
Disjoint and Overlapping Process Changes:
Challenges, Solutions, Applications�

Stefanie Rinderle, Manfred Reichert, and Peter Dadam

University of Ulm, Faculty of Computer Science,
Dept. Databases and Information Systems

{rinderle, reichert, dadam}@informatik.uni-ulm.de

Abstract. Adaptive process–aware information systems must be able
to support ad–hoc changes of single process instances as well as schema
modifications at the process type level and their propagation to a col-
lection of related process instances. So far these two kinds of (dynamic)
process changes have been mainly considered in an isolated fashion. Es-
pecially for long-running processes, however, it must be possible to ade-
quately handle the interplay between type and instance changes as well.
One challenge in this context is to determine whether concurrent process
type and process instance changes have the same or overlapping effects
on the original process schema or not. Information about the degree
of overlap is needed, for example, to determine whether and – if yes –
how a process type change can be propagated to individually modified
process instances as well. This paper provides a formal framework for
dealing with overlapping and disjoint process changes and presents ade-
quate migration strategies depending on the particular degree of overlap.
In order to obtain a canonical representation of changes an algorithm is
introduced which purges change logs from noisy information. Finally, a
powerful proof-of-concept prototype exists.

1 Introduction

To stay competitive at the market for companies it becomes more and more
important to adequately support their business by process–aware information
systems (PAIS) [1]. Doing so it is not sufficient to implement business processes
only once and to let the PAIS then run eternally without any adaptations. In
fact the ability to quickly react to market changes or exceptional situations by
appropriate process changes is key to success [2,3,4,5,6,7]. Basically, in a PAIS
changes can take place at two levels – the process type or the process instance
level. Process type changes become necessary, for example, to adapt the PAIS
to optimized business processes or to new laws [8,9]. In particular, applications
supporting long-running processes (e.g., handling of leasing contracts or medical
treatments) and the process instances controlled by them are affected by such
type changes [8,9]. As opposed to this, changes of single process instances have
� This work was done within the research project “Change management in adaptive

workflow systems”, which is funded by the German Research Community (DFG).

R. Meersman, Z. Tari (Eds.): CoopIS/DOA/ODBASE 2004, LNCS 3290, pp. 101–120, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

102 S. Rinderle, M. Reichert, and P. Dadam

deliver
goods

get
order

compose
order

confirm
order

pack
goods

send form send shirt

size

compose
order

pack
goods

deliver
goods

send
form

send
shirt

size

get
order

size

send
 form

send
shirt

size

size

Process Type Level:

Type Schema S:

Type Schema S’:

Process Type Change
�T = (serialInsert(S, send form, collect data, compose order),
 serialInsert(S, send shirt, compose order, pack goods),
 deleteActivity(S, confirm order), addDataElement(S, size), …)

Process Instance Level:

I1 on S: I1 on S’:

I2 on S:

I3 on SI3 := S + �I3(S):
I3 on S’ + �I3(S’) with �I3(S’) = deleteActivity(S, pack goods)

I4 on SI4 := S + �I4(S):
I4 on S’ (�I4(S’) = �):

non-compliant!
completed

activated

TRUE_signaled

size

�I3 and �T disjoint

�I4 and �T overlap,
more precisely �I3 and �T equivalent

migrate

migrate

migrate

u
n

b
ia

se
d

b

ia
se

d
 old bias

new bias

Fig. 1. Process Type and Instance Changes (Example)

often to be carried out in an ad-hoc manner in order to deal with an exceptional
situation or evolving process requirements [8,9].

Process type changes are handled by modifying the respective process
schema. Very often it is desired to propagate a process type change to related
process instances as well. Process instances for which this is possible are called
compliant, i.e., they can be migrated to the new process schema [3,10]. Adapting
a single process instance during runtime, in turn, logically results in an instance-
specific schema (i.e., a process instance schema differing from the original schema
this instance was created from). In the following, we call such individually mod-
ified process instances biased (e.g., instances I3 and I4 in Fig. 1).

Currently there are only few adaptive process management systems (PMS)
which support both kinds of changes in one system [7,11]. All these PMS have in
common that once an instance has been individually modified (i.e., it possesses
an instance-specific process schema due to an ad–hoc change), it can no longer
benefit from process type changes; i.e., changes of the schema they were originally

Disjoint and Overlapping Process Changes 103

created from. However, doing so is not sufficient in many cases, especially in
connection with long-running processes as we have learned from several case
studies within medical and automotive environments. In order to come to a
complete solution, therefore, it must be possible to propagate process schema
changes are carried out at the type level to biased instances as well.

When analyzing the interplay between process type and process instance
changes we are faced with several challenges. In [8] we have already discussed
the problem of structural and state–related conflicts that may arise when prop-
agating a process type change to a biased process instance. Structural conflicts
between type and instance changes, for example, may lead to deadlock–causing
cycles or incomplete input data for activity executions [8].

Another fundamental issue not treated so far concerns the handling of over-
lapping type and instance changes; i.e., the handling of concurrent changes1 on a
process schema that partially have the same effects on this schema. In this paper
we give insights into fundamental challenges and solution approaches for coping
with such overlapping changes. One example is depicted in Fig. 1 where process
type change ∆T and process instance change ∆I4 (of instance I4) both insert
activities send form and send shirt (into schema S). Propagating type change
∆T to instance–specific schema SI4 would therefore lead to multiple insertion of
the same activities. Usually, this would not correspond to the user’s intention
who, for example, has already anticipated a process optimization by an ad–hoc
modification at the instance level. Furthermore ∆T and ∆I4 both delete the
same activity confirm order. As a consequence ∆T actually could not be applied
to SI4 since confirm order is not longer present.

One prerequisite to adequately deal with such cases is to effectively detect
whether (concurrent) process type and process instance changes overlap. An-
other challenge is to correctly migrate biased process instances to a modified
type schema even if the instance–specific changes overlap with the process type
change. Basically the problem is that the current representation of the instance–
specific schema, which is based on original schema S plus bias ∆I(S), must be
transformed into a representation based new schema S′ plus bias ∆I(S′). Doing
so offers several advantages: If I is actually re–linked to S′ it can benefit from
further process optimizations of S′. Furthermore, reassigning instances to their
actual schema version contributes to an optimal management and redundancy–
free storage of process schemes and instances. Looking again at instance I4 from
Fig. 1 we can observe that ∆T and ∆I do exactly the same, i.e., they have the
same effects on the original process schema S. We therefore call them equiva-
lent. For the above reasons, for equivalent changes a desired migration strategy
would be to abstain from any propagation of ∆T on I4 but to re–link or migrate
I4 to S′. In the latter case, representation of I4 on S′ would no longer require
maintenance of an instance–specific change, i.e., ∆I(S′) = ∅ (cf. instance I4 on
S′ in Fig. 1). Assume now that an additional activity send reminder has been

1 In the following, we assume that certain instance–specific changes took place before
the process type change occurs. Nevertheless, we call such changes concurrent since
they work on the same original process schema.

