(informal) overview about the WF meta model [16] assumed in this paper, the so called
Well-Structured-Marking Nets (WSM-Nets). Section 3.3 concludes with a discussion on
how to deal with non-compliant WF instances.

3.1. Control flow basics

WSM-Nets allow to model all relevant WF aspects, like control and data flow, work assign-
ments, or time constraints [4, 16].

Control flow modeling. The flow of control is internally represented by attributed WF
graphs with distinguishable node and edge types. As shown in earlier publications [16],
this eases efficient correctness analysis (e.g., to ensure the absence of “undesired” cycles
causing deadlocks) as well as the interpretative execution of WF models. For this, we use
a block concept, for which control blocks (sequences, branchings, loops) can be nested but
must not overlap (see figure 2). To increase expressiveness, in addition, synchronization
edges (SyncE) can be used to define “wait-for” relations between parallel nodes. In figure 2,
for example, the target node L of the sync edge D → L may be only activated if K has been
finished and if D has been either completed or the branch containing D is not selected for
execution (i.e., D has been skipped). Formally, a control flow schema S is defined as follows:

Definition 2 (Control Flow Schema (WSM-Net)). A tuple S = (N , D, NT, CtrlE, SyncE,
LoopE, DP, EC) is called a (correct) control flow schema if the following holds:

– N is a set of activities and D a set of process data elements
– NT: N �→{StartFlow, EndFlow, Activity, AndSplit, AndJoin, XOrSplit,
XOrJoin, StartLoop, EndLoop}

NT assigns to each node of the WSM-Net a respective node type.



98 RINDERLE, REICHERT AND DADAM

Figure 2. Modeling and execution of workflows using WSM-Nets.

– CtrlE ⊂ N × N is a precedence relation representing “normal” control dependencies
between sequential activities

– SyncE ⊂ N × N is a precedence relation between activities of parallel branches
– LoopE ⊂ N × N is a set of loop backward edges
– DP: N �→ D ∪ {UNDEFINED}

For an XOR-split n, DP(n) corresponds to the global process data element indicating
the branch to be selected. For nodes m with NT(m) 	= XOrSplit we obtain DP(m) =
UNDEFINED.

– EC: CtrlE �→ EdgeCode ∪ {UNDEFINED}
EC(e) assigns a selection code to the outgoing control edges of an XOR-Split.

Informally, a control flow schema is correct iff

• Sfwd = (N , CtrlE, SyncE) is an acyclic graph, i.e., the use of control and sync edges must
not cause undesired cycles leading to deadlocks (for details see [16]),

• for each split (loop start) node there is a unique join (loop end) node, and
• S is structured following a block concept; control blocks (sequences, branchings, loops)

can be nested but must not overlap.



FLEXIBLE SUPPORT OF TEAM PROCESSES 99

The described WSM-Nets are somewhat comparable to BPEL4WS (Business Process
Execution Language for Web Services) [6], but with a more restricted use of links (called
sync edges in our approach). The use of sync edges is combined with a precise formal and
operational semantics and therefore enables consistency checks at buildtime as well as at
runtime.

Workflow execution. Based on a given WF schema S, new WF instances can be created
and started. Similar to firing rules in Petri Nets, the marking of a WF instance is determined
by well defined marking and execution rules (cf. figure 2(d)). As opposed to Petri Nets,
logically, for each WF instance its own marking is maintained based on the related WF
schema. Markings can be considered as a very compact and space-efficient representation
of the reduced execution history Hred (cf. Definition 1). In addition, except loop backs, the
markings of already passed regions are maintained (cf. figure 2(b)), which is very useful
for compliance checking as we show in the following. Furthermore, activity nodes of non-
selected execution branches are marked as SKIPPED.

For each activity, its status is initially set to NOT ACTIVATED. It is changed to ACTIVATED
when all preconditions for its execution are met (cf. figure 2(d)). If so, the activity is released
as a work task and inserted into user worklists. When selecting this activity for execution
its status changes to RUNNING. The corresponding work items are then removed from other
user worklists and an application component associated with this activity is started. At
successful termination, activity status passes to COMPLETED. Otherwise, if the scheduler
recognizes that this activity cannot be selected for execution any longer, its status will
change to SKIPPED (e.g., activity D of instance I in figure 2(b)). Edges are initially marked
with NOT SIGNALED. During WF execution their status either changes to TRUE SIGNALED
or FALSE SIGNALED. Finally, if a loop condition evaluates to true, the marking of the
corresponding edge (with type LOOP E) is changed to TRUE SIGNALED (cf. figure 2(d)) and
the markings of all activities/edges of the loop body are reset to their initial state. Otherwise
the loop is left whereas the actual markings of the loop body remain. Formally, a WF
instance I is defined as follows:

Definition 3 (WF Instance Based on a WSM-Net). A WF instance I is defined by a tuple
(S, M S, ValS , H) where

– S = (N , D, NT, CtrlE, SyncE, . . .) denotes the WF schema the execution of I is based
on.

– MS = (NSS , ESS) describes node and edge markings of I :

NSS: N �→ {NotActivated, Activated, Running, Completed, Skipped}
ESS: (CtrlE ∪ SyncE ∪ LoopE) �→ {NotSignaled,

TrueSignaled, FalseSignaled}

– ValS is a function on D. It reflects for each data element d ∈ D either its current value or
the value UNDEFINED (if d has not been written yet).

– H = 〈e0, . . . , ek〉 is the execution history of I whereby e0, . . . , ek denote the start and
end events of activity executions. For each started activity X the values of data elements



100 RINDERLE, REICHERT AND DADAM

read by X and for each completed activity Y the values of data elements written by Y are
logged.

3.2. Checking compliance with control flow changes

The ability to check compliance efficiently is indispensable for the flexible and efficient
support of team ware processes by a WfMS. Regarding existing approaches, it remains
pretty vague how compliance can be decided in conjunction with a multitude of running
WF instances. Thus, we present formal and precise conditions for checking the logical
compliance property (cf. Axiom 1) when new activities, control edges, or sync edges are
inserted into a WF schema with related WF instance(s). (Note that the addition of a new
activity node is always accompanied by the insertion of associated control or sync edges,
which embed this activity into the WF schema context.) Due to a better structuring and
understanding of this paper we focus on data flow issues later on (cf. Section 4).

