
On Dealing with Structural Conflicts between
Process Type and Instance Changes�

Stefanie Rinderle, Manfred Reichert, and Peter Dadam

University of Ulm, Faculty of Computer Science,
Dept. Databases and Information Systems

{rinderle, reichert, dadam}@informatik.uni-ulm.de

Abstract. Adaptive process management systems must be able to sup-
port changes of single process instances as well as modifications at the
process type level and their propagation to a collection of related pro-
cess instances. So far, these two kinds of dynamic process changes have
been mainly considered in an isolated manner. However, especially for
long-running processes, it must be possible to handle the interplay bet-
ween process type and instance changes as well, but without running into
trouble at runtime. This paper presents an extended criterion for correc-
tly propagating process type changes to both, instances which are still
running according to their original schema and instances which have been
individually modified. In this context, we discuss and categorize struc-
tural conflicts potentially occuring between concurrent process changes.
We show that our considerations are applicable to different process meta
models and present tests for quickly detecting such structural conflicts.

1 Introduction

Adaptivity in process management systems (PMS) is key to flexible enterprise
information systems. Basically, changes in process-oriented applications can take
place at two levels – the process type or the process instance level.

A process type represents a particular business process (e.g., handling of a
purchase order or treatment of a patient). It is described by a process schema
which defines a collection of activities and sets out the control as well as data
flow between them. Based on such a process schema, new process instances can
be created and executed according to the defined process logic. Process type
changes become necessary, for example, to adapt the process-oriented informa-
tion system to optimized business processes or to new laws. They are handled
by (structurally) modifying the respective process schema, which leads to a new
schema version of the respective type. Particularly for long-running processes
(e.g., handling of leasing contracts or medical treatments) it is desired to propa-
gate a process type change to already running process instances as well. Process
instances for which this is possible are compliant with the new schema and can
therefore be migrated to it. As opposed to process type changes, changes of
� This work was done within the research project ”Change management in adaptive

workflow systems”, which is funded by the German Research Community (DFG).

J. Desel, B. Pernici, and M. Weske (Eds.): BPM 2004, LNCS 3080, pp. 274–289, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 24000 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 10.0     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



On Dealing with Structural Conflicts 275

single process instances (e.g., to insert or skip an activity) are often carried out
in an ad-hoc manner in order to deal with an exceptional situation. Adapting
a single process instance during runtime, in turn, results in an instance-specific
schema (also called instance execution schema in the following), which differs
from the original schema this instance was created from. In the following, we
denote such individually modified process instances as biased.

In the literature [1,2,3,4,5,6,7,8,9,10] process type and instance changes have
been an important research topic for several years. However, there are only few
adaptive PMS which support both kinds of changes in one system [10,11]. All of
them have in common that once an instance has been individually modified (i.e.,
it possesses an instance-specific process schema), it cannot longer benefit from
process type changes; i.e., changes of the schema they were originally created
from. In WASA2 [10], for example, an instance change is carried out by deriving
a new schema version to which the instance is migrated. In the sequence, this
instance is excluded from further adaptations of its original schema version at the
process type level. However, doing so is not sufficient in many cases, especially
in connection with long-running processes. Therefore, it must be possible to
propagate process schema changes at the type level to such biased instances as
well.

This paper focuses on the interplay of process type and instance changes un-
der appropriate correctness constraints. Such constraints are necessary since an
uncontrolled propagation of process type changes to biased instances may raise
severe errors at runtime. A first contribution is to present a correctness crite-
rion for propagating process type changes to both unbiased and biased process
instances. This criterion is independent of the used process meta model. Furt-
hermore, it excludes state-related, structural, and semantical conflicts between
concurrent process type and instance changes. A second contribution deals with
structural correctness of concurrent process type and instance changes. A
simple example for such a structural conflict is depicted in Fig. 1. Here, propaga-
ting the process type change (cf. Fig. 1a) to biased instance I in an uncontrolled
manner would lead to a deadlock causing cycle in the resulting process instance
schema (cf. Fig. 1b). A naive solution to overcome this undesired behavior would
be to simulate the process type change on each instance-specific schema (i.e., to
materialize the resulting instance schema) and then to verify control and data
flow correctness. Doing so may become very critical regarding performance, es-
pecially in conjunction with a large number of biased instances. An alternative
solution is to check for process schema and instance changes whether they are
in conflict or not. Our ambition is to exclude structural conflicts for as much
(biased) instances as possible by the use of simple and easy to check tests. In
any case expensive control and data flow analyses shall be avoided to a large
degree. This paper presents appropriate tests to detect control flow as well as
data flow conflicts between process schema and instance changes.

In Section 2, a general correctness criterion handling both process type and
instance changes is introduced. Section 3 provides necessary background infor-
mation for our concrete solution approach. In Section 4 we present structural
conflict tests which are illustrated by an example in Section 5. Section 6 discusses
related work and Section 7 closes with a summary of the presented results.



276 S. Rinderle, M. Reichert, and P. Dadam

 Schema S’:  

A B 

C 

E F 

D 

G 

b)   Biased Instance I (on S + �I): I (on (S + �I) + �T): 

�T = insertPlace(S, D, E) 
 

process type change 

 

A B 

C 

E F 

D 

H G 

 

A B 

C 

E F 

D 

H G 

 

A B 

C 

E F 

D 

H G 

a)   Schema S: 

�I = insertPlace(S, F, C) 

Fig. 1. Structural Conflict in Petri Nets (Deadlock)

2 A General Correctness Criterion for Process Type and
Process Instance Changes

In this section we present a criterion for correctly propagating process type
changes to both unbiased and biased process instances (cf. Axiom 1).

