A Tool for Supporting Ad-Hoc Changes
to Object-Aware Processes

Kevin Andrews, Sebastian Steinau, and Manfred Reichert
Institute of Databases and Information Systems
Ulm University, Germany
Email: {firstname.lastname} @uni-ulm.de

Abstract—Process management systems are often criticized
for not being flexible enough, as they restrict the actions of
users to those defined in a process model. When unforeseen
events occur during process execution, deviation from the actions
the process model permits may become necessary. Such ad-
hoc changes to process execution are not widely supported by
process management systems as they pose significant challenges.
This work presents a new prototypical addition to the PHIL-
harmonicFlows process engine that allows for ad-hoc changes to
processes following the object-aware process support paradigm.
We demonstrate the extensions to the preexisting PHILharmon-
icFlows modeling and runtime user interfaces that enable users
to change the underlying process models of process instances
they are executing. The demonstration is intended to not only
show off the ad-hoc change capabilities in the context of object-
ware process management, but also inspire other researchers to
employ similar ideas in other process support paradigms.

I. INTRODUCTION & FUNDAMENTALS

Most business process management systems rely on some
form of process model that describes the actions that have to
be completed as part of the execution of a process instance.
Furthermore, the process models describe the choices and
alternate paths that exist in a process. However, in some cases,
deviation from the course of actions defined in the process
model may become necessary. This can be due to exceptional
events such as errors, oversights in the process model, or
deviations from the process model that are only necessary
for a few instances [1] [2]. An example could be including
an additional step to e.g. enforce the “four-eyes principle” in
small number of process instances to judge its effect.

This paper demonstrates the toolset we created for support-
ing ad-hoc changes to process instances for the object-aware
process paradigm. The object-aware paradigm differs from the
common activity-centric paradigm and is more comparable to
the artifact-centric or case handling/management paradigms
[3] [4] [5]. While an activity-centric process model focuses
on the process activities for users and systems, these data-
centric paradigms shift the focus to the data and the lifecycle
of said data during the execution of a process instance [6].

In essence, a simple example of this contrast can be seen
when examining a recruitment process. An activity-centric
process model for such a process contains tasks such as
Publish Job Offer, Wait for Applications, Review Applications,
Inform Applicants of Acceptance/Rejection. An object-aware
model of the same process, however, defines the so-called
objects, such as Job Offer, Review, or Application, that exist

in the process and which attributes (i.e. data elements) they
consist of. Furthermore, each of the objects also contains a
lifecycle process which describes the various sfates an object
may enter during its existence in a process instance. An object-
aware process is always data-driven, i.e., the transitioning of
an object from one state to another depends on the presence
of values for the attributes the object consists of.

Consider the Job Offer object as an example. The first
two states described by the lifecycle process of Job Offer
could be Created and Published. Assuming that Job Offer
has the attributes Job Description and Salary, the lifecycle
process could dictate that a Job Offer object has to have these
attributes provided by a user in order for the state to change
from Created to Published. States can the be used to add
restrictions facilitating coordination between different objects,
such as “Job Offer objects must be in the Published state, for
corresponding Application objects to be created”.

After this short introduction to the fundamentals of object-
aware processes, Section II presents our tooling support for
ad-hoc changes to such processes at runtime. Finally, Section
IIT gives a summary and an outlook on our future work.

II. TOOLING SUPPORT FOR AD-HOC CHANGES

In order to enable ad-hoc changes to object-aware pro-
cesses, we extended our existing object-aware process engine,
PHILharmonicFlows [7] [6] [8]. The existing runtime environ-
ment takes the conceptual ideas behind object-aware process
management, most of which are omitted from this work, and
presents the tasks derived from the object-aware process model
in the simple fashion of worklists (cf. Fig. 1).

