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Abstract. With the rise of data-centric process management paradigms,
small and interdependent processes, such as artifacts or object lifecycles,
form a business process by interacting with each other. To arrive at a
meaningful overall business process, these process interactions must be
coordinated. One challenge is the proper consideration of one-to-many
and many-to-many relations between interacting processes. Other chal-
lenges arise from the flexible, concurrent execution of the processes. Rela-
tional process structures and semantic relationships have been proposed
for tackling these individual challenges. This paper introduces coordi-
nation processes, which bring together both relational process structures
and semantic relationships, leveraging their features to enable proper co-
ordination support for interdependent, concurrently running processes.
Coordination processes contribute an abstracted and concise model for
coordinating the highly complex interactions of interrelated processes.
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1 Introduction

In enterprises, different entities need to collaborate to reach business objectives.
The processes used to reach these objectives are not entirely executed in isolation,
but have relations and are therefore interdependent. In particular, processes may
depend on the execution status of several other processes, i.e., process dependen-
cies may involve one-to-many or many-to-many-relationships. Corresponding in-
terdependencies must be taken into account for the proper coordination of these
concurrently executed processes. The proper coordination includes the challenge
of coordinating multiple process instances, whose exact quantity is unknown at
design-time and which may have different kinds of complex relationships with
other process instances. Furthermore, the concurrent execution of processes may
be asynchronous, i.e., a process depending on another process may only be syn-
chronized at certain points in time. Finally, any coordination mechanism should
impact the execution of the involved process instances as little as possible.

For dealing with the interdependencies between processes in one-to-many re-
lationships, basic coordination patterns have been identified [15]. These patterns
are denoted as semantic relationships and may be used to describe complex



coordination constraints among multiple process instances. As a prerequisite,
semantic relationships require precise knowledge about which process instances
are related to which other process instances at run-time. Furthermore, dynamic
changes to the relations of process instances, i.e., the creation or deletion of pro-
cess instances, must be tracked. A solution is the relational process structure [14].
While semantic relationships and the relational process structure each solve a
part of the problem of process coordination, an overall concept bringing together
both parts is still missing. Such a concept requires the specification of semantic
relationships at design-time as well as the consideration of dynamic changes to
process relations and the concurrent execution of process instances at run-time.

This paper presents coordination processes, which leverage both semantic
relationships and the advantages of the relational process structure to provide
a comprehensive coordination of interrelated process instances. Coordination
processes not only support the concise specification of semantic relationships,
but additionally allow for the appropriate semantic relationship to be automat-
ically derived based on the relational process structure. Semantic relationships
may be combined to express more complex constraints for process coordination.
Furthermore, coordination processes take asynchronous execution of the coordi-
nated processes into account by design. A coordination process interferes only
when necessary, at certain points during the execution of a process instance, im-
pacting its execution as little as possible. The concept of coordination processes
originates from the object-aware approach to process management, where the
coordination of the lifecycle processes of objects constitutes an integral part [9].
This paper contributes the support of many-to-many relationships in process
coordination, which until now has been an open research challenge [6]. Further,
the paper contributes a concise model and the ability to express sophisticated
coordination constraints, allowing for the proper coordination of vast structures
of interdependent processes in a comprehensive fashion.

The remainder of the paper is organized as follows: Section 2 recaps semantic
relationships and relational process structures and characterizes their basic fea-
tures. Section 3 introduces the concept of coordination processes. Additionally,
it discusses the combination of different semantic relationships using ports and
the customization of semantic relationships with expressions. Section 5 covers
related work and discusses other approaches to process coordination. Finally,
Section 6 concludes the paper with a summary and an outlook.

2 Semantic Relationships and Process Structures

Semantic Relationships and the relational process structure provide the funda-
mental concepts that enable the definition of coordination processes. This section
provides a recap of relational process structures and semantic relationships. A
running example from the human resource domain is used throughout the paper
(cf. Example 1) to illustrate the concepts.

Ezample 1. (Recruitment Business Process)
In the context of recruitment, applicants may apply for job offers. The overall



process goal for a company is to determine who of the many applicants is best
suited for the job. Applicants must write their application for a specific job offer
and send it to the company. The company employees then evaluate each ap-
plication by performing reviews. To reject an application or proceed with the
application, a sufficient number of reviews need to be performed, e.g., the ma-
jority of reviews determines whether or not an application is rejected. If the
majority of reviews are in favor of the application, the applicant is invited for
one or more interviews, after which he may be hired or ultimately rejected. In
the meantime, more applications may have been sent in, for which reviews are
required, i.e., the evaluation of different applications may be handled concur-
rently, as well as the conduction of interviews. In particular, when an applicant
is hired for the job offer, all other applicants are rejected.