Theorem 1 (Insertion of Activities/Control Edges/Sync Edges). Let S = (N, D, NT, CtrlE,

SyncE, LoopE, DP, EC) be a correct WF Schema and I be a WF instance on S with reduced
execution historyHred and with marking M S = (NS, ES). Assume further that change opera-
tion � transforms S into a correct WF schema S′ = (N ′, D′, N T ′, CtrlE′, SyncE′, LoopE′,
DP′, EC′).
(a) � inserts an activity ninsert (with associated control and sync edges) into S. Then:

I is compliant with S′ ⇔
∀ n ∈ {x ∈ N | ninsert → x ∈ (CtrlE′ ∪ SyncE′)}:

NS(n) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED} ∨
ninsert is inserted into an already skipped branch of an XOR-branching

(b) � inserts a control edge nsrc → ndest into S. Then:

I is compliant with S′ ⇔ NS(ndest) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}

(c) � inserts a sync edge nsrc → ndest into S (nsrc and ndest ordered parallel so far). Then:

I is compliant with S′ ⇔
[NS(ndest) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}] ∨
[NS(nsrc) = COMPLETED ∧ NS(ndest) ∈ {RUNNING, COMPLETED} with

∃ei = END(nsrc) e j = START(ndest) ∈ Hred ∧ i < j))] ∨
[NS(nsrc) = SKIPPED ∧ NS(ndest) ∈ {RUNNING, COMPLETED}) with

∀ n ∈ Ncritical with NS(n) 	= SKIPPED:
∃ei = START(ndest), e j = END(n) ∈ Hred with j < i),

where Ncritical = (c pred∗(S, nsrc) ¬ c pred∗(S, ndest))
and c pred∗(S, n)) denotes all direct/indirect predecessors of n in S
concerning control edges]



FLEXIBLE SUPPORT OF TEAM PROCESSES 101

A formal proof of this theorem is given in the Appendix. Informally, for adding activities,
compliance can be always guaranteed if all (direct) successors of the newly inserted activity
ninsert are actually marked withACTIVATED orNOT ACTIVATED. In this case they have not yet
written any entry into the execution history. Interestingly, the same applies when inserting
activities into already skipped branches.

Concerning the insertion of a single control or sync edge, compliance can be always
ensured if the target node of the respective edge has not been started yet. This is a suffi-
cient condition for guaranteeing compliance, but it is not always necessary. In a few cases
additional information from the reduced execution history may be required to ensure com-
pliance. As an example take WF schema S from figure 2(a). Assume that sync edge D →
K is inserted into S. Regarding WF instance I (cf. figure 2(b)) we see that the source node
D is skipped and the target node K is completed. According to Theorem 1c, in this situation,
I is only compliant with the new schema iff B has written its end entry before the start
entry of K into the execution history (Ncritical = {B} ∧ NS(B) 	= SKIPPED). Considering the
(execution) history from figure 2(c), this constellation is obviously not given. Consequently,
the insertion of sync edge D → K cannot be propagated to I.

Intuitively, delete operations are also very important for practical purposes, e.g., activities
may have to be skipped (and therefore the associated control and sync edges embedding
the respective activity into the workflow context be deleted). Thus we provide Theorem 2
which summarizes the compliance conditions for delete operations:

Theorem 2 (Deletion of Activities/Control Edges/Sync Edges). Let S = (N , D, . . .) be
a correct WF Schema and I be a WF instance on S with reduced execution history Hred

and marking M S = (NS, ES). Assume further that change operation � transforms S into a
correct WF schema S′ = (N ′, D′, . . .).
(a) � deletes an activity ninsert from S (including the re-linking of control edges). Then:

I is compliant with S′ ⇔
NS(ndelete) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}

(b) � deletes a control or sync edge nsrc → ndest from S. Then:

I is compliant with S′

For delete operations compliance checks can be always performed solely on basis of
activity markings. Intuitively, only those activities of a WF instance I can be dynamically
deleted which have not yet written any entry into the execution history. This is the case if the
node marking of the activity to be deleted is NOT ACTIVATED, ACTIVATED, or SKIPPED.
Concerning control or sync edges their deletion is uncritical with respect to compliance of
WF instances with the resulting WF schema. Note that order relations between the source
and end activity nodes of deleted edges are abolished. Therefore the previous execution can
be replayed on the changed schema.

Order changes are an example for complex change operations which can be simply built
by serially applying one or more basic operations (i.e., insertion/deletion of control or sync
edges). Figure 3 shows such an order changing operation, namely swapping of two activities
B and C. The comprehensive compliance property can be always ensured in conjunction



102 RINDERLE, REICHERT AND DADAM

Figure 3. Complex change operation: Shifting an activity.

with such complex operations if the respective compliance conditions are fulfilled for each
applied basic operation. Further optimizations are conceivable with respect to checking
compliance for complex changes, but are outside the scope of this paper.

3.3. Never-more-compliant and re-compliant instances

Generally, applying the compliance property will lead to a set of WF instances, which do
not fulfill this property and thus—at first glance—cannot be migrated. This includes WF
instances, which can never be migrated (“never-more-compliant instances”) and others,
which only fail because the current execution of a loop iteration has proceeded too far. The
latter WF instances become a candidate for migration when the loop enters its next iteration
(“re-compliant instances”).

Normally, never-more-compliant instances will never reach a state again in which they are
compliant with the modified schema. The easiest way would be to finish these WF instances
according to their old WF schema which requires appropriate versioning concepts [10, 12].
Alternatively, we can put these WF instances (or some of them) back to a compliant state
by partial rollback [5, 21]. But on the one hand, only activities can be rolled back which
support cancelation or compensation activities. On the other hand, rollback of processes is
often out of touch with reality, in particular concerning teamware processes (e.g., patient
treatment). Up to now, only in [7] the authors have recognized that in the case of loop backs
WF instances may become compliant with the changed WF schema again (re-compliant
instances).