Axiom 1 (Propagating Type Changes To Biased Instances) Let T be a
process type with actual schema version S. Assume that a new (correct) schema
version S’ is derived from S by applying type change ∆T to it. Then: ∆T may
be propagated to instance I (with type T and current instance execution schema
SI := S + ∆I) :⇔
1. Structural Correctness: S∗

I := (S + ∆I) + ∆T is a correct schema ac-
cording to the structural correctness constraints set out by the used process
meta model; i.e., ∆T can be correctly applied to SI = (S + ∆I).

2. State-Related Correctness: I is compliant with S∗
I (cf. 2); i.e., the exe-

cution history Hred of I can be produced on S∗
I as well.1

3. Semantical Correctness: ∆T and ∆I are semantically conflict-free.

Axiom 1 is valid for unbiased as well as for biased process instances. More
precisely, it handles unbiased instances as a special case; i.e., for an unbiased
instance we obtain S∗

I = S′ whereby S’ is correct according to the assumption
of Axiom 1 and ∆T and ∆I are semantically conflict-free. Consequently, only
state-related correctness has to be checked what exactly corresponds to the well-
known compliance criterion [3,9,12]; i.e., an unbiased instance I is compliant
with a changed schema S’ if its previous execution trace on S is also a possible
execution trace on S’ (cf. Requirement 2 in Axiom 1).

Regarding Requirement 1 of Axiom 1 we first have to ensure that ∆T is
actually applicable to the instance-specific execution schema SI := S + ∆I .
1 An execution history H of instance I on S usually logs all start and end events gene-

rated during the execution of I. The reduced execution history Hred is determined
by logically discarding all entries from H which have been produced by another than
the actual loop iteration for each loop contained in S. The reduction from H to Hred

is necessary in order to avoid restrictiveness in conjuntion with loops [12]).



On Dealing with Structural Conflicts 277

Therefore, generally, all ”pre-conditions” of ∆T on SI must be fulfilled. How
these change pre-conditions exactly look like depends on the respective change
operations. However, a common claim for all kinds of change operations is that
all schema objects manipulated by ∆T should be present in SI . An example for
a process type change ∆T not applicable to SI is depicted in Fig. 2: ∆T deletes
activity D which has already been deleted at the instance level. Intuitively, ∆T

cannot be applied to the instance-specific schema SI .

�T = insertPlace(S, D, E) �T = insertPlace(S, D, E) 

completed  activated  TRUE Signaled 

 

A 

C 

E F 

H B G 

 

 

A 

C D 

E F 

H B G 

 

 

A 

C D 

E F 

H B G 

 

�T not applicable to SI! 

Schema S: Schema S’: 

Instance I (on SI) 

�T = deleteActivity(S, D) 

Fig. 2. Process Type Change Not Applicable to Instance-Specific Schema

If, in contrast, ∆T is applicable to SI , target schema S∗
I := (S + ∆I) + ∆T

can be produced. However, the resulting instance-specific schema S∗
I may still

contain control and data flow errors (like deadlock-causing cycles or missing
input data). We therefore must analyze S∗

I with respect to its structural correc-
tness properties (e.g., absence of cycles except loop bodies) by the corresponding
”post-conditions” of ∆T on SI . The core problem addressed in this paper is how
to (efficiently) ensure that S∗

I does not contain any control or data flow errors,
i.e., to (efficiently) ensure that there are no structural conflicts between process
schema and instance changes (cf. Requirement 2 of Axiom 1). Obviously, an ap-
propriate approach for this problem has to work for a large number of biased
process instances as well. As mentioned in the introduction, a naive solution
would be to first materialize schema S∗

I := (S + ∆I) + ∆T for each (biased)
instance I and then to apply respective correctness checks on S∗

I . However, this
may result in a serious performance problem caused by the expensive materia-
lization of S∗

I on the one hand and the subsequent complex control and data
flow correctness checks on S∗

I on the other hand. Again note that these two
steps would have to be applied to each biased instance to be migrated.

Therefore, in this paper, we show how expensive correctness tests (based on
materialized schemes S∗

I for each biased instance I) can be avoided. The key idea
behind is to detect potential control and data flow errors in S∗

I := S +(∆I)+∆T

solely based on the applied changes ∆T and ∆I , and the original schema S.
More precisely, we elaborate quickly checkable conflict tests by exploiting the
semantics of the applied changes ∆T and ∆I . Respective conflict tests either
yield that there would be definitely no control or data flow error in schema S∗

I or



278 S. Rinderle, M. Reichert, and P. Dadam

they indicate that a possible structural conflict between ∆T and ∆I (potentially
leading to such an error) may occur.

How to check state-related correctness (cf. Requirement 2 of Axiom 1) has
been described in another paper of our group [12]. We have developed a set
of compliance rules which can be used for checking state-related compliance of
unbiased as well as of biased process instances with a modified schema. More
precisely, these compliance rules define efficiently checkable conditions on activity
node markings for each applicable change operation.