Example 1 describes many individ-
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amples of semantic relationships about which process instances are re-
lated to which other process instances is crucial for proper process coordina-
tion. Figure 1 shows a relational process structure at design-time the processes
of Example 1. In detail, the processes are Job Offer, Application, Review, and
Interviews, whereas Employee and Applicant represent users, indicating respon-
sibilities for creating and executing other processes.

Ezxample 2. A Job Offer may be related to one or more Applications, which
may have one or more relations to Interviews. In case of Reviews, the relation
is restricted to at minimum three and at most five Reviews per Application.
This cardinality restriction on a process relation is also enforced at run-time
by the relational process structure. Furthermore, Interview and Job Offer are
not directly related, but transitively via a path of relations. Allowing transitive
relations allows for more expressiveness in the coordination of processes. At run-
time, the relational process structure tracks the creation and deletion of process
instances and their relations. Consequently, a relational process structure is able
to give always up-to-date information about which process instances are related
with each other. Semantic relationships leverage this capability of relational
process structures to specify dependencies between processes and enforce them
at run-time.



Table 1. Overview over semantic relationships

Name Description of the semantic relationship

Top-Down The execution of one or more lower-level processes depends on the
execution status of one common higher-level process.

Bottom-Up The execution of one higher-level process depends on the execution
status of one or more lower-level processes of the same type.

Transverse The execution of one or more processes is dependent on the execu-
tion status of one or more processes of different type. Both types
of processes have a common higher-level process.

Self The execution of a process depends upon the completion of a pre-
vious step of the same process.

Self-Transverse ~The execution of a process depends on the execution process of
other processes of the same type. All processes have a common
higher-level process.

Semantic relationships may be used to model coordination constraints [15]. A
coordination constraint is a formal or informal statement describing one or more
conditions or dependencies that exist between processes. For example, statement
“An application may only be accepted if three or more reviews are positive” is a
coordination constraint. A coordination constraint must be expressed in terms
of semantic relationships for the use in a coordination process. For a proper rep-
resentation of coordination constraints, the combination of different semantic
relationships might be necessary. A semantic relationship describes a recurring
semantic pattern inherent in the coordination of processes in a one-to-many or
many-to-many relationship (cf. Table 1). As one example of a pattern, several
process instances may depend on the execution of one other process instance.
A semantic relationship may only be established between processes if a path of
relations in the relational process structure, i.e., a dependency, exists between
these processes. Figure 1 shows examples of semantic relationships between dif-
ferent processes. In this context, the terms lower-level and higher-level refer to
the fact that the relations are directed (cf. Figure 1). Process A is denoted as
higher-level process in respect to a reference process B if there is a directed rela-
tion from B to A. Analogously, there may be many source processes C; denoted
as lower-level processes in respect to a reference process D. This terminology
applies with transitive relations as well.

The execution status referred to in Table 1 is represented by a state-based
view of the process [15]. Thereby, the process to be coordinated is abstracted and
partitioned into different states that provide significant meaning for process co-
ordination. Furthermore, as the state-based view abstracts from the underlying
process language, any language might be used to model the process. For exam-
ple, an Application has states Sent and Checked, which are important milestones
for its coordination. An active state represents the current execution status. At
run-time, based on the execution status, semantic relationships possess a logi-
cal value that indicates whether the represented condition is currently satisfied
and, therefore, whether the execution of processes may progress or must halt.
For example, a Job Offer has active state Published, and a top-down semantic



relationship has value true to indicate that now Applications may be created for
the Job Offer. Apart from the state-based view, processes may provide access
to data attributes for use in a coordination process.

However, a method to effectively specify semantic relationships is still miss-
ing. Furthermore, coordination constraints often need several semantic relation-
ships to be expressed. As semantic relationships have a logical value to indicate
whether or not they are satisfied, boolean operators are required to express
more complicated coordination logic. Coordination processes combine the effec-
tive specification of semantic relationships with a graphical representation of
boolean logic. A coordination process leverages the relational process structure
and properties of semantic relationships to automatically derive the appropriate
semantic relationship between two processes at design-time.