Re-compliant instances. In particular, the marking of a loop is reset if a loop back takes
place such that Axiom 1 will be satisfied with delay. Thus, WF instances which are not
compliant according to their actual loop iteration may become re-compliant when another
loop iteration takes place and therefore can be migrated to the new schema with delay
(delayed migration). As shown in figure 4, re-compliant instances can be held as “pending
to migration” until the loop condition is evaluated.

The treatment of re-compliant instances, which is especially important in conjuntion with
long-running processes, is not as trivial as it looks like at first glance. At first, if an instance
contains nested loops there can be several events (loop backs) to trigger the execution of
a previously delayed migration. Furthermore, the interesting question remains how to deal
with pending instances if further schema changes take place. Due to lack of space we abstain
from further discussion of this point.



FLEXIBLE SUPPORT OF TEAM PROCESSES 103

Figure 4. Principle of delayed migration.

4. Checking compliance with data flow changes

As outlined in the introduction, the proper handling of data flows and data flow changes is
essential for WfMS, which shall be broadly applicable. However, with few execptions (e.g.
[12]), data flow changes and their influence on running WF instances have been factored
out by existing approaches so far. In particular, in some approaches (e.g., WF models based
in Petri Nets), the flow of data can be only modeled in an implicit way or mixed with control
flow specification. Doing so aggravates any check of compliance in conjunction with data
flow changes.

In Section 4.2, we discuss how Axiom 1 can be ensured in conjunction with data flow
changes. To provide a basis for discussion, in Section 4.1, we first summarize the necessary
background information about data flow modeling in our approach.

4.1. Data flow basics

The data flow between activities is modeled by connecting input/output parameters of WF
activities with global variables (data elements). Thereby each activity input parameter is
mapped to exactly one data element by a read data edge and each activity output parameter
is connected to a data element by a write data edge. An example is shown in figure 2(a).
Activity A writes data element d1 which is then read by activity B. For the modeling of
such a data flow schema (DF schema) a number of correctness properties must be met. The
most important one is that for each activity the data flow ensures that all mandatory input
parameters will be supplied at runtime.

At runtime, different versions of a data object may be stored for a data element. For
each write access, always a new version is created, i.e., data objects are not physically
overwritten. Holding different versions is important for the context-dependent reading of
data elements as well as for rollback operations in case of failures. To simplify matters, we
assume that the data element values are logged within the execution history, i.e., for each
started activity X the values of the data objects read by X and for each completed activity



104 RINDERLE, REICHERT AND DADAM

Y the values of the data objects written by Y are stored together with the respective history
entry (cf. figure 2(c)).

4.2. Checking compliance for data flow changes

Changes of a DF schema may become necessary in conjunction with control flow schema
changes (e.g., removing associated data edges of an activity to be deleted) or may have to
be applied independently in order to re-link data edges or data elements (e.g., if errors in
the modeled data flow have to be corrected). To modify DF schemes, our approach offers
operations for adding and deleting data elements as well as data edges.

Taking the compliance property from Axiom 1, all conditions set out for control flow
changes (cf. Theorems 1 and 2) must be further fulfilled. Additionally, it is required that
each started or finished activity (of the respective WF instance) would have read and each
finished activity would have written the same data element values also on the new schema.
The compliance of a WF instance in case of DF schema changes can be easily checked
based on the following conditions.

Theorem 3 (Data Flow Changes). Let S = (N , D, . . .) be a correct WF Schema with
DF schema DFS and let I be a WF instance on S with reduced execution history Hred

and marking M S = (NS, ES). Assume that � transforms S into a correct WF schema
S′ = (N ′, D′, . . .) with DF schema DFS′.
(a) � inserts a data element d into DFS. Then I is compliant with S′.
(b) � deletes a data element d from DFS. Then:

I is compliant with S′ ⇔
No read or write access on d by an activity with state RUNNING or COMPLETED

(c) � inserts or deletes a read edge d → n. Then:

I is compliant with S′ ⇔ NS(n) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}

(d) � inserts or deletes a write edge n → d. Then:

I is compliant with S′ ⇔ NS(n) 	= COMPLETED

As already mentioned, data flow adaptations also become necessary in conjunction with
the insertion and deletion of activities. In this case, the conditions of Theorem 3 are already
met if the state conditions of the according node insertion or deletion operations are fulfilled
(cf. Theorems 1 and 2). Concerning data flow changes, again the conditions for using
complex operations arise from the aggregation of the conditions of basic change operations.

5. Further issues and proof-of-concept prototype

The results presented in this paper are embedded in a major project on adaptive WF man-
agement [16, 17]. We do not only focus on efficiently checking compliance of running



FLEXIBLE SUPPORT OF TEAM PROCESSES 105

WF instance with a changed WF schema but work on further important issues related to
evolutionary processes as well. The first important question is how to adapt WF instance
markings after their migration to the changed WF schema. In [18] we present an efficient
algorithm for these marking adaptations with linear complexity.

Especially important for team-oriented processes is the interplay of WF schema modifi-
cation (and their propagation to a potentially large collection of in-progress WF instances)
and ad-hoc changes of single WF instances. Think of, for example, team processes where
the related WF schema has to be adapted to a new law, but single WF instances have already
been changed by team members (e.g., due to exceptional situations). The challenging ques-
tion, arising in this context, is whether the WF schema changes can be correctly propagated
to the individually modified WF instances as well and how to efficiently check this [11].
Intuitively, checking compliance no longer depends just on state conditions for individually
modified instances. Moreover, structural and semantical conflicts between the WF schema
and the WF instance change have to be taken into account as well [18–20].

