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ABSTRACT 

In the context of big data analytics, gaining insights into 

high-dimensional data sets can be properly achieved, 

inter alia, by the use of visual analytics. Current 

developments in the field of immersive analytics, 

mainly driven by the improvements of smart glasses 

and virtual reality headsets, are one enabler to enhance 

user-friendly and interactive ways for data analytics. 

Along this trend, more and more fields in the medical 

domain crave for this type of technology to analyze 

medical data in a new way. In this work, a mixed-reality 

prototype is presented that shall help tinnitus 

researchers and clinicians to analyze patient data more 

efficiently. In particular, the prototype simplifies the 

analysis on a high-dimensional real-world tinnitus 

patient data set by the use of dimensionality reduction 

effects. The latter is represented by resulting clusters, 

which are identified through the density of particles, 

while information loss is denoted as the remaining 

covered variance. Technically, the graphical interface of 

the prototype includes a correlation coefficient graph, a 

plot for the information loss, and a 3D particle system. 

Furthermore, the prototype provides a voice recognition 

feature to select or deselect relevant data variables by its 

users. Moreover, based on a machine learning library, 

the prototype aims at reducing the computational 

resources on the used smart glasses. Finally, in practical 

sessions, we demonstrated the prototype to clinicians 

and they reported that such a tool may be very helpful 

to analyze patient data on one hand. On the other, such 

system is welcome to educate unexperienced clinicians 

in a better way. Altogether, the presented tool may 

constitute a promising direction for the medical as well 

as other domains. 

 

Keywords: immersive analytics, dimensionality 
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1. INTRODUCTION 

Recent developments of smart glasses offer new 

perspectives in the field of immersive analytics. The 

latter is a research field that investigates new display 

technologies for analytical reasoning (Chandler 2015). 

In many cases, augmented reality approaches use a 

three-dimensional representation of data, which enables 

the user to recognize spatial contexts of data more 

easily.  

In this context, Figure 1 presents our categorization of 

different approaches in the field of augmented reality 

for smart glasses. Note that there exists a variety of 

other categorizations, such as the so-called Reality-

Virtuality Continuum (Milgram 1994). 

 
Figure 1: Types of 3D Approaches 

 

In our categorization, the augmented reality approaches 

are defined by the degree of overlap between reality and 

virtuality: First, virtual reality (VR) separates the user 

from the real world by the use of a headset that 

simulates an environment that is similar to the real 

world. Second, assisted reality (ASR) constitutes the 

concept of appliances (e.g., again headsets) for which 

the augmented information is not directly in the user’s 

field of view. Consequently, the augmented information 

must be actively focused on to obtain further insights. 

For example, an industrial maintainer is repairing a 

machine and needs a clear field of vision. Though, he 

should be able to check the current machine state with a 

sideways glance to the edge region of his smart glasses. 

Third, in contrast to assisted reality, augmented reality 

(AR) displays the information directly in the user’s 

viewing area. Fourth, and most importantly for the work 

at hand, mixed reality (MR) must be distinguished. 
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Thereby, the displayed information is integrated into the 

real world by using the concept of spatial mapping, also 

denoted as 3D reconstruction (Izadi 2011). Hereby, a 

room is scanned, usually by the use of depth-sensors, 

and the resulting, generated model can be used as an 

interface between holograms and the real world. Note 

that this concept enables new interaction possibilities in 

the context of immersive analytics as diagrams to be 

analyzed can be placed nearly anywhere in the real 

world. In this context, we discuss the following research 

question along a high-dimensional data set of tinnitus 

patients: How does mixed-reality allow quick insights 

into the effects of dimensionality reduction in large data 

sets? 

To answer this question, first of all, we selected from a 

variety of dimensionality reduction techniques (Van Der 

Maaten 2009), the principal component analysis (PCA) 

(Wold 1987). This Euclidean distance-based technique, 

in turn, is often used for classification purposes in 

combination with other approaches, such as neural 

networks. Thereby, the PCA transfers all values into a 

subdimension, which allows for displaying a three-

dimensional plot for data sets of arbitrary size. 