3 Coordination Processes

Coordination processes are a generic concept for coordinating processes by ex-
pressing coordination constraints with the help of semantic relationships, which
are then enforced at run-time. The concept allows specifying sophisticated co-
ordination constraints for vast structures of interrelated process instances with
an expressive, high-level graphical notation using a minimum amount of model-
ing elements. The modeling elements are the coordination step, the coordination
transition, and the port. Coordination processes follow a type-instance schema,
where types (denoted ) represent design-time entities and instances () run-
time entities. Consequently, an instance is created by instantiating a type. The
dot (.) represents the access operator.

Definition 1. (Coordination Process Type)
A coordination process type ¢ has the form (wT, BT, AT) where

— w7 is the process type to which the coordination process type ¢’ belongs.
— BT is a set of coordination step types BT (cf. Definition 3).
— AT s a set of coordination transition types 61 (cf. Definition 4).

The coordinating process type w’ determines the overall context of the coor-
dination process, e.g., it determines the start and end coordination steps of the
coordination process and which processes may be coordinated.

Definition 2. (Process Type)
A process type wT has the form (n, X7, cT) where

— n is the name of the object type.
— X7 is a set of state types o©, representing the state-based view of wT .
— ¢TI is an optional coordination process type (cf. Definition 1). Default is 1.
For handling the complexities of dozens or hundreds of interrelated processes
at design-time, abstraction in a coordination process is crucial. As a part of this
effort, process types are represented with a state-based view, which abstracts



from process details and only exposes properties which are useful for process
coordination.
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Fig. 2. Coordination Process Model and State-based Views, Part I

3.1 Coordination Steps and Coordination Transitions

Coordination processes are represented as a directed graph that consists of coor-
dination steps, coordination transitions and ports. Figure 2 shows a part of the
coordination process for Example 1 with Job Offer as the coordinating process
type. Coordination steps are the vertices of the graph referring to a process type
as well as to one of its states, e.g. Job Offer and state Published. For the sake
of convenience, a coordination step is addressed with referenced process type
and state in the form of ProcessType:State, e.g. Job Offer: Published. A formal
definition for coordination steps is presented in Definition 3.

Definition 3. (Coordination Step Type)
A coordination step type BT has the form (cT,w™”, 0T, AL . HT) where

out’

— T is the coordination process type (cf. Definition 1).

- wlisa reference to a process type.

— o7 is a reference to a state type belonging to w™, i.e., o € WT.XT |
— AT is a set of outgoing coordination transition types 67 (cf. Definition 4).

HT is a set of port types 0’ (cf. Definition 5).

A coordination step type represents a collection of process instances of type
wT at run-time. As such, a coordination step type provides a succinct and ab-
stract way to represent multiple process instances at run-time, thus constraining
much of the complexity of interdependent multiple process instances to the run-
time instead of the design-time.

A coordination transition is a directed edge that connects a source coor-
dination step with a target coordination step (cf. Figure 2). Both source and
target coordination step reference a process type of the relational process struc-
ture. By creating a coordination transition between source and target step, a



semantic relationship is created as well. Conceptually, a semantic relationship
is attached to a coordination transition. With the relations from the relational
process structure and the definitions of semantic relationships (cf. Table 1), it
can be automatically derived which semantic relationship is established between
the process types referenced by the two coordination steps.

Ezample 3. (Top-Down and Bottom-Up Semantic Relationships)

Connecting Job Offer: Published with Application:Sent constitutes a top-down
relationship (cf. Figure 2). The sequence in which the steps occur is important
for determining the type of semantic relationship. Connecting Application:Sent
with Job Offer:Closed, a bottom-up semantic relationship is established instead,
as Application is a lower-level process type of Job Offer.

A formal definition for coordination transitions can be found in Definition 4.

Definition 4. (Coordination Transition Type)

A coordination transition type 67 has the form (37,

T T
srer iars S ) where

— BEL ree 18 the source coordination step type (cf. Definition 3).
— TNiarger 15 the target port type (cf. Definition 5).
— 8T is a semantic relationship between BL..wT and nk,..B7.wT.

For the sake of convenience, the terminology of source or target coordination
step of a coordination transition applies for the corresponding semantic relation-
ships as well. The strict distinction between coordination transition and semantic
relationship is crucial at run-time and is therefore reflected in the design-time
model. For establishing a semantic relationship between two processes, the state
o1 of any coordination step is not relevant, only the process types are relevant.
However, states becomes crucial for the actual representation and enforcement
of coordination constraints at run-time. Depending on the activation of states
at run-time, semantic relationships become enabled or disabled.