We have implemented the presented results in a powerful proof-of-concept prototype. To
avoid misunderstandings this prototype is different from the ADEPT WfMS [17]. Due to
lack of space we omit a discussion of implementation details (e.g., handling of concurrent
changes, caching of WF templates and instances, clustering of WF instances to improve
performance of instance migrations etc.). Some illustrative screens of the prototype are
shown in figures 5 and 6. In figure 5, we start with the WF schema medical treatment

Figure 5. WF schema and two related WF instances: Pre-change.



106 RINDERLE, REICHERT AND DADAM

Figure 6. WF schema and two related WF instances: Post-change.

in its first version V1. Figure 5 also shows two related WF instances Instance 1 and In-
stance 2 (out of altogether 2000 WF instances running according to the schema medical
treatment, V1) and the execution history of Instance 2.

Our prototype includes a WF editor which allows to create new WF schemes and to
correctly change existing ones. Each time a modified WF schema is released, a new schema
version is generated and stored in the repository. First of all, we allow designers to re-
strict the set of migratable instances by specifying appropriate selection predicates (based
on WF attributes). For the selected instances the system automatically checks compli-
ance using the compliance rules presented in Theorems 1–3. At this point it is important
to mention that using these formal statements (and the respective proofs) has helped us
to come to a complete solution without implementation holes. Afterwards, all compliant
instances are migrated to the new WF schema version by correctly adapting their mark-
ings and related data structures (e.g., user worklists). The results of such a migration pro-
cess are summarized in a Migration Report (see figure 6 for an example). Figure 6
shows the WF schema version V2 resulting from a change of the WF schema medical
treatment (V1) depicted in figure 5, namely the insertion of a new activity diabetes
test. Figure 6 also shows the two instances from figure 5 after change propagation: In-
stance 1 has been compliant with WF schema version V2 and has therefore been mi-
grated to V2, whereas Instance 2 remains unchanged since it is not compliant with V2
(cf. figure 6).



FLEXIBLE SUPPORT OF TEAM PROCESSES 107

From the Migration Report shown in figure 6 it can be seen that the necessary com-
pliance checks only took a very little fraction of time (when compared to the approaches
replaying the whole execution history). Therefore, implementing this proof-of-concept pro-
totype affirms that the proposed compliance checks (cf. Theorems 1 and 2) are very quick
for complex WF graphs as well as for a large number of active instances. As mentioned
above the set of WF instances for which compliance has to be decided can be shrunken by
user defined constraints (e.g., “migrate only those WF instances that have been started after
Dec, 31th 2002”).

6. Related work

Obviously, there are similarities between schema changes in WfMS [5, 19, 21, 23] and
in DBMS [2]. The underlying problems are similar if considerations are restricted to the
mapping of schema elements (activity nodes, control/data flow edges) from the old to the
new schema. WF schema evolution, however, also raises orthogonal issues. If changes at
the WF schema level shall be applied at the WF instance level as well, one has to consider
that WF instances may be in a different state when a change propagation takes place.
Depending on their current state and on the applied change operations, a migration to the
new schema may then be possible or not. For deciding which instances are compliant with
the new schema and which can therefore be smoothly migrated to it, theoretically sound
and efficient solutions are required.

Regarding related work on WF schema evolution [5, 7, 9, 19, 21, 23], we distinguish
between history and snapshot based approaches. The latter only consider currently acti-
vated or running activities without maintaining information about their previous execution
(e.g., Petri Nets). A survey on correctness criteria for dynamic WF changes and a formal
comparison of respective approaches can be found in a previous publication of our group
[19].

History based approaches. WIDE [5] offers a complete and minimal set of basic op-
erations to transform a correct schema S into another correct schema S′. To migrate WF
instances to S′, for the first time, the restrictive compliance property as discussed in Section 2
has been suggested. TRAMs [12] focuses on WF schema versioning concepts. To efficiently
manage an instance migration the authors propose the definition of so called migration con-
ditions for each change operation which are somewhat similar to the presented compliance
rules. With these conditions it can be decided whether an instance can smoothly migrate to
the new WF schema version or not. Recent results concerning WF schema evolution come
from the BREEZE project [21], which uses a model and change operations similar to our ap-
proach [16]. BREEZE uses compliance as a correctness criterion as well but focuses on the
question how to deal with non-compliant WF instances. In summary, all these approaches
are too restrictive in conjunction with loops since they are based on the restrictive com-
pliance property. Furthermore, compliance in connection with data flow schema changes
has not been considered in detail. Finally, the authors do not show how their suggested
compliance property can be (formally) checked, which is important when incorporating
compliance checks into a WF engine implementation.



108 RINDERLE, REICHERT AND DADAM

Object oriented approaches are offered by Joeris and Herzog [10] and Weske [25]. In
MOKASSIN [10] changes are carried out by encapsulating change primitives within WF
instances. Consequently, WF instances or users are themselves responsible for preserving
consistency. The restrictive compliance property is considered as being too restrictive.
Instead, a more granular version concept is proposed, but without discussing issues related to
(efficient) compliance checks. Another versioning approach has been presented by WASA2

[25], which proposes a mapping between the modified WF schema and the sub-workflows
resulting from the corresponding instances to allow efficient compliance checks. However,
data flow changes have not been treated in detail and formal considerations are not given.

Snapshot based approaches. Petri Net based approaches [7, 8, 22, 23] fight with several
approach-inherent problems: Generally, they often lack a clear seperation between control
and data flow tokens, which complicates (dynamic) net changes. In [7], both, the WF
schema and the WF instances are captured in one Petri net based on coloured markings.
(To avoid misunderstandings, in our approach, multiple WF instances may be related to
the same WF schema. As opposed to Petri Nets, however, each WF instance has its own
marking defined on that schema.) A schema modification is carried out by substituting
marked sub nets, whereas precise or formal conditions for checking compliance of WF
instances with the new net are missing. Another serious problem arises from the fact that
markings of previously passed regions are not preserved and “skipped” regions are not
marked at all. Therefore the “challenging” question is how to adapt instance markings after
propagating a schema change without knowledge of their previous execution. In [8] the WF
designer has to manually adapt the markings for each WF instance. In addition, complex
reachability analyses become necessary to check consistency of net markings after a change.
In contrast, the compliance conditions proposed in this paper and the respective marking
adaptation algorithms (cf. [18]) are of linear complexity.

