
Universität Ulm | 89069 Ulm | Germany Faculty of
Engineering, Computer
Science and Psychology
Databases and Information
Systems Department

Applying Process Mining Algorithms in
the Context of Data Collection Scenarios
Master’s thesis at Universität Ulm

Submitted by:
Marius Breitmayer
marius.breitmayer@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert
Dr. Rüdiger Pryss

Supervisor:
Johannes Schobel

2018



Version from September 26, 2018

c© 2018 Marius Breitmayer

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Composition: PDF-LATEX 2ε



Abstract

Despite the technological progress, paper-based questionnaires are still widely used to

collect data in many application domains like education, healthcare or psychology. To

facilitate the enormous amount of work involved in collecting, evaluating and analyzing

this data, a system enabling process-driven data collection was developed. Based

on generic tools, a process-driven approach for creating, processing and analyzing

questionnaires was realized, in which a questionnaire is defined in terms of a process

model. Due to this characteristic, process mining algorithms may be applied to event

logs created during the execution of questionnaires. Moreover, new data that might not

have been used in the context of questionnaires before may be collected and analyzed

to provide new insights in regard to both the participant and the questionnaire.

This thesis shows that process mining algorithms may be applied successfully to process-

oriented questionnaires. Algorithms from the three process mining forms of process

discovery, conformance checking and enhancement are applied and used for various

analysis. The analysis of certain properties of discovered process models leads to new

ways of generating information from questionnaires. Different techniques for confor-

mance checking and their applicability in the context of questionnaires are evaluated.

Furthermore, new data that cannot be collected from paper-based questionnaires is

used to enhance questionnaires to reveal new and meaningful relationships.
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1
Introduction

Even in the age of smartphones and tablets, most questionnaires are still performed via

specially tailored "pen & paper" questionnaires. This paper-based approach results in a

massive workload for all involved actors. Participants need to be at a certain place to fill in

the questionnaire and organizers need to find a location, print the questionnaires, observe

the process of filling in the questionnaire, and most importantly transfer the collected data

into a format suitable for analysis afterward. As a result, data collection with paper-based

questionnaires is not only very time consuming, but also error-prone. Errors may occur

when participants answer questions or during the transfer of the collected data. Usually,

people copy the paper-based collected data to electronic worksheets by hand. To make

the whole data collection process more efficient, QuestionSys was developed at the

Institute of Databases and Information Systems, Ulm University [1]. QuestionSys defines

questionnaires in terms of process models and executes them by a process engine [2].

As a result, event logs are generated while a questionnaire is answered, which enables

the use of process mining algorithms. Process mining aims to discover, monitor and

improve processes by extracting knowledge from event logs. By applying process mining

algorithms in the context of data collection scenarios, new insights may be generated in

regard to both the structure of a questionnaire as well as the participants.

1.1 Problem statement

When data is collected from questionnaires with QuestionSys, the efficiency of the data

collection processes is increased [3]. Not only is the efficiency increased, but also new

data, e.g. precise temporal information on each question and all answer changes to
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1 Introduction

a question, is collected and documented in event logs. The collection of such precise

data from paper-based questionnaires is very difficult and therefore this kind of data

is only used in few analyses so far. Oftentimes only rough estimations based on the

number of words, questions, decisions or the type of question are conducted. As a result,

valuable data which could be used to generate new and meaningful information about

the participants of a questionnaire is lost.

The structure of a questionnaire may not always be ideal. Identifying at which point in

the questionnaire participants decide to drop out can help to improve its structure and

reduce the number of dropouts.

In contrast to questionnaires, there are well-established algorithms to analyze these

characteristics in the context of business processes. Process mining offers a variety of

different techniques from both process and data science to analyze business processes.

Because QuestionSys is based on process technology, these techniques are made

available for the analysis of questionnaires. Thus, a questionnaire can be discovered,

monitored and improved similar to a business process. Process mining algorithms are

often specially tailored towards specific scenarios and the variety of different algorithms

is overwhelming.

1.2 Objective

The objective of this thesis is to provide an overview of various process mining algo-

rithms and apply them in the context of questionnaires. To be more precise, process

mining algorithms are applied to artificially created event logs. This allows evaluating

the applicability of each algorithm in the context of questionnaires. Several process

discovery algorithms can discover the control-flow of a questionnaire and indicate new

and unknown behavior, e.g. long distance dependencies or loops.

Dropouts can be analyzed using algorithms from conformance checking, and this infor-

mation may then be used to improve the questionnaire in future versions. Conformance

checking algorithms may also be used to quantify the structural change between different

questionnaires and questionnaire versions.

2



1.3 Structure of the Thesis

Additionally, example scenarios on how to make former unused data usable with the

help of process mining algorithms are shown. Although the event logs used in this thesis

are not generated by a real questionnaire, the results may still be used as a proof that

process mining can be successfully applied to questionnaires.

1.3 Structure of the Thesis

Figure 1.1 shows the structure of the thesis. Chapter 2 provides an overview of scenarios

in which process mining has already been applied successfully.

Next, the fundamentals needed to understand the subsequent chapters are introduced

in Chapter 3. This includes introductions to event logs, Petri and WorkFlow nets,

QuestionSys, decision trees and an overview of available process mining tools.

The following chapter, Chapter 4, aims to provide a better understanding of process

mining in general. First, a very brief introduction to the three forms of process mining is

given and process mining is put into different contexts. Additionally, simplicity, fitness,

generalization and precision, are introduced as four competing quality criteria for process

mining.

Then Chapter 5 provides an overview of different process discovery algorithms from a

control-flow perspective and evaluates their applicability in the context of questionnaires.

This chapter includes various algorithms that follow different strategies to discover a

process model.

Chapter 6 introduces different conformance checking algorithms. The algorithms focus

on footprint comparison, token replay, alignments and an approach based on linear

temporal logic.

While Chapter 5 focuses on the control-flow perspective, the focus of Chapter 7 is on

algorithms that are able to support different perspectives such as time, resource or data.

Finally, Chapter 8, contains the conclusion of the thesis and an outlook.
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Figure 1.1: Structure of the Thesis
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2
Related Work

The objective of this chapter is to give an overview of different scenarios in which process

mining was successfully applied.

Mans et al. [4] demonstrate the applicability of process mining in the context of a Dutch

hospital. Process mining algorithms are applied to obtain meaningful knowledge about

the typical paths followed by particular patient groups within the hospital. Insights on

the process was obtained by looking at the control-flow, organizational and performance

perspective of the process and initial results are presented.

An approach to assess the efficiency of emergency call centers in France with the help

of process mining algorithms is described by Lamine et al. [5]. The effectiveness of

the response to an incoming emergency call impacts the quality of each call center.

Additionally, the main information used by the French government to distribute their

funding is the quality of service. To meet the government’s requirements, it is crucial to

understand the process. Process mining algorithms are applied to obtain meaningful

knowledge about this process. Disco was used to discover the control-flow perspective

of the process and also identified that the performance mainly depends on certain

resources. This knowledge was then used to improve the process.

Van der Aalst et al. [6] apply process mining algorithms in the context of 12 provincial

offices of the Dutch National PublicWorks Department. Event logs from an operational

WorkFlow Management System supporting the process of invoice handling within the

organization are used to illustrate the practical application of process mining. The

results of process mining algorithms enabled the management of the department to both

formulate and target specific organizational measures and can be used to support these

measures. From the process mining point of view, the two most important outcomes are
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2 Related Work

that both the discovery of the main flow and the combination of different perspectives

can be used to better understand a process. In addition, it became evident that real-life

event logs often contain loops, incompleteness, and noise.

Bala et al. [7] extend the field of process mining towards mining of software development

processes. Project managers of software development projects may obtain valuable new

insights by extracting process knowledge from the historical data of software artifacts.

Mining the time perspective allows them to monitor whether the software is developed

according to the predefined plan and also identify which tasks resulted in a delay. Mining

the organizational perspective of a software development process can generate valuable

insights into the different skill profiles within the project team. Moreover, these profiles

can be used to check if any contractual agreements have been violated.

The focus of Andrews et al. [8] is more on the data quality aspect of process mining. The

authors apply process mining algorithms on the process of transporting trauma patients

to a hospital in Queensland.

A review of 74 different articles on process mining in the healthcare domain is provided

in [9]. Rojas et al. analyze each of the case studies based on eleven aspects. These

aspects are: process type, data type, frequently posed questions, process mining per-

spectives, tools, algorithms, methodologies, implementation strategy, analysis strategy,

geographical analysis and the medical field. This literature review indicates that process

discovery algorithms are mostly used to discover the control flow perspective and that

frequently applied algorithms can all adequately deal with noise and incompleteness

of event logs. Moreover, the literature review identifies that conformance checking and

performance analysis, as well as event logs containing additional data, are some of the

emerging trends of process mining.

In [10], Mans et al. show that process mining techniques may be applied successfully to

clinical data. The authors use process mining algorithms to get a better understanding of

how different groups of patients take different clinical pathways across different hospitals.

Comparing the paths across different hospitals allows to discover different treatment

practices and also highlight unexpected behavior.
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The applicability of process mining to less structured processes is demonstrated by

Rozinat et al. in [11]. Process mining algorithms are applied to the test process of

wafer steppers in ASML, the leading manufacturer or chip-making equipment. The test

process for wafer steppers consists of three phases. After finishing the three phases, the

wafer stepper is taken apart, shipped to a customer and reassembled. Afterward and

some of the tests are repeated. The nature of wafer steppers being a highly specialized

product also changes the structure of the event log used for process mining. Instead of

many instances with only a few events, the test process consists of only a few instances

with many events. This makes new algorithms necessary that are able to deal with less

structured processes.

Process mining can also be used in the context of more flexible processes. Guenther et

al. [12] describe two approaches to discover changes within a process. The discovered

change processes provide an overview of all changes that happened so far within a

process. Process mining can be used to better support truly flexible processes by helping

to understand why and when certain changes become necessary.

Under the section Process Mining Case Studies 1, the IEEE CIS Task Force on Process

Mining offers an overview of different case studies on process mining. The case studies

cover a variety of industries such as service, manufacturing, healthcare, construction,

utility, or chemical. As of today (02.09.2018), the webpage contains 35 case studies.

Additionally, an extensive list of process mining applications can be found which contains

117 entries of application scenarios of process mining 2.

The great variety of different scenarios in which process mining algorithms have already

been applied successfully proves that process mining is of great relevance when analyz-

ing and improving processes. Although a wide range of different application scenarios is

already identified, to the best of my knowledge, there are currently no approaches that

use process mining in the context of questionnaires.

1https://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_
studies, last accessed 02.09.2018

2https://www.win.tue.nl/ieeetfpm/lib/exe/fetch.php?media=casestudies:
hspi_process_mining_database_correct_v0.2.pdf, last accessed 02.09.2018
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3
Fundamentals

This chapter outlines the relevant background information which is important to under-

stand the rest of this thesis. The first section explains event logs which are the input

for process mining algorithms. This section includes prerequisites, metrics that can be

derived directly from the event log, established guidelines for logging in the context of

process mining and a short overview of logging formats. The second section introduces

the concept of nets, especially Petri nets and WorkFlow nets, which are important to

understand the output generated by process mining algorithms. Section three briefly

introduces the concept of decision trees, which are used in later chapters of this thesis

to enhance a process model. The following section provides a short overview of Ques-

tionSys which is a system that represents questionnaires as process models, allowing

to apply process mining algorithms. In the last section, an overview of different process

mining tools is provided.

3.1 Event Logs

The focus of this section is on event logs representing the input side of process mining.

The goal of process mining is to discover, monitor and improve real processes while

using knowledge which is already available in today’s information systems. To do so,

event logs are used as an input for a variety of process mining algorithms which are

then able to generate and analyze a process model based on the information contained

in the event log. This section provides the necessary knowledge to both understand

the concept of event logs as well as the fundamentals of logging for later chapters.

The first subsection explains the prerequisites, while the second subsection provides

9



3 Fundamentals

process characteristics that may already be derived from the event log itself. Then twelve

guidelines are introduced which aim to create event logs that may be used as a good

starting point for process mining [13]. In the last subsection, XES is introduced as the

de facto standard logging format for process mining.

3.1.1 Prerequisites

Event logs usually serve as the starting point for process mining. A process may be

described by a multiset process instances, also called cases or traces. Every process

instance represents a concrete execution of the process. Each process instance may

then be described by the events or activities which have been executed within this specific

instance. To give an example in the context of questionnaires, a process instance may

be the questionnaire filled in by a specific user and an activity then corresponds to a

specific question answered by that user. In order to reliably use an event log for process

mining, it must be possible to order the activities within each process instance. Without

ordering the activities in a case it is impossible to discover any causal relationships

such as i.e. activity A is always followed by activity B. As a result, the bare minimum

information that has to be stored in the event log are a case identifier and ordered

activities which have been executed within this case [14]. If the activities are not or

only partially ordered, timestamps captured by the event log may be used to order the

activities. Additionally, timestamps are very helpful when analyzing performance-related

properties of the process. Different properties may also be derived from the event log

itself. A brief overview of these properties is given in Section 3.1.2. If the event log

contains more than the minimal information, this additional information can be used to

enhance the process model by e.g. calculating the average time needed per activity, or

discovering which data influences a specific decision during process execution.

3.1.2 Log metrics

In the context of process mining, it is important to understand that the complexity and

size of an event log are determined by different factors. Therefore, multiple event log

10



3.1 Event Logs

metrics are needed to adequately characterize an event log used for process mining.

These metrics can also be used to compare different event logs of the same process

with each other.

A variety of different metrics such as the

1. Number of cases

2. Average/Minimal/Maximal/Standard deviation of each trace

3. Number of distinct activities (also applicable per case)

4. Number of distinct cases

5. Number of events

6. Number of direct successions

7. Number of start/end activities

have been defined in [14] on the pages 364-368, and thus are not further explained in

this thesis.

These event log metrics can be used to summarize a considerable amount of data into

only a few key figures. Not only do these metrics allow to challenge big logs with many

cases and activities, but also allow to get a better understanding of the event log. Please

note that the number of distinct activities is often times a lot smaller than other metrics

such as the number of cases or the number of events. While some mining algorithms

(i.e. the Alpha Algorithm or the Heuristic Miner) are based on a directly-follows graph,

iterating through the event log is typically the most time-consuming task during the

execution of such an algorithm. As a result, it is important to have a good understanding

of the event log prior to starting with the actual mining of the process model.

3.1.3 Guidelines for Logging

This section introduces twelve guidelines which aim to create a good starting point for

process mining. They have been established in [13].

11



3 Fundamentals

Before heading towards the guidelines, some clarification is necessary. No assumptions

on the underlying technology used to record an event log is made, and the definitions

are rather loose. For this reason, it is possible to apply the guidelines to all event logs

related to process mining. Within this subsection events are described by references

and attributes and simply refer to "things that happen". A reference has a name and an

identifier which both refer to some object [13]. An object could, for example, be a person,

a case or a ticket. Attributes consist of a name and a value, e.g. time = "08-05-2018

12:46:21" or name = "Marius".

When using "raw events" to create an event log four steps are necessary.

1. Select all process relevant events

2. Create process instances by correlating events

3. Order events within a process instance

4. Select or compute attributes (resource, data, ...) based on raw data

The following guidelines are not very specific because they aim to improve logging itself.

The guidelines should point out problems related to the input of process mining and offer

guidance on how to avoid these problems so that the event log can be used to better

instrument software [13].

GL1 Reference and attribute names should have clear semantics.

This guideline refers to the situation that references and attributes may be inter-

preted differently by different people involved during creation and analysis of event

data. To avoid this, each stakeholder should interpret event data in the same way.

GL2 There should be a structured and managed collection of reference and attribute

names.

A collection of references and attributes names allows each stakeholder to look up

the meaning of them. In an ideal scenario, the names are grouped hierarchically,

and an addition to the collection can only be made after there is a general consen-

sus on both its value and meaning. Organization or domain specific extensions

can also be realized with extension mechanics provided by formats like XES [15].

12



3.1 Event Logs

GL3 References should be stable.

This guideline refers to the problem that unstable references make the analysis

unnecessarily complicated. If the identifier in the event log depends on the con-

text or is reused, analyzing the event log gets much more complicated as these

dependencies need to be identified and corrected first. For example, the event log

identifiers should be the same regardless of the language setting, the region or

time of the system.

GL4 Attribute values should be as precise as possible.

The more precise a value is, the more reliable it can be used, not only for process

mining. If the desired precision cannot be guaranteed, for example, if only a date

instead of a timestamp is available, this should be indicated in the event log using

a qualifier.

GL5 Uncertainty with respect to the occurrence of the event or its references or at-

tributes should be captured through appropriate qualifiers.

Even if this sounds similar to GL4, there is a difference between uncertainty and

imprecision. Some values may be less reliable due to communication errors, but

their precision is still fine.

GL6 Events should be at least partially ordered.

Process mining algorithms with a local strategy, like the Alpha Algorithm, use

the ordering of the activities within each instance to derive dependencies before

generating the process model. As a result, it is important to order the events

in the event log, either explicitly via a list, or implicitly through timestamps. It

is possible to order events based on observed causalities, for example, if the

recorded timestamps are unreliable or imprecise. This is both unnecessary and

cumbersome and can be prevented by ordering the event log during collection.

GL7 If possible, also store transactional information about the event.

Transactional information of an event may be start, complete, abort, schedule,

assign, suspend, resume, withdraw, etc.. This allows for the computation of activity

durations. To make such a computation easier, it is recommended to store activity
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3 Fundamentals

references to relate events belonging to the same activity instance. Leaving out

this reference may result in uncertainties about which events belong together, and

which start event corresponds to which complete event.

GL8 Perform regularly automated consistency and correctness checks to ensure the

syntactical correctness of the event log.

Checking for missing references, attributes or names which are not agreed upon

(see GL2) helps to keep the quality of the event log high over time. Assuring the

quality of an event log is a continuous process to maintain a high data quality within

the event log.

GL9 Ensure comparability of event logs over time and different groups of cases or

process variants.

Over time the logging itself should not change. To keep results from process mining

comparative, it is essential that the same logging principles are used. Leaving out

some events for a group of cases even though they did occur in reality may also

lead to differences that do not actually exist. Even worse, this may lead to wrong

conclusions based on the event data.

GL10 Do not aggregate events in the event log used as input for the analysis process.

The event data contained in the event log should be as "raw" as possible, because

aggregation can also be done during analysis, but cannot be undone if the aggre-

gation was done earlier. Additionally, aggregating during analysis increases the

reproducibility of the generated results and allows to use the same data within

different contexts.

GL11 Do not remove events and ensure provenance.

Being able to reproduce results is key for process mining. Therefore, deleting

objects from the event log may lead to misleading analysis results. Instead of

removing the object, marking it as not relevant allows to not take these objects into

account while guaranteeing reproducibility. This is called a "soft delete". Instead of

deleting a questionnaire instance, it might be aborted, or a concert is canceled, an
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employee is fired, a student is exmatriculated, a car is scrapped, or an invoice is

paid.

GL12 Ensure privacy without losing meaningful correlations.

Especially in the context of questionnaires sensitive or private data is collected,

and this sensitive information should be removed as soon as possible. No analysis

should be conducted while sensitive or private data is still contained in the event log.

The challenge is, to find a suitable trade-off between privacy and process model

quality. If sensitive information is removed, no correlations should be removed

because this would result in bad process models. A suitable trade-off between

privacy and analysis may be provided by hashing the sensitive information.

3.1.4 Logging Formats

Being able to fulfill the requirements identified in Section 3.1.3, a data format was needed

to store event logs. In 2003 Mining eXtensible Markup Language (MXML) emerged and

was adopted for process mining in 2005 [16]. From that point in time, it has been the

standard format for storing and exchanging event logs until it was replaced by eXtensible

Event Stream (XES) in 2010 [15].

The main purpose of XES is for process mining, however, it is also suitable for data

mining, statistical analysis, and text mining. Four guiding principles have been used to

design the XES format:

1. Simplicity Information should be presented in the simplest possible way. XES logs

should be easy to generate and parse while keeping the log readable for humans.

2. Flexibility It should be possible to capture event logs from any background.

3. Extensibility It must be easy to extend the standard in a transparent way in the

future while maintaining both forward and backward compatibility.

4. Expressivity To keep the loss of information as minimal as possible, all information

elements must be strongly typed.
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Figure 3.1 describes the complete meta-model for the XES standard. In comparison

to MXML, the XES format is less restrictive and it is easier to extend the format. A

XES document contains one log which again contains any number of traces which

are described by a sequential list of events that correspond to a case. As described

earlier, this is the exact representation of a process. A process log consists of multiple

traces, earlier introduced as instances, which again consist of multiple events, also

known as activities. Furthermore, does the XES format support the representation of

various attributes which can be used to document additional data which is not part of the

previously explained minimal information of an event log. For a more detailed description

of the XES format, please be revered to [15].

Figure 3.1: The UML 2.0 class diagram for the complete meta-model for the XES stan-
dard [15]
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Although XES has been established as the standard format for process mining by the

IEEE Task Force on Process Mining in September 2010, in reality, event logs will not

always be in that format. Therefore, process mining tools such as ProM offer an import

plug-in that can convert different formats such as CSV-files or MS-Access files into an

XES conform file. During this thesis, some event logs will be CSV-files, and therefore

this plug-in will be used to generate an XES conform event log before applying process

mining algorithms.

3.2 Nets

One of the goals of process mining is to extract a process model from an event log. To be

able to get a deeper understanding of process mining, it is essential to first understand

the underlying concepts of both Petri nets and WorkFlow nets. There are a multitude

of other modeling languages, but most process mining algorithms use Petri nets to

represent the process model [17]. To be more precise, a subclass of Petri nets called

WorkFlow nets [18] is used because the additional characteristics suit the characteristics

of business processes. It is easy to translate a Petri or WorkFlow net into other modeling

languages like BPMN 2.0 or EPC. An overview of different process modeling languages

can be found in Section 3.2 of [14]. Moreover, Petri and WorkFlow nets are a well-

established concept and many different characteristics can be proven on them. Proving

such characteristics on other process modeling notations may be much more difficult.

The first section introduces the concept of Petri nets, including the different node types

and the firing rules. The following section introduces the concept of Extended Petri nets,

and the last section introduces WorkFlow nets.

3.2.1 Petri nets

Petri nets originate from the dissertation of Carl Adam Petri back in 1962 [19]. Since then

a plethora of different use cases have been identified for both academic and industrial

purposes. For a more detailed overview about the development of Petri nets please be

referred to [20].
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A Petri net is a directed bipartite graph that consists of two different node types called

places and transitions. Places are represented by circles and transitions by rectangles.

The connection between places and transitions is represented by flow relations, and

connections between two similar node types are not allowed. In this thesis, the flow

relations are denoted as arcs or edges, and the expressions are used as synonyms.

There exist some extended definitions of Petri nets with weight functions and an initial

marking, but the provided definition is most commonly used in the context of process

mining [14]. A definition of Extended Petri nets can be found in Section 3.2.2.

Definition 1. Petri Net [19, 14, 21]

A Petri net is a triplet N =(P, T, F) where:

1. P = {p1, p2, ..., pm} is a finite set of places,

2. T = {t1, t2, ..., tn} is a finite set of transitions such that P ∩ T = ∅ and

3. F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs called flow relation or edge

In Figure 3.2 an example Petri net is shown. The displayed Petri net consists of three

different places, denoted as p1, p2, p3, two transitions denoted as t1 and t2, as well as six

edges. The edges can be identified by the places and transitions they connect. As a

result, the edges are (p1, t1), (p1, t2), (p2, t1), (p2, t2), (t1, p3) and (t2, p3).

t 1 

t 2 

p 1 

p 2 

p 3 

Figure 3.2: An example Petri net with two transitions, three places and six edges

The biggest advantage of Petri nets is its ability to represent dynamic behavior by the

so-called firing rule. In the context of process mining, the different states are able to

18



3.2 Nets

represent various stages of the process execution. Moreover, a Petri net can represent

different behavior such as concurrency or choice which are also commonly used in

processes.

Firing Rule for Petri nets

Petri nets can describe behavior by states and their changes. One or more than one

token represents the current marking of the net. To simulate dynamic behavior a state or

a marking within a Petri net is changed according to the firing rules. Before formalizing

the firing rules the notation of input and output places needs to be defined.

Definition 2. Input and output places [14]

Let N = (P,T,F) be a Petri net. Elements of P ∪ T are called nodes.

1. A place x is an input place of a transition y if and only if there is a flow relation

from x to y (i.e., (x, y) ∈ F ).

2. A place x is an output place of a transition y if and only if there is a flow relation

from y to x (i.e., (y, x) ∈ F ).

3. For any node x ∈ P ∪ T, •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}

Recalling Figure 3.2, p1 and p2 are input places for t1 and t2 and p3 is their output place.

After introducing the concept of input and output places, the firing rules can now be

defined.

Definition 3. Firing Rules for Petri Nets [22]

Let (N, M) be a marked Petri net with N = (P,T,F).

1. A Transition t ∈ T is enabled if and only if each input place contains at least one

token.

2. An enabled transition may or may not fire (depending on whether or not the event

actually takes place).

3. Firing an enabled transition t removes one token from each input place p of t, and

adds one token to each output place p of t.
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In other words, a transition may only fire if there is at least one token in each of its input

places. When firing, a token is consumed from each of the input places of the transition

and a token is produced in each of its output places [20].

3.2.2 Extended Petri nets

Petri nets are a very simple representation and therefore not able to express all constructs

that are present in real-life workflows. As a result, some extensions have been made to

provide either more convenience (e.g. by adding arc weights) or increase expressiveness

(e.g. reset and inhibitor arcs).

Definition 4. Extended Petri net [23]

An extended Petri net is a tuple (P,T,F,W,A,L,R,H), where:

1. Let (P,T,F) be a basic Petri net,

2. W:F→ N be a weight function

3. A is a set of (activity) labels,

4. L ∈ T→ A ∪{τ} is a labeling function

5. R ∈ T→ 2P is a function defining reset arcs, and

6. H ∈ T→ 2P is a function defining inhibitor arcs.

A weight function W:F→ N can allocate weights to edges which allows modeling more

behavior, in a sense that a transition can now consume more than one token from an

input place. In addition, a transition can only fire if all input places contain enough token.

If the weight of the edge is set to 2, then the input place needs to contain 2 tokens for

the transition to fire.

Reset arcs R ∈ T → 2P deal with cancellation behavior. It connects a place with a

transition, with the semantic of removing all tokens from the place once the transition

fires [24].

Similar to traditional edges, inhibitor arcs H ∈ T→ 2P also go from a place to a transition.

Regarding their behavior, inhibitor arcs can be seen as the inverse of a normal arc. The
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transition is not enabled if the number of tokens in the place is at least as high as the

weight of the inhibitor arc. In the default case, the transition may only fire if the place that

is connected via an inhibitor arc is empty. Graphically, inhibitor arcs are represented as

edges with a circle at the transition [25].

3.2.3 WorkFlow nets

Event logs used for process mining represent different instances of the same process

which has been executed multiple times. In the context of a questionnaire, this could

represent different participants filling in a similar questionnaire independently. A ques-

tionnaire usually has a clear starting and a clear ending point, e.g. the first and last

question. Similar to this, business processes usually also have one start and end activity.

A WorkFlow net is a subclass of Petri nets, with two special places: the source place i

and the sink place o. The source place represents the begin of a process and the sink

place represents the end of it [22]. This characteristic of WorkFlow nets matches the

behavior observed by questionnaires and business processes.

Definition 5. WorkFlow net [23]

An Extended Petri net PN = (P,T,F,W,A,L,R,H) is a WorkFlow net if and only if

1. There is a single source place i, i.e., {p ∈ P | • p = ∅} = {i}

2. There is a single sink place o, i.e., {p ∈ P | • p = ∅} = {o}

3. Every node is on a path from i to o, i.e. for any n ∈ P ∪ T : (i, n) ∈ F ∗and(n, o) ∈

F ∗ where F ∗ is the reflexive transitive closure of relation F.

4. There is no reset arc connected to the sink place, i.e. ∀t∈T o /∈ R(t).

The same definition can also be applied to normal Petri nets (PN = (P,T,F)) with the

simple adaptation that there are no reset arcs in the first place with makes point four

obsolete. This definition can be found in [14].

An example WorkFlow net is shown in Figure 3.3. This WorkFlow net consists of nine

different places (P1-P9), eight different transitions (T1-T8) and 18 flow relations. Place
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P1 represents the source place i, while place P9 represents the sink place o. Moreover,

P1 contains a token. This token, represented by a black dot, enables transition T1.

Firing transition T1 results in the token from P1 being consumed, and a new token being

produced in place P2. The token in P2 does then enable transition T2. After firing T2,

both transitions T3 and T3 are enabled, but only one token may be consumed. As a

result, a choice between firing transition T3 or T4 has to be made. This represents the

choice between two activities in a process of which only one can be executed. Moreover,

similar to Petri nets, WorkFlow nets also allow modeling concurrency. This is displayed

in Figure 3.3 after firing transition T5. A token is produced in both places P5 and P6,

which enables both transitions T6 and T7.

Figure 3.3: A Workflow net with nine places (P1 - P9) and eight transitions (T1 - T9) and
a token in P1.

3.3 Decision Trees

In the context of data mining, decision trees are a well-developed approach for clas-

sification [26, 27]. In Figure 3.4, an example decision tree is provided that classifies

fruits. Please note that this is not a general representation of nodes and branches and

that different representations exist. A decision tree consists of a root node, inner nodes,

branches, and leaf nodes.

Inner nodes denote a test on an attribute and are represented with red borders in Figure

3.4. An example of an inner node is the "Taste?"-node. The root node is a special type

of inner node and serves as the starting point of the decision tree. As a result, it is

located at the top of the tree. In Figure 3.4 the root node is the "Color?"-node.
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Branches represent the possible outcomes of a test on an inner node. In Figure 3.4 the

branches are represented as grey labels on the lines connecting nodes. An example is

the label yellow connecting root node with the inner node "Shape?". The last element

of decision trees are leaf nodes, which indicate a class of the object. In Figure 3.4 leaf

nodes are indicated by green borders. A lot of algorithms that are capable of constructing

a decision tree have been developed, such as the ID3 algorithm [28] or its extension the

C4.5 algorithm [29].

In the context of process mining, a decision tree can be seen as a visual representation

of a set of disjoint decision rules leading to a certain decision within the process instance.

These rules can again be used as a classifier for the given data set. Based on an

observed set of attribute values, each decision rule can predict a target class [30]. A

target class then represents the decision made at the respective decision point during

process execution.

Color? 

Size? Shape? Size? 

Size? Taste? Watermelon Apple Grape 

Grapefruit Lemon 

Banana 

Cherry Grape 

Apple 

green yellow red 

big medium small round bent medium small 

small big sweet sour 

… 

… 

Inner node: test of an attribute 

Leaf node: class of the object 

Figure 3.4: Decision tree to classify fruits [31]
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3.4 QuestionSys

The previous sections focused on the input, see Section 3.1, and output, see Section 3.2,

of process mining. The goal of this section is to create an understanding of the various

data collection scenarios. A data collection scenario represents a process-oriented

questionnaire that has been executed within the QuestionSys framework.

The main goal of QuestionSys is to enable people without programming skills to develop

data collection instruments. Furthermore, they should be empowered to deploy and

execute these instruments on mobile devices. Additionally, the cost of data collection

should be decreased by reducing development time and cost, while also increasing

the data quality [32]. QuestionSys is a generic and flexible questionnaire system which

enables process-driven mobile data collection. Mapping the questionnaire to a process

model allows its execution by a lightweight process engine, even on mobile devices [2].

Due to the mapping of the questionnaire to a process model, process mining algorithms

may be applied to event logs generated during the execution.

The first subsection briefly explains the problem solved by QuestionSys, the second

subsection describes the requirements towards the system. The last subsection explains

the different kinds of event logs generated by QuestionSys.

3.4.1 Problem definition

Collecting data from paper-based questionnaires is a very cumbersome and error-prone

task due to people having to copy information by hand. Errors may occur when filling

in the questionnaire, transferring the data for analysis or during evaluation. With the

help of QuestionSys, these errors can be reduced and therefore data can be collected

both more conveniently and with a higher quality compared to paper-based approaches.

Furthermore, a large amount of data may be collected in a rather short time period

[3]. In addition, data such as the exact time needed to answer a questionnaire or a

specific question can be collected with a higher precision compared to paper-based

approaches. Moreover, new data can be collected on the behavior of participants during

the questionnaire.
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Examples of such data may be the number of answer changes within a specific question

or the exact moment in which the participant dropped out of the questionnaire. This data

may then be used to get more sophisticated insights into the results, but also improve

the structure of the questionnaire itself.

3.4.2 Requirements

Based on different case studies, expert interviews and literature analyses regarding the

implementation of mobile data collection applications [33, 34] five different requirements

for the mobile support of electronic questionnaires have been defined in [35].

1. Mobility

The data collecting process usually requires extensive interactions. In many

situations, computers are disturbing when filling out a questionnaire. To enable

more convenient and flexible data collection, the device needs to be portable.

2. Multi-User support

Because different users may interact with the same device or questionnaire, multi-

user support is crucial. Additionally, it must be possible to differentiate between

different user roles such as interviewer or subject, and users should be able to

possess multiple roles.

3. Support of Different Questionnaire Modes

In general, a questionnaire may be used in two different modes: interview and

self-rating. Based on the mode, a questionnaire may diverge in the order the

questions are posed, the possible answers or additional features. As a result,

mobile questionnaire applications should be able to support both modes.

4. Multi-Language Support

Since actors may understand different languages, the person accessing the ques-

tionnaire should be able to choose his preferred language. This increases the

number of possible participants.
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5. Maintainability

Questionnaires may change over time. As a result, it should be possible to

quickly change both structure and context of the questionnaire without the need of

programming skills.

These requirements are also important in regard to process mining. The first requirement

allows answering a questionnaire with a mobile device, e.g. a smartphone or a tablet.

Sensors within smartphones and tables can be used to collect additional information

about the environment in which the questionnaire is answered [36].

The requirement of Multi-Language Support is also important in the context of process

mining. As described in guideline three in Section 3.1.3, references should be stable.

In other words, references should be independent from the language setting of the

questionnaire. To be able to analyze questionnaire instances collected in different

languages, it is important to either translate the answers beforehand or use language

independent identifiers for the representation of each question and answer in the event

log.

3.4.3 Generated Logs

As briefly described in previous sections, more data may be generated from a question-

naire with QuestionSys compared to its paper-based equivalent.

When answering a questionnaire data is collected and documented within event logs. In

the context of QuestionSys, different types of event logs are generated:

1. Processlog

This event log documents at what time a specific node is started, processed,

executed and destroyed.

2. Resultslog

This is a digital representation of the completed paper-based questionnaire. The

fact that the recorded data is in a digital format from the get-go not only reduces

media disruption but also prevents errors when copying data into a digital system.
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3. Historylog

In comparison to the second event log, this one also contains all answers given,

even if they have not been submitted or changed. It is not possible to record

this kind of data from paper-based questionnaires. As a result, there is no well-

established way of analyzing such data.

These different logs are used as input when creating the synthetic event logs used for

process mining within this master’s thesis.

Note that the process engine of QuestionSys does not allow for any deviations from

the specified process model [2, 37]. As a result, all event logs used in this thesis can

be considered both complete and noise free. Nevertheless, different algorithms are

presented that are also able to deal with both noise and incompleteness of event logs.

Figure 3.5 shows the mapping of questionnaire elements to the elements of a process

model and event log. This mapping is used in the context of this thesis, to better analyze

each question. Using this mapping allows discovering each question instead of each

questionnaire page. It is also possible to map the questionnaire pages to the event log

event, but this would then restrict the analysis to the page level instead of each question.

Moreover, some process discovery algorithms like the Fuzzy Miner are able to cluster

activities in the process model which can be used to represent the pages.

Additional data, such as timestamps or answers given, are represented as data attributes

of the corresponding event.
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Figure 3.5: Mapping a questionnaire to an event log

3.5 Process Mining Tools

To be able to apply process mining algorithms successfully, tools supporting these

algorithms are necessary. In the academic context, the lion’s share of research in the

area of process mining is conducted by using and also extending the Process Mining

framework (ProM). Many different commercial tools such as Disco or Celonis prove that

process mining may also solve problems occurring outside of the academic context. This

section will only give a very brief overview of two process mining tools, ProM and Disco,

followed by a short listing of other process mining tools to illustrate the variety of different

tools.

The goal of this section is to give a brief overview of the available tools and not to give

any recommendation or compare the tools. Every tool certainly has its strengths and

weaknesses. For a more detailed overview of available process mining tools, please be

referred to Chapter 11 of [14].
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3.5.1 ProM

The Process Mining framework (ProM) is an Open Source framework developed by the

TU Eindhoven which provides a platform for users and developers of process mining algo-

rithms. It can be freely downloaded from www.promtools.org or www.processmining.org.

Back in 2002 several simple process mining tools were available [38]. As it did not make

sense to build a new tool for each new algorithm, ProM was developed as a "plug-able"

environment for process mining [39]. In 2004, the first version of ProM (ProM 1.1) was

released, which already contained 29 plug-ins. Over time, more and more plug-ins have

been developed and added to ProM. The release of ProM 5.2 in 2009 already contained

286 plug-ins. In 2016, there are over 1500 plug-ins available, including deprecated ones,

which is why it is impossible to provide a complete overview of ProM’s functionalities [14].

With the release of ProM 6, the execution of plug-ins can be distributed over multiple

computers to increase performance [40]. Unfortunately, not all plug-ins from ProM 5.2

have been re-implemented yet, so at some point, it might be necessary to use an older

version of ProM.

The ProM version used in this thesis is ProM 6.7 Revision 35885.

3.5.2 Disco

Disco was developed in 2009 to help organizations to regain control over their processes.

Based on process mining consulting projects and interviews with practitioners it became

clear that process mining needs to be fast and easy to be applied in practice [41]. Based

on these requirements, Disco was developed. It allows for a very easy import of different

standard log formats such as MXML or XES but also supports many other formats such

as CSV or MS-Excel files. The event logs are then used for automated process discovery

with a next-generation fuzzy miner algorithm. In comparison to ProM, Disco is very easy

and interactive to use and allows to generate expressive process models without much

effort. Additionally, many standard event logs are included in Disco, which allows for a

fast and easy first take on process mining.
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A screenshot of Disco is shown in Figure 3.6. The two sliders on the right-hand side

allow to adjust the granularity of the activities and paths, while the bottom part of that

menu allows changing from the frequency to the performance perspective. Moreover,

Disco also allows for process statistics, log filtering, as well as performance highlighting

and animation. As providing a whole overview of the functionalities of Disco would

extend the scope of this thesis, please be referred to [41] or https://fluxicon.com/disco/

for further information.

Figure 3.6: A screenshot of the Process Mining Tool Disco

3.5.3 Other Process Mining Tools

There are more tools supporting process mining than just ProM and Disco. This section

should provide a brief overview of other tools.

Process Mining tools may be categorized into academic and commercial tools.

Although the lion’s share of academic research is conducted in ProM, other academic

tools have also been developed. Other academic tools are PMLAB, developed by the
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group of Josep Carmona at the Universitat Politècnica de Catalunya in Barcelona [42] or

the benchmarking framework CoBeFra which has been developed by the department of

Management Informatics at KU Leuven in Belgium [43].

In the context of commercial process mining tools, the variety of tools is greater. The

goal is not to give detailed information or compare any tools in this section, which is

why the tools are only named in an alphabetical order. Furthermore, these tools are

constantly improving with each new release, which makes a case-specific selection of

the correct tool necessary. Commercial process mining tools, ordered alphabetically, are

Celonis Process Mining, Disco, Enterprise Discovery Suite, Interstage Business Pro-

cess Manager Analytics, Minit, myInvenio, Perceptive Process Mining, QPR Process

Analyzer, Rialto Process, SNP Business Process Analysis, and webMethods Process

Performance Manager [14].

The variety of different commercial process mining tools reflects the industry’s great

interest in the process mining technology. The fact that process mining algorithms have

been implemented in various academic and commercial systems such as the above-

mentioned ones proves that there is high interest from both an industrial and academic

perspective. More and more software vendors are adding process mining components

and functionality to their tools [44].
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There are some misconceptions related to process mining. Process mining is often

reduced to a special data mining technique to discover process models from event

logs. Although process mining is able to accomplish this, this only represents a part

of its capabilities. Section 4.1 explains why the scope of process mining is not limited

to discovery. Process discovery is only one of the three forms of process mining. In

fact, process mining may be seen as the connection between data science and process

science. Process science combines the knowledge of information technology with

management science to execute and improve processes [14], whereas data science

uses scientific methods, processes, algorithms, and systems to extract knowledge and

insights from data [45].

The main idea of process mining is to generate knowledge from event logs by com-

bining methods from both mentioned disciplines to discover, monitor and improve real

processes, which is also displayed in Figure 4.1.

In the context of process mining, data mining techniques such as decision trees are

used to identify patterns within event logs (see Section 7.3) and databases are used

to both store and provide relevant event data. Furthermore, statistics may be used to

characterize event logs and algorithms are used to generate process models from event

logs. Methods from predictive analytics may be used to predict the remaining time until

a process is completed as described in [46]. Organizational mining (see Section 7.2)

can be seen as a method of behavioral science.

Methods from process science such as optimization or business process improvement

are directly supported by process mining in a sense that conformance checking directly
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refers to the detection of deviations between the behavior seen in the event log and the

modeled behavior.

Figure 4.1: Positioning of process
mining as a bridge between
two disciplines [14]

Figure 4.2: Positioning of the three
different process mining
forms [44]

In addition to the positioning provided in Figure 4.1, process mining may also be posi-

tioned in a little less abstract way. Figure 4.2 shows this positioning. Process mining

consists of three different forms: discovery, conformance, and enhancement, repre-

sented by the red arrows in Figure 4.2. Moreover, Figure 4.2 allows for a more precise

positioning of process mining as it builds the connection between a (process) model,

which models and analyzes different aspects of reality and event logs recorded from

reality via software systems.

These two ways of positioning process mining help to establish a brighter understanding

of process mining as a whole before going into more detail in the following chapters.

This chapter aims at creating a better understanding of process mining in general and

is structured as follows. Process discovery, conformance checking, and enhancement

are briefly introduced as the three forms of process mining in the first section. Section

4.2 introduces the BPM lifecycle and explains in which part of it process mining can be

beneficial. The following section then answers the question why process mining may

be seen as a nontrivial task and introduces four different competing quality criteria of

process mining.

34



4.1 Three Forms of Process Mining

4.1 Three Forms of Process Mining

The term process mining summarizes three different forms of process mining. The first

form is process discovery where an event log is used to generate a process model.

The second form is conformance checking in which a process model is compared with

an event log of the same process. The third form is enhancement where additional

information in the event log or deviations identified during conformance checking are

used to improve a process model [44].

This section only provides a very brief overview of the three forms, as they are explained

and applied in later sections of this thesis. Figure 4.3 describes the three forms of

process mining in regard to their input and output.

Event log

Process
Discovery

Conformance
Checking

Enhancement

Process model

Enhanced process 
model

Process model with 
identified deviations

Figure 4.3: Input and Output of Process Mining [44]
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4.1.1 Process Discovery

Process discovery is the first and most prominent form of process mining. A process

discovery algorithm generates a process model solely based on the information from an

event log. Because no other information - such as an already existing process model - is

used, it is ensured that only the actual process is discovered. It is surprising for many

organizations that process discovery algorithms, which are explained and applied in

Chapter 5, are able to discover real processes solely based on an event log [44].

4.1.2 Conformance Checking

The second form of process mining is conformance checking. When checking con-

formance, a process model is compared with an event log of that process to identify

bottlenecks or (un-)wanted deviations. These deviations help to better understand and

improve the process. The process model may exist beforehand or is generated by a

process discovery algorithm [44]. Conformance checking may therefore not only be

used to evaluate a process model but also to evaluate a process discovery algorithm by

checking the conformance of the resulting model with the event log used to discover it.

4.1.3 Enhancement

The third form of process mining is enhancement. Enhancement deals with the extension

of a process model with additional information or improving the existing model using

information about the actual process recorded in some event log. This information, for

example, information on the originator or the data generated during the process, is

usually not used during the other two forms. Whereas conformance checking measures

the alignment between model and reality, this third form of process mining aims at

changing or extending an existing process model based on either additional information

contained in the event log or deviations identified during conformance checking [44].

This allows to better understand various perspectives such as the data, organizational or

temporal perspective of a process.
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4.2 Process Mining across the BPM Lifecycle

The BPM lifecycle shown in Figure 4.4 describes six different phases of a business

process. During the Process identification phase, a process is identified and a process

architecture is created.

The following phase is Process discovery. This phase uses the process architecture as

an input to create an as-is process model that represents the current process as it is

executed in reality. It is evident that process mining, especially process discovery, can

directly contribute to the discovery of process models. Furthermore, as it only uses event

data, process discovery obtains process models that are closer to reality than process

models conducted from interviews. If a process model already exists it can be used as

the as-is model.

Then the as-is process model is analyzed to get insights into the weak points such as

bottlenecks or undesired behavior in the Process analysis phase. During this phase,

process mining algorithms from conformance checking can directly contribute by re-

vealing deviations within the discovered process model. Additionally, by using data

from the event log such as timestamps, more insights into the process performance like

bottlenecks can be gained with relatively low effort. These insights are then used in the

Process redesign phase to create a to-be process model. The to-be process model is

often created by a user who is not supported in any way. In the context of process mining,

approaches have been done to at least support the user with possible improvements

rather than letting him come up with the new process model by himself [47].

In the Process implementation phase, the process is implemented to create an exe-

cutable process model which can then be used. While the improved process model is

executed, it will be monitored and controlled in the Process monitoring and controlling

phase. During this phase, conformance checking algorithms like the Token Replay

Algorithm can be used to monitor the process and discover bottlenecks.

In the case of poor process performance or serious demands identified in the previous

phase, a new iteration of the BPM lifecycle may be triggered. The next iteration then
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starts with the redesign phase. Process mining can be used to support all phases of the

BPM lifecycle [48, 49].

Figure 4.4: The BPM lifecycle [49]

4.3 Why is Process Mining difficult?

When applying process mining algorithms in the context of process discovery, the real

process usually is unknown. The data available through event logs is based on the real

processes and represents different example executions of the real process. Based on

the information contained in the event log, different process discovery algorithms are

able to generate a process model. If the event log used to generate a process model

only contains a fraction of all possible behavior, the discovered process model can only

represent the fraction of behavior observed by the event log.

When applying process discovery algorithms, the main question is whether the process

model is a correct representation of the real process. In order to assess whether the

discovered process model indeed is a correct reflection of the real process, the four

competing quality criteria of fitness, precision, generalization, and simplicity will be

introduced next.

38



4.3 Why is Process Mining difficult?

4.3.1 Four Quality Criteria of Process Mining

Determining the quality of a process discovery result is characterized by many different

and competing dimensions, which makes the task of assessing the quality itself very

difficult. Some traces may have different probabilities or frequencies or the process

model allows for an infinite number of different traces (if it contains loops), which makes

the assumption that every possible trace is present in the event log unrealistic. To

assess the quality of a process model, the four competing quality dimensions of fitness,

precision, generalization, and simplicity have been introduced in [44]. Figure 4.5 gives

a high-level overview of the four quality criteria.

The four criteria are:

1. Fitness

Fitness refers to the dimension that the discovered model should allow for the

behavior seen in the event log. A process model with good fitness allows for the

behavior represented in the event log. Perfect fitness may be achieved if all traces

from the event log can be replayed by the process model [44]. Different methods

to quantify fitness are presented in Chapter 6.

2. Simplicity

The dimension of simplicity refers to the principle of Occam’s Razor describing

that the simplest model that can explain the behavior seen in the event log is the

best one. Simplicity may be quantified by the number of nodes and edges in the

discovered process model. More sophisticated metrics also taking factors like

entropy or structuredness of the process model into account, may also be used to

quantify simplicity [14]. For an empirical evaluation of different model complexity

metrics, please refer to [50].

3. Generalization (avoid overfitting)

A process model is overfitting in a sense that it is too specific. Since event logs

only contain an example behavior of a process, the process model should also

allow for the execution of future instances by generalizing the process model [44].
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4. Precision (avoid underfitting)

Precision may be seen as the opposite of generalization. While generalization

refers to overfitting, precision refers to underfitting. A process model has a low

precision or is underfitting if it allows for behavior completely different from the

behavior seen in the event log [51].

A

B

C

Fitness Simplicity

Precision

Generalization

Explain observed 
behavior

Occam’s 
Razor

Avoid 
overfitting

Avoid 
underfitting

Figure 4.5: Four competing quality criteria for process mining

As shown in Figure 4.5, the different quality criteria described can be interpreted as

different forces dragging on a process model. Because the quality criteria are competing,

a good trade-off between the different dimensions has to be found. If the process model

has a high fitness, it can replay all traces from the event log, which usually also increases

the complexity of the process which then again results in low simplicity. A similar trade-off

can be observed between generalization and precision. If the process model allows for

behavior that is not related to the event log it has good generalization but bad precision

and vice versa. Completely ignoring these dimensions during process discovery will

lead to degenerate cases.
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After introducing and positioning process mining in the previous chapter, a better under-

standing of process mining in general is created. Process discovery was introduced as

the first form of process mining, and this chapter aims to provide a better understanding

of the algorithms used in this form. Process discovery is arguably one of the most

challenging tasks within the process mining discipline. It refers to constructing a process

model solely based on the information captured by an event log. Patterns in the event

log are identified and used to derive behavior which is then translated into a process

model. This chapter explains different process discovery algorithms and illustrates how

they may be used in the context of data collection scenarios. A data collection scenario

is represented by a questionnaire performed with QuestionSys (see Section 3.4 for more

information on QuestionSys).

This chapter is structured in the following way. First, the focus is set on the Alpha

Algorithm, because it grants an easy introduction to the topic of process discovery. Its

extensions then allow discovering interesting properties in regard to questionnaires.

The following section introduces the Heuristic Miner which does take frequencies into

account when constructing the process model. This characteristic makes this algorithm

more robust towards incompleteness and noise in the event log. As the third algorithm,

the Fuzzy Miner takes a completely different approach to the discovery of a process

model and allows for interesting analysis such as animation. Last, Genetic Process

Mining uses the potential of a genetic algorithm to discover process models.

The second section provides a comparison of the explained algorithms, while also

providing a direction towards the correct discovery algorithm based on various contexts.
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There are other process discovery algorithms that are not covered in this thesis, including

Region-Based Mining which always discovers the most precise process model, but is

very susceptible to noise, requires completeness of an event log and has limitations

regarding short loops [52]. Multi-Phase mining does not require completeness of event

logs but also has problems with noise in event logs [53]. The Inductive Miner always

discovers sound process models, but its internal representation does not work on Petri

nets [54].

5.1 Algorithms

After providing a brief overview of process discovery, this section now covers different

process discovery algorithms that can be applied in the context of process mining. In

general, process discovery algorithms may be divided into algorithms following a local

or global strategy. Algorithms with a local strategy build the process model step by step,

based on the optimal local information. An example of a very local algorithm is the

Alpha Algorithm introduced in Section 5.1.1. In contrast to algorithms following a local

strategy, algorithms following a global strategy try to find the optimal model based on a

one strike search. Genetic Process Mining, as explained in Section 5.1.8 is an algorithm

that follows a very global strategy.

Both strategies have advantages and disadvantages. From a computational point of

view, local strategies are less complex and therefore require less computational power

compared to global strategies. However, combining the optimal local steps may not

always result in the optimal process model. Global strategies are more complex from the

computational perspective but have a higher chance of finding the optimal solution [55]. A

global strategy may take a considerable amount of time and does not guarantee to return

the optimal model. These are only the two extreme strategies. In some approaches, local

and global strategies are combined in a sense that first a local approach is performed

and the result is then checked by a global approach [56].

This section first introduces the basic Alpha Algorithm including its prerequisites and the

ordering relations. Then the Alpha Algorithm is defined and the some of its limitations
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are explained, followed by a brief overview of two extensions, the Alpha+ Algorithm and

the Alpha++ Algorithms, which tackle some of the initial problems identified with the

basic algorithm. Next, the Heuristic Miner is introduced as an algorithm that also takes

frequencies into account when discovering a process model, which makes this algorithm

a lot more robust compared to the Alpha Algorithm. In Section 5.1.6 the Fuzzy miner

is introduced, followed by the Genetic Process Miner in Section 5.1.8. Additionally, for

each algorithm, its applicability in the context of questionnaires is evaluated.

5.1.1 The Alpha Algorithm

This section introduces the Alpha Algorithm [57]. The basic Alpha Algorithm can be used

as a good introduction to process discovery because it is very easy to understand and

many of its ideas have been included in more advanced process discovery techniques

[57, 58]. This subsection explains the Alpha Algorithm, its prerequisites, the ordering

relations, the algorithm itself and some of the limitations associated with the Alpha

Algorithm.

Prerequisites

The basic idea of the Alpha Algorithm is to scan the event log for special patterns such

as Direct succession, Causality, Parallelism or Choice. To do so, three prerequisites

need to hold regarding the event log [57].

1. each event refers to a well-defined step in the process i.e. a task or an activity

2. each event refers to an instance, i.e. a case

3. events are recorded sequentially, i.e. events are totally ordered

These prerequisites directly correspond to the fundamentals of event logs explained in

Section 3.1. If the three prerequisites are fulfilled, the Alpha Algorithm is able to discover

a sound WorkFlow net from the event log.
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Log-based ordering relations

To construct the process model, the Alpha Algorithm searches for special patterns in

the event log. These patterns are identified by using the so-called log-based ordering

relations [57]. Different relations like Direct succession, Causality, Parallelism, and

Choice are used to distinguish between different behavior in the process model.

Definition 6. Ordering relations >,→, #, and || [57]

Let W be an event log with task set T and a, b ∈ T , T* be a set of executable traces

within W and σ ∈ T ∗ be the representation of the execution of a particular case:

1. a > b ⇔ ∃ trace σ =< t1, t2, t3, . . . tn−1 > with σ ∈ T ∗, ti = a ∧ ti+1 = b, i ∈

{1, 2, . . . , n− 2}

2. a→ b⇔ a > b ∧ ¬(b > a)

3. a#b⇔ ¬(a > b) ∧ ¬(b > a)

4. a||b⇔ a > b ∧ b > a

The relation a > b is called direct succession and is used to capture the pattern in

which the tasks a and b co-occur, and a directly precedes b. Furthermore, the direct

succession is used to distinguish the other three patterns.

The relation a → b contains all pairs of activities in a causal relationship. Causality is

characterized if task a is followed by task b, but b is never followed by a.

Choice, denoted as a#b, represents that task a is never followed by b, and b is never

followed by a, i.e. there is no trace in the event log in which b is followed by a and vice

versa.

Parallelism, denoted as a||b, represents that sometimes task a is preceded by b, and

sometimes b is preceded by a.

Despite being easy to understand these ordering relations allow for the discovery of

process models with a considerable amount of behavior like AND or XOR constructs.

The following section defines the necessary steps of the basic Alpha Algorithm [59].
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Definition Alpha Algorithm

This section first defines the basic Alpha Algorithm formally, followed by an explanation

of each step [57]. With only eight steps, the Alpha Algorithm is able to discover a sound

WorkFlow net from an event log.

Definition 7. The Alpha Algorithm [17]

Let W be a event log over T. α(W ) is defined as follows:

1. TW = {t ∈ T |∃σ∈W t ∈ σ},

2. TI = {t ∈ T |∃σ∈W t = first(σ)},

3. TO = {t ∈ T |∃σ∈W t = last(σ)},

4. XW = {(A,B)|A ⊆ TW ∧B ⊆ TW ∧ ∀a∈A∀b∈Ba→ b ∧ ∀a1,a2∈Aa1#a2 ∧ ∀b1,b2∈Bb1#b2},

5. YW = {(A,B) ∈ XW |∀(A′,B′)∈XWA ⊆ A
′ ∧B ⊆ B′ ⇒ (A,B) = (A′, B′)},

6. PW = {p(A,B)|(A,B) ∈ YW } ∪ {iW , oW },

7. FW = {(a, p(A,B)|(A,B) ∈ YW ∧ a ∈ A}

∪{(p(A,B), b)|(A,B) ∈ Yw ∧ b ∈ B}

∪{(iW , t)|t ∈ TI} ∪ {(t, oW )|t ∈ TO},

8. α(W ) = (PW , TW , FW )

The Alpha Algorithm applies the eight steps to construct a WorkFlow net (PW , TW , FW )

[17].

During the first step, the event log is scanned for its activities. In the second step, the

initial transitions are identified. They are the activities that appear in the first position of

each trace. Similar to step two, in step three the final transitions are identified. These

are the activities that appear in the last position of each trace. After finishing steps one,

two and three, all activities, including the first and last one, are identified. Each of this

activity is represented as a transition within the resulting net, which is why they are also

denoted as T .
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Recalling Definition 1 from Section 3.2.1, a Petri or WorkFlow net consists of transitions,

places and flow relations. The transitions have been identified, so places and flow

relations are yet to be discovered.

Discovering places is done by a number of steps [14]. During step four, two different

sets of activities A and B are identified, having the following two properties:

1. Two activities in the set A should never follow one another. Two activities in the set

B should never follow one another (including taking the same activity).

2. Any activity from the set A should always be followed by a direct succession

from any activity in the set B. So, there should be at least one position in the log

where the element of A is followed by the element of B. This should hold for all

combinations.

The two sets allow to find out which transitions are causally related [58].

In step five, the set XW from the previous step is refined by only taking the maximal sets

A and B into account. Leaving out step five would possibly result in many unwanted

places.

The remaining steps of the Alpha Algorithm are very easy. Step six adds the places from

step five to the initial and final place.

At this stage of the Alpha Algorithm, both transitions and places are identified.

Logically, the creation of the flow relations is done in step seven. Each place p(A,B) is

connected with each element of its set A and with each element of its set B. Additionally,

an edge has to be drawn from the source place to each start transition and an edge from

each end transition to the sink place.

Step number eight returns a Petri or WorkFlow net with places P, transitions T and edges

F [59].
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Limitations of the Alpha Algorithm

The Alpha Algorithm is able to successfully discover a WorkFlow net based on an

event log. But it has some limitations when discovering certain behavior, which will be

discussed in this section.

To be able to understand the limitations, it is necessary to first understand how the Alpha

Algorithm works in a more abstract way.

The behavior of the Alpha Algorithm may be summarized in the following way:

1. Every activity in the event log also exists as a transition in the resulting net

2. A transition has ingoing edges if the activity is the first one in a log trace or the

activity causally follows another task

3. A transition has outgoing edges if the activity is the last one within a log trace or

the activity is causally followed by another task

As a result, if an activity is neither the first nor the last one in any trace of the event log

and additionally it is not involved in any causal relationship, the Alpha Algorithm does

not generate edges for this activity [60].

Many different constructs have been identified that may cause problems for the basic

Alpha Algorithm. They are briefly explained, but going into more detail would extend the

scope of this thesis. If you are interested in a more detailed insight into these limitations,

please be referred to [60].

1. Loops of length one

A loop of length one represents the construct that a single task t can be executed

multiple times in sequence. This can be represented in a WorkFlow net, if all

ingoing places are also the outgoing places of a transition. The Alpha Algorithm

requires the causal relation t→ t to generate a place with the same ingoing and

outgoing transitions. To create the t→ t relation, both t > t and t ≯ t need to hold,

which is impossible.
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2. Loops of length two

In case of a length two loop, the Alpha Algorithm infers parallel activities and

therefore no place is created between them. If the relation between the two

activities would be a → b and b → a instead of a||b, the Alpha Algorithm would

discover the correct WorkFlow net.

3. Invisible tasks

Invisible activities may occur if the activity is not registered in the event log or if

there is noise within the event log. Therefore, these tasks do not appear in the

event log and consequently, they are not identified during the first step of the Alpha

Algorithm. As a result, they are not part of TW and therefore not represented in the

resulting net.

4. Duplicate tasks

It may happen that a task appears more than once within the same model. In this

situation, all duplicate tasks are assigned the same label and are also registered in

the event log with the same label. The Alpha Algorithm cannot distinguish between

different tasks with the same label and is therefore unable to deal with duplicate

tasks. To tackle this problem, a heuristic to capture duplicate tasks has to be

established.

5. Implicit places

Implicit places have the characteristic that neither their presence nor their absence

affects the possible log trace of the workflow. As a result, they do not influence

the causal relations between tasks. Since places created by the Alpha Algorithm

are based on existing causal relations within the event log, implicit places are not

captured. This is also the reason why the Alpha Algorithm is unable to generate

explicit places between tasks if they do not have a causal relation.

6. Non-free choice constructs

Non-free choice constructs are difficult to mine for the Alpha Algorithm because

they represent a combination of synchronization and choice. As a result, processes

containing non-free choice constructs are not always mined correctly by the Alpha
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Algorithm. If it is possible to create a causal relationship between the activities

involved in the non-free choice construct the Alpha Algorithm can create the

correct places. If it is not possible to infer this causal relationship, for example,

if the non-free choice construct contains a long-distance relationship, then the

Alpha Algorithm cannot correctly mine that construct. For further information about

non-free choice constructs please be referred to [61].

This section introduced the Alpha Algorithm both formally and in a less abstract way by

describing the necessary steps. Moreover, the ordering relations are introduced, and six

limitations of the Alpha Algorithm have been discussed. The following section will briefly

introduce two extensions of the Alpha Algorithm that have been developed in order to

overcome some of the presented limitations.

5.1.2 Extensions of the Alpha Algorithm

As described in the previous section, there exist limitations with the Alpha Algorithm

when discovering specific constructs. To tackle these problems, extensions have been

developed. The Alpha+ and the Alpha++ Algorithm are two of them and they are briefly

explained in this section.

The Alpha+ Algorithm

The Alpha+ Algorithm is the first extension of the Alpha Algorithm. The ordering relation

explained in Section 5.1.1 fail to recognize a a → b relation if a > b and b > a and

both aba and bab are contained in the event log. By introducing a definition of loop

complete event logs and improving the ordering relation, the basic Alpha Algorithm can

successfully mine loops of length two. A proof of this is included in [58].

Loops of length one can produce the substring tt as the two tasks follow each other

in the event log. Therefore, these tasks have to be identified together with the single

place to which each task is connected. Any length-one-loop task t may be identified

by searching for the substring tt within the loop-complete WorkFlow log. The place to
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which the task should be connected can be identified by checking the transitions that are

directly followed by t, and which transitions directly follow t. In other words, the place

that is an input place for the following transition and the place that is an output place of

the followed transition need to be found. The Alpha+ Algorithm [58] is able to mine both

length one and length two loops. Further information on the Alpha+ Algorithm can be

found in [58, 62, 63, 64, 65].

A comparison between the mining results of the Alpha Algorithm and its extension the

Alpha+ Algorithm is provided in Section 5.1.3

The Alpha++ Algorithm

Based on the advanced functionality provided by the Alpha+ Algorithm [58, 63], the

Alpha Algorithm was further extended to deal with so-called non-free choice constructs.

An example of a non-free choice construct is provided in Figure 5.4. There is a free

choice between activities A and B, however, this decision influences whether activity D or

activity E is executed later in the process model. The term free choice originates from

Petri nets. Free-choice Petri nets are a subclass of Petri nets with the restriction that

transitions consuming tokens from the same place should have identical input sets [66].

Previous algorithms, like the Alpha and Alpha+ Algorithm, fail to mine specific non-free

choice constructs.

In [67], the Alpha++ Algorithm is presented, which is able to discover nets containing

non-free choice constructs. The authors identified that the main reason why previous

approaches were unable to discover non-free choice constructs is, that possible causal

relations between two activities A and B are only taken into account if the sequence AB

occurs at least once in the event log. The dependency distance of AB is one, whereas the

distance of non-free choice constructs is higher than one. By increasing the observed

dependency distance with five new ordering relations, this problem is solved by the

Alpha++ Algorithm. Further information on the Alpha++ Algorithm, can be found in

[68, 67].
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5.1.3 The Alpha Algorithm and its extensions in the Context of Data

Collection Scenarios

In the context of QuestionSys, a questionnaire is translated into a process model. Each

answered question may, therefore, be represented as an activity within the process

model. Since questions are very different within questionnaires, the process models in

this subsection are displayed in a more abstract way. Each activity label in the process

models displayed may be replaced by an identifier of the question such as the wording

of the question or its ID.

Loops of length one

As described in Section 5.1.2, the basic Alpha Algorithm is unable discover loops of

length one. An example is provided in Figure 5.1. The event log contains a loop of length

one, which translates into the sequence of DD in the event log. As a result, the basic

Alpha Algorithm fails to discover the correct behavior of the process model, resulting

in an unconnected transition D and a transition C which has no output places. The

described scenario illustrates one of the problems identified in Section 5.1.1 and is

displayed in Figure 5.1. The result of applying the Alpha+ Algorithm to the same event

log, is provided in Figure 5.2. Note that the Alpha+ Algorithm is capable of correctly

discovering loops of length one.

Figure 5.1: Resulting WorkFlow Net
from applying the Alpha
Algorithm to an event log
with length one loop

Figure 5.2: Resulting WorkFlow Net
from applying the Alpha+
Algorithm to an event log
with length one loop

In the context of QuestionSys loops of length one are relevant if the same question can

be answered multiple times in sequence. In that scenario, the basic Alpha Algorithm is

unable to discover the correct questionnaire, whereas the Alpha+ Algorithm is able to

which is why the Alpha+ Algorithm would be more suitable for that scenario.
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Non-free choice constructs

Figures 5.3 and 5.4 display the results from applying both the Alpha Algorithm and the

Alpha++ Algorithm to the same event log. In general, the questionnaire represented in

Figures 5.3 and 5.4 has the following behavior: First question Q is answered, followed

by a choice between questions A and B. Next, both, questions C and X are answered,

followed by a choice between questions D and E.

The difference between the two discovered models is, that Figure 5.4 contains a non-free

choice construct. The choice between questions D and E is non-free. If question A was

answered in the questionnaire, then only question D may be answered later, whereas if

question B is answered, only question E may be answered. In other words, the decision

between question D and E depends on the first decision between question A and B.

Both algorithms discover a correct WorkFlow net, however, the net generated by the

basic Alpha Algorithm has a lower precision than the net generated by the Alpha++

Algorithm because it doesn’t represent the non-free choice construct.

Figure 5.3: Resulting WorkFlow Net
from applying the Alpha
Algorithm

Figure 5.4: Resulting WorkFlow Net
from applying the Alpha++
Algorithm

Non-free choice constructs represent a structural characteristic of a Petri net, and as a

result they can be identified on a structural level, and may occur in the event log, although

they are not explicitly modeled in the questionnaire. If a non-free choice construct is

identified, valuable information may be generated for analyzing the questionnaire and its

results. Non-free choice constructs indicate that there is in fact a relation between two

choices, in a sense that they influence each other. Let’s assume the questionnaire is

about employee satisfaction, and there is a non-free choice construct indicating there is a

relationship between free beverages and the working atmosphere within the department.

For example, if free beverages are provided (question A is answered) the atmosphere

within the department is evaluated as good (question D is answered). Although this
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example may be trivial from a logical perspective, the basic Alpha Algorithm does not

allow for such analysis. Because the Alpha++ Algorithm is able to discover non-free

choice constructs, analyzing the structure of a Petri net generated by the Alpha++

Algorithm may lead to new and unknown correlations within a questionnaire. Moreover,

these correlations may be used to generate novel knowledge about the topic covered by

the questionnaire.

5.1.4 The Heuristic Miner

As described in the previous section, the Alpha Algorithm has limitations regarding

short loops and non-free choice constructs. When revisiting the behavior of the Alpha

Algorithm, described in Section 5.1.1, an edge is created between a place and a transition

if the corresponding sequence appears in the event log. This is also the case if the

sequence appears only once in tens of thousands of instances.

Representing such infrequent behavior often results in process models that are difficult

to understand, and consequently, the Heuristic Miner was developed as a new algorithm

that also takes frequencies into account. This allows to leave out infrequent behavior

in the resulting model. The Heuristic Miner generates Causal nets (C-nets) compared

to the WorkFlow nets generated by the basic Alpha Algorithm. Note that within newer

versions of ProM, the Flexible Heuristics Miner [69] is implemented which generates a

heuristics net or dependency graph instead of a C-net.

The first section briefly introduces the concept of C-nets. Next, the different steps

taken to discover a process model with the Heuristic Miner are explained. First, the

ordering relations are extended. Based on the ordering relations, a dependency matrix is

generated which is then used in combination with various thresholds to derive a process

model. Then a way of differentiating between AND & XOR constructs is presented,

followed by an approach on how to identify non-free choice constructs. The ProM plug-in

used in this section is called Mine for a Heuristics Net using Heuristics Miner.
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Causal nets

Causal nets are a process representation tailored towards process mining in which

nodes represent activities and edges represent causal dependencies. Moreover, each

activity has a set of possible input and output bindings. Within C-nets, behavior may be

represented as described in Figure 5.5.

For a more detailed explanation of C-nets, please be referred to [70].

Figure 5.5: Representation of different behavior in the context of C-nets [14, 70]

Extending the dependency relations

After explaining the output generated by the basic Heuristic Miner, the necessary steps

to construct a process model are explained in this section. As a first step, the ordering

relations from the Alpha Algorithm are extended.

Definition 8. Extending the Ordering relations [71]

Let W be an event log over T with W ⊆ T ∗ and let a, b ∈ T :

1. a >W b if and only if there is a trace σ = t1, t2, t3, ...tn and i ∈ {1, ..., n − 1} such

that σ ∈W and ti = a and ti+1 = b

2. a→W b if and only if a >W b and b ≯W a

3. a#b if and only if a ≯W b and b ≯W a
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4. a||W b if and only if a >W b and b >W a

5. a >>W b if and only if there is a trace σ = t1, t2, t3, ...tn and i ∈ {1, ..., n− 2} such

that σ ∈W and ti = a and ti+1 = b and ti+2 = a

6. a >>>W b if and only if there is a trace σ = t1, t2, t3, ...tn and i < j and i, j ∈

{1, ...n} such that σ ∈W and ti = a and tj = b

The first four relations are similar to the relations defined for the basic Alpha Algorithm in

Section 5.1.1 [72]. Let’s suppose an event log in which the a >W b relation holds for 999

traces but in one single trace, maybe due to incorrect logging or human failure b >W a

occurs. If this event log is analyzed with the Alpha Algorithm, which does not take

frequencies into account, this single outlier would lead to an "incorrect" process model

because the relationship between a and b would be assumed to be parallel instead of

causal. The heuristic mining algorithm, on the other hand, is able to detect that b >W a is

an outlier and should therefore not be taken into account. As a result, the Heuristic Miner

is not as sensitive to both incompleteness and noise compared to the Alpha Algorithm.

The general idea of the heuristic mining algorithm is to also take frequencies into account

when constructing the process model from the relations a→W b, a#b and a||W b. The

additional relation of a >>W b is used to deal with short (length one) loops and the

a >>>W b relation allows to identify long-distance relations.

Three different steps have to be taken in order to apply the heuristic mining algorithm.

They will be introduced next.

Step 1: Mining of the dependency graph

The first step of the heuristic mining algorithm is the construction of a dependency graph

which indicates how certain it is that there truly is a dependency relation between two

events A and B.

A dependency from A to B is denoted as A⇒W B, and the dependency values between

two events are then used to find the correct dependency relations.
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Definition 9. Frequency based metrics [14, 69]

Let W be an event log over T, and a, b ∈ T . Then |a >W b| is the number of times a >W b

occurs in W , and

|a⇒W b| =


|a>W b|−|b>W a|
|a>W b|+|b>W a|+1 if a 6= b

|a>W a|
|a>W a|+1 if a = b

(5.1)

The value of A⇒WB is always between -1 and 1, and a high value of A⇒WB results

from a high number of A>WB and a low number of B>WA which indicates that there

is a high likelihood of a relation in which A is followed by B. The other way around, a

low value of A⇒WB suggests that there is no dependency between A and B. However,

setting thresholds for when a value is high or low is very difficult because the threshold

appears to be very sensitive towards the underlying process.

Each non-trivial activity must have at least one dependent activity. This information in

combination with the so-called all-connected heuristic allows for an identification of the

best candidate. The best candidate is the one candidate with the highest A⇒WB score.

Using the same event log, L =< QACXD,QBXCE,QBCXE,QAXCD > , as for the

Alpha Algorithm previously, this results in the dependency matrix displayed in Table 5.1.

|⇒W | A B C D E Q X
A 0 0 0.5 0 0 -0.66 0.5
B 0 0 0.5 0 0 -0.66 0.5
C -0.5 -0.5 0 0.5 0.5 0 0
D 0 0 -0.5 0 0 0 -0.5
E 0 0 -0.5 0 0 0 -0.5
Q 0.66 0.66 0 0 0 0 0
X -0.5 -0.5 0 0.5 0.5 0 0

Table 5.1: An example of a dependency matrix

Based on the dependency matrix, the first and last activity can be identified. The first

activity is the one with no positive values within its column, in the provided example

activity Q. The last activity is the one with no negative values within its column. In the

provided example there are two final nodes, D and E. To find the next node, the highest

value within each activities row has to be identified. The identified first activity can be

used as a start. In the example provided in Table 5.1, Q has two subsequent activities,
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A and B, which are again followed by C and X. Vice versa, the highest value in each

column refers to the predecessor of this column’s activity. From a matrix similar to the

one displayed in Table 5.1, a dependency graph can be derived. An example of such a

graph can be seen in Figures 5.6 and 5.7. The number contained in the nodes indicates

how often each activity has been executed, whereas the labels on the edges indicate

how frequent a specific edge was taken in Figure 5.6 or the dependency in Figure 5.7.

For a formal representation of the construction of such a dependency graph, please be

referred to [69].

In many cases, it is not clear whether a trace documented in the event log is a low-

frequency pattern in the process or noise. Therefore, the Heuristic Miner offers different

threshold parameters that indicate which dependencies are accepted:

1. Dependency threshold, which allows to restrict the dependencies with a value less

than the specified threshold,

2. Positive observations threshold, which accepts the dependencies with a frequency

higher than the specified threshold,

3. Relative to best threshold, which accepts the dependencies with a lower difference

towards the "best" dependency than the value of relative to best threshold.

Thresholds like the ones described above help to identify and distinguish between low-

frequency activities and noise [71]. Moreover, different thresholds may lead to different

process models. The thresholds used to discover Figures 5.6 and 5.7 are: relative to

best: 5.0, Dependency: 49.85, length-one-loops: 90.0, length-two-loops: 90.0 and long

distance: 90.0.

Figure 5.6: Example of a heuristics net
displaying frequency on the
edges

Figure 5.7: Example of a heuristics net
displaying dependencies on
the edges
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Step 2: Dealing with AND/XOR-split/join and non-observable tasks

As seen in Figures 5.6 and 5.7, there are no explicit Splits and Joins within the depen-

dency graph. Additionally, identifying so-called non-observable tasks, in other words,

activities which are not represented in the event log, is very difficult. Translating a

heuristics net into a Petri net and vice versa is very straightforward and is explained in

detail in [73].

The idea behind the mining of logical expressions with the heuristic miner is fairly simple.

The dependency matrix and the dependency graph provide information about which

activities are input and output expressions of each activity. In an event log, the patterns

...AB... and ...BA... may appear if A and B are in a AND relation, but not if they

are in a XOR relation. If they are in a XOR relation, they are not allowed within the same

event log. This idea can be formulated as follows:

Definition 10. Differentiating between choice and concurrency

Let W be the event log over T with a, b, c,∈ T and let b and c be in a depending relation

with a. This allows for:

a⇒W b ∧ c =
( |b>W c|+ |c >W b|
|a>W b|+ |a>W c|+ 1

)
(5.2)

In this formula |b>W c| + |c >W b| represents the number of times in which b and c

appear directly after each other and |a>W b|+ |a>W c| represents the number of positive

observations. A high value of a⇒W b ∧ c indicates an AND-relation while a low value

indicates an XOR-relation[71].

Step 3: Mining long distance dependencies - non-free-choice constructs

A non-free choice construct is a combination of choice and synchronization and can be

seen in Figure 5.4. In this example, the decision whether transition D or E fires after

executing both C and X depends on the first decision between transitions A and B [65].

Mining this kind of behavior is very difficult because the algorithm has to "remember" the
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decisions made earlier within the process instance. However, as described in Section

5.1.4, the dependency a >>>W b indicates that kind of behavior[71].

Figure 5.8 displays the result of applying the Heuristic Miner to an event log containing a

non-free choice construct. The thresholds used are Relative-to-best: 5.0, Dependency:

50.0, Length one and two loops: 90 and Long distance: 50.0.

Figure 5.8: Discovering non-free choice constructs with the Heuristic Miner

5.1.5 The Heuristic Miner in the Context of Data Collection Scenarios

The ProM plugin Mine for a Heuristics Net using Heuristics Miner was used to generate

the results displayed in Figures 5.6, 5.7 and 5.8. They show the result of applying the

Heuristic Mining algorithm to the same event log as in Section 5.1.3.

The main benefit of using the Heuristic Miner over the Alpha Algorithm in the context

of data collection scenarios is that the Heuristic Miner takes frequencies into account

during the construction of the process model which makes the algorithm more robust

towards noise in the event log. As described in Section 3.4.3, the event logs generated by

QuestionSys do not contain noise. Additionally, infrequent behavior can be dissembled

in the process model by only considering high-frequency activities. In the context of

data collection scenarios, one should be careful with filtering out (infrequent) behavior

because especially in the healthcare domain this infrequent behavior often contains

valuable information. Nevertheless, regarding the ordering of activities when discovering

the questionnaire, the Heuristic Miner returns good results. Moreover, the heuristics net

can be converted into different representations such as Petri nets with very little effort,

therefore allowing for a wide array of well-established techniques for generating new

information.
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5.1.6 The Fuzzy Miner

The Fuzzy Miner was developed by Christian W. Günther in 2007 and is the first algorithm

that addresses the problems of unstructured behavior and large numbers of activities [74].

In the context of the Fuzzy Miner, a process model is interpreted as a geographic map,

which allows to display, hide or cluster certain structures. Significance and correlations

are used to do so. The tool Disco, shown in Figure 3.6, uses the Fuzzy Miner to generate

a process model and allows to adjust the two metrics Activities and Paths, both with a

scale from 100 to 0% [41]. The selected percentage determines the level of displayed

detail with respect to either activities or paths. For example, does reducing the Activities

percentage summarize activities whereas reducing the percentage of Paths reduces the

edges within the fuzzy model. The output of the Fuzzy Miner is a fuzzy model which

cannot be converted to other process modeling languages because the elements may

be clustered. A fuzzy model consists of three different elements [75]:

1. Primitive nodes represent the observation of an event

2. Cluster nodes represent the observation of any number of events that are combined

in that cluster

3. Precedence relations represent the edges of the fuzzy model which indicate that

an event from class A may be followed by an observation of an event from class B

A fuzzy model allows animating the event log on top of the created process model.

A screenshot of such an animation is provided on the right side of Figure 5.9. This

allows for a much easier first impression of the process and also allows to get a better

feeling of the dynamics within the process and its behavior. When comparing the Fuzzy

Miner with the Heuristic Miner, the Fuzzy Miner is also capable of leaving out less

important activities even if their frequency within the event log is high. Moreover, the

Fuzzy Miner is suitable for mining less structured processes with a large amount of

unstructured and conflicting behavior [76]. Disco, as described in Section 3.5.2, uses

this discovery algorithm and its commercial success proves that the concept works. For

more information about the Fuzzy Miner, please be referred to [41, 74, 75].