However, since information can be lost in this 

transformation process, our approach particularly 

addresses this issue during the dimensionality reduction. 

In addition, we focus on two other major aspects: 

• Identification of clusters in dimensionality  

reduced data sets 

• Recognition of correlations between variables 

of the data set 

 

To practically evaluate our approach, we 

implemented a proof of concept based on the Microsoft 

HoloLens, a head-mounted display for mixed-reality, 

and the unity game engine (Technologies 2015). The 

data set that is used for the prototype stems from the 

TrackYourTinnitus platform (TYT). Note that the latter 

is a mHealth crowdsensing platform that enables iOS 

and Android users to gather everyday life data with 

their own smartphones to understand their individual 

tinnitus situation better. Tinnitus can be described as the 

phantom perception of sound. Note that symptoms for 

tinnitus are subjective and vary over time. Therefore, 

TYT was developed to reveal insights on this patient 

variability. Moreover, depending on tinnitus definitions, 

the duration as well as on the patient age and birth 

cohort, between 5.1\% and 42.7\% of the population 

worldwide experience tinnitus at least once during their 

lifetime. Moreover, tinnitus is a chronic disorder and its 

general treatment is challenging as well as costly. 

Especially in the context of chronic disorders, a 

comprehensive and quick access to patient data is of 

utmost importance. On one hand, clinicians and 

researchers want to obtain the required patient 

information (e.g., what are the characteristic variables 

of an individual patient) as quick as possible in order to 

conduct studies with promising hypotheses or to start a 

proper patient treatment. On the other, by sharing 

information on patient data in a proper way, 

unexperienced clinicians can be educated more 

efficiently. Therefore, the presented approach and the 

developed prototype shall support clinicians and 

researchers in this context.  

The remainder of the paper is structured as 

follows: Section 2 discusses related work, while Section 

3 introduces the mathematical background for the 

pursued dimensionality reduction. In Section 4, the 

developed prototype is presented, in which the data set, 

the Graphical User Interface (GUI), and the backend 

are presented. Threats to validity are presented in 

Section 5, whereas Section 6 presents a summary and 

Section 7 concludes the paper with an outlook. 

 

2. RELATED WORK 

The usefulness of the third dimension for data analytics 

has been tested in various scenarios. In a study based on 

loss of quality quantification (Gracia 2016), the authors 

found that three-dimensional visualizations are superior 

compared to two-dimensional representations. The 

authors compared the tasks point classification, distance 

perception, and outlier identification in two ways. First, 

they evaluated a visual approach and, second, they 

applied an analytical counterpart. Furthermore, they 

conducted a user study and compared 2D and 3D 

scenarios on a display. However, they did not use smart 

glasses to evaluate their models. A second user study 

(Raja 2004)), specialized on scatter plots in an 

immersive environment, indicated that a high degree of 

physical immersion results in lower interaction times. 

This scenario included a large field-of-regards, head-

tracking, and stereopsis, but was limited to only a few 

number of subjects. Another study supporting the 

theory of improved performance in a three-dimensional 

space (Arms 1999), compared 2D and 3D visualizations 

by using interaction (i.e., time measurement) and 

visualization tests (i.e., correct identification). The 

subjects were asked to identify clusters, to determine 

the dimension of a dataset, and to classify the radial 

sparseness of data. Similar to our work, a prototype for 

dimensionality reduced scatterplots was developed and 

examined in (Wagner Filho 2017). The subjects had to 

identify the closest party, party outliers, and the closest 

deputy in a data set. Therefore, a desktop-based 3D and 

an immersive 3D visualization were tested on the 

defined user tasks. Interestingly, the immersive 

approach generated the best outcome concerning 

classification accuracy. The differences to our solution 

are missing components to visualize correlations and 

information loss, the lack of voice commands, and a 

different representation of data points. Here, the data 

points are displayed using solids circles or spheres, 

which is unsuitable for large data sets we are focusing 

on. In contrast to the previous works, (Sedlmair 2013) 

recommends 2D scatterplots. In a study in which users 

had to compare the class separability of dimensionality 

reduced data using 2D and 3D scatterplots, the three-

dimensional approach generated higher interaction 

costs. 