Ezample 4. (Top-down Semantics)

Figure 2 depicts coordination steps Job Offer: Published and Application: Creation.
The top-down semantic relationship between these coordination steps enforces
that a Job Offer must reach state Published before any application may be
created (i.e., Creation is the start state of an Application). Once a particular
Job Offer reaches state Published and the state becomes active, the top-down
semantic relationship becomes enabled and subsequently allows creating any
number of Applications for the Job Offer, at different points in time.

Coordination processes only permit or prohibit the activation of states. The
actual activation is determined by the process itself, i.e., by its progress. It is
therefore possible that a coordination process allows activating a state long be-
fore actually reaching this state of the process. On the other side, a coordination
process may halt process execution until the specified coordination constraints
are fulfilled, i.e., the semantic relationships become enabled.

Enabling a semantic relationship requires that all predecessor semantic rela-
tionships in the coordination process have been enabled as well, e.g., enabling the



bottom-up semantic relationship of Application:Sent with Job Offer: Closed re-
quires that the top-down semantic relationship Job Offer: Published with Applica-
tion:Sent has already been enabled (cf. Figure 2). As a consequence, a coordi-
nation process graph must be acyclic and connected. If a coordination process
contained a cycle, it would result in an immediate deadlock once a coordina-
tion step of the cycle is reached. Due to the cycle, its incoming semantic rela-
tionships never become enabled. Furthermore, the start and end coordination
steps of a coordination process must reference the coordinating process type,
ie., BT.wT = cT.wT, ensuring its proper start and completion.

Semantic relationships are based on one-to-many relationships. This includes
transitive relations, e.g., a semantic relationship may be established between
Job Offer and Interview. If the processes are in a many-to-many (m:n) rela-
tionship and are in a (w.l.0.g.) top-down semantic relationship, a coordination
process replicates the top-down semantic relationship m times at run-time, de-
pending on the number m of higher-level processes. It is thereby established that
each of the n lower-level processes depends on each of the m higher-level pro-
cesses. In consequence, many-to-many-relations may be elegantly coordinated.

So far, just based on coordination steps and coordination transitions, only
simple coordination constraints may be expressed, i.e., constraints that may
be represented by a single semantic relationship. However, coordination con-
straints may require multiple semantic relationships to be properly represented.
Additionally, the states of a process may be involved in several coordination
constraints, requiring all of them to be fulfilled in order to become enabled.
Coordination processes therefore incorporate the concept of ports, which allow
combining multiple semantic relationships for a state to become active.

3.2 Ports

Coordination transitions do not target a coordination step directly, but instead
target a port attached to a coordination step. Any coordination step must have
one or more ports (with the exception of the start coordination step).

Definition 5. (Port Type)
A port type 0T has the form (87, AT ) where

— BT is the coordination step type to which this port type belongs.
— AL is the set of all incoming coordination transitions 7 (cf. Definition 4).

Ports allow realizing different semantics for combining semantic relationships.
Connecting multiple transitions to the same port corresponds to AND-semantics,
i.e., all semantic relationships attached to the incoming transitions must be en-
abled for the port to become enabled as well. Enabling a port also enables the
coordination step, allowing the state of the coordination step to become active.
Generally, at least one port of a coordination step must be enabled for the co-
ordination step to become enabled as well. Consequently, connecting transitions
to different ports corresponds to OR-semantics.
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Ezample 5. (Port AND Semantics)

A coordination constraint may state that for an application to be accepted,
a sufficient number of interviews must propose a hire. Implicitly, a job may
not be given to two different applicants; therefore, no other application must
have already been accepted for the same job offer. To model this coordination
constraint, coordination step Application:Accepted (cf. Figure 3) has one port
with two incoming coordination transitions. Therefore, for an Application to
be accepted, both conditions represented by the semantic relationships need to
be fulfilled. The bottom-up semantic relationship outgoing from coordination
step Interview:Hire Proposed requires a sufficient number of Interviews to have
reached state Hire Proposed before an Application may be accepted. The pro-
cess type and state combination required to enable the semantic relationship
is determined by its source coordination step. The exact number of Interviews
required to be in state Hire Proposed is a design choice.