Recruitment (1 CP)

Edit | i Delete

FilD | Execute

Qv .
Administratar WO rkl I St

Instance Name Object Type Current State

680 Application Sent

@ 5014 Review Applicant Assessment

‘& 3194 Job Offer Published

> 7886 Review Confirmation
1335 Application Creation

Fi 5146 Review Preparation

Fig. 1. Worklist for Recruitment Process

Edit Model

Review

Int Assessment

Invite Proposed

Qv
Administrator

Confirmation® O

E—

=

= Proposal

@ ‘ Reject v | o

Preparajion

A Alternative Job Offer Toma Due Date.

-
=

Appraisal o]
‘ | Contr &
Due Date (6/21/2018 - 7/5/2018)
[une 2 2018 |
Reason
‘ Not good enough |
Reviewer
=
Urgency

6 L]

. Reject Proposed

Waiting

Fig. 2. Review#7886 Object without Ad-Hoc Changes (The red Box indicates where the Ad-Hoc Change from Fig. 3 will occur)

These worklists are generated dynamically based on a mul-
titude of factors and represent the tasks a user may complete
concerning the various objects that exist at a given point
in time during process execution. For instance, the worklist
displayed in Fig. 1 provides the user with the information that
he currently has a number of tasks he may complete, e.g. on
the Review object with the ID 7886.

Clicking on the Review object with the ID 7886 in the
worklist reveals the combined view (cf. Fig. 2) on its lifecycle
process (right) as well as the auto-generated form for user
interaction with the object (left). As discussed briefly in
Section I, each object that exists in an object-aware process
at run-time consists of attributes, such as those visible in the
form in Fig. 2, e.g. Proposal (a string) or Confirmation (a
boolean). Furthermore, the values of these attributes influence
the paths taken in the lifecycle process of the object, an
example of which can be seen in the transitions exiting the
step representing the Proposal, with the concrete outcome and
subsequent steps being determined by the value of Proposal,
either “Reject” or “Invite”. Due to their data-driven nature,
lifecycle processes, and the objects they are attached to, only
change states when all attributes referenced in one state are
provided with a value. For the states of the Review object
visible in Fig. 2, i.e. Preparation, Applicant Assessment,
Confirmation, and Invite/Reject Proposed, the lifecycle process
model gives a clear indication of which attributes have to
have values assigned for the object to pass from one state
to another. For instance, to advance from Preparation to
Applicant Assessment, the attributes Urgency and Due Date
have to have assigned values. This information can be used to
generate forms, such as the one depicted in Fig. 2 (left).

In most object-aware process models, the various states
must be completed by different users. Currently, the Review
object with the ID 7886 is in a state called Confirmation, which
is modeled to allow a personnel officer to confirm the assess-
ment of the applicant completed in the prior state by someone

else. If the personnel officer provides data for the Confirmation
attribute by clicking the Confirmation checkbox (the generated
input field for this boolean attribute) the lifecycle process will
advance to the final state Reject Proposed automatically.

At this point we would like to demonstrate the capabilities
for ad-hoc changes which we implemented into the runtime
of PHILharmonicFlows. In the following example on an ad-
hoc change supported by our tooling, the decision is made to
give a manager the opportunity to add a textual comment to
each review before the applicant assessment is conducted. As
it is unclear whether this change to the recruitment process
will improve the review quality significantly or just increase
turnaround times, the change is not incorporated into the base
process model, but instead only into already existing Review
objects (such as Review#7886) as an ad-hoc change.

To this end, our process execution Ul has a new Edit Model
button which opens the PHILharmonicFlows process modeling
tool in a special ad-hoc mode. This allows for the insertion
of a new state, Manager Review and a new attribute and
corresponding step Comment in this new state (cf. Fig. 3).

Fig. 3. Modeling Tool with Ad-Hoc changed Lifecycle (cf Fig. 2, red Box)

Alternative Job Offer

RN

sopr
[J

Confirmation a

oue e 51217201 - 157201)
[ine = ET|

Proposal Due Date

-]
‘ 2018 12:00:00 AM

Confirmed

Comment

..Ready__|

Enabled

El

o

Review vew: 7] tecyeesrom

Applicant Assessment

Proposal
Appraisal

Waiting

Alternative Job Offer |-=...