Teaching abstract data analytical concepts, such as 

dimensionality reduction, was tested in an exceptional 

project called Be the Data (Chen 2016). Persons were 

embodying by data points, while the floor represents a 

2D projection. This idea relies on findings, where 

bodily experiences, such as gesturing, body orientation, 

and distance perception support the cognitive process 

(Bakker 2011). Note that the concepts of bodily 

experiences are an important part of mixed reality and, 

hence, can be associated with our work. 

The Microsoft HoloLens was profoundly evaluated in 

(Evans 2017). The authors underline the advantages of 

working in a hands-free manner, yet they criticize the 

spatial mapping mash to be unprecise in their industrial 

environment. 

Finally, a platform for immersive analytics was 

proposed by (Donalek 2018). Effective data 

visualization for high-dimensional data is described as 

“a cognitive bottleneck on the path between data and 

discovery”.  

Altogether, the introduced literature shows the potential 

of immersive analytics, though indicate potential 

weaknesses in our pursued context. 

 

3. PRINCIPAL COMPONENT ANALYSIS 

The principal component analysis (PCA) is a technique 

to find patterns in high-dimensional data. Common use 

cases in this context are face recognition (Yang 2004) 

and image compression (Clausen 2000).  

In general, PCA is based on the covariance measure, 

which expresses the connection between the dimension 

x and y, and which is denoted as 
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Most importantly for the interpretation of the 

covariance is it’ sign. First, if the value is positive, x 

and y increase together. Second, if the value is negative, 

then if one dimension increases, the other decreases 

accordingly. Finally, a covariance of zero indicates 

independent variables. When representing more than 

two dimensions, then a covariance matrix is needed: 

 ( ))
nxn
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where n is denoted as the number of dimensions and 

each entry in the matrix is a result of the calculation 

(1.1). Next, we need the eigenvectors and eigenvalues 

(Hoffman 1971) of the covariance matrix. Note that all 

eigenvectors of a matrix are perpendicular. The highest 

eigenvalue (eig1, cf. Figure 2) is denoted as principle 

component and can be seen as the most important axis 

of a new coordinate system. Thereby, each eigenvector 

is identified by a significance, represented by an 

eigenvalue. This, in turn, is the decisive point of the 

dimensionality reduction. If we leave out some 

components, we will lose information.  

The remaining eigenvectors form a feature vector as 

follows: 

 

 ( )1 2 3 nFeatureVector eig ,eig ,eig ,...eig=   (1.3) 

Finally, the feature vector is multiplied with the 

transposed and mean-adjusted data to receive the final 

data set. 

In summary, the complete steps of the PCA are as 

follows: 

1) Subtract the average across each dimension 

2) Calculate the covariance matrix 

3) Calculate eigenvectors and eigenvalues of the 

covariance matrix 

4) Define number of components 

5) Calculate the new data set 

 

 
Figure 2: PCA Example 

 

To conclude, by excluding eigenvectors, we reduce the 

information in the data set. The information loss can be 

calculated using the percental significance of the erased 

component. Correlating dimensions, as expressed by the 

covariance measure, can therefore be well reduced by 

using the PCA approach. 

 

 

4. PROTOTYPE 

The client-side of the prototype is developed using the 

Unity game engine and the Microsoft HoloLens, a 

mixed reality smart glass. When starting the application, 

the hologram can be placed in the current room and it is 

further on placed in a static manner, so that the user can 

walk around the hologram and inspect it from different 

positions. 

4.1. Data Set 

The prototype was developed based on data from the 

TrackYourTinnitus project (Schlee et al. 2016; Probst et 

al. 2016; Pryss et al. 2018). Included variables are 

patient data that recorded via mobile applications and 

which represent, inter alia, the tinnitus loudness or the 

patient’s mood during the occurrence of tinnitus. Each 



data point in this data set represents the users condition 

at a certain point in time. In a first preprocessing step, 

the data set was cleaned from missing values, which 

might occur if the data is stored incompletely due to 

missing user inputs or errors caused by the used smart 

mobile devices (cf. Table 1). Next, each column is 

normalized to ensure comparability between the 

dimensions. However, we lose information about the 

absolute values of each dimension on one hand. On the 

other, a uniform representation for three dimensions 

becomes possible (cf. Figure 2).  

 

Table 1: The Data Set 

Size 41 892 

Size After Cleansing 36524 

Variables 17 

Data Format .csv 

 

A common task for this medical data set is to find 

connections between dimensions and to derive 

hypotheses such as “the current mood of the patient 

influences the perceived tinnitus loudness”. 

In this context, three major requirements concerning the 

developed application are derived from this TYT patient 

data set: 

 

REQ1: High-dimensional data needs to be displayed 

and for existing clusters it should be easily possible to 

identify them. 

REQ2: A simple data representation is essential since 

the application users are not necessarily data science 

experts. 

REQ3: The relation between the data sets dimensions is 

a core function and needs to be displayed using a quick 

overview feature.  

REQ4: The exchange of dimensions and the 

visualization of more than three dimensions must be 

possible. 

REQ5: High computational resources must be provided 

as each permutation, generated by REQ4, needs to be 

computed on demand.  

REQ6: Due to the complexity of the data set, the user 

needs precise application feedback and easy input 

possibilities during the data analysis workflow. 

 

4.2. The HoloLens 

The HoloLens offers a variety of sensors to improve the 

user interaction and user feedback (cf. Table 2). The 

Inertial Measurement Unit (IMU) contains a 

combination of accelerometers and gyroscopes, which 

stabilize the visualization of holograms by providing the 

angular velocity of any head movement (LaValle 2013). 

Concerning REQ6, a promising way for a user 

interaction in this context constitutes the use of voice 

commands, as they allow for a hands-free interaction 

principle. Interestingly, the HoloLens provides a 

microphone array, which can distinguish between vocal 

user commands and ambient noise. Furthermore, due to 

the microphone array’s positioning, the identification of 

the direction of external sounds is easily possible. 

Moreover, using spatial audio, the in-app audio comes 

from different directions, based on the user’s relative 

position to a virtual object. This can be used to guide 

the user through a room and direct his field of view to 

relevant diagrams or information. 

Table 2: Technical Data HoloLens 

Sensor Overview 

Inertial Measurement Unit (IMU) 1 

Environment Recognition Camera 4 

Depth Sensor 1 

RGB Camera 2MP * 1 

Mixed Reality Capture 1 

Microphone 4(2 * 2) 

Ambient Light Sensor  1 

 

Furthermore, real-world 3D projections can be anchored 

onto real-life objects and are visible to the user in a 

distance from about 60 cm to a few meters. Therefore, 

infinite projections are not possible, neither to the actual 

distance nor to the actual proximity. Moreover, the 

HoloLens offers gesture- and gaze recognition. In our 

work, we solely utilize the tap-to-place-interaction via 

gestures (cf. Figure 3).  

 

Figure 3: TapToPlace for Holograms 

 

With a weight of 579g, the HoloLens usually needs a 

longer period for getting familiar with the appliance. 

Note that longer wearing periods are not recommended 

in the beginning, due to the unnatural head positioning. 

Theoretically, the power consumption of the HoloLens 

allows for a usage of 2.5 hours during intensive use, 

though it is unlikely a user will wear the HoloLens that 

long for an immersive analytics task. 

 



4.3. Graphical User Interface 

The first introduced graphical component is a particle 

system as shown in Figure 4. Most importantly here is 

the increasing brightness for particles in the same 

position as configured by a shader. This effect 

simplifies the detection of clusters as regions with a 

high particle density appear brighter than those with 

only few contained data points (cf. REQ1). 

Furthermore, the particle system is labeled with the 

corresponding dimension name on each axis. It is 

possible to plot the same variable on several axes. When 

these axes are overloaded, meaning that there are more 

than three variables to be displayed (cf. REQ4), the 

visualization changes and the plot switches to the 

dimensionality reduction view. Here, in Figure 4, the 

PCA result is shown and the axes are renamed to the 

three principal components with highest significance. 

Voice commands allow for the plot manipulation, where 

a hologram scalation by predefined values can be 

realized using the keywords plus and minus. As 

introduced in Section 4.2, a natural zoom by 

approaching the hologram is only possible to 60cm, 

therefore the scalation of the hologram replaces this use 

case and allows the detailed inspection of data points. 

Furthermore, the variable assignment to each axis can 

be edited using voice commands and the resulting 

changes in the plot are animated, so that the user can 

understand occurring state changes. Note that the voice 

commands work fine until a certain degree of 

background noise exists. Our prototype was 

demonstrated at the TRI/TINNET Conference 2018 

and, depending on the number of visitors in the 

exhibition hall, the voice recognition failed to detect 

voice input. Still, the voice commands are intuitive and 

fulfill REQ6. 

 

 
Figure 4: Default Particle System Plot 

 

The number of variables to be displayed is further on 

denoted as variables collection. All items in the 

variables collection are shown next to the particle 

system, as well as in a correlation coefficient graph (cf. 

Figure 5). The latter is a variant of an existing approach 

(Peña 2013) using the concept of color coding. Negative 

variance is marked as a red edge, while positive 

variance is displayed as a green edge. The strength of 

the variable connection is visualized using the opacity 

of each color, where the covariance intervals [0,1] and 

[-1,0] are mapped to the new opacity value in the range 

[0,100%]. In Table 3, therefore, a sample correlation 

matrix for five variables is shown. Note that, although 

the covariance is used for the PCA calculation, we 

visualize the correlation as a normalized form of the 

covariance.  

 

The correlation is denoted as  

 

 
( , )
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=   (1.4) 

 

As can be obtained from Eq. 1.4, covariance and 

correlation depend on each other. 

 

Table 3: Correlation Example 

Variables 
 loudness distress mood arousal stress 

loudness 1.0000 0.0676 0.0373 0.0372 -0.0022 

distress 0.0676 1.0000 0.0282 0.0302 -0.0012 

mood 0.0373 0.0282 1.0000 0.2874 0.0311 

arousal 0.0372 0.0302 0.2874 1.0000 0.0370 

stress -0.0022 -0.0012 0.0311 0.0370 1.0000 

 

 

Figure 5 shows the resulting graphs based on Table 3. 

The covariance plot is solely shown to underline the 

difference to the graphical variant. The covariance 

graph marks only the strongest edges, while the 

introduced correlation graph fades irrelevant values. 

The user of the prototype can obtain this information 

from the graph to improve the dimensionality reduction 

by removing variables that don’t fit well into the graph; 

if they a) correlate negatively or b) correlate very 

weakly. 

 
Figure 5: Covariance (left) and Correlation Graph 

(right) with abbreviated features presented in Table 3 

 

The last GUI component explains the information loss 

caused by the Principal Component Analysis. A bar plot 

shows the percentage of the three most important 

components for the overall variance. Figure 6 presents 

the variance of each component in a stacked bar. Due to 

the transparency, the user is able to recognize the 

importance of each component, while the red cube 

represents the discarded information. 

 



 
Figure 6: Information Loss Component 

 

Altogether, these three GUI Elements combined allow 

for an intuitive way of dealing with the dimensionality 

reduction. First, the difficulties of interpreting a 

covariance matrix are translated into a graph, for a 

quicker visual registration of connections between 

features. Second, the particle system allows for the 

visualization of high-dimensional data and a simplified 

detection of clusters through the brightness. Finally, the 

stacked bar of the PCA components variance allow for a 

quick estimation of each component’s importance and 

the information loss. 

 

4.4. Backend 

The core concept of this application is to separate the 

algorithm implementation from the visualization to 

reduce the required computational resources on the 

smart glasses (REQ5). Therefore, we implemented a 

python backend server for dimensionality reduction and 

data exchange possibilities through a Representational 

State Transfer (REST) Interface (cf. Figure 7). The 

server relies on the web framework Flask (Grinberg 

2018), which communicates with external applications 

using the Web Server Gateway Interface (WSGI). 

Moreover, the PCA implementation is realized by the 

free machine learning library scikit-learn (Pedregosa 

2011), and the numerical and scientific library NumPy 

(Walt, Colbert, and Varoquaux 2011). The pursued 

workflow, in turn, is as follows: Via voice commands, 

variables can be selected or deselected from the data set, 

which is stored on the server.  