Recent approaches wrestle with that problem as well. In [22] the authors propose that
WF schema modifications shall not be propagated to WF instances which are executed on
modified regions. The adaptation of markings is seen as a very complex problem (the so
called dynamic change bug) [23]. To fix this bug the authors suggest that the modeler has
to specify a mapping between the markings of the old net an the new net which has to
be applicable for every running instance [23]. Besides, Petri Nets suffer from the implicit
modeling of cycles. Thus the distinction between desired cycles and deadlocks is a NP-hard
problem.

7. Summary and outlook

Applications which aim at the support of complex, long-running team processes need adap-
tive workflow to be able to react rapidly to process changes. Therefore, flexible WfMS will
be a key technology in this context. We have been engaged in several application projects
dealing with patient treatment and product development, for instance, and have gained deep
insights into team processes and collaborative real-world scenarios. One important conclu-
sion we have drawn from these projects is that by offering more flexibility and adaptability
the so promising WF technology will finally deliver in many collaborative scenarios as



FLEXIBLE SUPPORT OF TEAM PROCESSES 109

well. In this paper we have elaborated a comprehensive and formal foundation for check-
ing compliance of WF instances with a (modified) WF schema. The compliance criteria
embrace WF schemes with (nested) loops and with explicitly defined data flows. One very
important aspect of this work is its formal style and rigour. We have positioned axioms
and theorems which are fundamental for the design of any adaptive workflow model. The
handling of control as well as data flow changes and the provision of a proof-of-concept
prototype add to the overall completeness of our approach. The solution has been described
using WSM Nets but may be easily applied to other WF models with similar properties
(e.g. [3, 14]).

In this paper we have concentrated on correctness criteria and their efficient evaluation in
the context of WF schema evolution. How to efficiently check WF instances for compliance
is one issue, how to “physically” perform the migrations (incl. correct state adaptations),
how to internally represent WF instances and WF schemes, how to interact with the WF
schema designer (who defines the change), how to adapt user worklists, or how to to
deal with concurrent changes (and with locking issues in this context) are other important
questions. Work on some of these issues is in progress [18–20]. The challenge is to elaborate
solutions, which do not work only in an isolated fashion but in conjunction with each other as
well.

Appendix

To prove Theorem 1 we first give some useful information. To begin with, we do not
need any special treatment of loops since using the reduced execution history logically
leads to a “loop-free” WF schema. Thus we have to care about acyclic WF schema graphs
with sequences, AND-branchings and XOR-branchings. Furthermore, Table 2 informally
summarizes certain predecessor and successor functions on WF schema graphs which are
needed for the following considerations.

Finally, we need the following Lemma 1 to prove Theorem 1. It states that all predecessors
of a running or completed activityn∗ must have one of the markingsCOMPLETEDorSKIPPED.

Table 2. Predecessor and successor functions on WF graphs.

c succ(S,n)/c pred(S,n) set of all direct successors/predecessors of activity n considering
only edges e ∈ CtrlE in WF schema S

c succ∗(S,n)/c pred∗(S,n) set of all direct or indirect successors/predecessors of activity
n considering only edges e ∈ CtrlE in WF schema S

succ(S,n)/pred(S,n) set of all direct successors/predecessors of activity n referring to
edges e ∈ (CtrlE ∪ SyncE) in WF schema S

succ∗(S,n)/pred∗(S,n) set of all direct and indirect successors/predecessors of activity n
referring to edges e ∈ (CtrlE ∪ SyncE) in WF schema S

succ∗(S,n) = {n∗ ∈ N | n∗ ∈ succ(S, n)
∨
(∃ n∗∗ ∈ succ(S, n): n∗ ∈ succ*(S, n∗∗))}



110 RINDERLE, REICHERT AND DADAM

Lemma 1. Let S = (N, D, . . .) be a correct WF schema and I a WF instance on S with
marking M S = (NS, ES). Then:

∀ n∗ ∈ N with NS(n∗) ∈ {RUNNING, COMPLETED, SKIPPED} ⇒
∀ n∈ pred∗(S, n∗): NS(n) ∈ {COMPLETED, SKIPPED}

Proof Sketch (Lemma 1): For arbitrary paths w = i0 → · · · → ik in S we can show by
induction over the length k of w:

[NS(ik) ∈ {RUNNING, COMPLETED, SKIPPED} ⇒
NS(iµ) ∈ {COMPLETED, SKIPPED} ∀µ = 0, . . . , k − 1]

Based on this, the proposition of Lemma 7 can be easily proven.

We now have done all necessary prepartory work for proving Theorem 1.

Proof (Theorem 1):

(a) � inserts an activity ninsert (with associated control and sync edges) into S.
This proposition can be more formally described as follows:

I is compliant with S′ ⇔ B1 ∨ B2 ∨ B3 with
B1 ≡ [∀n∈ succ(S′,ninsert):

NS(n) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}]
B2 ≡ [∀ n ∈ c pred(S′, ninsert): NS(n) = SKIPPED]
B3 ≡ [ninsert is inserted into a skipped, empty branch]

(The statement “ninsert is inserted into an already skipped branch” corresponds to B2 ∨ B3∨
[∀n∈ c succ(S′,ninsert): NS(n) = SKIPPED] where the last term is already included by B1.)

“⇒” I is compliant with S′ ⇒ B1 ∨ B2 ∨ B3

Proof by Contradiction, we show: ¬(B1 ∨ B2 ∨ B3) ⇒ I is not compliant with S′

Assumption: ¬(B1 ∨ B2 ∨ B3) holds
¬(B1 ∨ B2 ∨ B3) ≡ ¬B1 ∧ ¬B2 ∧ ¬B3

≡ [∃n∗ ∈ succ(S′, ninsert): NS(n∗) ∈ {RUNNING, COMPLETED} ∧
[∃n∗∗ ∈ c pred(S′, ninsert): NS(n∗∗) 	= SKIPPED] ∧
[ninsert is not inserted into a skipped, empty branch]

With ¬B1 and Lemma 1 we obtain NS’(ninsert) ∈ {COMPLETED, SKIPPED}. Consequently,
the marking NS(ninsert) must be SKIPPED. After re-evaluating the marking of the modi-
fied instance (cf. figure 2(e)), a newly inserted activity will be either marked as SKIPPED
(insertion into a skipped branch) or as NOT ACTIVATED or ACTIVATED.



FLEXIBLE SUPPORT OF TEAM PROCESSES 111

Taking the above assumption, ninsert must therefore have been inserted into an already
skipped branch of an XOR-branching with split node s and join node j. Because of ¬B3

this branch cannot be empty. Based on this, it either follows that ninsert is not a direct suc-
cessor of s—then ∀ n ∈ c pred(S’, ninsert): NS(n) = SKIPPED—or ninsert is not a direct
predecessor of j—∀ n ∈ c succ(S’, ninsert): NS(n) = SKIPPED. The first statement can
not be true because of ¬B2 and the latter because of ¬B1. This is contradicting to our
assumption.

Let now statements C1 and C2 be as follows:

C1 ≡ [∀ n ∈ succ(S′,ninsert):
NS(n) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}]

C2 ≡ [ninsert is inserted into a skipped branch of an XOR-branching]

“⇐”: C1 ∨ C2 ⇒ I is compliant with S′ (according to Axiom 1)
We first prove C1 ⇒ I is compliant with S′.

Assumption:
C1 ≡ [∀ n ∈ succ(S′,ninsert):

NS(n) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}]
⇒ ∀ n ∈ succ(S′, ninsert):

	 ∃ ei ∈ Hred with ei ∈ {START(n), END(n)}
⇒ ∀ n ∈ succ∗(S′, ninsert):

	 ∃ ei ∈ Hred with ei ∈ {START(n), END(n)} (�)

That means that the history Hred contains no entry of a direct or indirect successor of ninsert.
Furthermore, a re-evaluation of the instance marking results in

NS’(ninsert) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}
⇒ 	 ∃ ei ∈ Hred with ei ∈ {START(ninsert), END(ninsert)} (��)

We now show that I is compliant with S′, i.e., the previous execution events e0, . . . , ek

stored in Hred can be applied to S′ in the given order. Let Nrel be the set of all activity nodes
of N ′ which can be executed before ninsert is started (see figure 7(a)). So, Nrel contains all

Figure 7. Important sets of a WF schema referring to ninsert.



112 RINDERLE, REICHERT AND DADAM

activity nodes positioned before or parallel to ninsert. Formally:

Nrel := pred∗(S′, ninsert) ∪
{n ∈ N ′ | n /∈ pred∗ (S′, ninsert) ∧ n /∈ succ∗(S′, ninsert)}

With (�) and (��) it follows:

∀ ei ∈ Hred with ei = START(n) ∨ ei = END(n): n ∈ Nrel ⊆ N

Thus all entries of Hred have been written by activity nodes which are—in principle—
executable before ninsert referring to S′. Since the subgraph of S induced by the node set Nrel

(cf. figure 7(a)) is not affected by the insertion and therefore remains unchanged, e1, . . . , ek

can be carried out on this subgraph in the given order and therefore on S′ as well.
Referring to the second part [C2 ⇒ I is compliant with S′] it is clear that ninsert is inserted

into a skipped branch, i.e., we obtain NS’(ninsert) = SKIPPED. Therefore ninsert has not yet
written any entry into the execution history. Consequently, the previous execution history
Hred is producible on S′ as well.

In the following, we first prove part (c) of Theorem 1 (insertion of sync edges into S)
since part (b) (insertion of control edges) is less complex and can be proven in a similar
way.

(c) � inserts a sync edge nsrc → ndest into S (nsrc and ndest ordered parallel so far).
First let

A1 ≡ [NS(ndest) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}]
A2 ≡ [(NS(nsrc) = COMPLETED ∧ NS(ndest) ∈ {RUNNING, COMPLETED})

with ∃ei , e j ∈ Hred: i < j ∧ ei = END(nsrc), e j = START(ndest)]
A3 ≡ [(NS(nsrc) = SKIPPED ∧ NS(ndest) ∈ {RUNNING, COMPLETED})

with ∀n ∈ Ncritical with NS(n) 	= SKIPPED:
∃ek, el ∈ Hred: l < k ∧ ek = START(ndest), el = END(n)]

where Ncritical = (c pred∗(nsrc) ¬ c pred∗(ndest)) (cf. figure 7(b))

The negation of A1, A2 and A3 yields

¬A1 ≡ [NS(ndest) ∈ {RUNNING, COMPLETED}]
¬A2 ≡ [NS(nsrc) 	= COMPLETED ∨

NS(ndest) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED} ∨
	 ∃ei , e j ∈ Hred: i < j ∧ ei = END(nsrc), e j = START(ndest)]

¬A3 ≡ [NS(nsrc) 	= SKIPPED ∨
NS(ndest) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED} ∨
∃n ∈ Ncritical with NS(n) 	= SKIPPED:
	 ∃ek, el ∈ Hred: l < k ∧ ek = START(ndest), el = END(n)]

“⇒”: I is compliant with S′ ⇒ A1 ∨ A2 ∨ A3



FLEXIBLE SUPPORT OF TEAM PROCESSES 113

Proof by contradiction, we show:

¬(A1 ∨ A2 ∨ A3) ⇒ I is not compliant with S′

Assumption: ¬(A1 ∨ A2 ∨ A3) holds.
¬(A1 ∨ A2 ∨ A3) ≡ ¬A1 ∧ ¬A2 ∧ ¬A3 ≡ (¬A1 ∧ ¬A2) ∧ ¬A3

≡ [(NS(ndest) ∈ {RUNNING, COMPLETED} ∧ NS(nsrc) 	= COMPLETED)
∨ (NS(ndest) ∈ {RUNNING, COMPLETED} ∧

	 ∃ei , e j ∈ Hred: i < j ∧ ei = END(nsrc), e j = START(ndest))]
∧¬A3

≡ [(NS(ndest) ∈ {RUNNING, COMPLETED} ∧ NS(nsrc) 	= COMPLETED)
∨ ((∃e j ∈ Hred: e j = START(ndest)) ∧

((	 ∃ei ∈ Hred: ei = END(nsrc)) ∨
(∃ei ∈ Hred: ei = END(nsrc) ∧ i > j)))] ∧¬A3

≡ [(NS(ndest) ∈ {RUNNING, COMPLETED} ∧ NS(nsrc) 	= COMPLETED)
∨ ((∃e j ∈ Hred: e j = START(ndest) ∧
	 ∃ei ∈ Hred: ei = END(nsrc)) ∨

(∃ei , e j ∈ Hred: e j = START(ndest), ei = END(nsrc) ∧ i > j))]
∧¬A3

≡ [(∃e j ∈ Hred: e j = START(ndest) ∧ 	 ∃ei ∈ Hred: ei = END(nsrc))
∨ (∃ei , e j ∈ Hred: e j = START(ndest), ei = END(nsrc) ∧ i > j)]

∧¬A3

≡: (E1 ∨ E2) ∧¬A3 (≡ (E1 ∧ ¬A3) ∨ (E2 ∧ ¬A3))

Because of nsrc ∈ pred(S’, ndest) and due to the compliance of I with S′ the end entry of
nsrc cannot be situated before the start entry of ndest in the execution history Hred; i.e., E2

and therefore (E2 ∧ ¬A3) cannot hold. Accordingly, (E1 ∧ ¬A3) must hold.

(E1 ∧ ¬A3)
≡ [∃e j ∈ Hred: e j = START(ndest) ∧ 	 ∃ei ∈ Hred: ei = END(nsrc)] ∧

[NS(nsrc) 	= SKIPPED
∨ NS(ndest) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}
∨ ∃n ∈ Ncritical, NS(n) 	= SKIPPED:

	 ∃ ek, el ∈ Hred: l < k ∧ ek = START(ndest), el = END(n)]
≡ [∃e j ∈ Hred : e j = START(ndest) ∧

	 ∃ei ∈ Hred: ei = END(nsrc)
∧ NS(nsrc) 	= SKIPPED]

∨ [(∃e j ∈ Hred: e j = START(ndest)
∧ 	 ∃ei ∈ Hred: ei = END(nsrc))
∧ NS(ndest) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}) ∨
(∃e j ∈ Hred: e j = START(ndest) ∧

	 ∃ei ∈ Hred: ei = END(nsrc)
∧ (∃n ∈ Ncritical, NS(n) 	= SKIPPED:

	 ∃ ek, el ∈ Hred: l < k ∧ ek = START(ndest), el = END(n)))]



114 RINDERLE, REICHERT AND DADAM

≡ [∃e j ∈ Hred: e j = START(ndest)
∧ 	 ∃ei ∈ Hred: ei = END(nsrc) ∧ NS(nsrc) 	= SKIPPED]

∨[(∃e j ∈ Hred: e j = START(ndest) ∧ 	 ∃ei ∈ Hred: ei = END(nsrc)
∧ (∃n ∈ Ncritical, NS(n) 	= SKIPPED:

	 ∃ ek, el ∈ Hred: l < k ∧ ek = START(ndest), el = END(n)))]
≡: C1 ∨ C2

C1 results in

NS(ndest) ∈ {RUNNING, COMPLETED} ∧ NS(nsrc) 	∈ {COMPLETED, SKIPPED}.
In this case I cannot be compliant with S′. Therefore C2 must hold.

C2

≡[∃e j ∈ Hred: e j = START(ndest), 	 ∃ei ∈ Hred: ei = END(nsrc) ∧
(∃n ∈ Ncritical with NS(n) 	= SKIPPED:

	 ∃ ek, el ∈ Hred: l < k ∧ ek = START(ndest), el = END(n))]
≡ (∃e j ∈ Hred: e j = START(ndest) ∧ 	 ∃ei ∈ Hred: ei = END(nsrc)) ∧

(∃n ∈ Ncritical, NS(n) 	= SKIPPED ∧
(	 ∃el ∈ Hred: el = END(n) ∨

∃el ∈ Hred: el = END(n) ∧ j < l ))
≡ [(∃e j ∈ Hred: e j = START(ndest) ∧ 	 ∃ei ∈ Hred: ei = END(nsrc))

∧ (∃n ∈ Ncritical, NS(n) 	= SKIPPED
∧ 	 ∃el ∈ Hred: el = END(n))] ∨

[(∃e j ∈ Hred: e j = START(ndest) ∧ 	 ∃ei ∈ Hred: ei = END(nsrc))
∧ (∃n ∈ Ncritical, NS(n) 	= SKIPPED

∧ ∃el ∈ Hred: el = END(n) ∧ j < l )]
≡: D1 ∨ D2

Because of D1 it follows that there is a predecessor node n ∈ Ncritical of nsrc which is neither
marked as COMPLETED nor as SKIPPED (see figure 7(b)). Referring to S′ this node is also
a predecessor of ndest since S′ contains the additional edge nsrc → ndest. Accordingly, I
cannot be compliant with S′.

D2 yields that a predecessor node n ∈ Ncritical of nsrc with NS(n) = COMPLETED exists
whose end entry is situated after the start entry of ndest in the execution history Hred. Since
n is a predecessor of ndest in S′ it follows that I is not compliant with S′.

“⇐”: A1 ∨ A2 ∨ A3 ⇒ I is compliant with S′

With A1 it follows that Hred still does not contain an entry related to ndest. Therefore Hred

could have been produced on S′ as well; i.e., I is compliant with S′. The same applies to
A2 because the end entry of nsrc had been written into Hred before the start entry of ndest

was logged.
After insertion of nsrc → ndest, in any case, nsrc has to be either executed or skipped

before ndest is activated or skipped. In addition, other (predecessor) nodes of nsrc, which
could have been executed parallel to ndest so far may now have to be executed or skipped



FLEXIBLE SUPPORT OF TEAM PROCESSES 115

before ndest can be marked. This node set is determined by Ncritical (see figure 7(b)). Only
if each activity node of Ncritical has either been marked as SKIPPED or has written its end
entry before the start entry of ndest into Hred, the execution history can be produced on the
new schema S′ as well. This follows directly from A3.

Notes

1. Only allowing future WF instances to be run according to the new version of the WF schema.
2. This problem is comparable to serializability of database transactions, which is ensured by suitable synchro-

nization methods; i.e., the defined compliance criterion (Axiom 1) can be considered as a general correctness
criterion (like serializability) for which we have to find suitable checking routines.

References

1. A. Agostini and G. de Michelis, “A light workflow management system using simple process models,” Int’l
Journal of Collaborative Comp., vol. 9, nos. 3/4, pp. 335–363, 2000.

2. J. Andany, M. Leonard, and C. Palisser, “Management of schema evolution in databases,” in Proc. Int’l Conf.
VLDB ’91, Barcelona, Sept. 1991, pp. 161–170.

3. S. Bassil, M. Benyoucef, R. Keller, and P. Kropf, “Addressing dynamism in e-negotiations by workflow
management systems,” in Proc. DEXA’2002 Workshop, Sept. 2002.

4. T. Bauer and P. Dadam, “Efficient distributed workflow management based on variable server assignments,”
in Proc. Int’l CAiSE ’00, Stockholm, June 2000, pp. 94–109.

5. F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow evolution,” Data and Knowledge Engineering, vol. 24,
no. 3, pp. 211–238, 1998.

6. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weerawarana, Business Process
Execution Language for Web Services, Version 1.0, 2002. http://www.ibm.com/developerworks/library/ws-
bpel/.

7. C.A. Ellis, K. Keddara, and G. Rozenberg, “Dynamic change within workflow systems,” in Proc. Int’l ACM
Conf. COOCS ’95, Milpitas, CA, August 1995, pp. 10–21.

8. C.A. Ellis and C. Maltzahn, “The Chautauqua workflow system,” in Proc. Int’l Conf. on System Science,
Maui, 1997.

9. A. Fent, H. Reiter, and B. Freitag, “Design for change: Evolving workflow specifications in ULTRAflow,” in
Proc. Int’l CAISE ’02, May 2002, pp. 516–534.

10. G. Joeris and O. Herzog, “Managing evolving workflow specifications,” in Proc. Int’l Conf. CoopIS ’98, New
York City, August 1998, pp. 310–321.

11. K. Kochut, J. Arnold, A. Sheth, J. Miller, E. Kraemer, B. Arpinar, and J. Cardoso, “IntelliGEN: A distributed
workflow system for discovering protein-protein interactions,” Distributed and Parallel Databases, vol. 13,
pp. 43–72, 2003.

12. M. Kradolfer and A. Geppert, “Dynamic workflow schema evolution based on workflow type versioning and
workflow migration,” in Proc. Int’l Conf. CoopIS ’99, Edinburgh, Sept. 1999, pp. 104–114.

13. F. Leymann and D. Roller, Production Workflow, Prentice Hall, 2000.
14. R. Müller and E. Rahm, “Dealing with logical failures for collaborating workflows,” in Proc. Int’l Conf.

CoopIS ’00, Eilat, 2000, pp. 210–223.
15. P. Muth, J. Weissenfels, M. Gillmann, and G. Weikum, “Workflow history management in virtual enterprises

using a light-weight workflow management system,” in Proc. RIDE’99, March 1999, pp. 148–155.
16. M. Reichert and P. Dadam, “ADEPTflex—supporting dynamic changes of workflows without losing control,”

Journal of Intelligent Information Systems, vol. 10, no. 2, pp. 93–129, 1998.
17. M. Reichert, S. Rinderle, and P. Dadam, “ADEPT workflow management system: Flexible support for

enterprise-wide business processes (tool presentation),” in Proc. Int’l Conf. BPM ’03, LNCS 2678, Eind-
hoven, Springer, June 2003, pp. 370–379.



116 RINDERLE, REICHERT AND DADAM

18. M. Reichert, S. Rinderle, and P. Dadam, “A formal framework for workflow type and instance changes under
correctness constraints,” Technical Report UIB-2003-01, University of Ulm, Computer Science Faculty, April
2003.

19. S. Rinderle, M. Reichert, and P. Dadam, “Evaluation of correctness criteria for dynamic workflow changes,”
in Proc. Int’l Conf. BPM ’03, LNCS 2678, Eindhoven, Springer, June 2003, pp. 41–57.

20. S. Rinderle, M. Reichert, and P. Dadam, “On dealing with semantically conflicting business process changes,”
Technical Report UIB-2003-04, University of Ulm, Computer Science Faculty, June 2003.

21. S. Sadiq, O. Marjanovic, and M. Orlowska, “Managing change and time in dynamic workflow processes,”
Int’l Journal of Cooperative Information Systems, vol. 9, no. 1/2, pp. 93–116, 2000.

22. W.M.P. van der Aalst, “Exterminating the dynamic change bug: A concrete approach to support worfklow
change,” Information Systems Frontiers, vol. 3, no. 3, pp. 297–317, 2001.

23. W.M.P van der Aalst and T. Basten, “Inheritance of workflows: An approach to tackling problems related to
change,” Theoretical Computer Science, vol. 270, no. 1/2, pp. 125–203, 2002.

24. M. Weber, Distributed Systems, Spektrum, Akademischer Verlag, 1998 (in German).
25. M. Weske, “Flexible modeling and execution of workflow activities,” in Proc. 31st Int’l Conf. on System

Sciences, Hawaii, 1998, pp. 713–722.