Waiting

Reason

Not good enough

Waiting

Waiting

Fig. 4. Review#7886 Object with Ad-Hoc added State “Manager Review”

The aforementioned “special ad-hoc mode” for the model-
ing environment allows for ad-hoc changes to the attributes
and lifecycle process of either one individual object or all
objects of the same type that exist in a process instance. From
a user perspective this procedure is completely transparent, as
the user is simply editing an object-aware process model, as
he would when initially modeling the process. The underlying
technology, however, is far more complex. There are numerous
challenges to be overcome when applying ad-hoc changes to
an object, such as where to persist the changed model, which
might be different for every individual object existing in a
process instance. Furthermore, it must be ensured that while
a user is applying ad-hoc changes to an object, i.e., actively
editing it with the modeling tool, the same rigorous model
correctness criteria can be applied as when the process models
are initially created. To this end, all editing must be completed
on a temporary copy of the object in question. This allows
changes to be evaluated for correctness before propagating
them to back to the “live” original object en bloc.

We overcame these challenges by employing a distributed
architecture for our process execution engine. In essence, each
of the objects that exists in a PHILharmonicFlows process is
a microservice [8]. These microservices are organized using
actor model theory, meaning that each microservice has its
own persistent storage, a logical “thread”, and the possibility
of communicating with other microservices via messages [9].
We leverage this to give each and every object a private model
of itself (including all attributes and the lifecycle process)
that only exists within the microservice representing that
object. This allows different objects of the same type, e.g.,
multiple Review objects, to have distinct lifecycle process
models. As the models of individual objects are very small
as they do not need to capture the complexity of the entire
process individually, this is not a concern from a memory
perspective. Furthermore, this allows us to quickly create
temporary editable copies of objects so the originals remain

unchanged until the user is satisfied with his ad-hoc changes
and they may be propagated to the live system.

This propagation of the changes is the main challenge that
we had to solve. It is not possible to delete the existing object
and replace it with the copy being edited, as the object may
have many inter-dependencies with other objects. However, as
object-aware processes are fully data-driven, we can simply
swap out the lifecycle process model in the original object with
the ad-hoc changed lifecycle model from the temporary copy.
Our extensions to the existing PHILharmonicFlows engine
ensure that in this event the lifecycle process is re-executed
from the beginning, resulting in an identical execution as the
data values of the object attributes are unchanged.

This offers a benefit over other instance migration strategies
[10], [2]. As Review#7886 was executed past the point where
the new state was inserted, the change would either not have
had any effect or been considered an error in most migration
strategies. Through this data-driven model, however, the re-
execution of the object with the ad-hoc changed lifecycle
model caused it to pause in the new state, awaiting a value
for the now mandatory Comment attribute (cf. Fig. 4). This is
also reflected in the worklist, which can be seen in Fig. 5.

Recruitment (1 CP)

Edit | i Delete

FilD | Execute

Qv .
Administratar WO rkl I St

Instance Name

Object Type

Current State

-680

-5014

3194

Vol

7886

1335

@ 5146

Fig. 5.

Application
Review
Job Offer
Review
Application

Review

Worklist after Changes

Sent

Manager Review

Published

Manager Review

Creatien

Preparation

Review

av

Administrator

nfirmation* [m]
=
&= Proposal
5
A Alternative Job Offer
Appraisal
Comment 5
Tis looks e star he Review Proces Manager Review
Due Date (6/21/2018 - 7/5/2018) Comment
June 22 2018
Confirmed
Reason
am [s tooks fine,start the Review Process. |
Confirmed
Reviewer
= 5 Confirmed &
Urgency
nnnnn] <
B

[So i

Applicant Assessment

Proposal

s |
r\“‘“\‘%

Confirmation

Confirmation == True
Enabled

Enabled

pawLyuo)

Reason

Not good enough

Confirmed

Confirmed

Fig. 6. Review#7886 after Comment is provided

Furthermore, the worklist shown in Fig. 5 also highlights
the application of the change to other running instances of the
Review object, as all instances that were previously in states
past the point where state Manager Review was inserted (cf.
2 for an overview) are now in state Manager Review. Our
tooling offers users a choice of whether to only apply ad-hoc
changes to one object, multiple objects, or even all objects of
a certain type (e.g. Review).