A semantical conflict (cf. Requirement 3 of Axiom 1) may occur, for example,
if ∆T inserts activity ”give drug A” at process type level and ∆I inserts activity
”give drug B” at instance level and there is a medical incompatibility between
drugs A and B. Consequently, executing instance I on target schema S∗

I would
lead to a medication with incompatible drugs. The detection of this semantical
conflict requires additional information about the changes. Due to lack of space
we obstain from further details about semantical issues in this paper.

3 Fundamentals

In order to be able to precisely define structural conflicts tests for concurrent
process type and instance changes we need a formal process meta model. In this
paper, we exemplarily use WSM-Nets (as for example applied in ADEPT [13])
and the change operations based on them for this purpose. However, similar
conflict tests can be developed for other process meta models as well.

Definition 1 (WSM-Net). A tuple S = (N, D, NT, CtrlE, SyncE, LoopE,
DataE) is called a WSM-Net if the following holds:

– N is a set of activities and D a set of process data elements
– NT: N �→ {StartFlow, EndFlow, Activity, AndSplit, AndJoin,

XOrSplit, XOrJoin, StartLoop, EndLoop}
NT assigns to each node of the WSM-Net a respective node type.

– CtrlE ⊂ N × N is a precedence relation
– SyncE ⊂ N × N is a precedence relation between activities of parallel bran-

ches
– LoopE ⊂ N × N is a set of loop backward edges
– DataE ⊆ N × D × {read, write} is a set of read/write data links between

activities and data elements

Thus, a process schema is represented by attributed serial-parallel graphs
with additional sync links. A WSM-Net S is structurally correct if the following
constraints hold:

1. S has a unique start node Start and a unique end node End.
2. Except for nodes Start and End each activity node of S has at least one

incoming and one outgoing control edge e ∈ CtrlE.
3. Sblock := (N, CtrlE, LoopE) is structured following a block concept, for

which control blocks (sequences, branchings, loops) can be nested but must
not overlap.



On Dealing with Structural Conflicts 279

4. Sfwd = (N, CtrlE, SyncE) is an acyclic graph, i.e., the use of control and
sync edges must not lead to deadlock-causing cycles.

5. Sync links must not cross the boundary of a loop block; i.e., an activity from
a loop block must not be connected with an activity from outside the loop
block via a sync link (and vice versa).

6. For activities for which a mandatory input parameter is linked to a data
element d ∈ D it has to be ensured that d will be always written at runtime
independently of which execution path will be chosen.

7. Parallel write accesses on data elements (and consequently lost updates)
have to be avoided.

Taking a correct WSM Net S new instances can be created and started. Lo-
gically, each process instance I is associated with an instance-specific schema
SI := S + ∆I (for unbiased instances SI = S holds). The control state of I
is captured by a marking function MSI =(NSSI , ESSI ). It assigns to each ac-
tivity n its current status NS(n) and to each control and loop edge its marking
ES(e). These markings are determined according to well defined marking rules
[8], whereas markings of already passed regions and skipped branches are preser-
ved (except loop backs). Concerning data elements, different versions of a data
object may be stored, which is important for the context-dependent reading of
data elements and the handling of (partial) rollback operations. Formally:

Definition 2 (Process Instance). A process instance I is defined by a tuple
(S, ∆I , MSI , V alSI , H) where

– S = (N, D, NT, CtrlE, SyncE, ...) denotes the process schema I was derived
from. We call S the original schema of I.

– ∆I comprises instance-specific changes opI
1, . . . , op

I
m that have been applied

to I so far. Schema SI := S + ∆I , which results from the application of ∆I

to S, is called the instance execution schema of I.
– MSI = (NSSI , ESSI ) describes node and edge markings of I:

NSSI : N �→ {NotActivated, Activated, Running, Completed,
Skipped}
ESSI : (CtrlE ∪ SyncE ∪ LoopE) �→

{NotSignaled, TrueSignaled, FalseSignaled}
– ValSI is a function on D. It reflects for each data element d ∈ D either its

current value or the value UNDEFINED (if d has not been written yet).
– H = < e0, . . . , ek > is the execution history of I. e0, . . . , ek denote the start

and end events of activity executions. For each started activity X the values
of data elements read by X and for each completed activity Y the values of
data elements written by Y are logged.

Activities marked as Activated are ready to fire and can then be worked
on, i.e., their status changes to Running. As an example take instance I in
Fig. 3: Activity A is completed whereas activity B is activated. Activities with
marking Skipped cannot longer be selected for execution.

Table 1 presents a selection of high-level operations which can be used to de-
fine or change WSM-Nets. We distinguish between basic and high-level change



280 S. Rinderle, M. Reichert, and P. Dadam

operations. Examples for basic change operations are insertion/deletion of ac-
tivity nodes or control edges. Such basic change operations can be applied to
a process schema; afterwards structural correctness of the resulting schema has
to be checked. In contrast, high-level change operations include formal pre- and
post-conditions and automatically perform the necessary schema transformati-
ons such that schema correctness can be ensured. An example is process type
change ∆T in Fig. 3: ∆T serially inserts activity X into S by automatically
embedding X between activities D and G. (For more complex examples see [8]).