The implicit condition is represented by a self-transverse semantic relation-
ship, i.e., an Application depends on the execution status of other Applications
in context of the same Job Offer. In this case, only exactly one Application
may reach state Accepted, i.e., once an Application has been accepted, other
Applications are prevented from reaching state Accepted. The AND-semantics
of the target port require that both conditions are true at the same time so the
Application may be accepted.

Ezample 6. (Port OR Semantics)

Rejecting an Application may be achieved in two different ways. First, the
Reviews corresponding to the Application favor an immediate rejection. Sec-
ond, during one or more Interviews, a rejection of the application is favored,
and the Application is rejected then. In both cases, the corresponding semantic



relationship is bottom-up, but connects to two different ports of the coordi-
nation step Application:Rejected (cf. Figure 3). The OR-semantics, therefore,
allows rejecting the Application in either case.

Both AND and OR semantics may be combined to express even more complex
coordination constraints. Basically, connecting semantic relationships to ports al-
lows building boolean formulas. When viewing semantic relationships as literals,
ports are similar to clauses in a disjunctive normal form (DNF') of boolean logic.
In summary, ports enhance the expressiveness of semantic relationships and co-
ordination processes significantly. However, most coordination constraints may
still not be adequately represented, as semantic relationships have only been
used in their basic forms so far. Section 3.3 explores how semantic relationships
can be configured to express sophisticated coordination constraints.

3.3 Configuring Semantic Relationships

All semantic relationships, except the self semantic relationships, provide config-
uration options to the process modeler [15]. This allows for fine-grained control
over the basic semantics of the semantic relationship, increasing the degree to
which complex coordination constraints may be expressed. A top-down semantic
relationship must specify when it is no longer enabled, due to progression in the
higher-level process (cf. Table 1). For example, a Job Offer may no longer accept
new Applications after state Closed has become active. However, the exact means
to achieve this are not specified by the top-down semantic relationship. Coor-
dination processes rectify the situation by introducing a state set. A top-down
semantic relationship becomes enabled once the state of the source coordination
step, denoted as the base state of the top-down semantic relationship, becomes
active. For example, reaching base state Published of a Job Offer enables the
outgoing top-down semantic relationship (cf. Figure 2).

Consequently, the base state must automatically be part of the state set.
As long as the currently active state of the higher-level process belongs to this
state set, the top-down semantic relationship remains enabled. Successor states
of the base state may also be added to the state set by the process modeler.
This keeps the top-down semantic relationships enabled while the higher-level
process progresses, as long as its active state belongs to the state set.

Ezample 7. (Top-Down Configuration)

Suppose that state Closed, a successor state of state Published, is added to the
state set of the top-down semantic relationship. Then, new Applications may
still be added even when the Job Offer is closed, i.e., is in state Closed. The top-
down semantic relationship becomes disabled as soon as the Job Offer reaches
either state Position Filled or state Position Vacant, i.e, Applications may no
longer establish new relations to the Job Offer.

As opposed to top-down semantic relationships, bottom-up, transverse, and
self-transverse semantic relationships can be configured by using expressions.
Such an expression is denoted as a coordination expression and represents more



specialized conditions, in addition to the basic semantics of the respective seman-
tic relationship. For example, the bottom-up relationship between Interview: Hire
Proposed and Application: Accepted requires a sufficient number of Interviews in
state Hire Proposed. With an expression, this condition can be specified formally
and with a concrete number.

Ezample 8. (Expressions)

A process modeler may specify that at least two Interviews are necessary for
a hire. This may be represented as Count(Interview, Hire Proposed) > 2, where
Count is a function. In principle, the required expressions may be of arbitrary
complexity, allowing for the full range of boolean and arithmetic functions, con-
stants, and variables based on process data. In particular, negating the semantics
of semantic relationships is possible.

In Example 8, the notation of the expression does not incorporate the given
context for which this expression must be evaluated at run-time. In fact, Count
must not be evaluated on a global level, i.e., counting every Interview of ev-
ery Applicant for every Job Offer, but must be evaluated in context of a single
Application. Otherwise, this would have undesired and even absurd side effects,
such as that two positive interviews (for any two applicants) would allow addi-
tional applicants to be accepted as well. Therefore, it is essential that the context
is reflected in the expression framework, while keeping the expressions simple.
Often, it is desired that an expression framework shows high expressiveness to
solve the particular problem at hand. However, high expressiveness usually comes
with a number of drawbacks. Among these drawbacks, two may be considered
as the most severe. First, high expressiveness is generally correlated with high
complexity. This causes difficulties when specifying expressions, as substantial
knowledge of the expression framework is necessary for modeling. Second, high
complexity poses problems in the implementation of the expressions, requiring
considerable efforts to support all possible expressions in all possible combina-
tions. Thus, less used or more complex expressions are often not implemented
due to time and resource constraints, limiting the use of the expression frame-
work in practice. With the clear focus of expressions in semantic relationships,
it becomes possible to reduce the complexity of the expressions.

Several models® that involve coordination processes have shown that a high
percentage of the expressions used for configuring semantic relationships require
the counting of process instances. The instances to be counted are represented
by the source and target coordination steps. Furthermore, counting depends
on the state of the process, e.g., it is important how many processes are in
a particular active state. In other cases, it is important whether a particular
state has been active, has not yet been active, or has been skipped due to the
selection of alternative execution paths in the process. Due to the state-based
views of the involved processes, the status of states is of particular concern to
the coordination of processes at run-time. Therefore, it is beneficial to define
specialized counting functions as part of the expression framework.

1 A selection has been approved for publication, available at https://bit.1y/2yo6GTe



Definition 6. (Coordination Expression Counting Functions)
Let sT" be a semantic relationship and T be a coordination transition. Let 21 .
be the process instances of type 67.8L  ...wT coordinated by sT. Let X7 be the

state type set of 67.8% wT'. Then:

*~source*

— #AllSource : Q1. .. — Ny
Determines the total number of process instances for s .

— #InSource: 2 ... xXT 5N,
Determines the number of process instances of sT where state ol of type
ol € X7 is currently active.

— #BeforeSource: 2, . xXT - Ny
Determines the number of process instances of sT where state ol of type
ol € XThas not yet been active, i.e., a predecessor state is active.

— #AfterSource: 2L . .. xXT 5N,
Determines the number of process instances of sT where state o’ of type
ol € X7 has been active in the past, i.e., a successor state is active.

— #SkippedSource : 2% ... x XT = Ny
Determines the number of process instances of sT where state ol of type
ol € X7 is not on the execution path of the process instances, i.e, a mutual
exclusive state to ol is active.

Analogously, functions can be defined that count process instances of Qtlarget with
T

type 5T 'ntarget 'BT 'wT .

With these functions, expression Count(Interview, Hire Proposed) > 2 can
be redefined, explicitly taking context, i.e., the respective semantic relationship,
into account. Figure 4 shows an excerpt from the coordination process from
Figures 2 and 3. The semantic relationships have been annotated with their
respective coordination expressions. For the bottom-up semantic relationship,
counting function #InSource has been used, as the source coordination step is
Interview:Hire Proposed. Using the counting function #InSource, in conjunc-
tion with the source or target coordination step and the respective semantic
relationship, therefore clearly defines the context for evaluating the expression.
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Application reaches state Checked. If an Application becomes accepted, the self-
transverse semantic relationship is disabled due to the coordination expression
#InTarget == 0 no longer evaluating to true. Therefore, no more Applications
may reach state Accepted.

In case a modeler has not specified a coordination expression, bottom-up,
transverse, and self-transverse semantic relationships default to the expression
#InSource = #AllSource, meaning the referenced state must be active in all
process instances. Note that these functions are intended to facilitate frequently
encountered use cases when specifying semantic relationships, the expression
framework is not limited to using these functions. In previous work [9], expression
were limited to counting source processes, severely limiting the expressiveness of
semantic relationships. With the addition of the target coordination expressions
(e.g., #InTarget) and other types of expressions, which are not replicated here
for the sake of brevity, a wider range of coordination constraint can be realized.

3.4 Operational Semantics of Coordination Processes

The concept of coordination processes not only comprises the modeling of pro-
cess interactions, but includes operational semantics as well. The operational
semantics defines the run-time behavior of coordination processes. The highly
dynamic nature of the relational process structure at run-time and the frequent
state changes of processes create a unique set of challenges for a coordination
process at run-time. This requires a high flexibility to tackle these challenges
on part of the coordination process. For example, as processes may execute
concurrently, semantic relationships must cope with different processes reaching
particular states at different points in time and in different order. Furthermore,
creating and deleting processes or changing relations of interconnected processes
all affect a coordination process, i.e., coordination constraints become fulfilled
or are no longer fulfilled. The operational semantics must account for all even-
tualities to ensure a correct process execution of all involved process instances.

For this purpose, a coordination step type may be instantiated multiple times
at run-time, each representing one process instance of the relational process
structure. Consequently, semantic relationships are also instantiated multiple
times at run-time, allowing for the coordination of different sets of processes
independently and contextually. For example, Application A is related to two
Interviews and Application B is related to none. For each Application, a seman-
tic relationship is instantiated. As a consequence, coordination processes form
complex, interconnected structures at run-time. Note that the run-time of coor-
dination processes is too complex to be presented in this paper in its entirety
and must therefore be reserved for future publications.

In summary, coordination processes are a powerful concept for coordinating
processes in one-to-many and many-to-many relationships. They combine the
capabilities of relational process structures and the semantic relationships to
model coordination constraints and enforce these constraints at run-time. With
ports and coordination expressions, coordination processes may be customized



to fit individual needs while retaining the basic semantics of the individual se-
mantic relationships. Modeling is facilitated by the comparatively low number
of modeling elements and the fact that semantic relationships may be derived
automatically when connecting coordination steps with a coordination transi-
tion, which is possible due to the underlying relational process structure. With
this, managing the challenges of multiple interrelated processes at run-time is
possible. Furthermore, semantic relationships, as the cornerstone of coordina-
tion processes, allow reacting correctly to the changes during lifecycle execution.
The relational process structure ensures that a coordination process has always
up-to-date information on every process instance and its relations. Finally, a co-
ordination process model is designed so that it is immediately executable upon
instantiation, i.e., there is no distinction between functional and technical model.

4 Proof-of-Concept: Demonstrating the Feasibility of
Coordination Processes

Object-aware process management [9] has been centered around the idea that
objects with lifecycles and their interactions constitute a business process. As
a data-centric paradigm, objects acquire data according to their lifecycle pro-
cesses, i.e., the change in progress is data-driven. In particular, many process
instances of a type may exist, which have interdependencies to other process in-
stances. Consequently, coordination processes have been developed to steer these
different interacting lifecycles in order to reach a meaningful overall business pro-
cess. Objects, their lifecycles and coordination processes constitute the core of
a business process management system prototype. This prototype is based on
the object-aware approach and has been developed in the PHILharmonicFlows?

project at Ulm University.
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Fig. 5. PHILharmonicFlows Modeling Tool Showing a Coordination Process

The prototype comprises a tool for modeling data models with objects to-
gether with their lifecycle processes and relations to other objects, i.e., a rela-
tional process structure. The tool also supports the modeling of coordination

2 For more details on the prototype visit https://bit.1ly/2KYvyT9



processes as described in this paper. Figure 5 shows the coordination process of
the running example (cf. Figure 2 and 3) modeled with the tool. The prototype
additionally comprises a run-time environment, which is able to asynchronously
execute both lifecycle and coordination processes with the required flexibility.
The prototype uses a micro service architecture for high scalability and parallel,
asynchronous execution of processes, as objects and their attached processes are
uniquely suited to be distributed among such micro services. This raises further
challenges for coordination processes when employed in large-scale, distributed
relational process structures.

Furthermore, coordination processes were successfully used to model various
processes, both real-world and exploratory examples. Some have been modeled
in cooperation with industrial partners. All models comprise dozens of object
types and multiple coordination processes®. The models showed that, in general,
coordination processes are able to represent coordination constraints adequately.
While modeling of coordination processes requires extensive knowledge of several
concepts, e.g., semantic relationships, it is by far compensated by the built-in
executability of the models.

5 Related Work

Coordination processes support various features rarely seen in other process co-
ordination approaches, most notably the support of many-to-many relationships.
This gives coordination processes a unique advantage. Table 2 shows a compar-
ison between coordination processes and selected related work. Note that Table
2 compares approaches according to specific features and therefore does not
represent an overall quality assessment of the individual approaches.

Table 2. Comparison of Process Coordination Approaches

Artifact-centric | Proclets| BPMN| Corepro| Coordination
(GSM) Processes
paradigm-agnostic v
explicit relations v v
transitive relations ) v
many-to-many relations (l/) v
process cardinality (t/ ) v (/ ) v
message-based ) 4 4 4
v Supported (l/) : Indirectly supported

Artifact-centric process management [12] uses the Guard-Stage-Milestone
(GSM) meta-model [7,8] for process modeling. Central to this approach is the
artifact, which holds all process-relevant information. It may further interact
with other artifacts. However, GSM does not provide dedicated coordination

3 A selection has been approved for publication, available at https://bit.1ly/2yo6GTe



mechanisms or explicit artifact relations, and therefore does not support any
criterion of Table 2. Instead, GSM incorporates an arbitrary information model
and a sophisticated expression framework that, in principle, allow fulfilling the
comparison criteria with expressions and custom data. As a drawback, expres-
sions might become very complex and explicitly need to be integrated into the
process model. Therefore, model verification [1,2,4] constitutes an important as-
pect of artifact-centric process management. Further, [6] recognizes the need for
supporting many-to-many relationships in artifact-centric choreographies.