104 S. Rinderle, M. Reichert, and P. Dadam

inserted into I4. Then ∆T and ∆I4 would no longer be equivalent but ∆T be
subsumed by ∆I4 . For this case an adequate migration strategy is to migrate
I4 to S′ (i.e., to re–link I4 to S′) but to further maintain the insertion of send
reminder as instance–specific change ∆′

I4
based on S′. We conclude that for any

adaptive PMS it becomes necessary to detect whether process type and process
instance changes overlap, and to also determine the degree of overlap. This, in
turn, is fundamental in order to apply adequate migration strategies.

In this paper we provide fundamental definitions for disjoint, overlapping, and
equivalent process changes. Doing so is important in order to be able to provide
adequate migration strategies. We illustrate this by means of selected scenar-
ios. Based on formal definitions for disjoint and overlapping process changes
we discuss different approaches for detecting them. Thereby structural, opera-
tional, and hybrid approaches are presented and estimated along their specific
strengths and limitations. We derive an adequate approach to detect to which
degree concurrent process changes overlap. This approach comprises a sophisti-
cated method to purge unnecessary information (noise) from change transaction
logs, i.e., we aim at finding a canonical respresentation of change transaction logs.
Such noise within change logs, for example, may result from mutually compensat-
ing changes. Furthermore, taking purged change transaction logs the necessary
information to decide on the degree of overlap between concurrent changes is
extracted. Altogether, this method provides the basis for being able to apply
adequate migration strategies for any kind of biased instance.

The remainder of this paper is organized as follows: In Section 2.1 we shortly
introduce WSM Nets as the process meta model taken to illustrate the pre-
sented results. The formal framework – definitions for disjoint, overlapping and
equivalent changes – as well as migration strategies are provided in Section 2.2.
In Section 3 we discuss different approaches for detecting the degree of overlap
between process type and process instance changes and a method to purge noise
from change transaction logs in Section 4. We close with a discussion of related
work in Section 5 and a summary in Section 6.

2 Disjoint and Overlapping Process Changes

In this paper, we exemplarily use WSM Nets (as for example applied in ADEPT
[9]) and the change operations based on them. However, most of the presented
results are independent of the used process meta model. Section 2.1 gives back-
ground information on WSM Nets necessary for further understanding of the
paper. Based on this, Section 2.2 introduces definitions for diesjoint an overlap-
ping changes and exemplarily presents migration strategies for selected scenarios.

2.1 Background Information

A process schema is represented by attributed, serial-parallel process graphs with
additional links for synchronizing parallel paths [6].

Disjoint and Overlapping Process Changes 105

Definition 1 (WSM Net). A tuple S = (N, D, NT, CtrlE, SyncE, LoopE,
DataE) is called a WSM Net if the following holds:

– N is a set (bag) of activities and D a set of process data elements
– NT: N �→ {StartFlow, EndFlow, Activity, AndSplit, AndJoin,

XOrSplit, XOrJoin, StartLoop, EndLoop}
NT assigns to each node of the WSM Net a respective node type.

– CtrlE ⊂ N × N is a precedence relation
– SyncE ⊂ N × N is a precedence relation between activities of parallel

branches
– LoopE ⊂ N × N is a set of loop backward edges
– DataE ⊆ N × D × {read, write} is a set of read/write data links between

activities and data elements

A WSM Net S is structurally correct if the following constraints hold:

1. S has a unique start node Start and a unique end node End.
2. Except for nodes Start and End each activity node of S has at least one

incoming and one outgoing control edge e ∈ CtrlE.
3. Sblock := (N, CtrlE, LoopE) is structured following a block concept, for

which control blocks (sequences, branchings, loops) can be nested but must
not overlap.

4. Sfwd = (N, CtrlE, SyncE) is an acyclic graph, i.e., the use of control and
sync edges must not lead to deadlock-causing cycles.

5. Sync links must not cross the boundary of a loop block; i.e., an activity from
a loop block must not be connected with an activity from outside the loop
block via a sync link (and vice versa).

6. For activities with mandatory input parameters linked to global data el-
ements it has to be ensured that respective data elements will be always
written by a preceding activity at runtime.

7. Parallel write accesses on data elements (and consequently lost updates on
them) have to be avoided.

Taking a WSM Net S new process instances can be created and started.
Logically, each instance I is associated with an instance-specific schema SI :=
S + ∆I (for unbiased instances ∆I(S) = ∅ and consequently SI = S holds).
The execution state of I is captured by marking function MSI =(NSSI , ESSI).
It assigns to each activity n its current status NS(n) and to each control edge
its marking ES(e). Markings are determined according to well defined marking
rules [6], whereas markings of already passed regions and skipped branches are
preserved (except loop backs). Concerning data elements, different versions of a
data object may be stored, which is important for the context-dependent reading
of data elements and the handling of (partial) rollback operations. Formally:

Definition 2 (Process Instance). A process instance I is defined by a tuple
(S, ∆I , MSI , V alSI , ΠS

I) where

106 S. Rinderle, M. Reichert, and P. Dadam

– S = (N, D, NT, CtrlE, SyncE, ...) denotes the process schema I was derived
from. We call S the original schema of I.

– ∆I comprises instance-specific changes opI
1, . . . , op

I
m that have been applied

to I so far. We call ∆I the bias of I. Schema SI := S + ∆I (with SI =
(NI , DI , NT, CtrlEI , . . .)) which results from the application of ∆I to S, is
called the instance–specific schema of I.

– MSI = (NSSI , ESSI) describes node and edge markings of I:
NSSI : NI �→ {NotActivated, Activated, Running, Completed,
Skipped}
ESSI : (CtrlEI ∪ SyncEI ∪ LoopEI) �→

{NotSignaled, TrueSignaled, FalseSignaled}
– ValSI is a function on DI . It reflects for each data element d ∈ DI either

its current value or the value UNDEFINED (if d has not been written yet).
– ΠS

I = < e0, . . . , ek > is the execution history of I. e0, . . . , ek denote the start
and end events of activity executions.

Activities marked as Activated are ready to fire and can be worked on.
Their status then changes to Running. As an example take instance I1 from
Fig. 1: Activity get order is completed whereas activity compose order is ac-
tivated. Activities with marking Skipped cannot be longer selected for execution.

Table 1 presents a selection of high-level change operations which can be used
to define or modify WSM Nets. These change operations include formal pre- and
post-conditions. They automatically perform the necessary schema transforma-
tions whereas schema correctness (cf. correctness constraints 1. – 7. for WSM
Nets) is ensured. One typical example of such a change operation is the insertion
of an activity and its embedding into the process context.

When applying a series of connected change operations opi (i = 1, . . . , n), e.g.,
when inserting two activities and a data dependency between them, it is often
desired to apply either all of these change operations or none of them (atomicity).
In order to achieve this, change operations op1, . . . , opn must be carried out
within same change transaction ∆ = (op1, . . . , opn) (change for short).

2.2 Formal Framework

In Sect. 1 we have already introduced the notions of disjoint and overlapping
changes informally. In this section we give formal definitions of these concepts
which serve as theoretical underpinning for the following considerations. First of
all, we abstract from whether changes are carried out at the type or at the in-
stance level. More precisely, we base our considerations on two arbitrary changes
(or change sets) ∆1 and ∆2 concurrently applied on the same schema S.

Let S be a (correct) process schema and ∆1 and ∆2 two changes which trans-
form S into another (correct) process schema S1 and S2 respectively (notation:
S1 := S + ∆1 and S2 := S + ∆2). Generally, disjointness and overlapping are
special relations between two changes of the same schema. The challenging ques-
tion is how to define a relation on changes. Either this can be done by directly

Disjoint and Overlapping Process Changes 107

Table 1. A Selection of High-Level Change Operations on WSM Nets

Change Operation op Effects on Schema S
Applied to Schema S

Additive Change Operations

serialInsert(S, X, A, B) insertion of activity X between
two directly succeeding activities A and B

parallelInsert(S, X, (A, B)) insertion of activity X parallel to control block with
start activity A and end activity B

insertSyncEdge(S, src, dest) insertion of sync edge linking two activities src and dest
from parallel execution paths

Subtractive Change Operations

deleteActivity(S, X) deletes activity X from schema S
deleteSyncEdge(S, edge) deletes synchronization edge ∈ SyncE from schema S

Order-Changing Operations

serialMove(S, X, A, B) moves activity X from current position
to position between directly succeeding activities A and B

Attribute Changing Operations

changeActivityAttribute(S, X, attr, nV) changes value of attribute attr of activity X to nV
changeEdgeAttribute(S, edge, attr, nV) changes value of attribute attr of edge ∈ CtrlE ∪ SyncE to nV

Data Flow Change Operations
addDataElement(S, d, dom, defVal) adds data element d with domain dom

and default value defVal to S
deleteDataElement(S, d) deletes data element d from S
addDataEdge(S, (X, d, mode)) adds data edge (X, d, mode) linking activity X

with data element d (mode ∈ {read, write})
deleteDataEdge(S, dataEdge)) deletes data edge dataEdge from S

comparing ∆1 and ∆2 or by correlating their effects on the original schema S.
Effects of ∆1 and ∆2 on S, in turn, are reflected by resulting process schemes
S1 and S2. Consequently, a relation between changes ∆1 and ∆2 can be de-
termined by finding a relation between S1 and S2. – In the workflow literature
several (equivalence) relations for process schemes have been discussed [2,12,
13]. In the context of this work, the relation between concurrent changes affects
the behavior of the resulting process schemes. Therefore, we base our further
considerations on a behavorial equivalence relation for process schemes which is
known as trace equivalence [10,13].

Definition 3 (Trace Equivalence Between Process Schemes). Let S1 and
S2 be two process schemes. S1 and S2 are equivalent with respect to their possible
traces (formally: S1 ≡trace S2) iff each execution history ΠS1

I producible on S1
can be generated on S2 as well and vice versa.

Intuitively, two process schemes S1 and S2 are trace equivalent if each pos-
sible behavior of S1 (represented by its execution histories) can be simulated
by process schema S2 and vice versa. Based on trace equivalence we now intro-
duce an adequate definition for overlapping and disjoint changes. Intuitively, two
change transactions ∆1 and ∆2 overlap if they have (partially) the same effects
on the underlying process schema S. This is the case if ∆1 and ∆2 manipulate
the same – already existing – elements of S or insert the same activities into S.

108 S. Rinderle, M. Reichert, and P. Dadam

Overlapping effects on already existing elements of a process schema may result
from subtractive, order–changing, or attribute–changing operations (cf. Table
1). Subtractive changes that overlap may affect the applicability of ∆1 on S2
and vice versa (cf. Fig. 1). Overlapping order–changing and attribute–changing
operations may mutually override the effects of each other. Assume, for exam-
ple, that change ∆1 moves an activity X to position A (resulting in S1) and
∆2 moves X to position B (resulting in S2). Then applying ∆1 to S2 would
override the effects of ∆1 and vice versa. Both problems – change applicability
and overriding of change effects – can be avoided if ∆1 and ∆2 are commutative,
i.e., applying ∆2 on S1 leads to a process schema which is trace equivalent to
the process schema that results when applying ∆1 on S2. Formally:

Definition 4 (Commutativity of Changes). Let S be a (correct) schema
and ∆1 and ∆2 be two changes transforming S into (correct) schema S1 and S2
respectively. We call ∆1 and ∆2 commutative if the application of ∆1 to S2 and
the application of ∆2 to S1 result in trace equivalent schemes, formally:

∆1, ∆2 commutative ⇐⇒ (S + ∆1) + ∆2 ≡trace (S + ∆2) + ∆1

Thus commutativity is a first property for characterizing disjoint changes.
However, it is not strong enough to cover disjointness of additive changes (e.g.,
insertions of new activities) as well. In particular, commutativity does not ex-
clude the (undesired) multiple insertion of the same activity (cf. Fig. 1). In order
to avoid this effect, we additionally claim that the sets of activities which are
newly inserted by ∆1 and ∆2 respectively have to be disjoint. Formally:

Definition 5 (Disjoint and Overlapping Changes). Let S = (N, D, CtrlE,
SyncE, DataE, ...) be a WSM Net and ∆1 and ∆2 be two change transactions
which transform S into WSM Nets S1 and S2 with
Si = (Ni, Di, CtrlEi, SyncEi, ...), i = 1, 2
I) We denote ∆1 and ∆2 as disjoint (notation: ∆1 ∩ ∆2 = ∅) iff the

following properties hold:
(1) ∆1 and ∆2 are commutative (cf. Def. 4)
(2) (N1 \ N) ∩ (N2 \ N) = ∅2

II) We denote ∆1 and ∆2 as overlapping (notation: ∆1 ∩ ∆2 �= ∅) if they are
not disjoint.

As it can be seen from Def. 5 the notion of overlapping concurrent changes
is still relatively rough. As indicated in the introduction it is possible to further
classify overlapping changes according to their degree of overlap. One of these
subclasses is formed by equivalent changes, i.e., changes which have exactly the
same effects on original schema S. Formally:

Definition 6 (Equivalent Change Transactions). Let S be a WSM Net and
∆1 and ∆2 be two change transactions which transform S into WSM Nets S1

2 We abstract from realization details regarding the concurrent insertion of the same
activity. Informally, two process activities are considered as equal iff they use the
same activity template and the same semantic identifier.

Disjoint and Overlapping Process Changes 109

and S2. Then ∆1 and ∆2 are equivalent, i.e., ∆1 ≡ ∆2 iff S1 and S2 are trace
equivalent (cf. Def. 3). Formally:

∆1 ≡ ∆2 ⇐⇒ S1 ≡trace S2

A very interesting application of Def. 5 and Def. 6 is the correct handling of
concurrent process type and process instance changes as described in Section 1.
More precisely, based on the particular degree of overlap between process type
change ∆T and process instance change ∆I (which can be determined based on
Def. 5 and 6) different migration strategies have to be applied. To illustrate this,
in the following, we present the migration strategies for disjoint and equivalent
process type and instance changes.

Policy 1 (Migrating Instances With Disjoint Bias). Let S be a (correct)
process type schema and ∆T be a process type change which transforms S into
another (correct) type schema S’. Let further I = (S, ∆I , . . .) be a process in-
stance on S with instance–specific schema SI := S + ∆I . Finally, let ∆T and ∆I

be disjoint changes (cf. Def. 5), i.e., ∆T ∩ ∆I = ∅. Then:
I can correctly migrate to S’ preserving ∆I on S’, i.e., I = (S’, ∆I , . . .) :⇐⇒

1. S∗
I := (S + ∆I) + ∆T is a correct schema (according to the structural cor-

rectness constraints 1. – 7. set out for the used process meta model); i.e.,
∆T can be correctly applied to SI = S + ∆I (Structural Correctness).

2. I is compliant with S∗
I ; i.e., the (reduced) execution history ΠS

I of I on SI

can be produced on S∗
I as well (State-Related Correctness).3

We call the migration strategy introduced in Policy 1 the standard migration
case. When applying it to an instance I, which is both structurally and state–
related compliant with S′, we actually propagate ∆T to I and migrate I to S′

preserving instance–specific change ∆I on S′. Generally, migrating a process in-
stance I for which instance change ∆I overlaps with type change ∆T is called the
advanced migration case. As discussed above, adequate strategies for this case
depend on the degree of overlap between process type and instance changes. It
ranges from equivalence of the changes (cf. Def. 6) to minor overlapping between
them. To give an idea of these advanced strategies we sketch the one for dealing
with equivalent process type and process instance changes.

Policy 2 (Migrating Instances With Equivalent Bias).
Let S be a (correct) process type schema and ∆T be a process type change

which transforms S into another (correct) type schema S′. Let further I = (S,
∆I , . . .) be a process instance on S with instance execution schema SI := S +
∆I . Finally let ∆T and ∆I be equivalent changes, i.e., ∆T ≡ ∆I . Then I can
correctly migrate to S’ with resulting bias ∆I = ∅ on S’, i.e., I = (S’, ∅, . . .).

3 How to efficiently ensure compliance and how to automatically adapt instance mark-
ings when migrating them to the changed process type schema is extensively dis-
cussed in [14].

110 S. Rinderle, M. Reichert, and P. Dadam

If an instance change ∆I is equivalent with process type change ∆T the
advanced migration strategy is to re–link instance I to the new process type
schema S′ without applying any further changes or checks. In the sequel, instance
change ∆I is nullified due to the application of ∆T , i.e., ∆I(S′) = ∅.

An example is depicted in Fig. 1 where instance change ∆I4 is equivalent
with type change ∆T (obviously S′ and SI4 are trace equivalent). Consequently,
we can re–link I4 to S’ and we can set ∆I4(S

′) = ∅. Due to lack of space, for
dealing with further degrees of overlap we refer to [15].

3 Detecting the Degree of Overlap Between Concurrent
Process Changes

Let S be a (correct) process schema and let I = (S, ∆I , . . .) be a (biased) process
instance on S (with bias ∆I). Let further ∆T be a type change transforming S
into another (correct) process schema S′. Then the challenging question arises
whether ∆T and ∆I are disjoint or whether they are overlapping each other
(cf. Def. 5). A naive solution would be to directly check Def. 5. Doing so would
require materialization of resulting process schemes S(∆T ,∆I) := (S + ∆T) + ∆I

and S(∆I ,∆T) := (S + ∆I) + ∆T and explicit verification of trace equivalence
between S(∆T ,∆I) and S(∆I ,∆T). However, this approach is not applicable in
practice for three reasons:

1. ∆T cannot be always applied to SI := S+∆I and vice versa ∆I to S′ := S+
∆T (e.g., if ∆T and ∆I delete the same activities). Consequently, S(∆T ,∆I)
and S(∆I ,∆T) respectively cannot be materialized.

2. Even if S(∆T ,∆I) and S(∆I ,∆T) can be materialized the verification of trace
equivalence would require to determine all execution histories producible on
S(∆T ,∆I) and S(∆I ,∆T). This, in turn, would demand reachability analyses
for both schemes resulting in exponential complexity.

3. Assume that we can materialize both S(∆T ,∆I) and S(∆I ,∆T) and determine
all possible execution histories. Nevertheless we would have to replay all
these execution histories on the mutually other process schema. Due to the
possibly large number of creatable execution histories and their large volume
a severe performance penalty can be caused.

For these reasons we have to find better suited approaches to verify Def. 5
for ∆T and ∆I . The information we can use for this purpose comprises pro-
cess schemes S, SI , and S′ and changes ∆T and ∆I . Intuitively, taking this
information we come to the following three kinds of approaches (cf. Fig. 2):
(1) structural approaches which directly compare process schemes S, SI , and S′,
(2) operational approaches directly contrasting changes ∆I and ∆T (i.e., look-
ing at the two sets of applied change operations), and (3) hybrid approaches
(cf. Sect. 4) combining approaches (1) and (2). In the following we present these
variants and systematically rate their particular stenghts and limitations.