Table 1. A Selection of High-Level Change Operations on WSM-Nets

Change Operation ∆ Effects on Schema S
Applied to Schema S

Additive Change Operations

serialInsert(S, X, A, B) serial insertion of activity X between activities A and B
parallelInsert(S, X, CtrlBlock) insertion of activity X parallel to control block CtrlBlock
insertSyncEdge(S, src, dest) insertion of sync edge linking two parallel nodes src and dest

Subtractive Change Operations

deleteActivity(S, X) deletes activity X from schema S
deleteSyncEdge(S, edge) deletes edge ∈ SyncE from schema S

Order-Changing Operations

serialMoveActivity(S, X, A, B) moves activity X from current position
to position between activities A and B

parallelMoveActivity(S, X, CtrlBlock) moves activity X to position parallel to control block CtrlBlock

Attribute Changing Operations

changeActivityAttribute(S, X, attr, nV) changes value of attribute attr of activity X to nV
changeEdgeAttribute(S, edge, attr, nV) changes value of attribute attr of edge ∈ CtrlE ∪ SyncE to nV

Data Flow Change Operations
addDataElement(S, d, dom, defVal) adds data element d with domain dom

and default value defVal to S
deleteDataElement(S, d) deletes data element d from S
addDataEdge(S, (X, d, mode)) adds data edge (X, d, mode) to S (mode ∈ {read, write})
deleteDataEdge(S, dL)) deletes data edge dL from S

4 Structural Conflict Tests

In this section, we provide simple but effective tests for detecting potential con-
flicts between concurrently applied control and/or data flow changes. In parti-
cular, respective tests can be used in connection with the common support of
process type and process instance changes.

4.1 On Detecting Control Flow Conflicts

A serious problem which may arise from the uncontrolled propagation of a
process type change ∆T to a biased instance (on instance-specific schema
SI := S + ∆I) is the occurence of deadlock-causing cycles (for an example



On Dealing with Structural Conflicts 281

see Fig. 1). As mentioned before, a naive solution would be to first materialize
the target schema S∗

I := (S + ∆I) + ∆T and then to carry out respective cycle
checks on S∗

I . Since these materialization and validation steps would have to be
applied for each biased instance I, this approach would cause severe performance
problems. Thus, our ambition is to perform an appropriate deadlock test based
on information given by the process type and instance changes themselves and
the original process schema S. A first version of a deadlock tests satisfying these
claims is given in Proposition 1 [13]:

Proposition 1 (Basic Deadlock Prevention). Let S be a WSM-Net
and I be a biased instance with starting schema S and execution schema
SI := S + ∆I = (NI , DI , NTI , CtrlEI , SyncEI , . . .). Assume that type change
∆T transforms S into a correct schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, ...).
Then: S∗

I = (S + ∆I) + ∆T does not contain deadlock-causing cycles if the
following condition holds:

∀ (s1, d1) ∈ AS(S, ∆T ), ∀ (s2, d2) AS(S, ∆I):
d1 	∈ (pred∗(S, s2) ∪ {s2}) ∨ d2 	∈ (pred∗(S, s1) ∪ {s1}) (Ψ)

whereas
• AS(S, ∆T ) := SyncE′ \ SyncE
• AS(S, ∆I) := SyncEI \ SyncE
• pred∗(S, n) denotes all direct and indirect predecessors of activity n

when considering both control and sync edges of S.

By simply applying condition Ψ from Proposition 1 we can exclude deadlocks
when propagating a type change to a biased instance. Note that condition Ψ is
based on the original process schema S. Consequently, an easy conflict test can
be derived which avoids the materialization of any other schema (SI or S∗

I).
In general, the quality of a conflict test can be measured according to how

efficiently it can be applied to concurrent process type and instance changes.
Another important quality factor is the number of ”uncritical” instances I for
which conflicts between process type and instance changes can be definitely
excluded. The deadlock test derived from Proposition 1 is a ”good” test with
respect to efficiency. However, it still scores lower regarding the second quality
factor. Reason is that for particular instance changes ∆I this test indicates
conflicts with type change ∆T although the target schema S∗

I := (S +∆I)+∆T

will not contain any deadlock causing cycle. An example is depicted in Fig.
3: Instance change ∆I inserts a sync edge between activities C and F already
contained in S whereas type change ∆T inserts a sync edge between also newly
inserted activites X and Y . From the applied changes we derive AS(S, ∆T ) =
{(X, Y)} and AS(S, ∆I) = {(C, F)} (cf. Proposition 1). The expression yielding
from applying condition Ψ from Proposition 1 to these sets cannot be evaluated
due to the absence of activites X and Y in S. Consequently, the respective
conflict test is unable to exclude the occurence of a deadlock-causing cycle in S
although in fact there is none.

At first glance it seems that we must materialize and validate target schema
S∗

I in order to overcome this problem. This approach, however, offends against
the efficiency quality factor. Fortunately, there is another solution avoiding ma-
terialization of S∗

I and excluding deadlock conflicts for ”uncritical” instances.



282 S. Rinderle, M. Reichert, and P. Dadam

Consider again the example given in Fig. 3: Here we cannot evaluate condition
Ψ based on sync edge (X, Y ) since its source and destination activities have been
newly inserted by ∆T as well. However, the insertion of sync edge (X, Y ) does
not only set out the direct order relation ”X before Y ” but also, for example, the
transitive order relation ”D before E”. Since D and E are present in S we are
able to verify condition Ψ for a respective sync edge (D, E). Based on this con-
sideration we try to virtually re-link the actual sync edge (X, Y ) to the virtual
sync edge (D, E). The challenge is to determine the virtual sync edge(s) based
on which condition Ψ can be evaluated on S. Then solely based on S we can
determine whether S∗

I will contain a deadlock-causing cycle or not. From ∆T we
know which activities have been inserted and into which context they have been
embedded (insertion context). For serial insertion of activities, for example, the
insertion context includes the direct predecessor and successor of the newly ins-
erted activity. For the newly inserted activity X in Fig. 3, for example, insertion
context (D, G) includes the direct predecessor D of X in S’ and for the newly
inserted activity Y its insertion context (B, E) includes the direct successor E of
Y in S′. Altogether, this is the information we need for determining the virtual
sync edges between activities present in S. In our example (cf. Fig. 3) we get
the virtual sync egde (D, E) instead of (X, Y ).

 Schema S: Schema S’ 

Instance I (on S + �I): Instance I (on (S + �I) + �T): 

 

A 

C D 

E F 

H B G 

 

   

A   

C   D   

Y   E   

H   B   G   

X   

F   

completed  activated  TRUE Signaled 

�T = (serialInsert(S, X, D, G), serialInsert(S, Y, B, E), 
insertSyncEdge(S, (X, Y)) 

�I = (insertSyncEdge(S, (C, F)) 

sync edge  

   

A   

C   D   

E   F   

H   B   G   

 

A 

C D 

Y E 

H B G 

X 

F 

Fig. 3. Insertion of Sync Edges on Process Type and Instance Level

Thus, the idea behind is to first transfer the order relations set out by the
newly inserted sync edges to starting schema S by applying ”virtual” graph
reduction rules and then to apply condition Ψ of Proposition 1 to the reduced
graph. The respective graph reduction approach applicable in connection with
the composed insertion of activities and sync edges is given in Algorithm 1:

Algorithm 1 (Graph Reduction Rules (Deadlock Prevention)) Let S
= (N, D, NT, CtrlE, SyncE, ...) be a WSM-Net and ∆ be a type change which
transforms S into a correct schema S’ = (N’, D’, NT’, CtrlE’, SyncE’, ...). Let
further
• AS(S, ∆) := SyncE′ \ SyncE and
• AA(S, ∆):= {(X, (src, dest)) | X ∈ N’, src, dest ∈ N, X serially inserted
between src and dest by ∆}.



On Dealing with Structural Conflicts 283

GraphRed(N, AS(S, ∆), AA(S, ∆)) −→ (ASred(S, ∆))

ASred(S, ∆):=∅
forall (src, dest) ∈ AS(S, ∆) do

while src �∈ N do
find (src, (pSrc, sSrc)) ∈ AA(S, ∆);
src := pSrc;

done
while dest �∈ N do

find (dest, (pDest, sDest)) ∈ AA(S, ∆);
dest := sDest;

done
ASred(S, ∆) := ASred(S, ∆) ∪ {(src, dest)}

done

Algorithm 1 works by replacing the source (destination) nodes of the newly
inserted sync edges by their direct predecessors (successors) if these nodes have
not been present in the original schema S. If several activities are inserted in a
row Algorithm 1 iteratively replaces them by their direct predecessors/successors
until we find an adequate predecessor/successor also present in S. In the following
Prop. 2, condition Ψ of Prop. 1 is applied based on the graph reduction of
Algorithm 1. A deadlock test derived from this proposition fulfills both desired
quality factors: It is efficiently applicable based on original schema S and it does
not indicate deadlocks for target schema S∗

I if S∗
I is actually deadlock-free.

Proposition 2 (Deadlock Prevention (2)). Let the assumption be as in Pro-
position 1. Let further ASred(S, ∆T ) and ASred(S, ∆I) be the sync edge reduc-
tions after applying Algorithm 1.
Then: S∗

I = (S + ∆I) + ∆S does not contain deadlock-causing cycles iff the
following condition holds:

∀ (s1, d1) ∈ ASred(S, ∆T ), ∀ (s2, d2) ∈ ASred(S, ∆I):
d1 	∈ (pred∗(S, s2) ∪ {s2}) ∨ d2 	∈ (pred∗(S, s1) ∪ {s1}) (Ψ)

As already mentioned, the reduction rules of Algorithm 1 are necessary in
order to transfer the order relations set out by the newly inserted sync edges
to the original schema S. As decribed in Proposition 2, we apply Algorithm 1
to the sync edges and activities newly inserted by ∆T and ∆I . Based on the
resulting sets ASred(S, ∆T ) and ASred(S, ∆I) condition Ψ from Proposition 1
can be applied to S. Doing so saves us from expensive checks on S∗

I .
In general, there are further constraints set out by the particular process

meta model. In block-structured meta models like BPEL4WS [14] or ADEPT
[8], for example, it is forbidden that sync links cross the boundaries of loop
blocks. However, uncontrolled propagation complex process type changes to bia-
sed instances may result in such undesired sync links. Therefore we have made
formal propositions for respective cases as well from which quick conflict tests
can be derived. Due to lack of space we obstain from further details here.

4.2 On Detecting Data Flow Conflicts

An uncontrolled propagation of process type change ∆T to biased instance I on
SI = S + ∆I may not only cause control flow errors as described above but
also severe data flow problems. The detection of data flow conflicts based on the



284 S. Rinderle, M. Reichert, and P. Dadam

materialization of schema S∗
I := (S +∆I)+∆T has at least the same complexity

as respective control flow checks. Our data flow constraints from Def. 1 forbid
activities with missing input data and lost updates on data elements. Respective
problems may occur for S∗

I if both instance and type change delete write data
links on the same data element read by other activities in the sequel. An example
is depicted in Fig. 4 where ∆T and ∆I delete write data links related to the same
data element d1 which causes missing input data of activity G in S∗

incorrect.

 

Sincorrect* := (S + �I) +  �T 
 Instance I on SI:= S + �I: 

S’ := S + �T 
 

Schema S: 
 

�T = (deleteActivity(S, A), deleteActvity(S, B),  
deleteDataEdge(S, (A, d1, write)),  
deleteData Edge(S, (B, d1, read))) 

�I = (deleteActivity(S, D), 
deleteDataEdge(S, (D, d1, write))) 

A B C D E F 

d1 

G 

A B C E F G 

d1 

C D E F G 

d1 

C E F G 

d1 

missing input data 
 

Fig. 4. Deleting All Necessary Write Accesses on Instance Data (Example)

Therefore, in the following we provide a formal proposition to exclude data
flow errors for S∗

I for a magnitude of instances solely on basis of ∆T and ∆I .

Proposition 3 (Avoiding Missing Input Data and Lost Updates).
Let S be a WSM-Net and I be a biased instance with starting schema S and
execution schema SI := S + ∆I = (NI , DI , NTI , CtrlEI , SyncEI , . . .). Assume
that type change ∆T transforms S into a correct schema S’ = (N’, D’, NT’,
CtrlE’, SyncE’, ...). Then: Propagating ∆T to I neither results in missing input
data nor in lost updates if

∀ mDL1 = (d1, mode1, [”add”|”delete”]) ∈ AD(S, ∆T ) ∪ DD(S, ∆T ),
∀ mDL2 = (d2, mode2, [”add”|”delete”]) ∈ ∈ AD(S, ∆I) ∪ DD(S, ∆I)

with modei ∈ {read, write} (i = 1, 2):
d1 	= d2 ∨
mode1 = mode2 = read ∨
mDL1 = (d1, ”read”, ”delete”) ∨ mDL2 = (d2, read, ”delete”) (♣)

whereas
• AD(S, ∆T ) := {(d, mode, ”add”) ∈ DataE′ \ DataE, mode ∈ {read, write}}
• DD(S, ∆T ) := {(d, mode, ”delete”) ∈ DataE \DataE′, mode ∈ {read, write}}
• AD(S, ∆I) := {(d, mode, ”add”) ∈ DataEI \ DataE, mode ∈ {read, write}}
• DD(S, ∆I) := {(d, mode, ”delete”) ∈ DataE \DataEI , mode ∈ {read, write}}

In Fig. 5, ∆T deletes activities B and F together with data edges (B, d2,
write) and (F, d2, read). At the instance level, ∆I serially inserts activity Y
between activities D and E with a read data link connected to data element
d2 (∆I = {addDataEdge(S, (Y, d2, read))}). Obviously, propagating ∆T to SI



On Dealing with Structural Conflicts 285

leads to the problem of missing input data regarding the newly inserted activity
Y. Condition ♣ from Proposition 3 indicates this conflict since both type and
instance change, work on the same data element d2 by deleting write data links
and inserting new read data links for this data element. Such critical instances
can be easily detected by a test derived from Proposition 3. Note that otherwise
expensive data flow analyses on S∗

I would become necessary.

 

A B C D E F 

d1 d2 

A C D E 

d2 d1 

Sincorrect* := (S + �I) +  �T 
 

Instance I on SI:= S + �I: 

S’ := S + �T 
 

Schema S: 
 

d2 

A B C D Y E 

d1 

F A C D Y E 

d1 d2 missing 
 input data 

�T = (deleteActivity(S, B), deleteActvity(S, F),  
deleteDataEdge(S, (B, d2, write)),  
deleteData Edge(S, (F, d2, read))) 

�I = (serialInsert(S, Y, D, E),   
addDataEdge(S, (Y, d2, read))) 

Fig. 5. Deleting Write Accesses on Data Read by Newly Inserted Activity (Example)

For a few special cases, a conflict test derived from Propostion 3 may identify
potential conflicts which would not lead to a violation of the data flow constraints
set out in Def. 1. Nevertheless, the presented propositions and the respective tests
are very helpful to quickly and efficiently detect conflicts between concurrent
data flow changes at the type and instance level.

4.3 Structural Conflicts for Seleted Process Meta Models

Some of the potential conflicts between concurrent process type and instance
changes as introduced in Section 4.1 are present for other process meta models
as well. One example is the deadlock-causing cycle contained in a Petri Net after
the uncontrolled insertion of new order relations by process and instance changes
(cf. Fig. 1). Of course a conflict test derived from Proposition 2 may be easily
transferred to Activity Nets as used by WebSphere MQWorkflow [15] as well.

For other process meta models additional conflicts between process type and
instance changes may occur. In the following, we exemplarily consider Activity
Nets [15]. One reasonable control flow constraint for this process meta model
may be to require the absence of isolated activity nodes in order to ensure clearly
defined process start and end states. An example for an Activity Net containing
an isolated activity node after an uncontrolled application of concurrent process
type and instance changes is depicted in Fig. 6: ∆T deletes control link (C, E)
whereas ∆I has already deleted control link (E, I). The uncontrolled propagation
of ∆T to instance-specific schema SI leads to target schema (S + ∆I) + ∆T

containing isolated activity node E. Consequently, it would be a good idea to
find an appropriate formal proposition setting out conditions to detect isolated



286 S. Rinderle, M. Reichert, and P. Dadam

activity nodes based on the applied change operations. Based on this an efficient
conflict test could be derived.

 

Schema S: Schema S’: 

Instance I (on S + �I): Instance I (on (S + �I) + �T): 

A B I H 

C 

G F 

D 

E 

 

A B I H 

C 

G F 

D 

E 

 

  

A   B   I   H   

C   

G   F   

D   

E   

�T = (deleteCtrlEdge(S, (C, E))) 

�T = (deleteCtrlEdge(S, (E, I))) 
isolated  
activity!!  

  

A   B   I   H   

C   

G   F   

D   

E   

 A B completed  activated   

Fig. 6. Changes Causing Isolated Activity Nodes in Activity Nets

Interestingly, the test detecting isolated activities does not depend on the
underlying process meta model but on the kind of applied change operation. As
we have discussed in Section 3, generally, there are two levels for defining change
operations. On the basis level change primitives may be carried out without
special pre- and post-conditions. This is the reason why we get an isolated ac-
tivity node in Fig. 6. When applying change operations on a higher semantical
level, as for example defined for WSM-Nets (cf. Table 1) this specific problem is
prohibited. Another problem arising in connection with basis change primitives
is present for block-structured process meta models, like BPEL4WS [14] and
ADEPT, namely the violation ot the block structure.

5 Illustrating Example

To summarize the results presented in this paper and to show the whole mi-
gration process followed in our approach we provide an illustrating example. In
Fig. 7 process type change ∆T transforms schema S into new schema version
S′ by serially inserting activites X and Y and by connecting them via a sync
link (X, Y ). Furthermore ∆T deletes activities F and H together with their res-
pective data links dL6 and dL7. Based on original schema S two instances have
been started. Instance I1 is biased and therefore runs according to its instance-
specific schema SI1 whereas I2 is an unbiased instance still running according
to S. If now type change ∆T shall be propagated to these instances we have to
check structural as well as state-related compliance for the running instances.
Instance change ∆I1 has serially inserted two activites U and T and sync link
(T, U) between them. At first, the deadlock test derived from Proposition 2 is
carried out to detect whether target schema S∗

1 will contain a deadlock-causing
cycle or not. After applying the graph reduction rules of Algorithm 1 we obtain
that S∗

1 will actually contain a deadlock-causing cycle and therefore I1 cannot



On Dealing with Structural Conflicts 287

migrate to S′ (and remains running according to S). For unbiased Instance I2
we only have to check state-related compliance as described in Section 2. Since
the previous execution of I2 can be replayed on S′, I2 is compliant with S′ and
therefore migrates to S′ by applying appropriate marking adaptation rules [13].

 

Schema S: 

Schema S’ 

�T = (serialInsert(S, X, C, D), serialInsert(S, Y, E, F), insertSyncEdge(S, (X, Y)),  
deleteDataEdge(S, dL6), deleteDataEdge(S, dL7), deleteActivity(S, F), deleteActivity(S, H)) 

   

A   

C   D   

E   F   

H   B   G   

d 1 d 2 d 3 

d L 1 
d L 2 

d L 3 d L 4 

d L 5 

d L 6 

 

A 

C X 

E Y 

D 

B G 

d1 d2 

dL1 
dL2 

dL3 
dL4 

 

Instance I1 (on SI1  = S + �I1): �I1 = (serialInsert(S, U, B, C), serialInsert(S, T, F, G), insertSyncEdge(S, (T, U))) 

 

A 

U C 

E F 

H B G 

D 

T 

d1 d2 d3 

dL1 
dL2 

dL3 dL4 

dL5 

dL6 

 

 

A 

C D 

E F 

H B G 

d1 d2 d3 

dL1 
dL2 

dL3 dL4 

dL5 

dL6 

 

Structural Compliance: 
AS(S, ∆I1) = {(T, U)}, AA(S, ∆I1) = {(U, (B, C)), (T, (F, G))} 
� (Alg. 1) ASred(S, ∆I1) = {(F, C)} 
AS(S, ∆T) = {(X, Y)}, AA(S, ∆T) = {(Y, (E, F)), (X, (C, D))} 
� (Alg. 1) ASred(S, ∆T) = {(C, G)} 
 
C � pred*(S, C) � 
S1* will contain deadlock-causing cycle 
 

Instance I2 (on S): 
 

A 

C X 

E Y 

D 

B G 

d1 d2 

dL1 
dL2 

dL3 
dL4 

 

State-Related Compliance � migrate I2 to S’ + marking adaptations 

Fig. 7. Process Type Change and Instance Migration

6 Related Work

Today’s workflow technology is rather weak with respect to dynamic process
changes [16]. Particularly, it is unsuited for supporting long-running processes.
As a consequence, process descriptions are often split into a series of smaller,
short-running process fragments that are maintained as separate schemes and
correlated through application data at runtime. Such a fragmented representa-
tion, however, does not provide a natural view of the process and is also unfa-
vorable in other respects. In particular, it does not abolish the need for dynamic
instance migrations (even if techniques such as late binding are applied).

Adaptive workflows have been addressed in many research papers so far [1,2,
3,5,6,7,10]. The main focus was put on providing appropriate correctness crite-
ria for deciding about compliance of unbiased process instances with a changed
process schema. More precisely, these criteria solely aim on state-related correc-
tness when propagating a process type change to an instance. There are only few
approaches [10,11] to allow process type and changes within one PMS. Howe-
ver, there is no interplay between process type and instance changes. WASA2
[10], for example, realizes changes of single process instances by deriving a new



288 S. Rinderle, M. Reichert, and P. Dadam

schema version with one running instance. Consequently, individually modified
instances are totally excluded from further process type optimizations.

For unbiased process instances, correctness criteria range from graph equiva-
lence [1,2,10] to trace equivalence [3,5,6,7]:

In [1], v.d. Aalst and Basten base correctness of dynamic process change
on special inheritance relations between original and changed process schema.
Compliance can be ensured by checking easy conditions on these two schemes.
This approach also provides transformation rules which automatically adapt
instance markings on the changed schema. For correctness checking, Agostini
and De Michelis [2] construct reachability graphs for the original and the changed
process schema. Based on this, it can be determined whether a process instance
is in a state which exists on the changed process schema as well. In contrast,
Weske [10] proposes to construct the purged instance graph – a subgraph of the
respective process schema consisting of already passed regions for each instance.
Then it has to be analyzed if there is a valid mapping between the purged
instance graph and the changed process schema.

A first approach based on trace equivalence was presented by Casati et al [3].
Here a process instance is compliant with a changed process schema if the exe-
cution history of this instance can be reproduced on the change process schema
as well. Ellis et al [5] present a Petri-Net based approach. A process instance is
compliant with the changed process schema if the firing sequence of this instance
previous to the change can be executed on the changed process schema as well.
Kradolfer [6] and Sadiq et al [7] both use the compliance criterion presented in
[3]. Thereby Kradolfer [6] provides conditions based on the instance execution
history and the applied change operation to check compliance whereas Sadiq et
al [7] focus on the treatment of non-compliant instances and temporal aspects
in conjunction with dynamic change.

The described WSM-Nets are somewhat comparable to BPEL4WS (Business
Process Execution Language for Web Services) [14], but with a better understan-
ding and formal foundation regarding the use of links (called sync links in our
approach). Though there is some work on exception handling in BPEL4WS [17],
dynamic change issues have been completely factored out.

A detailed discussion of all these approaches can be found in [16]. It would
be very interesting to learn more about the definition of change operations and
the use of their specific semantics for the different process meta models.

7 Summary and Outlook

We have introduced basic work on the challenging question of how to correctly
deal with concurrent process type and instance changes. At first, a comprehen-
sive correctness criterion has been presented including structural, state-related
and semantical correctness when propagating process type changes to biased
process instances. Furthermore, we have derived formal propositions for con-
structing efficient tests which allow us to quickly and efficiently detect potential
conflicts between changes at the type and instance level. These tests are based
on WSM-Nets. However, we have discussed possible conflicts between process
type and instance changes for other process meta models like Petri-Nets and



On Dealing with Structural Conflicts 289

Activity Nets as well. In our future work on adaptive processes, we will consider
semantical conflicts between concurrent process changes and their treatment as
well. Furthermore, we will fully implement both, structural as well as semanti-
cal conflict tests in our current proof-of-concept prototype for process schema
evolution. Hereby, it is very important to think about implementation issues like
locking of instances or the order in which structural, state-related and semanti-
cal correctness is checked. In any case, the support of process type and instance
changes would benefit by a more intense study of the research community.

References

1. van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoretical Computer Science 270 (2002) 125–203

2. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sy-
stems. In: Proc. BPM ’00. LNCS 1806, Springer (2000) 218–234

3. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

4. Edmond, D., ter Hofstede, A.: A reflective infrastructure for workflow adaptability.
Data and Knowledge Engineering 34 (2000) 271–304

5. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proc. COOCS ’95, Milpitas, CA (1995) 10–21

6. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In: Proc. CoopIS ’99, Edinburgh (1999)
104–114

7. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic
workflow processes. IJCIS 9 (2000) 93–116

8. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

9. Rinderle, S., Reichert, M., Dadam, P.: Evaluation of correctness criteria for dy-
namic workflow changes. In: Proc. Int’l Conf. on Business Process Management
(BPM ’03). LNCS 2678, Eindhoven, The Netherlands, Springer (2003) 41–57

10. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS-34. (2001)

11. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,
J.: IntelliGEN: A distributed workflow system for discovering protein-protein in-
teractions. Distributed and Parallel Databases 13 (2003) 43–72

12. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases (to appear)

13. Reichert, M., Rinderle, S., Dadam, P.: On the common support of workflow type
and instance changes under correctness constraints. In: Proc. CoopIS ’03, Catania,
Italy (2003) 407–425

14. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., Weera-
warana, S.: Business Process Execution Language for Web Services, Version 1.0.
(2002) http://www.ibm.com/developerworks/library/ws-bpel/.

15. Leymann, F., Altenhuber, W.: Managing business processes as an information
ressource. IBM Systems Journal 33 (1994) 326–348

16. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering (to appear)

17. Curbera, F., Khalaf, R., Leymann, F., Weerawarana, S.: Execption handling in
the BPEL4WS language. In: BPM’03, Eindhoven (2003) 276–290


	Introduction
	A General Correctness Criterion for Process Type and Process Instance Changes
	Fundamentals
	Structural Conflict Tests
	On Detecting Control Flow Conflicts
	On Detecting Data Flow Conflicts
	Structural Conflicts for Seleted Process Meta Models

	Illustrating Example
	Related Work
	Summary and Outlook