For artifact-centric process models based on Finite-State-Machines (FSMs),
[16] developed a message-based declarative artifact-centric choreography. This
approach proposes the use of exactly one master artifact to coordinate all ar-
tifacts in a correlation graph. The approach explicitly considers the run-time
presence of multiple instances. While the approach shows some similarities to
coordination processes, the message-based coordination mechanism neither pro-
vides the run-time flexibility of semantic relationships nor the succinct model of
a coordination process. Moreover, it is unclear if and how the findings translate
from FSM-based to GSM-based artifacts.

Proclets [17] are lightweight processes with focus on process interactions.
Proclets interact via messages called Performatives. Proclets allow specifying
the cardinality for a message multicast, i.e., the number of Proclets that receive
a performative. Proclets are capable of asynchronous and concurrent execution.
However, relations between different Proclets are not considered. Proclets are
defined using Petri nets, which are extended with ports that send and receive
performatives. The concept of ports in the Proclet approach is fundamentally
different than ports in coordination processes.

The coordination of large process structures with focus on the engineering
domain is considered in [10,11]. The COREPRO approach explicitly considers
process relations with one-to-many cardinality and dynamic changes at run-
time, but transitive relations are not considered. In comparison to COREPRO,
semantic relationships correspond, in principle, to external state transitions of
a Lifecycle Coordination Model. However, the external state transitions do not
take the semantics of the respective process interaction into account.

Regarding the activity-centric process modeling paradigm, several approaches
enable a specific kind of coordination. For activity-centric processes, workflow
patterns have been identified [18]. Several workflow patterns describe interac-
tions between processes, which may be used for coordinating processes. The
business process architecture approach [5] also identifies generic patterns to de-
scribe a coordination between processes. iBPM [3] enhances BPMN to support
coordination of processes by modeling process interactions.

The BPMN standard [13] provided the choreography diagram explicitly ded-
icated to model the interactions between processes. Similar to coordination pro-
cesses, choreography diagrams abstract from the coordinated processes and only
display interactions themselves. The coordinated process types can be annotated
with single-instance and multi-instance markers, showing very limited support



in restricting process cardinality. Similar to coordination processes, they are dis-
played on separate diagrams and posses few modeling elements.

Common to all these approaches, with the exception of artifacts, is the use
of messages as a mechanism for coordination. While the exchange of messages
allows for a detailed process coordination, all message flows have to be identified,
the contents of the messages defined, and the recipients determined. This consti-
tutes an enormous complexity when facing numerous processes that need to be
coordinated, and in many cases, it impairs the flexible execution of the involved
processes. Except Proclets, the modeling of coordination aspects is integrated
into the actual process models, increasing the complexity to the process mod-
els. Coordination processes allow expressing complex interdependencies concisely
using semantic relationships.

6 Summary and Outlook

A coordination process is an advanced concept for coordinating a collection of
individual processes. It provides the superstructure to effectively employ rela-
tional process structures and semantic relationships. A coordination process it-
self is specified in a concise and comprehensive manner using coordination steps,
coordination transitions and ports, abstracting from the complexity of coordi-
nating a multitude of interrelated processes. Coordination processes allow for
the automatic derivation of semantic relationships from connecting two coordi-
nation steps with a coordination transition. Complex coordination constraints
are expressed by combining multiple semantic relationships using ports, and are
configured using a comprehensive context-aware expression framework.

For future work, the operational semantics of coordination processes are the
main focus, as coordinating multiple concurrently running instances poses unique
challenges. In particular, the multi-instance nature of the run-time requires that
semantic relationships are instantiated multiple times, once for each context.
This leads to a highly complex instance representation of a coordination process
at run-time, which must be kept synchronized with each process instance in the
relational process structure and the execution status of each process instance.
Both operational semantics and large process structure coordination will be in-
vestigated in future work. Additionally, a thorough empirical investigation of
the coordination process modeling concept shall demonstrate its applicability in
practice.
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