Disjoint and Overlapping Process Changes 111

 Running Instances I 1 , …, I n

1) Operational Approach

Comparing High - Level Change Operations

Advantages:

- precise information
- easy deduction of migration strategies
- deduction of rules for user

Limitations:

- con text - dependent changes
- compensating changes
- hidden changes
- overriding changes

2) Structural Approaches

♦ Delta - Analysis and Inheritance
Approaches

♦ Pure Approach: Comparing Type and
Insta nce Schemes

♦ Aggregated Approach: Comparing
Change Regions

Advantages:

- no problem with context-dependent changes
- no problem with compensating changes
- no problem with overriding changes

Limitations:

- not applicable for order - changing operations
- complexity
- deriving migration strategies?
- (materialization of instance schema S I)

3) Hybrid Approach:

Combine Operational Approach (Purged Changes) With Aggregated Structural Approach

Purged Change
Transaction Log Files

Fig. 2. Approach Overview to Detect Overlapping of Changes

3.1 Structural Approaches

The essence of all structural approaches is to compare process type schema S′ :=
S +∆T with process instance schema SI := S +∆I in order to gain information
about the degree of overlap between ∆T and ∆I . A promising approach to
analyze the difference between two process schemes, the so called Delta Analysis,
has been presented in [16] and used by v.d. Aalst and Basten in [12]. In [12] Delta
Analysis is based on four inheritance relations on process schemes. Roughly
speaking a process schema S1 is a subclass of process schema S2 if it can do
everything S2 can do and more. With this, for example, v.d. Aalst and Basten
determine the Greatest Common Divisor (GCD) for process schemes S1 and S2
which represents the common superclass of S1 and S2. Though this approach
is very promising it cannot be adopted to the problem described in this paper
since it shows the reverse line of attack as the following example illustrates:

t

a) WF Net S:

t

S1:

x
t

S2:
y

Superclass

a

S1:

b

b

S2:

a

Superclass??
b)

Fig. 3. Determining the Greatest Common
Divisor (Examples)

Consider process schemes S1 and S2
(represented by WF Nets [2] – a Petri
Net based formalism) as depicted in
Fig. 3a). Applying the approach pre-
sented by v.d. Aalst and Basten [12]
we start from process schemes S1 and
S2 and determine the common super-
class S. By contrast, in our approach
we already have common divisor S
and derive process type schema S′

and process instance schema SI by
applying ∆T and ∆I respectively.

112 S. Rinderle, M. Reichert, and P. Dadam

However, considering the Delta Analysis approach we can already recognize
one common limitation of all structural approaches: they are not able to ade-
quately deal with order–changing operations. One example is depicted in Fig.
3b) where we cannot find a process schema which represents a common behavior
for schemes S1 and S2.

As a second possibility, consider the so called pure structural approach
(cf. Fig. 2). Here we exploit the set–based representation of WSM Nets (cf.
Sect. 2.1) and directly compare activity sets N ′ and NI , edge sets CtrlE′ and
CtrlEI , SyncE′ and SyncEI , DataE′ and DataEI , LoopE′ and LoopEI , and
data element sets D′ and DI regarding the two process schemes

• S′ = (N ′, D′, NT, CtrlE′, SyncE′, LoopE′, DataE′) and
• SI = (NI , DI , NT, CtrlEI , SyncEI , LoopEI , DataEI).

However, doing so is unnecessarily expensive. Actually we do not have to
compare ”whole” activity and edge sets since they have been derived starting
with same original schema S, i.e., starting with the same activity and edge sets.
In other words we already know a common divisor S = (N, D, . . .) for S′ and
SI . Therefore we can reduce complexity by exploiting the common ancestry of
S′ and SI what results in a third method which we call aggregated structural
approach (cf. Fig. 2). More precisely, the aggregated structural approach works
by comparing differences between process type schema S′ and original schema
S and between process instance schema SI and original schema S. These
differences can be easily determined by building the following difference sets:

• Nadd
∆T

:= N ′ \ N and Nadd
∆I

:= NI \ N

• Ndel
∆T

:= N \ N ′ and Ndel
∆I

:= N \ NI

• CtrlEadd
∆T

:= CtrlE′ \ CtrlE and CtrlEadd
∆I

:= CtrlEI \ CtrlE
• and so on (cf. [17])

A first example is depicted in Fig. 4a). Both ∆T and ∆I1 serially insert
activity X at the same position (”between B and C”) into S1 whereas ∆I2

serially inserts another activity Y between A and B. Obviously, ∆T and ∆I1

overlap since they offend against claim (2) for disjoint changes (cf. Def. 5).
Using the aggregated structural approach, we obtain Nadd

∆T
= Nadd

∆I1
= {X}. This

corresponds to the expected result, i.e., the multiple insertion of same activity
X. Regarding instance I2 on S1, ∆T and ∆I2 are disjoint according to Def. 5.
Application of the aggregated structural approach results in Nadd

∆T
∩ Nadd

∆I2
= ∅,

Ndel
∆T

∩ Ndel
∆I2

= ∅, CtrlEadd
∆T

∩ CtrlEadd
∆I2

= ∅, and CtrlEdel
∆T

∩ CtrlEdel
∆I2

= ∅.
Interpreting this result, we can state that ∆T and ∆I2 are disjoint.

These first two examples from Fig. 4a) show that the aggregated structural
approach works fine for insert (and delete) operations. Reason is that we are able
to precisely determine which activities have been inserted or deleted. In contrast,
for move operations the aggregated structural approach (and consequently the
pure structural approach) may be too imprecise4. Fig. 4b) shows a respective

4 It is not sufficient to map a move operation onto respective delete and insert opera-
tions. Since activities are not really deleted or inserted structural approaches fail.

Disjoint and Overlapping Process Changes 113

 A B C C B A D A B C D

 A B X C

 A B X C

 A Y B C
 B A C D

 C B A D

S1: S1’: S2: S2’:�T = serialInsert(S, X, B, C) �T = serialMove(S, B, C, D)

I1 on SI1 = S1 + �I1 with �I1 = serialInsert(S, X, B, C)

I2 on SI2 = S1 + �I2 with �I2 = serialInsert(S, Y, A, B)

I1 on SI1 = S2 + �I1 with �I1 = serialMove(S, B, C, D)

I2 on SI2 = S2 + �I2 with �I2 = serialMove (S, A, B, C)

a) Process Type Level: b) Process Type Level:

Process Instance Level: Process Instance Level:

Fig. 4. Inserting and Moving Activities (Examples)

example: For all three changes on schema S2, Nadd
∆T

= Nadd
∆I1

= Nadd
∆I2

= ∅ and
Ndel

∆T
= Ndel

∆I1
= Ndel

∆I2
= ∅ holds (no activity has actually been inserted or

deleted). Determining the sets of newly inserted and deleted control edges for ∆T

and ∆I1 yields CtrlEadd
∆T

= CtrlEadd
∆I1

= {(A, C), (C, B), (B,D)} and CtrlEdel
∆T

= CtrlEdel
∆I1

= {(A, B), (B,C), (C, D)} respectively. From this result we can
conclude that ∆T ∩ ∆I1 �= ∅. Comparing the respective edge sets for ∆T and
∆I2 again we obtain: CtrlEadd

∆T
∩ CtrlEadd

∆I2
�= ∅ and CtrlEdel

∆T
∩ CtrlEdel

∆I2
�= ∅.

This indicates that ∆T ∩∆I2 �= ∅ holds. However, these results are too imprecise
since in both cases we cannot exactly determine which activity has been actually
moved. In case ∆T and ∆I1 are solely based on structural considerations, activity
C as well as activity B could have been moved. When comparing ∆T with ∆I2

we can only conclude that these changes actually overlap but we are not able
to make further statements. Both effects – not knowing which activities have
been moved and imprecise statements about overlapping – are aggravated if
change transactions comprise several move operations. In summary, taking this
imprecise information it is not possible to derive adequate migration strategies.

3.2 Operational Approach

A solution to overcome the drawback of structural approaches in conjunction
with order–changing operations – not knowing which activities have been actu-
ally moved – may be to directly compare applied changes ∆T and ∆I . Obvi-
ously, ∆T and ∆I contain precise information about applied changes in general
and about actually moved activities in particular. However, this operational ap-
proach also shows limitations. As summarized in Fig. 2 change transaction logs
may contain information about change operations which actually have no or only
hidden effects on the underlying process schema. Reason is that the users who
define changes (i.e., the process designer or the end user) do not always act in a
goal–oriented way when modifying a process schema. In fact they may try out
the best solution resulting in noisy information within the change logs:

1. The first group of changes without any effects on S′ are compensating
changes, i.e., changes mutually compensating their effects. A simple exam-

114 S. Rinderle, M. Reichert, and P. Dadam

ple is depicted in Fig. 5 where activity Z is first inserted (between F and
G) and afterwards deleted by the user. Therefore the respective operations
serialInsert(S,Z,F,G) and delete(S,Z) have no visible effects on S′.

2. The second category of noise in change logs comprises changes which only
have hidden effects on S’. Such hidden changes always arise from deleting an
activity which is then inserted again at another position. This actually has
the effect of a move operation. An example is given in Fig. 5 where activity
E is first deleted an then inserted again between Y and G. The effect behind
is the same as of the respective move operation serialMove(S, E, Y, G).

3. There are changes overriding effects of predeceding changes (note that a
change transaction is an ordered series of single change operations). Again
consider Fig. 5 where the effect of the hidden move operation serialMove(S,
E, Y, G) (cf. 2.) is overwritten by move operation serialMove(S, E, F,
G), i.e., in S′ activity E is finally placed between F and G.

�T = (serialInsert(S, X, C, F) ,

 serialInsert (S, Y, X, F),

 serialInsert (S, Z, F, G),

 deleteActivity(S, E),

serialInsert (S, E, Y, G),

deleteActivity(S, Z),

 serialMove(S, E, F, G))

A

E

C

D

G B F

A

C X

D

G B F

Y

E

Process Type Schema S: Process Type Schema S’:
�T

Context-Dependent Changes

Compensating
Changes Overriding Change

Hidden Change No or Hidden
Effects on S’

Z

Fig. 5. Process Type Change Transaction (Example)

However, the presence of compensating, hidden, or overriding changes within
a change transaction is a cumbersome but conquerable problem. Reason is that
we can find methods to purge a change transaction from these kinds of changes
(cf. Alg. 1). Doing so is essential in order to find a canonical and minimal view on
change logs. This, in turn, is necessary to be able to determine which activities
actually have been moved by a change.

A much more severe limitation of the operational approach is its disability
to adequately deal with context–dependent changes, i.e., changes which are mu-
tually based on each other. An example is depicted in Fig. 5: First, activity X is
inserted serially between C and F . Based on this a second activity Y is inserted
between X and F . Obviously, the second insertion uses the newly added activity
of the first insertion as change context.

Disjoint and Overlapping Process Changes 115

Why are such context–dependent process type and process instance changes
critical when applying the operational approach? Fig. 6 illustrates the under-
lying problem. Obviously, ∆T and ∆I are equivalent since S′ and SI are trace
equivalent. Unfortunately, this equivalence relation cannot be determined based
on the depicted change transaction logs since ∆T and ∆I have inserted activities
X, Y and Z in different orders. Therefore the operational approach sketched so
far would only detect an overlapping (multiple insertion of same activities) but
not be able to determine the degree of overlap, i.e., the total equivalence between
∆T and ∆I .

 Process Type Schema S: Process Type Schema S’:

�T = (serialInsert(S, X, A, B),
 serialInsert(S, Y, X, B)
 serialInsert(S, Z, Y, B))

 A B

 A X Y Z B

Process Instance Schema SI = S + �I : �I = (serialInsert(S, Y, A, B),
 serialInsert(S, Z, Y, B)
 serialInsert(S, X, A, Y))

 A X Y Z B

Fig. 6. Equivalent Process Type and Instance Changes (Example)

At this point an important conclusion is that structural approaches have no
problems with context–dependent changes. Consider again Fig. 6. Applying the
aggregated structural approach (cf. Sect. 3.1) we get Nadd

∆T
= Nadd

∆I
, Ndel

∆T
= Ndel

∆I
,

CtrlEadd
∆T

= CtrlEadd
∆I

, and CtrlEdel
∆T

= CtrlEdel
∆I

and therefore ∆T ≡ ∆I holds.
In summary, at this point we have the following situation (cf. Fig. 2): Struc-

tural approaches are able to cope with context–dependent changes as well as
with compensating, hidden and overriding changes. Reason is that structural
approaches are based on the actual effects on a process schema. However, they
are unable to adequately deal with order–changing operations. In contrast, when
applying the operational approach we are able to precisely determine which
activities have been moved but we are not able to handle context–dependent
changes. Altogether, in the following section we combine both methods to a hy-
brid approach in order to exploit the particular strengths and to overcome the
particular limitations.

4 The Hybrid Approach

The hybrid approach presented in the following combines elements of structural
and operational approaches (cf. Sect. 3). How this approach works in general
is presented in Sect. 4.1. How we can apply the hybrid approach to concurrent
process type and instance changes is illustrated in Sect. 4.2.

4.1 Purging Change Logs and Consolidated Activity Sets

Let S be a (correct) process schema and let ∆ be a change which transforms
S into another correct process schema S′ := S + ∆. Informally, the hybrid ap-

116 S. Rinderle, M. Reichert, and P. Dadam

proach works as follows: First, the activity sets actually inserted into and deleted
from S – Nadd

∆ and Ndel
∆ (cf. Sect. 3.1) – are determined (structural approach).

Taking this information the change log capturing ∆ is purged. More precisely,
this purging is accomplished by scanning the log of change ∆ = (op1, . . . , opn)
in reverse order and by determining for each change operation opi (i = 1, . . . , n)
whether it actually has any effects on S. If so we incorporate opi into a new –
intially empty – change log ∆purged. Finally, in order to reduce the number of
necessary change log scans to one we use an auxiliary set A to memorize which
activities have been already handled. In detail, the following considerations are
made when determining ∆purged:

– Assume that we find a log entry opi for an operation inserting activity X
between activities src and dest into S and that X is not yet present in A,
i.e., opi is the last change operation within ∆ which manipulates X. If X
has been already present in S (X �∈ Nadd

∆) a hidden change is found (cf.
Sect. 3.2). Consequently, a respective log entry for an operation moving X
between src and dest is created and written into ∆purged.

– If log entry opi denotes an operation deleting activity X from S and X �∈ A
but X is still present in S′ (X �∈ Ndel

∆) then we have found a compensating
change. Therefore opi (and the respective insert operation) are left outside
∆purged.

– If log entry opi denotes an operation moving activity X to a position between
activities src and dest and opi is the last operation within ∆ which has effects
regarding X (X �∈ A) we have to distinguish between two cases: If X has
been inserted before opi (X ∈ Nadd

∆) we write a new log entry in ∆purged

denoting an operation inserting X between src and dest. If X has been also
present in S (X �∈ Nadd

∆) we write opi unalteredly into ∆purged.

In the following, the consolidated activity sets (Nadd
∆ , Ndel

∆ , Nmove
∆)

(cf. Def. 7) will serve as the basis for determining the degree of overlap between
changes. Note that Nadd

∆ and Ndel
∆ can be determined using the aggregated struc-

tural approach (cf. Sect. 3.1) but we have to use purged change logs (operational
approach) in order to obtain Nmove

∆ .
A formalization of the method described above is given in Alg. 1. For the

sake of simplicity we restrict this description to serial insert operations. However
adopting parallel and branch insertions runs analogously.

Definition 7 (Purged Change Transaction; Consolidated Activity
Sets). Let S = (N, D, . . .) be a (correct) process schema. Let further ∆
be a change which transforms S into another (correct) process schema S’ =
(N ′, S′, . . .). Then the purged representation of ∆, ∆purged and the consolidated
activity sets (Nadd

∆ , Ndel
∆ , Nmove

∆) can be determined by applying Algorithm 1.

Disjoint and Overlapping Process Changes 117

Algorithm 1. PurgeConsolidate(S, N, N’, ∆ = (op1, . . . , opn)) −→
(∆purged, (Nadd

∆ , Ndel
∆ , Nmove

∆))
A:=∅; ∆purged = ∅;
Nadd

∆ := N ′ \ N; Ndel
∆ := N \ N ′;

for i = n to 1 do {
if (opi = serialInsert(S, X, src, dest)) {
if (X �∈ A) {
A := A ∪ {X}; //X not considered so far
if(X �∈ Nadd

∆){ //X actually not inserted −→ hidden move
if (src �= c pred(S, X) ∧ dest �= c succ(S, X)5){ //X moved to another position?
∆purged.addFirst(serialMove(S, X, src, dest))//adds entry at beginning of ∆purged;
Nmove

∆ := Nmove
∆ ∪ {X};}} else {

∆purged.addFirst(serialInsert(S, X, src, dest));}} continue};
if (opi = serialMove(S, X, src, dest)) {

if (X �∈ A) {
A := A ∪ {X};
if (X ∈ Nadd

∆) {
∆purged.addFirst(serialInsert(S, X, src, dest)); } else {
if (src �= c pred(S, X) ∧ dest �= c succ(S, X)) {
∆purged.addFirst(serialMove(S, X, src, dest));
Nmove

∆ := Nmove
∆ ∪ {X};}} continue;}

if (opi = delete(S, X)) {
if (X �∈ A) {
A := A ∪ {X};
if(X ∈ Ndel

∆){
∆purged.addFirst(delete(S, X));}}}

∆purged.addFirst(opi);
}
return (∆purged, (Nadd

∆ , Ndel
∆ , Nmove

∆));

4.2 Application to Concurrent Process Type and Instance Changes

A practically relevant application of the hybrid approach introduced in Sect.
4.1 is to determine the degree of overlap between concurrent process type and
process instance changes. We illustrate this by the following example:

Fig. 7 shows the mode of operation of Alg. 1 applied to the log of change ∆T in
Fig. 5. Initially, Alg. 1 determines the sets of newly inserted and deleted activities
regarding schema S, i.e., Nadd

∆T
= {X, Y } and Ndel

∆T
= ∅. Based on this informa-

tion change log ∆T is traversed once (in reverse direction) and purged from noisy
operations op6, op5, op4, op3. Algorithm 1 finishes with purged change transac-
tion ∆purged

T = (serialInsert(S, X, C, G), serialInsert(S, Y, X, G),
serialMove(S, E, F, G)) (cf. Fig. 7). Based on this purged change log the
set of activities actually moved by ∆T can be determined as Nmove

∆T
= {E}.

Together with the set of newly inserted and deleted activities we obtain consol-
idated activity sets (Nadd

∆T
, Ndel

∆T
, Nmove

∆T
) = ({X, Y }, ∅, {E}).

Purging change logs from noisy information has several advantages: First,
the purged form of a change log can be used as the canonical representation of
this change, i.e., if we have to compare changes (what we actually have to do
when determining the degree of overlap between them) we can use the purged
form as an adequate basis. Furthermore, purged change logs are also sufficient
to determine the difference between changes. This, for example, is necessary if
we want to calculate the instance bias after migration to the changed schema (if
5 c pred(S, X) (c succ(S, X)) denotes all direct predecessors (successors) of X in S.

118 S. Rinderle, M. Reichert, and P. Dadam

Change Log (in reverse order): Initialization: Purged Change Log

 A = �;

 N�T
add = {X, Y};

 N�T
del = �;

�T= (�purged
T= (

op7 = serialMove(S, E, F, G), E � A � A = {E};

 E �N�T
add� new pos. � op3 = serialMove(S, E, F, G),

op6 = deleteActivity(S, Z), Z � A � A = {E, Z};

 Z �N�T
del

;

op5 = serialInsert (S, E, Y, G), E � A;

op4 = deleteActivity(S, E), E � A;

op3 = serialInsert (S, Z, F, G), Z � A;

op2 = serialInsert (S, Y, X, F), Y � A � A = {E, Z, Y};

 Y � N�T
add � op2 = serialInsert(S, Y, X, F),

op1 = serialInsert(S, X, C, F)) X � A � A = {E, Z, Y,X};

 X � N�T
add � op1 = serialInsert(S, X, C, F),

Fig. 7. Purging A Change Log (Example)

bias and respective type change are not disjoint or equivalent). A more detailed
treatment of these issues can be found in [17].

5 Discussion

In the workflow literature, there are many approaches either dealing with process
type changes (”schema evolution”) or single process instance changes [11,7,2,3,
4,5]. Thereby, main focus has been put on providing appropriate correctness
criteria for deciding about compliance of unbiased instances. Although there
are some approaches [7,11] that provide common support for process type and
instance changes there is no interplay between them. WASA2 [7], for example,
realizes changes of single process instances by deriving a new schema version with
exactly one running instance. Consequently, individually modified instances are
excluded from further process type changes.

Commutativity (cf. Sect. 2.2) is an important property in the context of
concurrent changes in cooperative applications. In [18], operations commute if
the state changes on an object as well as the values returned by the operations are
independent of the order in which they are executed. Wäsch and Klas claim that
concurrent changes on complex objects can be correctly carried out if they are
commutative followed by a history merge of the respective changes [19]. In this
paper, we use commutativity to define disjointness of changes. However, we do
not restrict correctness of concurrent changes on commutativity but we provide
advanced solutions for non commutative and therefore overlapping changes.

As discussed in Section 3.1 an interesting structural approach to compare
process schemes is the Delta Analysis based on inheritance relations [12]. The
used inheritance relations as well as our definition of disjointness and overlap-
ping are based on equivalence notions between process schemes. V.d. Aalst and
Basten use branching bisimilarity as equivalence relation [12,2,20,21]. There are

Disjoint and Overlapping Process Changes 119

actual effects

Fig. 8. Purging A Change Log (Prototype)

several other notions of equivalence between process schemes [13]. In [22], for
example, v. Glabbeek and Goltz provide a very nice classification of semantic
equivalences based on the basic notions of bisimulation and trace equivalence.
Another approach to provide semantic equivalence of process schemes is given
[23]. This work offers interesting methods to maintain the semantical meaning of
a process schema before and after the change by applying semantics–preserving
transformations.

6 Summary

In this paper, we have established a formal framework for dealing with concurrent
process changes. An important application of this results is the propagation of
process type changes to biased process instances. Based on the particular degree
of overlap between process type and instance change we have to choose different
migration strategies. To be able to decide to which degree process changes overlap
we have presented an advanced approach which comprises structural aspects as
well as operational solutions like purging change transactions.

We have implemented the presented concepts within a proof–of–concept pro-
totype. Within this prototype migration of unbiased process instances as well as
migration of biased instances with disjoint bias can be correctly and efficiently
carried out. Furthermore, it can be precisely determined to which degree process
type and instance changes overlap. Alg. 1 for purging change logs has been im-
plemented. Fig. 8 depicts the example change log from Fig. 7 and the resulting
purged change log.

References

1. v.d. Aalst, W., van Hee, K.: Workflow Management. MIT Press (2002)
2. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling

problems related to change. Theoret. Comp. Science 270 (2002) 125–203

120 S. Rinderle, M. Reichert, and P. Dadam

3. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

4. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proc. COOCS’95, Milpitas, CA (1995) 10–21

5. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic
workflow processes. IJCIS 9 (2000) 93–116

6. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

7. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: Proc. HICSS-34. (2001)

8. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between
process type and instance changes. In: Proc. BPM’04. LNCS, Potsdam (2004)

9. Reichert, M., Rinderle, S., Dadam, P.: On the common support of workflow type
and instance changes under correctness constraints. In: Proc. CoopIS ’03, Catania,
Italy (2003) 407–425

10. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering, Special Issue on
Advances in Business Process Management 50 (2004) 9–34

11. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,
J.: IntelliGEN: A distributed workflow system for discovering protein-protein in-
teractions. Distributed and Parallel Databases 13 (2003) 43–72

12. v.d. Aalst, W., Basten, T.: Identifying commonalities and differences in object life
cycles using behavorial inheritance. In: Proc. ICATPN ’01, Newcastle, UK (2001)
32 – 52

13. Kiepuszewski, B.: Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology, Bris-
bane (2002) (available via http://www.tm.tue.nl/it/research/patterns).

14. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

15. Rinderle, S., Reichert, M., Dadam, P.: On dealing with semantically conflicting
business process changes. Technical Report UIB-2003-04, University of Ulm (2003)

16. Guth, V., Oberweis, A.: Delta analysis of petri net based models for business
processes. In: Proc. Applied Informatics. (1997) 23–32

17. Rinderle, S.: Schema Evolution In Process Management Systems. PhD thesis,
University of Ulm (2004) (to appear).

18. Badrinath, B., Ramamritham, K.: Semantics-based concurrency control: Beyond
commutativity. ACM Transactions on Database Systems 17 (1992) 163–199

19. Wäsch, J., Klas, W.: History merging as a mechanism for concurrency control in
cooperative environments. In: Proc. RIDE’96, New Orleans (1996) 76–85

20. Basten, T.: Branching bisimilarity is an equivalence indeed! Information Processing
Letters 58 (1996) 141–147

21. Verbeek, E.: Verification of WF–Nets. PhD thesis, Technical University of Eind-
hoven (2004)

22. v. Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37 (2001) 229–327

23. Frank, H., Eder, J.: Equivalence transformations on statecharts. In: Proc.
SEKE’00, Chicago (2000) 150–158

	Introduction
	Disjoint and Overlapping Process Changes
	Background Information
	Formal Framework

	Detecting the Degree of Overlap Between Concurrent Process Changes
	Structural Approaches
	Operational Approach

	The Hybrid Approach
	Purging Change Logs and Consolidated Activity Sets
	Application to Concurrent Process Type and Instance Changes

	Discussion
	Summary