 
Figure 7: Backend Workflow for the PCA 

 

Based on the number of selected variables n, and the 

number of entries in the data set m, a matrix is 

generated. This matrix serves as the input for the PCA. 

The PCA is executed twice, by varying the number of 

components. First, to receive a three-dimensional 

reduced data set, only the three components 

representing the highest variances are used. The original 

data set can now be transformed into the new subspace. 

Second, the PCA is computed with the maximal number 

of components to show the distribution of components 

concerning their variance. The mixed reality application 

is then able to access - via a REST call - the computed 

variance ratio vector and the transformed data set.  

 

 

 

5. THREATS TO VALIDITY 

This section discusses threats to validity when using the 

prototype in practice. First, the split into two parts of 

the application (i.e., GUI and Backend) complicates the 

installation and therefore intuitiveness of the 

application. On one hand, the presented application 

shall enable simplified insights into methods of 

dimensionality reduction, which could be technically 

shown. On the other, the developed application design 

for the backend and its required installation procedure 

are currently inappropriately designed for large-scale 

practical scenarios. Moreover, the need for an Internet 

connection disqualifies the current approach for local 

working environments like the ones that can be found in 

a production environment when working with 

machines. A second crucial aspect is the missing 

integration of numeric values. Neither in the correlation 

graph, nor the stacked bar, and the particle system are 

concrete numbers used. Therefore, this application is 

not meant to perform exact analytics. Moreover, all 

values in the particle system are normalized, which 

distorts the impression of the real range of values and 

instead only represents a relative view on the data set. 

Finally, the prototype has not been evaluated in a 

psychologic study yet. Therefore, amongst others, 

insights on the cognitive load for users when using this 

application in practice is currently unexplored and must 

be evaluated in an empirical study. 

 

 

6. CONCLUSION 

This work presented an interface for a mixed reality 

application with the goal to obtain insights into 

dimensionality reduction effects. Use case specific 

components (i.e., for analyzing tinnitus patient data) 

were developed and optimized for the principal 

component analysis method. Furthermore, it was shown 

how these components fit together in order to gain 

quick insights into large data sets like the one for 

tinnitus patients. We have presented that interactions 

with the application can be executed by the use of voice 

commands. Furthermore, the application is enriched by 

a state of the art machine learning backend including a 

web interface, which allows future modular extensions. 

Since the overall algorithm execution is outsourced to a 

remote server, the required computational resources on 

the smart glasses could be decreased. Overall, the three 



introduced components provide a comprehensible 

function overview with respect to the major goal 

pursued by a PCA and can therefore be used for 

immersive analytics in the context of large-scale 

healthcare data like the one shown for tinnitus patients. 

We regard such technical opportunities especially in the 

context of healthcare scenarios as an enabler to analyze 

patient data more efficiently. However, many other 

domains crave for such appliances that can be used to 

perform immersive analytics (e.g., in the context of 

predictive maintenance). 

 

7. FUTURE WORK 

The developed prototype is currently evaluated in a user 

study, in which the users need to solve cluster-based 

tasks, such as the assignment of occurring data patterns 

to the correct cluster and interpreting the effect on a 

cluster when removing a dimension. The study is 

accompanied by stress measurements to get more 

insights on the required mental load when using the 

prototype in practice. The study users, in turn, are put 

into two groups, which are built on a pre-test that 

evaluates the spatial imagination abilities of the 

participating users. Furthermore, the prototype will be 

improved by integrating the concept of spatial sounds. 

As the HoloLens offers a feature for directional sounds, 

the user may be guided to promising clusters in the 

particle system. A prerequisite for this approach 

constitutes a suitably large particle system size, so that a 

user is enabled to distinguish between clusters. Finally, 

recommendations will be added to the prototype. So far, 

a user has to select the dimensions of the data set by 

himself or herself and, hence, must reveal the most 

effective dimensionality reduction for the data set by a 

trial and error method. In a further development, we 

plan that the variables, which must be selected by an 

user in this context shall be suggested by the prototype 

in a more data-driven manner. 
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