60



5.1 Algorithms

5.1.7 The Fuzzy Miner in the Context of Data Collection Scenarios

Figure 5.9 shows two perspectives (left and center) and an animation (right) of the

Fuzzy Miner provided by the process mining tool Disco. Temporal information is added

to the previously used event log to display the performance perspective and allow for

the animation of the process. Both the slider for Activities as well as the one for Paths

are set to 100 %. One of the downsides of the Fuzzy Miner is, that there is no explicit

differentiation between XOR and AND constructs. The models in Figure 5.9 also display

this. As shown in the left fuzzy model of Figure 5.9, both edges, and activities contain a

frequency label. Activities A,B,D and E have been executed twice, while activities Q,C

and X have been executed four times. The same interpretation holds for the labels on

the edges. Moreover, the color of an activity and the thickness of an edge indicates their

frequency. In the context of questionnaires, this provides a very good impression on the

most common paths through the questionnaire.

Interpreting the performance perspective is done likewise. The darker the red color of

an edge, the longer the time between the two answers given during the questionnaire.

To give an example, the time elapsed between answering questions Q and B was 5.1

minutes. Please note that each activity has a duration of instant. The reason for this

is, that the event log does only contain a single entry for each activity within each

instance, similar to the results log. Additional lifecycle information like start, in progress

or completed of each question needs to be captured in the event log to display the

duration of a question. An example is provided in Section 7.1. Nevertheless, this

information helps to reveal certain areas of the questionnaire in which participants

need more than the expected time to answer a question. For further insights on this

performance perspective please be referred to Section 7.1.

The most exciting aspect of the Fuzzy Miner is its ability to animate a process model with

respect to the event log. In order to perform an animation, the event log must contain

time information. If this is the case, the animation may be used to make results from the

questionnaire more trustworthy in a sense that the whole data collection process can be

replayed interactively. In the context of medical studies, for example, this feature makes it

incredibly easy to replicate which question was answered by which patient at what point
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Figure 5.9: Frequency perspective (left), performance perspective (center) and
animation (right) of a fuzzy model

in time. An example screenshot of an animation is provided in the right fuzzy model of

Figure 5.9. In the animation of Figure 5.9, currently, three participants are answering the

questionnaire, represented as circles. The first one answered question Q and decided to

answer question B, the second participant answered question X and is now answering

question C. The third one finished answering question D and has therefore completed

the questionnaire.
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5.1.8 Genetic Process Mining

After introducing two algorithms with a local strategy in the Sections 5.1.1 and 5.1.4 and

a combination of local and global in Section 5.1.6, this section introduces genetic process

mining as a very global approach. Compared to local strategies, global strategies try to

find the process model with a one strike search. In general process mining can be seen

as a search for the most appropriate model for each event log. Genetic process mining

uses techniques from computational intelligence and works similar to other genetic

algorithms. In ProM, the plug-in Mine a Process Tree with ETMd can be used to mine

a process model with a genetic approach. The resulting process tree can then be

translated into any other process modeling language such as Petri nets.

This section introduces the Genetic Miner. Its concept is based on the four steps of

initialization, selection, reproduction, and termination. Then the Genetic Miner is applied

in the context of QuestionSys.

The concept of Genetic Process Mining

By applying an algorithm with a behavior similar to the one observed in Darwin’s evolution

theory [77], genetic process mining is able to discover a process model from an event

log by identifying and mutating the best process models from each generation repeatedly.

Similar to other genetic algorithms the four main steps, namely initialization, selection,

reproduction, and termination are executed. This section introduces the steps necessary

when applying the genetic process miner as described in [14, 73]. Figure 5.10 provides

a graphical representation of the four steps.

1. Initialization

In this step, the initial population is created. In the context of process mining, this

initial population consists of different process models which are created randomly

from the activity labels available in the event log. The behavior of most generated

process models may not have much in common with the event log, but some of

the created individuals may have parts that conform with the event log [73].
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2. Selection

In the second step, the fitness is computed for each individual process model within

a generation. This fitness represents how good each of the process models fits the

event log. A simple fitness formula, for example, the proportion of traces that can

be replayed, is not sufficient in this context as it is possible that no model can replay

a trace, or that a very general model like the "flower model" returns a high fitness

even though this model clearly is not correct. Therefore, a fitness function that

rewards partial correctness of the process model in regard to all four quality criteria

introduced in Section 4.3.1 is needed. For a more detailed explanation of the

fitness metric used in this step, please be referred to [73]. Within each generation,

only the best fitting process models are moved into the next generation. This is

called elitism. Through tournaments, parents are selected which are then used to

create new process models. The combination of elitism and tournaments mirrors

the effect observed in the evolution theory and is called survival of the fittest. Only

the most suitable process models are used to create new process models for the

next generation. In Figure 5.10 these are represented as the "parents" while the

others are denoted as "dead individuals".

3. Reproduction

The third step of the Genetic Miner is reproduction. In this step, the parents

identified earlier are used to create new process models through crossover and

mutation. During crossover, two process models are used to create two new

models which will then end up in the children pool in Figure 5.10. The new models

are called children and contain behavior from both of the parents. These children

are then mutated by randomly adding or removing causal dependencies. It is very

important to add new behavior within the next generation because otherwise no

behavior outside of the parent generation can be generated. So, leaving this step

out would make it impossible to discover behavior, that may improve the process

model. In other words, crossover recombines the fittest process models from a

generation hoping that the recombination will generate an even better fitting model,

and mutation changes a minor detail within the process model hoping to insert
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useful behavior into a generation [78]. After the new generation is created through

crossover, mutation, and elitism the fitness is again computed for each process

model, restarting the loop [73].

4. Termination

During the previously described steps, termination of the algorithm was never a

topic. As a result, the algorithm described so far would run infinitely long which

makes it necessary to define its termination. The Genetic Miner terminates once

a desired level of fitness is reached. As both the initial population as well as the

mutation are random, this may take a considerable amount of time, or doesn’t return

a satisfying process model at all. Consequently, other termination criteria need to

be added. Such criteria might be a maximum number of created generations or if

the process model did not improve within the previous X generations. Once the

algorithm terminates, the currently best fitting model is returned [14].

Figure 5.10 represents the described approach.

create initial 
population

next generation

compute 
fitness

elitism

parents

tournament
crossover

children

mutation

„dead“ individuals

select best 
individual

termination

Best fitting process model

event log

Figure 5.10: Overview of the approach used for genetic process mining [14]

Based on an event log the initial population is created randomly, and the fitness is

computed for each individual. Through elitism, the best process models are included
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in the next generation. With the help of tournaments, parents are selected to produce

children through crossover. By mutation of these children, new behavior is introduced

into the next generation. Non-fitting process models are ignored, represented as the

dead individuals. The same procedure is then applied to the next generation until the

algorithm terminates and the best individual is returned.

For additional information about genetic process mining please be referred to [14, 73,

78, 79, 80, 81].

5.1.9 Genetic Process Mining in the Context of Data Collection Scenarios

The Genetic Process Miner is implemented in ProM 6 as the "Mine a Process Tree with

ETMd" plug-in. ETM stands for Evolutionary Tree Miner. Due to bad performance, the

initial Genetic Miner plug-in was removed from ProM 6. An older version of ProM has to

be used if this plug-in is required. The results presented in this section are generated

with the "Mine a Process Tree with ETMd" plug-in under ProM 6. As the name suggests,

the Evolutionary Tree Miner is a genetic algorithm which discovers process trees. ProM

is used to translate the generated process trees into Petri nets.

Figures 5.11 - 5.16 show different results of the Genetic Miner, with respect to the number

of generated generations. Each generation consists of 20 process models. To avoid

quality degeneration, the 5 best fitting candidates are included in the next generation

though elitism. The same event log as in the previous sections is used as input.

Figure 5.11 shows a discovered questionnaire model after only one generation. There-

fore, it is simply the best fitting model within the initial population and should not be used.

Its main purpose is to illustrate the first step of the algorithm.

Figure 5.11: Applying the Evolutionary Tree Miner with 1 generation
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Figure 5.12 displays a discovered questionnaire after ten generations. In comparison

to Figure 5.11, this questionnaire already contains much more behavior such as the

XOR-construct between questions A and B as well as D and E. Moreover, the AND-Split

between questions X and C is also discovered correctly, but question X is duplicated.

Figure 5.12: Applying the Evolutionary Tree Miner with 10 generations

Figure 5.13 shows a discovered questionnaire after 100 generations. Here the XOR-

construct between questions A and B as well as the AND-construct between C and X are

correctly discovered and there are no duplicate questions. The XOR-construct between

questions E and D is not discovered, as it is represented in sequence.

Figure 5.13: Applying the Evolutionary Tree Miner with 100 generations

Figures 5.14 and 5.15 represent two discovered questionnaires after 1.000 generations.

Whereas the questionnaire discovered in Figure 5.14 represents a "good" result in a

sense that all splits and joins have been identified correctly, the same algorithm with the

same settings discovered a different questionnaire in Figure 5.15. This is due to the high

amount of randomness within both initial populations as well as the mutation phases.

Figure 5.14: Applying the Evolutionary Tree Miner with 1.000 generations (1)
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Figure 5.15: Applying the Evolutionary Tree Miner with 1.000 generations (2)

The result displayed in Figure 5.16 shows a discovered questionnaire after 10.000

generations. It is fairly similar to the result generated from 100 generations, with just a

different ordering of questions D and E.

Figure 5.16: Applying the Evolutionary Tree Miner with 10.000 generations

The results displayed in Figures 5.11 - 5.16, show that the Genetic Mining can success-

fully discover process models, even in the context of questionnaires. This approach

may be especially attractive if the event log contains noise or is incomplete. There are

some arguments against using a Genetic Miner in the context of QuestionSys. First of

all, the event logs generated in the context of QuestionSys are complete and noise free.

Moreover, Figures 5.11 - 5.16 show that even with a high amount of generations, the

genetic algorithm cannot guarantee that a good questionnaire model is found. Another

aspect that should not be neglected is the time needed to discover the process model.

Whereas algorithms based on ordering relations such as the Alpha or Heuristic Miner are

fast in constructing a model, the genetic algorithm may take a long time, and still does

not guarantee a better result than the other algorithms. Furthermore, questionnaires

often include constraints regarding the ordering of certain questions due to the questions

belonging to the same category such as alcohol, drug consumption or pre-existing

conditions. With the presented algorithm, it is impossible to take such constraints into

account when discovering a questionnaire.
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5.2 Comparison of different Process Discovery Algorithms

After introducing various process discovery algorithms in this chapter, this section aims

to provide a brief overview of these discovery algorithms. Table 5.2 summarizes the

different algorithms introduced in this chapter.

Within an academic context, most people read about the Alpha Algorithm and keep using

it, as it is easy to understand and interesting properties can be proven around it [57].

These different properties make the Alpha Algorithm "beautiful" from an academic point

of view. Also, in the context of QuestionSys, the event logs are complete and noise free,

which is why the Alpha Algorithm, or one of its extensions, may be applied successfully.

When dealing with real-life logs, the Alpha Algorithm is almost never the right choice,

because the event logs will almost certainly contain both incompleteness and noise, and

as a result, the generated process models won’t be good.

As the second process mining algorithm, the Heuristic Miner solves many problems of

the basic Alpha Algorithm. It derives the XOR and AND connectors from dependency

relations and is able to abstract from infrequent behavior by leaving out edges with low

frequencies. Moreover, it can deal with noise, which makes it suitable for many real-life

event logs. