
Universität Ulm | 89069 Ulm | Germany Faculty of
Engineering, Computer
Science and Psychology
Databases and Information
Systems Department

A Generic Engine Allowing an Auto-
matic Evaluation of Data Collection In-
struments
Bachelor’s thesis at Universität Ulm

Submitted by:
Pascal Kühner
pascal.kuehner@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert

Supervisor:
Johannes Schobel

2018

Version from October 2, 2018

c© 2018 Pascal Kühner

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Composition: PDF-LATEX 2ε

Abstract

Most of the time, clinical data is still collected using paper-based questionnaires, even

though this traditional approach has several limitations compared to electronic data

collection. For example, each questionnaire has to be printed and handed out to each

test person. Furthermore, the digitization and analysis of collected data is very time-

consuming and labor-intensive. The QuestionSys project aims to solve most of these

problems by providing a sophisticated framework. The latter supports the complete

digital data collection process, including the creation, deployment, execution, analysis

and archiving of the questionnaires. At different times, collected data of a questionnaire

has to be analyzed and evaluated. For example, collected data already has to be

evaluated during execution of the questionnaire, in order to determine the further course

of the questionnaire. Furthermore, it has to be evaluated after the questionnaire is

completed. In order to make evaluation of the data possible within the QuestionSys

framework, questionnaires can contain rules, which have to be evaluated. For the

purpose of evaluating these rules, a rule evaluation engine is developed in the course of

this thesis. The main focus is to develop an engine, which eliminates different problems

that come along with evaluation of expressions during execution time. Furthermore, this

engine should be easily extensible and has to be usable on different platforms.

iii

Acknowledgment

First of all, i want to thank my family and friends for their support and help during the

time I wrote this thesis.

I particularly thank my supervisor Johannes Schobel, who always took his time, helped

me and contributed with helpful suggestions when I had any questions.

Finally, i want to thank my brother Thomas Kühner for his helpful advice. I also want to

thank him and my fellow student Lukas for their effort and spent time while proof-reading

this thesis.

v

Contents

1 Introduction 1

1.1 Objective . 2

1.2 Structure of the Thesis . 2

2 Background 5

2.1 QuestionSys Framework . 5

2.1.1 Components of the Framework . 5

2.2 The Rule Engine . 6

2.3 Structure of Rules and Results . 7

3 Analysis 11

3.1 Requirements . 11

3.1.1 Functional Requirements . 11

3.1.2 Non Functional Requirements . 13

3.2 Problems . 13

3.2.1 Code Injection Threats . 14

3.2.2 Custom Functions . 14

3.2.3 Expression Evaluation . 14

3.3 Evaluation Frameworks . 15

3.3.1 Jexl . 16

3.3.2 vm2 . 17

3.3.3 expr-eval . 18

3.3.4 Comparison . 19

4 Concept 21

4.1 Main Concept . 21

4.1.1 Evaluation Process . 21

4.1.2 Custom Functions . 22

4.2 Architecture . 23

4.2.1 Manager . 24

vii

Contents

4.2.2 Functions . 24

4.2.3 Evaluator . 25

4.2.4 Model . 25

4.2.5 Communication between Components 25

5 Implementation 27

5.1 Implementation Details . 27

5.1.1 npm . 27

5.1.2 Testing . 29

5.2 Implementation of Selected Components 29

5.2.1 Model . 29

5.2.2 Functions . 36

5.2.3 Evaluator . 38

5.2.4 Manager . 42

5.3 Integration . 45

6 Summary 49

6.1 Fulfillment of Requirements . 49

6.2 Outlook . 51

viii

1
Introduction

As of today, clinical data collection is still mostly realized with the use of paper-based

questionnaires. There are several problems with paper-based data collection instruments.

With this approach, every questionnaire has to be printed and handed out to the patient.

This consumes a considerable amount of resources, which makes scaling surveys

difficult. Furthermore, analyzing and evaluating paper-based questionnaires is labor-

intensive and time-consuming [1]. After data has been collected, it has to be digitized

and entered into an electronic database, in order to perform sophisticated computer-

assisted analysis on the data [2]. However, the digitization of paper-based data might

result in faulty data [3]. These problems could be solved by electronic and mobile data

collection instruments. Creating, updating and deploying digital questionnaires is more

time-efficient, since the questionnaires are distributed via the Internet. Furthermore,

faulty and erroneous data can already be prevented by input validation of the software.

Thereby, digitization is also completely unnecessary, as the data is already in a digital

format. Digital questionnaires have additional advantages, for example, in the context

of clinical data collection. A study indicates that the immediate evaluation and data

availability of mobile patient questionnaires represents a big advantage over paper-based

questionnaires, where the analyzed data is not immediately available [4].

The main goal of the QuestionSys project is to build a framework to simplify data

collection with questionnaires by digitization of the entire process. More specifically,

the QuestionSys project focuses on mobile-data collection. Since Internet usage with

mobile devices exceeded desktop usage for the first time in 2016, mobile devices are

obviously a big market for such a technology [5]. The QuestionSys framework uses a

1

1 Introduction

process-driven approach and allows for creating, deploying, executing, evaluating, and

archiving digital questionnaires [1].

Within the QuestionSys framework collected data of a questionnaire has to be evaluated

at different points. For example, in order to determine the further course of the ques-

tionnaire, collected data has to be evaluated during the execution of a questionnaire.

Additionally, the data obviously should be evaluated after a questionnaire is finished and

data has been collected. The framework uses rules, which contain a boolean expression,

in order to enable evaluation of the data. In order to evaluate these rules, a generic rule

evaluation engine, that can be used as a mobile and desktop application, is needed.

Such an engine will be developed in the course of this thesis.

1.1 Objective

The goal of this thesis is to design and develop a generic rule evaluation engine in the

context of the QuestionSys project. This engine should enable users to evaluate rules,

which are part of questionnaires defined with the QuestionSys configurator application.

These rules contain a condition, which is a boolean expression, that has to be evaluated.

As a result of an evaluation the engine should indicate if a rule was evaluated to true or

false in the context of the submitted results. This engine will be used in different parts

of the QuestionSys framework. Thus, it should be able to work on different platforms

(i.e., mobile phones, browsers). Additionally, the engine should be easily extensible and

adjustable to new requirements, as the QuestionSys project is constantly evolving.

1.2 Structure of the Thesis

Chapter 2 deals with the QuestionSys project. At first, the project itself is introduced.

Then, the rule engine’s purpose within this project is explained in Section 2.2. Fur-

thermore, Section 2.3 explains the structure of rules and results of the QuestionSys

framework. Chapter 3 deals with requirements for the software. At that, functional

and non-functional requirements are imposed on the rule engine to be developed in

2

1.2 Structure of the Thesis

the course of this thesis. Further, possible problems are introduced in Section 3.2. In

Section 3.3, three different evaluation frameworks, that might be used as a solution for

these problems, are introduced and compared. The following Chapter 4 illustrates the

main concept of the rule engine. This includes a general architecture of the software.

Afterwards, Chapter 5 deals with the implementation of the rule engine. Thus, differ-

ent components are explained in detail. Then, it is explained how the engine is used

and integrated into another software. Lastly, the results are summarized in Chapter

6. Thereby, the actual implementation is compared with the requirements that were

imposed in Chapter 3. Furthermore, an outlook on what could be added and changed in

the future is presented in Section 6.2.

3

2
Background

2.1 QuestionSys Framework

This chapter explains the QuestionSys project and elaborates the purpose of the rule

engine within the framework.

The QuestionSys framework is a project of the University of Ulm, that launched in 2013.

The goal of the project is to simplify data collection with questionnaires. As a result, a

generic questionnaire framework for mobile data collection has been developed. As

of now, most questionnaires are still written and evaluated by hand on paper, creating

big workloads for psychologists. The QuestionSys project however takes a process-

driven approach for defining, validating, deploying, processing and analyzing digital

questionnaires [1].

Digital questionnaires go through a life cycle with five phases, which are all covered by

the QuestionSys Framework. At first, questionnaires have to be created. Then, they

can be deployed to different devices. Consequently, the deployed questionnaires can

be executed on the devices. Collected data will then be analyzed and evaluated in

real-time, after a questionnaire is finished. In the last phase, the collected data and the

questionnaire are managed, versioned and archived [6].

2.1.1 Components of the Framework

A QuestionSys questionnaire is a executable process model, that can be executed on

mobile devices with a process engine. The framework provides different components

5

2 Background

for each phase a digital questionnaire goes through. These components are the Server,

Configurator and Client.

Server The server stores deployed questionnaires and distributes them to the clients.

Additionally, collected data, that originates from executed questionnaires on clients, is

stored on the server and available for evaluation and analysis.

Configurator The configurator is an application, that is used to create questionnaires.

Finished questionnaires are mapped to a process model and can be deployed to the

server. Such a process model also contains all defined rules.

Client The client executes process models of questionnaires created with the configu-

rator. This component uses the rule engine, in order to determine the further course of

the questionnaire considering the collected data. After a questionnaire is complete, col-

lected data of finished questionnaires can be stored on the server for further evaluation

and analysis.

2.2 The Rule Engine

The rule engine is used in two phases of the questionnaire life cycle. First, it is used to

determine the course of the questionnaire or respectively the next node in the process

model, that is representing the questionnaire. Paper-based questionnaires might, for

example, have control structures stating that one should continue on page x if one is

18 years or younger, otherwise one should continue on page y. These steps should

be automatized in electronic questionnaires representing paper-based data collection

instruments [7]. In order to represent such structures in the process model, XOR

gateways are used [8]. Each XOR gateway has a list of branches, of whom each one

has its own condition. A branch determines the next node in the process, if the condition

is evaluated to true. Therefore, the rule engine will be used to evaluate these branches

during the execution of a process model.

6

2.3 Structure of Rules and Results

Furthermore, the rule engine will be used during the analysis phase. Creators of

questionnaires can specify rules, that will be evaluated after data has been collected

for the questionnaire. Such a rule also has a condition, which has to be evaluated by

the rule engine. Additionally, headlines and descriptions are specified for both possible

cases the condition can be evaluated to. These two cases are true and false. The

task of the rule engine is to evaluate these rules and to present the results.

2.3 Structure of Rules and Results

Rule and branch objects, as well as other structures within the QuestionSys project

are defined in the QuestionSys model. Both rules and branches of an XOR gateway

contain two essential properties for rule evaluation. The first part is the condition that

has to be evaluated by the rule engine. Such a condition is a boolean expression. It can

contain variables starting with $, function calls, brackets and constant values, as well as

mathematical and boolean operators.

As an example, a condition might look like this:

($age > 18 && $takesDrugs) || sum($mood_a, $mood_b, $mood_c) > 5

This condition contains the variables $age, $drinksAlcohol, $mood_a, $mood_b

and $mood_c, the function sum, the brackets (), the constant value 5, the boolean

operators ||, &&, == and the mathematical operator >.

A major problem of evaluating a rule is that all variables need to be associated with

their actual values during execution time. At the creation time of a questionnaire the

actual values are obviously unknown, but one can already define what answers of a

questionnaire will map to which variable of the rule. To support this level of indirection,

the property variablesMapping is used. It contains all the information, which is

required to link collected data to variables of the rule during execution time. An object

that performs the linking is called the context of a rule.

In order to understand variablesMapping, the result object has to be explained first.

A result object stores the collected data of one finished questionnaire. This, in turn,

7

2 Background

is achieved by storing key-value pairs, with the id of a question as the key and a list

containing the data. This list contains multiple iterations of an answer to the same

question, since the same question can be asked multiple times during a questionnaire.

One iteration of an answer has the properties iteration (i.e., position of this iteration

in the list or respectively the questionnaire), a timestamp, and value. This property

is a list that differs for different types of questions. It only contains the specific value of

an answer, if the question only allows a single user-generated answer (i.e., the person

completing the questionnaire came up with the answer). For single or multiple choice

questions, it contains a single object with key-value pairs that indicate if the choice

associated with the key is true (i.e., was selected) or false (i.e., was not selected).

For matrix questions, which are two-dimensional single or multiple choice questions,

value contains two of these objects. The first contains all choices for the row and

the second contains all choices for the column. Listing 2.1 shows a result object with

a single or multiple choice question that has the id -0123 and two possible choices

drinksAlcohol and consumesDrugs.

1 {

2 "results" : {

3 "-0123" : [

4 {

5 "iteration" : 0,

6 "timestamp" : 123445,

7 "value" : [

8 {

9 "drinksAlcohol" : true,

10 "consumesDrugs" : false,

11 }

12]

13 }

14]

15 }

16 }

Listing 2.1: Simple result object containing data for a single or multiple choice question

with the id -0123

8

2.3 Structure of Rules and Results

The variablesMapping of a rule or branch is a list of objects (i.e, the variables)

containing the properties variableName (i.e., identifier for the variable), questionId

(i.e., the id of a question in the result object) and value. A variable always points to

the answer in result, which is stored by the questionId of the variable. If an answer

contains multiple iterations, the variable points to all of these and the implementation

will have to determine how such variables are treated. The property value is strongly

related to the property value in a result object. If it is empty, the variable points to

the specific value (i.e., a direct user-generated answer) in value of an iteration of the

corresponding answer, as it is visualized in Figure 2.1.

Figure 2.1: Variable points to user-generated answer in the result

Otherwise, if value contains a single string, it points to a single choice of a single or

multiple choice question, as it is illustrated in Figure 2.2.

Figure 2.2: Variable points to choice of single or multiple choice question in the result

Lastly, if value contains two strings, the first points to the row and the second to the

column of a matrix question. This is also demonstrated in Figure 2.3.

9

2 Background

Figure 2.3: Variable points to row and column of matrix question in the result

A variablesMapping that maps onto the choice for the value drinksAlcohol of

Listing 2.1 is shown in Listing 2.2. The variable $drinksAlcohol should consequently

have the value true.

1 {

2 variableName : "$drinksAlcohol",

3 questionId : "-0123",

4 value : [

5 "drinksAlcohol",

6]

7 }

Listing 2.2: Simple variablesMapping object mapping to the choice with the key

drinksAlcohol of a single or multiple choice question with the id -0123

10

3
Analysis

In this chapter the requirements for the software are discussed. At first, the requirements

for the software are imposed. Then, possible problems with requirements, which might

be difficult to fulfill, are introduced. Lastly, different evaluation frameworks, that should

eliminate these problems, are discussed.

3.1 Requirements

Taking its purpose as a part of the QuestionSys framework into consideration, the

engine to be developed in the context of this thesis has to deal with the following

requirements. The latter are divided into functional requirements, which are addressing

the core functionality of the engine, and non functional requirements addressing the

implementation and design of the software.

3.1.1 Functional Requirements

FR1 (Evaluate Rules):

The engine must correctly evaluate rules from questionnaires created by the

QuestionSys configurator. The supported rules should have the structure of rule

objects from the QuestionSys model.

FR2 (Evaluate XOR-Branches):

The engine must correctly evaluate branches of XOR gateways from questionnaires

created by the QuestionSys configurator component. The supported branches of

11

3 Analysis

XOR gateways should have the structure of branch objects from the QuestionSys

model.

FR3 (Add Results of finished Questionnaires):

The rule engine must provide functionality to add context data from finished ques-

tionnaires to the engine. These results have to be correctly linked to the indicated

rules and branches.

FR4 (Provide Custom Functions):

The engine should provide options to add custom functions, which then can be

called during the evaluation of rules. There should be pre-defined functions of the

engine itself and the possibility to add new functions when initializing the engine.

FR5 (Export Pre-Defined Functions):

It should be possible to export all pre-defined functions, which can be called during

evaluation. Furthermore, the possibility to add new descriptions during run time

should be present. The export format of a description should contain the name

of the function, examples and explanations. Additionally, descriptions should be

grouped by their purpose (e. g Math, Util, String functions).

FR6 (Present Finished Evaluations)

After one or more rules or branches have been evaluated, the engine should return

objects that contain information about the evaluation process. This includes a

flag indicating if the rule or branch was evaluated successfully or errors occurred.

In addition information about the rule or branch, as well as the value that was

evaluated should be present.

FR7 (Injection Safety):

Code that is encoded in conditions of rules, branches or the submitted results must

not be executed by the engine during the evaluation of these. Solely the functions

and operators which are provided by the rule engine should be used.

FR8 (Indicate Errors during Evaluation):

An error should be thrown when an evaluation fails because of an error. A detailed

explanation in human-readable form should be provided.

12

3.2 Problems

3.1.2 Non Functional Requirements

NFR1 (Multi-Platform Support):

The engine must be developed as a NodeJS 1 module. Thereby TypeScript2 should

be used as the programming language, in order to deploy the engine to different

platforms. Further, the developed module should be installable via npm3.

NFR2 (Maintainability):

The developed code should be easily maintainable. Thus, it has to be properly doc-

umented. Additionally, all variables should have expressive names. Furthermore,

the code should be structured and separated into different fields of duties.

NFR3 (Extensibility):

The developed engine has to be extensible. This implies that new requirements or

a rework of old ones do not affect the architecture of the engine as a whole, but

rather isolated parts. Furthermore, small changes in the overall data model should

not affect the core architecture of the software developed in this thesis.

NFR4 (Stability):

The engine should not crash if errors occur. Thus, many sources of errors should

be eliminated and the code should be typed as much as possible. Further, errors

should be caught and properly handled.

NFR5 (Testing):

All parts of the engine must be properly tested with line coverage of 85% or more.

Especially, wrong input and behavior in case of error should be tested.

3.2 Problems

This section deals with problems that have to be considered during development of the

engine.

1https://nodejs.org/en/
2https://www.typescriptlang.org/
3https://www.npmjs.com/

13

https://nodejs.org/en/
https://www.typescriptlang.org/
https://www.npmjs.com/

3 Analysis

3.2.1 Code Injection Threats

Since the rule engine will evaluate boolean expressions encoded as strings from external

sources, wrong handling and execution of these can be a severe security issue because

of malicious code injections. In the following, a definition of code injections from the

Open Web Application Security Project (OWASP) is provided. [9].

Definition 1. Code Injection is the general term for attack types which consist of inject-

ing code that is then interpreted/executed by the application. This type of attack exploits

poor handling of untrusted data.

As an example a result of a questionnaire could contain code in a person’s name and

throw an error in the engine like this, if the expression in the condition was executed

without further measures:

condition: "name == ’John’"

name: "throw new Error()"

Because the rule engine deals with private data and in order to restrict access to the

machine the rule engine is running on, code injections must be dealt with.

3.2.2 Custom Functions

A very important feature of the rule engine is the possibility to use custom functions

during the evaluation. These functions should provide enhanced features for rule

evaluation, since it is impossible to directly execute code. Because of security issues,

these functions will have to be pre-defined by the engine or added dynamically for a

specific questionnaire. Additionally, the QuestionSys configurator must have information

about the functions in order to properly support its users.

3.2.3 Expression Evaluation

In order to eliminate the code injection issues, the rule engine needs a safe and powerful

environment for the evaluation of boolean expressions. JavaScript already offers this

14

3.3 Evaluation Frameworks

functionality with the eval function, but the function simply executes code, encoded as

a string and is thus not suited for the rule engine. Therefore, an external expression

evaluation framework will have to be used by the engine.

3.3 Evaluation Frameworks

A simple solution for expression evaluation would be to use JavaScript’s eval function

(i.e. [10]), since it is simply executing code, that is encoded as a string. However,

this would allow for code injections. Therefore, three different TypeScript/JavaScript

frameworks to use for expression evaluation are compared in this section. For this

purpose, the example from Listing 3.1 will be evaluated using each framework. The

example shows a typical condition and context the engine has to evaluate.

1 conditionString =

2 "($age > 18 && $drinksAlcohol) || sum($mood_a, $mood_b, $mood_c) > 15";

3 context = {

4 $age: 18,

5 $drinksAlcohol: true,

6 $mood_a: 3,

7 $mood_b: 7,

8 $mood_c: 5

9 };

Listing 3.1: Example for a condition and context to be evaluated. With the given context,

the rule should evaluate to false

The points of emphasis are the way the frameworks serve the purpose of evaluating

expressions, whilst being safe regarding code injections. Furthermore, the possibility

to add and use custom functions will be analyzed. For this purpose, the function sum

from Listing 3.2, that is adding up all submitted values, will be added to each framework

before the example is evaluated.

15

3 Analysis

1 sum = new function () {

2 let result = 0;

3 for (let i = 0; i < arguments.length; i++) {

4 result += arguments[i];

5 }

6 return result;

7 };

Listing 3.2: The function sum that sums up all submitted values

Lastly, specific advantages and disadvantages of each framework are discussed.

3.3.1 Jexl

Jexl is an expression parser and evaluator written in JavaScript [11]. With the ability to

evaluate expressions, the possibility to add custom functions and code injection safety,

the framework provides all the functionality that is required.

One could instantiate Jexl and then add the function sum like this:

1 let jexl = require(’Jexl’);

2 let sum = function () {...};

3 jexl.addTransform(’sum’, sum);

Listing 3.3: Instantiating and adding functions to Jexl

After that, the example from Listing 3.1 can be parsed and evaluated in the way it is

illustrated in Listing 3.4. Note that functions in Jexl can’t be called without the pipe

symbol |, which signals that the variable in front of the pipe is the first parameter of

the function call. This is very uncommon and makes it rather difficult to automatically

parse the example’s format to Jexl’s internal format of function calls. In addition, Jexl

doesn’t support a $ character as the start of variable names, which is the first character

of variable names in conditions of the QuestionSys framework.

Other advantages of Jexl are the possibility to add custom unary operators and a

powerful query language for arrays.

16

3.3 Evaluation Frameworks

1 conditionString =

2 "(age > 18 && drinksAlcohol) || mood_a|sum(mood_b, mood_c) > 15";

3 context = {

4 age: 27,

5 drinksAlcohol: false,

6 mood_a: 3,

7 mood_b: 7,

8 mood_c: 5

9 };

10 jexl.eval(conditionString, context);

11 };

Listing 3.4: Condition string and context parsed into correct format and evaluated with

Jexl

3.3.2 vm2

vm2 is a sandbox module for NodeJs, that is specifically designed for running untrusted

code [12]. The idea with vm2 would be to use JavaScript’s built-in eval function to

evaluate rules, with vm2’s sandbox eliminating possible code injection threats. In vm2

one can specify exactly which node modules, objects or functions are usable. Thus, vm2

creates a safe environment to use the JavaScript eval function, that runs JavaScript

code encoded as a string.

Listing 3.5 shows the creation of an instance of vm2 as well as the adding of the function

sum.

1 let result = {};

2 const vm = new NodeVM({

3 sandbox: {result}

4 });

5 let sum = function () {...};

6 vm.freeze(sum, ’sum’); //Adds Sum Function to vm2

Listing 3.5: Instantiating vm2 and adding the function sum

17

3 Analysis

In order to have access to the result of an evaluation both inside and outside of vm2,

the object result, where the results should be stored, is submitted to vm2 when it is

instantiated. If objects have to be added to vm2 during run time, freeze can be used.

Additionally, with freeze the objects are read-only and can not be modified inside vm2’s

sandbox.

In vm2 you could evaluate the example from Listing 3.1 like this:

1 conditionString = "(context.$age > 18 && context.$drinksAlcohol) ||

2 sum($mood_a, $mood_b, $mood_c) > 15";

3 context = {

4 $age: 27,

5 $drinksAlcohol: false,

6 $mood_a: 3,

7 $mood_b: 7,

8 $mood_c: 5

9 };

10

11 vm.freeze(context, "context"); //Adds context to vm2

12 vm.run(‘eval(evaluatedValue = ${conditionString})‘);

Listing 3.6: Condition string and context parsed into correct format for vm2 and evaluated

with vm2

In detail, only the variable references in the condition string were changed to point

towards the context variable, which is an easy-to-automate procedure.

In addition, vm2 is the most powerful one of the discussed frameworks, because it can

execute plain JavaScript code. However, it is not as simple to use as the others and

misuse might lead to security threats, due to the fact that JavaScript’s eval function is

used within the sandbox.

3.3.3 expr-eval

expr-eval is a mathematical expression parser and evaluator, specifically designed as a

safe alternative for JavaScript’s eval function [13].

18

3.3 Evaluation Frameworks

In the following it is illustrated how expr-eval can be instantiated and how a function can

be added.

1 let sum = function(){...};

2 parser = new Parser();

3 parser.functions[’sum’] = sum;

Listing 3.7: Instantiating expr-eval and adding the function sum

As one can see, it is very easy to add custom functions to expr-eval. In addition, there

are already many pre-defined functions and mathematical operators available.

In expr-eval you could evaluate the example from Listing 3.1 like this:

1 conditionString =

2 "($age > 18 and $drinksAlcohol) or sum($mood_a, $mood_b, $mood_c) > 15";

3 context = {

4 $age: 27,

5 $drinksAlcohol: false,

6 $mood_a: 3,

7 $mood_b: 7,

8 $mood_c: 5

9 };

10 parser.evaluate(conditionString, context);

Listing 3.8: Condition string and context parsed into correct format for expr-eval and

evaluated with expr-eval

Unfortunately, since expr-eval has different uses for ! and ||, logical operators have to

be parsed into and, or and not. Another disadvantage of the framework is the missing

possibility to access arrays in JavaScript’s usual way (i.e., with the operators []).

3.3.4 Comparison

In the following, the frameworks will be compared regarding their functionality, security,

parsing work needed for the condition and handling of custom functions.

19

3 Analysis

Functionality The most powerful of the frameworks is vm2, as it can execute plain

JavaScript code, unlike the expr-eval and Jexl. Yet, all the functionality of all three

frameworks is sufficient for the demanded tasks.

Security vm2’s use of eval comes along with security issues (i.e code injection

threats), when it is used wrongly. In contrary, Jexl and expr-eval eliminate these com-

pletely.

Parsing the Condition Parsing the condition string into the correct format for Jexl is

difficult and complex because of the design of function calls. In contrast, it is simple for

vm2 and expr-eval.

Custom Functions Jexl has severe disadvantages regarding the handling of custom

functions, as these can only be called with the pipe operator. However, with vm2 and

expr-eval, functions can be used exactly as it is already done within the conditions of

rules and branches of the QuestionSys framework.

After all, Jexl seems to be the least suitable of the three frameworks, because of it’s

disadvantages regarding custom functions, which are very important the rule engine.

The differences between expr-eval and vm2 are not that significant. Although vm2

is more powerful, since eval can be used, expr-eval is sufficient for the demanded

tasks. Furthermore, expr-eval eliminates the security issues that come along with vm2.

Ultimately, expr-eval will be used for expression evaluation, because of the simple

handling of custom functions and lack of security issues.

20

4
Concept

This chapter addresses the concept of the rule engine. At first, the main concept is

explained. Then, the architecture of the rule engine is introduced. Note that, rules and

branches are not distinguished in the whole concept and thus both will be referred to

with rule.

4.1 Main Concept

The main concept is divided into two parts. First, the evaluation process is explained in

general. Second, a way to deal with custom and pre-defined functions is introduced.

4.1.1 Evaluation Process

The main purpose of the rule engine is to evaluate rules of questionnaires created with

the QuestionSys configurator application. When a rule is evaluated, the rule engine

follows the evaluation process that is illustrated in Figure 4.1

In the first step of the process, the rules that should be evaluated have to be submitted

to the rule engine. Since rules and results are independent objects, the results (i.e, the

collected data of completed questionnaires), have to be linked to the corresponding rules.

Therefore, a context is created for each rule when it is submitted to the rule engine. Such

a context represents the collected results for the variables used within the rule, by linking

the specific value of an answer in a result to the corresponding variable. However, the

contexts are not yet "filled" with values at this point of the process. Consequently, results

21

4 Concept

Figure 4.1: Evaluation Process

have to be added to the engine. The contexts of the rules are then updated and "filled"

with the collected answers of the results. Figure 4.2 shows an example for a context and

illustrates, in a simplified way (i.e., without value and iteration in the result), how

variables are "linked" to the corresponding answers by using the mapping of a rule.

Next, these rules are evaluated with regard to their context. Thereby, the conditions are

first parsed into the correct format for the rule engine. Then, the expr-eval framework,

that was discussed in Section 3.3.3 is used for evaluating the conditions.

Finally, after a rule has been evaluated, the results of evaluations have to be presented

with additional information, as stated in FR6. Therefore, evaluation objects are created

and returned. These indicate the value a rule was evaluated to and contain further

information about the rule and evaluation process.

4.1.2 Custom Functions

As stated in FR4, the rule engine has to offer pre-defined functions, in order to provide

enhanced possibilities for evaluations. These functions may be part of a condition.

22

4.2 Architecture

Figure 4.2: Linking rules and results in a context

Thus, the engine contains a repository that manages these pre-defined functions. Since

the rule engine cannot supply fitting functions for every problem, it is also possible to

add custom pre-defined functions during run time. These functions can be used by

expr-eval as well, when rules are evaluated. As described in FR5, the repository also

contains descriptions of the provided functions, that will be used by the QuestionSys

configurator application.

4.2 Architecture

This section deals with the general architecture of the rule engine, that is extracted from

the main concept.

In order to create a maintainable (NFR2) and extensible (NFR3) software component, the

rule engine is divided into four components, as shown in Figure 4.3. These components

are Manager, Functions, Model and Evaluator.

23

4 Concept

Figure 4.3: Architecture of the rule engine

4.2.1 Manager

The Manager is the entry point and the only component of the engine, which is used for

communicating with external applications. It provides functionality to add and evaluate

rules and results from the QuestionSys framework. Additionally, the whole evaluation

process is managed by this component. Thus, it makes use of all other components.

Additionally, it enables external applications to communicate with the Functions com-

ponent, in order to enable the QuestionSys configurator application to access the

descriptions of functions.

4.2.2 Functions

The Functions component is used for dealing with custom functions. It supplies pre-

defined functions to the rule engine. However, since the rule engine cannot supply fitting

functions for every problem, the component allows for adding custom functions defined

and implemented by third-party developers.

Furthermore, descriptions of functions, that should help creators of questionnaires at

creating new rules, are managed by this component.

24

4.2 Architecture

4.2.3 Evaluator

The Evaluator component evaluates the conditions of rules. For this purpose it parses

the conditions into the correct format used by the rule engine. Then, conditions are

evaluated with regard to the corresponding context object of the rule. For evaluation of

the conditions, the framework expr-eval, that was discussed in Section 3.3.3, is used.

The component gets access to all functions from the Functions component by the

Manager and makes them available to expr-eval, so that they can be used during

the evaluation process.

4.2.4 Model

The Model component consists of different classes, interfaces and builders used by the

engine. It is for example used to create contexts for rules. Furthermore, after a rule was

evaluated, this component is used to create evaluation objects.

4.2.5 Communication between Components

In order to the illustrate relations between components, the communication of com-

ponents during the evaluation process is shown in Figure 4.4. As one can see, the

communication to the external application exclusively takes place via the Manager.

Furthermore, the single components, outside of the Manager, do not communicate with

each other.

25

4
C

oncept

Figure 4.4: Communication between components

26

5
Implementation

This chapter deals with the implementation of the rule engine. First, some details about

the implementation are explained. Second, the implementation of selected components

is introduced and illustrated. Then, it will be explained how the engine is used and

integrated into another application.

5.1 Implementation Details

This section introduces the package manager npm, as well as details regarding the

testing of the rule engine.

5.1.1 npm

npm is a package manager for JavaScript, that contains over 600.000 public packages.

It can be used for sharing packages of code, managing multiple versions of code and

code dependencies, as well as integrating other packages into the developed package

or software [14]. However, npm can also be used to manage private packages, that

are not shared with the community. npm can for example install packages from private

GitHub repositories, that represent a npm package [15]. Such a package contains a

package.json file with all relevant meta information [16]. This file also contains the

software’s dependencies to other npm packages and the developerDependencies

to packages, which are only needed during development.

npm is used to share packages of JavaScript code. However, in order to support

TypeScript developers, type definition files can be part of a package. Such files contain

27

5 Implementation

all relevant typings for corresponding JavaScript files. Thus, TypeScript developers can

use these packages with full type functionality.

The rule engine, in turn, is developed as an npm package. The only dependency of the

rule engine is the expr-eval framework, which is also an npm package. The QuestionSys

model (i.e., the npm package containing types for rules, branches and other structures

of the QuestionSys framework) is deliberately not included in dependencies, in order

to avoid multiple dependencies and possibly mismatching versions of the QuestionSys

model package in an application and the rule engine. Since an application that works

with the rule engine should also be depending on the model, the rule engine can simply

use this version of the model package, without having its own dependency. Thus, the

rule engine uses the QuestionSys model package, that is provided by the application.

Yet, if there should be the need for a rule engine package with an included dependency

on the model, this could be achieved with a second package, that has dependencies on

the rule engine and the model. Figure 5.1 illustrates this issue.

Figure 5.1: Dependencies between the rule engine and the QuestionSys model

28

5.2 Implementation of Selected Components

5.1.2 Testing

The rule engine is tested with the frameworks mocha1 and chai2, that allow for unit-

testing of NodeJS applications. All components and classes are tested on their own.

Additionally, the functionality of the rule engine is also tested, when all components are

integrated into the software. The npm package nyc3, which can detect test coverage,

implies, that the rule engine’s tests provide a line coverage of 89%.

5.2 Implementation of Selected Components

In this chapter the implementation of different components and important parts of the

rule engine will be explained in detail.

5.2.1 Model

The Model component consists of different structures and builders used by the rule

engine.

Internal Rules and Branches

The QuestionSys model has two independent objects rule and branch, which represent

rules and branches of XOR gateways. Yet, since both of these objects share the same

essential properties for evaluation, which were already explained in Section 2.3, the

engine internally uses a BasicRule object, that represents both of these properties.

The properties of a BasicRule are:

conditionString The condition of a rule or branch encoded as a string.

variablesMapping The variablesMapping property of a rule or branch.

1https://www.npmjs.com/package/mocha
2https://www.npmjs.com/package/chai
3https://www.npmjs.com/package/nyc

29

5 Implementation

Note, that BasicRule does not contain all overlapping properties of rules and branches,

because both branches and rules share the property name, which isn’t part of Basic-

Rule. Since this property is not necessary for evaluation, it would be more complex

to support new objects for evaluation, which might contain all necessary properties

but not name. Thus, it would lower the extensibility of the rule engine. Yet, the proper-

ties of rules and branches are useful at a later stage and should not get lost. Hence,

the objects InternalBranch and InternalRule extend BasicRule with the re-

maining properties of rules and branches. This structure is visualized in Figure 5.2.

Thus, the BasicRule can be used as a generalized type for InternalBranch and

InternalRule objects, as long as the additional information for the single objects are

not relevant.

Another advantage is, that an InternalRule object is structurally identical with the

respective rule object of the QuestionSys model (i.e, they share the same properties

with the same type). The same situation applies for InternalBranch objects and

the branch object of the QuestionSys model. Since TypeScript uses structural typing,

different structures with the same properties are compatible, meaning that, for example,

a rule object from the QuestionSys model can be used as InternalRule without any

restrictions or type casts [17].

Figure 5.2: Relationships between BasicRule, InternalRule and Internal-
Branch

30

5.2 Implementation of Selected Components

Results and Context

The rule engine uses a Context object to represent the context of a rule (i.e., an object

linking variables to their actual value). The relevant properties of a Context object are:

variablesMapping variablesMapping property of the corresponding BasicRule

object.

variables Maps variable names to their actual value. In detail, it is a key-value

map, with variable names as the key and their value as value.

A Context must be initialized by submitting the variablesMapping of a BasicRule

object. Results can be added to the context with the addResult function (i.e, Listing

5.1). Thereby, the variables property will be filled with the results (i.e., the variables

will be associated with the value that is specified in the result). In order to achieve

this, the function fillVariable, which associates the variable’s name with its actual

value, is called for each variable (i.e., object in the List variablesMapping). Yet, if

result doesn’t contain answers to the question with the questionId of a variable,

fillVariable is not called for this variable.

1 addResult(result: Result) {

2 for (let variable of this.variablesMapping) { //For each variable

3 let answers = results.result[variable.questionId];

4 if (!isNullOrUndefined(answers)) {

5 //If result contains answer to the question

6 this.fillVariable(variable.questionId, variable.

variableName, variable.value, answers);

7 }

8 }

9 }

Listing 5.1: The addResult function from the Context class

The function fillVariable (i.e, Listing 5.2) adds a key-value pair to variables,

which maps variableName to the actual value of the variable. Therefore, it first creates

the actual value for the variable out of the result with createVariableValue for each

iteration of the question. If there is only one interation, the variable will be directly

31

5 Implementation

associated with that value, otherwise the variable will be associated with a list of values

(i.e., one for each iteration). In order to get a single iteration within a condition, the

function getIteration($variableName, iteration) can be used.

1 private fillVariable(questionId: string, variableName: string, value: any,

answers: any[]) {

2 let variableValue = [];

3 for (let answer of answers) { //For each iteration

4 variableValue.push(this.createVariableValue(answer, value));

5 }

6 if (answers.length == 1) {

7 variableValue = variableValue[0];

8 }

9 //Association of value with variableName

10 this.variables[variableName] = variableValue;

11 }

Listing 5.2: The fillVariable function from the Context class

The actual value of the variable is extracted with createVariableValue (i.e., Listing

5.3). The submitted property answer should be a single iteration of an answer to a

question in a result object and value is the identically named property of a variable

in the list variablesMapping. The function resolves the relationships between the

submitted property value of the variable and the property value of the submitted

answer, in the way it is described in Section 2.3. In detail, if value is empty, the

specific value in value of the submitted answer is assigned to the variable’s value.

If it contains a single string (i.e., pointing to a single or multiple choice question), the

string will be matched to the value of the corresponding choice in the value property of

answer, which is then returned as the variable’s value. Yet, if it is pointing to a matrix

question (i.e., value contains two strings) the variable will be further divided into row

and column. Then, the first key in value is matched with the row (i.e, the first object

in value of the answer) in the same way as it is done for single or multiple choice

questions. Equally, the second key is matched with the column (i.e, the second object

in value of the answer). The properties row and column of a such a variable can

32

5.2 Implementation of Selected Components

be accessed within a condition by using the functions getRow($variableName) and

getColumn($variableName).

1 private createVariableValue(answer: any, value: any): any {

2 ..

3 switch (value.length) {

4 case 0: //Direct answer to question

5 variable = answer.value[0];

6 break;

7 case 1: //Answer is choice of single or multiple choice

question

8 let temp = answer.value[0];

9 ..

10 variable = temp[value[0]];

11 ..

12 case 2: //Answer to Matrix question

13 let tempRow = answer.value[0];

14 let tempCol = answer.value[1];

15 variable = {};

16 ..

17 variable.row = tempRow[value[0]];

18 variable.column = tempCol[value[1]];

19 ..

20 }

21 return variable;

22 }

Listing 5.3: The createVariableValue function from the Context class

Evaluations

After a rule has been evaluated, the results of the evaluation are represented by an

evaluation object. The BasicEvaluation is the most general evaluation object and

only contains the essential properties, which are available after a BasicRule object

has been evaluated. These properties are:

evaluationType Provides information about the evaluation process (i.e Success, Func-

tionError, ParserError, ValueError).

33

5 Implementation

evaluatedValue This is the value, the rule was evaluated to (e.g., true, false or

Error).

evaluationKind Unique identifier of the type of the evaluation object (either Basic,

Branch or Rule).

Note that evaluationType contains very important information about the evaluation

process. In detail, if it is Error, FunctionError or ParserError the evaluation

failed during execution. In this case, evaluatedValue contains the error that occurred.

However, ValueError signals that the evaluation finished without errors, but the type

of evaluatedValue is not boolean. In that case, the rule must be corrupt in some

way, since the engine focuses on true/false evaluations. Success means that the

evaluation finished without errors and evaluatedValue is of the type boolean. Due

to these different cases, the function getValue, that either returns the boolean value

of evaluatedValue or throws the given error, is offered.

In order to supply evaluation objects with additional information of InternalRule and

InternalBranch objects, two additional classes BranchEvaluation and Rule-

Evaluation, that extend BasicEvaluation with additional properties of the evalu-

ated InternalBranch (i.e., with name, isDefault, nextNodeKey and display-

Name) or InternalRule (i.e., with name, key, positive and negative), are pro-

vided. The structure of evaluations can be seen in Figure 5.3.

The rule engine additionally provides an EvaluationBuilder, whose task is to simplify

the process of creating an evaluation object. Hence, it selects the evaluationType

for a submitted evaluated value with the function getEvaluationType (i.e., Listing

5.4) and instantiates BasicEvaluation, RuleEvaluation or BranchEvaluation

objects with additional information of the submitted BasicRule, InternalRule or

InternalBranch object. For this purpose, it provides the static function build-

Evaluation. This function always instantiates the most specific evaluation object, that

is possible. If for example an object with all properties of InternalBranch is submitted

to buildEvaluation, it will return a BranchEvaluation object.

34

5.2 Implementation of Selected Components

Figure 5.3: Relationships between BasicEvaluation, RuleEvaluation and
BranchEvaluation

1 private static getEvaluationType(evaluatedValue: any): EvaluationType {

2 if (isBoolean(evaluatedValue)) {

3 return EvaluationType.Success;

4 }

5 if (isFunctionError(evaluatedValue)) {

6 return EvaluationType.FunctionError;

7 }

8 if (isError(evaluatedValue)) {

9 return EvaluationType.ParserError;

10 }

11 return EvaluationType.ValueError;

12 }

Listing 5.4: The getEvaluationType function from the EvaluationBuilder

As an example, a simple BasicEvaluation object is shown in Listing 5.5

1 {

2 evaluationType: "Success",

3 evaluatedValue: true,

4 evaluationKind: "Basic"

5 }

Listing 5.5: Simple BasicEvaluation Object

35

5 Implementation

5.2.2 Functions

The Functions component consists of the FunctionRepository, the Function-

Descriptions JSON file and the Functions object containing pre-defined functions.

FunctionDescriptions As described in FR5, pre-defined functions should be ex-

ported, in order to help creators of questionnaires. The export format of a function is a

FunctionDescription. The relevant properties of such a FunctionDescription

are:

key The name the function can be called by in a condition.

displayName The name of the function, that will be presented to users of the Question-

Sys configurator.

group The group to which the function can be attributed to.

explanation A detailed explanation of the function’s purpose and usage.

example An example showing how the function can be used in a condition.

As an example, a description for a sumList function that sums up all values of a

submitted list can be seen in Listing 5.6.

1 description = {

2 "key": "sumList",

3 "displayName": "Sum of a List",

4 "group": "Math",

5 "explanation": "Sums all values of the submitted list",

6 "example": "sumList($valsToSum)"

7 }

Listing 5.6: Simple FunctionDescription object

All pre-defined FunctionDescription objects are stored in a JSON File called

FunctionDescriptions. In the JSON file, the descriptions are further grouped

by their property group and stored by their property key, as one can, for example, see

in Listing 5.7.

36

5.2 Implementation of Selected Components

1 {

2 "Math": {

3 "sumList": {

4 "key": "sumList",

5 "displayName": "Sum of a List",

6 "group": "Math",

7 "explanation": "Sums all values of the submitted list",

8 "example": "sumList($valsToSum)"

9 },

10 ...

11 },

12 "Util": {

13 ...

14 },

15 ...

16 }

Listing 5.7: Example for FunctionDescription objects stored in the Function-

Desriptions JSON file

Functions Functions on the other hand is a TypeScript object containing the en-

gine’s pre-defined functions. These are stored by the key, that is identifying the function

also used to call it within a condition. An example for such an object can be seen in

Listing 5.8.

1 functions = {

2 "sumList": function (vals: number[]) {

3 return vals.reduce((sum, currentValue) =>

4 sum + currentValue);

5 }, ...

6 }

Listing 5.8: Example of pre-defined functions stored in the Functions object

37

5 Implementation

FunctionRepository Both the FunctionDescriptions file and the Functions

object are combined in the FunctionRepository. The relevant properties of the

FunctionRepository are:

functions Object that contains all pre-defined functions of the Functions object.

Additionally, it can contain custom functions which were added during

run time. The structure is the same as the structure of the Functions

object.

descriptions Instance of the FunctionDescriptions JSON file. It can also con-

tain descriptions of custom functions, that are added during run time.

The main purpose of the FunctionRepository is to manage all functions that can be

used in a condition and their corresponding descriptions. Therefore, it allows for adding

and deleting custom functions. Single functions can be added with addFunction,

where also the key of the function has to be submitted. Multiple functions can be added

in the structure of a Functions object with addFunctions. Obviously, Function-

Description objects can also be added with addDescription (i.e., a single object)

and addDescriptions (i.e., a list of objects). It has to be mentioned, that existing

functions and descriptions will be overwritten by new functions and descriptions with the

same key.

Since the descriptions of functions would be useless, without the possibility to access

them, functionality to query descriptions is provided. In order to get all groups, whom

at least one description is attributed to, as a list, the method getAllGroups has to

be called. Then, getDescriptions can be used to get all FunctionDescription

objects of one submitted group. If no group is submitted, all FunctionDescription

objects are returned.

5.2.3 Evaluator

The Evaluator component consists of the RuleEvaluator, ConditionString-

Parser and FunctionParser.

38

5.2 Implementation of Selected Components

ConditionStringParser The ConditionStringParser parses conditions of rules

into the correct format for evaluation.

expr-eval, the framework that is used for evaluating expressions, only supports and,

or and not as boolean operators. However, in the preferred format of conditions in

the QuestionSys project &&, ||, which is used for string concatenation in expr-eval,

and !, that is used for calculating the factorial of a number, are used. Thus, the

ConditionStringParser parses these operators into the format of expr-eval (i.e.,

it replaces && with and, || with or and ! with not). However, if an application already

uses the correct format for conditions, but still wants to use the symbols that would be

replaced, different options can be adjusted with ConditionStringParserOptions.

This is an object containing three boolean values and, not and or that determine if the

respective operators &&, || and ! should be changed to the format of expr-eval. If

no ConditionStringParserOptions are submitted or boolean values are missing,

they default to true and the operators are automatically replaced. However, this is

handled by the RuleEngineManager.

FunctionParser The FunctionParser should wrap pre-defined functions into a new

safer function. The return values of functions called during run time could, for example,

be undefined or NaN. Thus, a generic function should deal with errors, undefined

return values and other problems when custom or pre-defined functions are executed,

in order to make the evaluation process safer and indicate problems during function

calls. If this check wasn’t implemented, the evaluated value of the whole condition might,

for example, be undefined because a function call returned undefined, but there

would be no possibility to locate that erroneous function call in the condition. Therefore,

the method wrapperFunction, that can be seen in Listing 5.9, creates a new safer

function based on a submitted function. In case of a problem, a FunctionError, which

is an Error with an additional errorType property of the type FunctionErrorType,

is thrown. This property can be either ExecutionError, meaning that the function

threw an error during execution, or ReturnValueError, indicating that the return value

is not usable. Thereby, the submitted function is called first and occurring errors are

caught. If an error is caught at this point, it is converted to a FunctionError with

39

5 Implementation

ExecutionError as the type. Otherwise, if the returned value is undefined or NaN,

a FunctionError with ReturnValueError as type is thrown. The message of the

error further specifies which function failed.

1 static wrapperFunction<T extends Function>(key: string, func: T): Function {

2 return function () {

3 let retValue: any;

4 try {

5 //Call of submitted function

6 retValue = func.apply(this, arguments);

7 } catch (e) {

8 //Function threw error => Convert to FunctionError

9 let f = new FunctionError(FunctionErrorType.

ExecutionError, e.message);

10 f.stack = e.stack;

11 throw f;

12 }

13 //Function returned a value

14 if (isNullOrUndefined(retValue)) {

15 //Value is null or undefined => ReturnValueError

16 throw new FunctionError(FunctionErrorType.

ReturnValueError, ‘...‘);

17 } else if (isNumber(retValue) && isNaN(retValue)) {

18 //Value is NaN => ReturnValueError

19 throw new FunctionError(FunctionErrorType.

ReturnValueError, ‘...‘);

20 }

21 return retValue;

22 }

23 }

Listing 5.9: The wrapperFunction from the FunctionParser

Since TypeScript’s type information is lost after its compilation to JavaScript [18], the

FunctionParser should at first also provide type checking of the submitted para-

meters and returned values of the pre-defined functions during run time. However, this

functionality is not completely working and safe. Therefore, it is not part of the final

software. It is implemented with a regular expression that extracts the head of a function

40

5.2 Implementation of Selected Components

in Functions by key. Then, each parameter’s type is extracted as a string. If the type

is known to the parser and there is a function that allows for type checking of this type,

the parameter will be checked. Otherwise, the parameter is simply not checked.

RuleEvaluator The most important part of the Evaluation component is the Rule-

Evaluator, that is used for evaluating conditions with regard to a given context.

The class uses parser, an instance of the expr-eval framework, and an instance of

ConditionStringParser, as well as the static wrapperFunction from the Func-

tionParser.

It allows for adding of custom functions with the method addFunction, that is shown in

Listing 5.10. However, the submitted function is not directly added to expr-eval. The

function is first wrapped into a new safer function with the wrapperFunction, which is

then added to parser, as it is shown in Listing 5.10.

1 addFunction(key: string, func: (...args: any[]) => any) {

2 //Adds wrapped function to expr-eval parser

3 this.parser.functions[key] =

4 FunctionParser.wrapperFunction(key, func);

5 }

Listing 5.10: The addFunction from the RuleEvaluator

The evaluate function (i.e., Listing 5.11) is designed very simple. The submitted prop-

erty conditionString should be the identically named property of a BasicRule and

contextVariables should be the variables field of a Context object, although it is

typed as any, and it is assumed to be correctly submitted by the RuleEngineManager.

At first, conditionString is parsed with the instance of ConditionStringParser.

Then, the condition is evaluated with parser and the evaluated value is returned. Yet, if

an error is thrown during evaluation, it is caught and returned.

41

5 Implementation

1 evaluate(conditionString: string, contextVariables: any): any {

2 try {

3 //Parsing conditionString and evaluating it with expr-eval

4 let returnValue = this.parser.evaluate(this.

conditionStringParser.parse(conditionString),

contextVariables);

5 return returnValue;

6 }

7 catch (Error) {

8 //Return Error if one occured

9 let returnValue = Error;

10 return returnValue;

11 }

12 }

Listing 5.11: The evaluate function from the RuleEvaluator

5.2.4 Manager

The Manager component is the main component. It consists of the RuleEngine-

Manager, which manages and communicates with all other components during run time.

However, it is not very complex, since there is not much new logic in the component. The

evaluation process is managed by this component and it "wires" the single components to-

gether into the working rule engine. The RuleEngineManager contains an instance of

RuleEvaluator named ruleEvaluator, as well as functionRepository, which

is an instance of FunctionRepository.

The RuleEngineManager allows for communicating with functionRepository by

passing through all relevant functions. Additionally, functions and FunctionDescrip-

tion objects can be added when RuleEngineManager is initialized.

In order to provide extensibility, functions for managing contexts and evaluating rules are

provided for BasicRule objects. Additional functions, specifically designed for users

of the rule engine, then provide additional support for branches and rules, but in the

background the basic functions are still used.

42

5.2 Implementation of Selected Components

The general evaluation function evaluateBasicRule, that can be seen in Listing

5.12, evaluates BasicRule objects. The submitted object basicRule is evaluated

with the evaluate function of RuleEvaluator. Then, an evaluation is built by the

EvaluationBuilder. Since, InternalRule and InternalBranch objects extend

BasicRule, they can also be evaluated by this function. Thus, the returned objects

do not have to be BasicEvaluation objects, as the EvaluationBuilder always

creates the most specific object for each evaluation. It is merely assured, that the

returned objects contain at least the properties of a BasicEvaluation.

1 private evaluateBasicRule(basicRule: BasicRule, context: Context):

BasicEvaluation {

2 let evaluatedValue: any = this.ruleEvaluator.evaluate(basicRule.

conditionString, context.variables);

3 return EvaluationBuilder.buildEvaluation(evaluatedValue, basicRule);

4 }

Listing 5.12: The evaluateBasicRule function from the RuleEngineManager

Contexts are created with the function createContext, that builds a Context object

based on a submitted BasicRule object. However, the created Context is not directly

"filled" with results. Thus, BasicRule objects could be added to the engine without the

results being collected yet. Yet, in the current state of the engine such a functionality is

not implemented because it is not necessary.

In the next step, the Context objects have to be "filled" with the actual results. For this

purpose, the function fillContext, which can be seen in Listing 5.13, is provided.

1 private fillContext(context: Context, results: Result) {

2 context.addResult(results);

3 }

Listing 5.13: The fillContext function from the RuleEngineManager

For all three of these basic functions, an additional function (i.e., createContexts,

fillContexts, evaluateBasicRules), with the same functionality, that deals with

multiple BasicRule or Context objects, is provided.

43

5 Implementation

The more sophisticated functions evaluateRules and evaluateXORBranches (for

evaluating rules and branches) use these basic functions, and work as an interface for ex-

ternal applications. Since there is no big difference between evaluateXORBranches

and evaluateRules, only the evaluateXORBranches function will be explained

in the following. This function creates one BranchEvaluation object for each sub-

mitted branch. When multiple branches are submitted, the position of the branches

in the submitted list matches with the position of the BranchEvaluation objects in

the returned list. The function itself simply uses createContexts, in order to create

the contexts. Afterwards, the Context objects are "filled" with the results. Then, the

branches are evaluated with the method evaluatedBasicRules. Thereby, the func-

tion evaluateBasicRule returns BasicEvaluation objects, although it is certain,

that the objects are in fact BranchEvaluation objects, because of the implementation

of EvaluationBuilder. Obviously, it would be better to assure this to the users, by

declaring the return type of the function to BranchEvaluation. For this purpose, the

type is overwritten to BranchEvaluation, by using TypeScript’s type assurances, that

override the analyzed type [19].

1 evaluateXORBranches(xorBranches: Branch[] | Branch, results: Result):

BranchEvaluation[] | BranchEvaluation {

2 let rulesIsArray: boolean = true;

3 //Temporary transformation into list

4 if (!isArray(xorBranches)) {

5 rulesIsArray = false;

6 xorBranches = [xorBranches];

7 }

8 let contexts: Context[] = this.createContexts(xorBranches);

9 this.fillContexts(contexts, resultSet);

10 let evaluations = this.evaluateBasicRules(xorBranches, contexts);

11 return rulesIsArray ?

12 <BranchEvaluation[]>evaluations : <BranchEvaluation>

evaluations[0];

13 }

Listing 5.14: The evaluateXORBranches function from the RuleEngineManager

44

5.3 Integration

5.3 Integration

In the following it is explained how the rule engine can be used.

Instantiating the Rule Engine In order to use the rule engine, an instance of Rule-

EngineManager has to be created. At this point, custom functions, which can then be

used in conditions, and their descriptions, as well as options for the ConditionString-

Parser can be passed to the engine. These objects are all optional and also typed. The

structure of the submitted functions exactly matches the structure of the Functions ob-

ject with pre-defined functions. Furthermore, the descriptions are a list of FunctionDe-

scription objects and the options are of the type ConditionStringParserOp-

tions, that was explained in Section 5.2.3. Listing 5.15 demonstrates the instantiation

of a RuleEngineManager object.

1 let functions: FunctionsObject = {...};

2 let functionDescriptions: FunctionDescription[] = [...];

3 let options: ConditionStringParserOptions = {...};

4

5 //Instantiating the rule engine

6 let ruleEngine = new RuleEngineManager(functions, functionDescriptions,

options);

Listing 5.15: Instantiating the rule engine

Evaluating Rules and Branches After the rule engine was instantiated, lists of

rules or branches and corresponding results can be evaluated with the functions

evaluateRules and evaluateBranches. Yet, these functions also allow for evaluat-

ing single rule or branch objects. Listing 5.16 demonstrates how a list of rules can be

evaluated.

1 let rules: Rule[] = [...];

2 let results: Result = {...};

3 let evaluations: RuleEvaluation[] = ruleEngine.evaluateRules(rules, results);

Listing 5.16: Evaluating rules with the rule engine

45

5 Implementation

The returned value of these functions usually is a list of BranchEvaluation or Rule-

Evaluation objects. However, if only a single rule or branch is evaluated, only a

single evaluation object is returned. Both BranchEvaluation and RuleEvaluation

are more specialized BasicEvaluation objects. Each one of these contains three

important properties. First, the property evaluationType indicates if any errors or

problems occured during the evaluation of the corresponding rule. Second, evaluated-

Value is the value that was evaluated for the rule (e.g., true, false, Error). Third,

the type of an evaluation object is displayed by evaluationKind, since there are

more specialized evaluation objects, which extend BasicEvaluation with the impor-

tant properties of the evaluated objects (i.e rule or branch). However, the provided

functions evaluateRules and evaluateXORBranches already indicate the value of

this property with their return type. Furthermore, dealing with evaluationType and

evaluatedValue is not necessary, since all evaluation objects possess the function

getValue. This function returns evaluatedValue, if the evaluation was successful

and otherwise throws the corresponding error. Thus, if getValue doesn’t throw an

error, it is certain, that it returns a boolean value. Section 5.2.1 explains the evaluation

objects in more detail.

Custom Functions Custom functions and their descriptions are managed by the

FunctionRepository. Yet, communication with the FunctionRepository also

happens through the RuleEngineManager. As it was discussed earlier, functions

and descriptions can be added during the setup of the RuleEngineManager. If new

functions have to be added during run time, the function addFunction, that adds a

submitted function with a submitted key to the FunctionRepository, can be used.

The key acts as the name, by which the function can be called by within a rule. If there

already is a function defined with this key, it is overwritten with the new function. Multiple

functions, structured as the Functions object, can be added with addFunctions.

Functions are described by FunctionDescription objects, which are described

in Section 5.2.2. These contain meta information about the custom functions, which

should help creators of questionnaires. FunctionDescription objects can also

be added during execution time with the functions addFunctionDescription and

46

5.3 Integration

addFunctionDescriptions of the RuleEngineManager. These descriptions, in

turn, can be queried with different functions. The method getAllGroups, for example,

returns all groups that contain at least one function, as a list. Now, all descriptions of

one group can be received by calling the function getDescriptions and submitting

the name of the group. If no group is submitted, all descriptions are returned. One can

also query for single descriptions by their key, with the function getDescription.

Variables within Conditions Multiple things have to be considered when dealing

with variables within a condition. First, if the corresponding answer in the result

has multiple iterations, the single iterations have to be accessed first, for example

with the pre-defined function getIteration($variableName, iteration). Fur-

thermore, if the variable is bound to a matrix question (i.e, the property value of

the variable in variablesMapping has two keys), the value of the variable is fur-

ther divided into row and column. In order to access these properties, the func-

tions getRow($variableName) and getColumn($variableName) can be used.

Properties of lists and objects can be accessed by calling the pre-defined function

getProperty($variableName, propertyName).

47

6
Summary

The main goal of this thesis was to design and develop an engine for evaluating rules

and branches of the QuestionSys framework. At first, requirements to the software were

imposed. With these requirements in mind, possible problems regarding the fulfillment

of them were analyzed. These problems included code-injection safety, expressions

evaluation and the ability to use custom functions within the conditions of a rule or branch.

They were eliminated by the use of an evaluation framework. In order to find a good

solution, the frameworks vm2, expr-eval and Jexl were compared. Ultimately, expr-eval

was used as evaluation framework, as it was the best fit for the rule engine. Then, a

general concept of the rule engine was developed. This concept included a general

illustration of the evaluation process and architecture of the rule engine. Furthermore,

the main communication flow between the different components of the architecture was

presented. Afterwards, a working implementation of the rule engine, that is based on the

general concept was introduced and explained. Thereby, the usage of the rule engine

was also illustrated.

6.1 Fulfillment of Requirements

In the following for each functional and selected non-functional requirements, it is

discussed whether the requirement is fulfilled by the developed rule engine.

FR1 and FR2 are fulfilled by the rule engine. The RuleEngineManager offers tailored

functions that correctly evaluate rule and branch objects of the QuestionSys model.

49

6 Summary

FR3 is fulfilled by the rule engine. In order to link results with rules or branches, a

Context object, is created and "filled" with the collected results for each rule or branch.

FR4 and FR5 are completely covered by the rule engine. Functions that can be used

during evaluation are stored and managed by the FunctionRepository. Thereby,

a file with pre-defined functions of the engine is already included. However, this file

is only filled with essential functions for dealing with variables and probably has to be

extended. Furthermore, functions can be managed during run time (i.e., adding, deleting,

overwriting). In order to export these functions, every function can and should have an

additional description, that contains the key, name, group, explanation and an example

of how the function can be used. These descriptions can also be managed during run

time and there is the possibility to query these.

FR6 is covered by evaluation objects. The rule engine creates an evaluation object for

each rule or branch that is evaluated. These objects contain the field evaluationType

that indicates if the evaluation was successful or which kind of error occurred. Additionally,

the evaluation objects contain all relevant information of the evaluated rule or branch.

FR7 demands the rule engine to eliminate code injection threats. With the usage of the

framework expr-eval for evaluating conditions and expressions, there is no possiblity

for code injections unless a custom function is unsafe (i.e., it is, for example, using

JavaScript’s eval function).

Lastly, FR8 is covered by the rule engine. The evaluation objects include any errors that

occur during evaluation of a rule or branch. Additionally, there is the FunctionError

which particularly indicates errors that occured during the execution of a custom function.

Now the non-functional requirements are discussed.

Obviously, NFR1 is fulfilled, as the engine is developed with TypeScript as an npm

package.

The developed rule engine is easily extensible (i.e., NFR3), since the core parts, that deal

with evaluation conditions, are designed to work with the minimum amount of information,

which is needed for evaluation. Thus, new objects that contain the essential properties

50

6.2 Outlook

for evaluation can easily be added without any changes to the core functionalities of the

software.

The rule engine is properly tested with the frameworks mocha and chai. The line

coverage of the different tests amounts to 89%. Hence, NFR5 is fulfilled.

6.2 Outlook

The rule engine in its current state is limited to evaluations of rules and branches of

the QuestionSys model. With the generic implementation of the evaluation and rule

objects, new objects could be supported quite easily, as long as the essential properties

for evaluation (i.e., the properties of a BasicRule) do not change.

A great feature would also be the support of the [] characters for accessing arrays.

Currently properties of arrays have to be accessed with the function getProperty,

which is uncommon and sometimes confusing. Such a feature could be added to the

ConditionStringParser.

The rule engine already possesses the ability to deal with pre-defined functions. However,

the rule engine doesn’t come with many pre-defined functions. In the future, lots of

useful functions could be added to the engine, making the rules easier to create and

understand for the creators of questionnaires. Furthermore, there are no type checks for

parameters and return types of functions yet. A functionality that automatically injects

run-time type checks into custom functions was already developed but it is not part of

the engine, since the current design and implementation is immature. However, it could

be redesigned or updated in the future. Alternatively, type checks could, for example, be

added for each function itself.

Due to the continuous development of the QuestionSys framework, the engine will have

to be updated and adapted to the changes. At the moment, for example, the result

objects are being reworked and updated. Unfortunately, the rule engine was not yet

used as a component of the QuestionSys project. When the engine is actually in use,

new problems and missing functionalities might show up. Users of the engine can leave

important feedback and contribute to the further development of the rule engine.

51

Bibliography

[1] DBIS, U.o.U.: Questionsys - a generic and flexible questionnaire system enabling

process-driven mobile data collection. (https://www.uni-ulm.de/in/iui-

dbis/forschung/laufende-projekte/questionsys/) Accessed: 2018-

10-01.

[2] Pavlović, I., Kern, T., Miklavcic, D.: Comparison of paper-based and electronic data

collection process in clinical trials: Costs simulation study. 30 (2009) 300–16

[3] Paul, J., Seib, R., Prescott, T.: The internet and clinical trials: Background, online

resources, examples and issues. J Med Internet Res 7 (2005) e5

[4] Fritz, F., Balhorn, S., Riek, M., Breil, B., Dugas, M.: Qualitative and quantitative

evaluation of ehr-integrated mobile patient questionnaires regarding usability and

cost-efficiency. International Journal of Medical Informatics 81 (2012) 303 – 313

[5] Etherington, D.: Mobile internet use passes desktop for the first time, study finds.

(http://gs.statcounter.com/press/mobile-and-tablet-internet-

usage-exceeds-desktop-for-first-time-worldwide) Accessed: 2018-

10-01.

[6] Schobel, J., Pryss, R., Wipp, W., Schickler, M., Reichert, M.: A mobile service

engine enabling complex data collection applications. In: 14th International Confer-

ence on Service Oriented Computing (ICSOC 2016). Number 9936 in LNCS (2016)

626–633

[7] Brandt, C.A., Argraves, S., Money, R., Ananth, G., Trocky, N.M., Nadkarni, P.M.:

Informatics tools to improve clinical research study implementation. Contemporary

Clinical Trials 27 (2006) 112 – 122

[8] Schobel, J., Schickler, M., Pryss, R., Reichert, M.: Process-driven data collection

with smart mobile devices. In: 10th International Conference on Web Information

Systems and Technologies (Revised Selected Papers). Number 226 in LNBIP.

Springer (2015) 347–362

53

https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/questionsys/
https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/questionsys/
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide

Bibliography

[9] OWASP: Code injection. (https://www.owasp.org/index.php/Code_

Injection) Accessed: 2018-10-01.

[10] Mozilla: Mdn web docs - javascript eval. (https://developer.mozilla.

org/de/docs/Web/JavaScript/Reference/Global_Objects/eval) Ac-

cessed: 2018-10-01.

[11] TomFrost: Javascript expression language: Powerful context-based expres-

sion parser and evaluator. (https://github.com/TomFrost/Jexl) Accessed:

2018-10-01.

[12] Simek, P.: Advanced vm/sandbox for node.js. (https://github.com/

patriksimek/vm2) Accessed: 2018-10-01.

[13] Crumley, M.: Javascript expression evaluator. (https://github.com/

silentmatt/expr-eval) Accessed: 2018-10-01.

[14] npm Inc.: What is npm. (https://docs.npmjs.com/getting-started/

what-is-npm) Accessed: 2018-10-01.

[15] npm Inc.: npm docs - npm-install. (https://docs.npmjs.com/cli/install)

Accessed: 2018-10-01.

[16] npm Inc.: npm docs - package.json. (https://docs.npmjs.com/files/

package.json) Accessed: 2018-10-01.

[17] Microsoft: Type compatibility in typescript. (https://www.typescriptlang.

org/docs/handbook/type-compatibility.html) Accessed: 2018-10-01.

[18] Bierman, G., Abadi, M., Torgersen, M.: Understanding typescript. In: European

Conference on Object-Oriented Programming, Springer (2014) 257–281

[19] Syed, B.A.: Typescript - type assertion. (https://basarat.gitbooks.io/

typescript/docs/types/type-assertion.html) Accessed: 2018-10-01.

54

 https://www.owasp.org/index.php/Code_Injection
 https://www.owasp.org/index.php/Code_Injection
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/eval
https://github.com/TomFrost/Jexl
https://github.com/patriksimek/vm2
https://github.com/patriksimek/vm2
https://github.com/silentmatt/expr-eval
https://github.com/silentmatt/expr-eval
https://docs.npmjs.com/getting-started/what-is-npm
https://docs.npmjs.com/getting-started/what-is-npm
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json
https://www.typescriptlang.org/docs/handbook/type-compatibility.html
https://www.typescriptlang.org/docs/handbook/type-compatibility.html
https://basarat.gitbooks.io/typescript/docs/types/type-assertion.html
https://basarat.gitbooks.io/typescript/docs/types/type-assertion.html

List of Figures

2.1 Variable points to user-generated answer in the result 9

2.2 Variable points to choice of single or multiple choice question in the result 9

2.3 Variable points to row and column of matrix question in the result 10

4.1 Evaluation Process . 22

4.2 Linking rules and results in a context . 23

4.3 Architecture of the rule engine . 24

4.4 Communication between components . 26

5.1 Dependencies between the rule engine and the QuestionSys model . . . 28

5.2 Relationships between BasicRule, InternalRule and Internal-

Branch . 30

5.3 Relationships between BasicEvaluation, RuleEvaluation and Branch-

Evaluation . 35

55

Name: Pascal Kühner Matriculation number: 916513

Honesty disclaimer

I hereby affirm that I wrote this thesis independently and that I did not use any other

sources or tools than the ones specified.

Ulm, .

Pascal Kühner

	Introduction
	Objective
	Structure of the Thesis

	Background
	QuestionSys Framework
	Components of the Framework

	The Rule Engine
	Structure of Rules and Results

	Analysis
	Requirements
	Functional Requirements
	Non Functional Requirements

	Problems
	Code Injection Threats
	Custom Functions
	Expression Evaluation

	Evaluation Frameworks
	Jexl
	vm2
	expr-eval
	Comparison

	Concept
	Main Concept
	Evaluation Process
	Custom Functions

	Architecture
	Manager
	Functions
	Evaluator
	Model
	Communication between Components

	Implementation
	Implementation Details
	npm
	Testing

	Implementation of Selected Components
	Model
	Functions
	Evaluator
	Manager

	Integration

	Summary
	Fulfillment of Requirements
	Outlook