Finally, it is important to highlight why forcing objects that
have already progressed past a certain point in their lifecycles
to return to a previous (and potentially new) state is necessary
when new attributes, such as Comment, are required for
execution after an ad-hoc change. If this were not the case, ad-
hoc changed objects could be inconsistent. Take for example
the now ad-hoc changed lifecycle process of Review#7886, as
depicted in Fig. 6. It is in state Confirmation, just as before the
ad-hoc change (cf. Fig. 2). This is due to the fact that a value
for attribute Comment was set and the lifecycle progressed to
state Confirmation as expected, as the values for the attributes
Proposal and Reason were supplied before the ad-hoc change.
However, if the lifecycle had not been re-executed from the
beginning, attribute Comment would never have been marked
as required, allowing the object to be in state Confirmation
without having all attribute values set in accordance with its
lifecycle process, which could lead to various problems.

III. SUMMARY AND OUTLOOK

This paper gave a short demonstration of a simple scenario
for which our tooling is capable of supporting ad-hoc changes
to object-aware processes at runtime. We utilize a distributed
microservice-based software architecture in conjunction with
the intrinsically loosely coupled process structure of object-
aware processes to allow for ad-hoc changes to the lifecycle
processes of individual objects at run-time. While the exact
conceptual and technical details are too lengthy for this short

publication, the user perspective on the procedure, i.e., opening
a running object instance in the runtime environment, loading
the underlying lifecycle model into the modeling environment,
editing it ad-hoc and propagating the changes back to the
object instance in the runtime, are ideal for a demonstration.

While this is currently still a prototypical extension to
the PHILharmonicFlows implementation of object-aware pro-
cesses, it is very much functional and tested for some scenar-
ios. Clearly, even though we present a working implementa-
tion, this is very academic work and real-world applicability is
a valid concern. Studies and focus groups will be the topic of
future work, determining which features from this prototype
would actually be useful in real-world scenarios.

REFERENCES
[1]
[2]

B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features,” DKE, vol. 66, no. 3, pp. 438-466, 2008.

H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. van der Aalst,
“Process flexibility: A survey of contemporary approaches,” in Advances
in enterprise engineering 1. Springer, 2008, pp. 16-30.

D. Cohn and R. Hull, “Business artifacts: A data-centric approach to
modeling business operations and processes,” I[EEE TCDE, vol. 32,
no. 3, pp. 3-9, 2009.

M. Marin, R. Hull, and R. Vaculin, “Data centric BPM and the emerging
case management standard: A short survey,” in Proc BPM, 2012, pp.
24-30.

W. M. P. Van der Aalst, M. Weske, and D. Griinbauer, “Case handling:
a new paradigm for business process support,” DKE, vol. 53, no. 2, pp.
129-162, 2005.

V. Kiinzle and M. Reichert, “PHILharmonicFlows: towards a framework
for object-aware process management,” JSME, vol. 23, no. 4, pp. 205-
244, 2011.

S. Steinau, K. Andrews, and M. Reichert, “A modeling tool for PHIL-
harmonicFlows objects and lifecycle processes,” in Proc BPMD, 2017.
K. Andrews, S. Steinau, and M. Reichert, “Towards hyperscale process
management,” in Proc EMISA, 2017, pp. 148-152.

G. Agha and C. Hewitt, “Concurrent programming using actors,” in
Readings in Distributed Artificial Intelligence. Elsevier, 1988, pp. 398—
407.

M. Reichert and B. Weber, Enabling flexibility in process-aware infor-
mation systems: challenges, methods, technologies. Springer Science
& Business Media, 2012.

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

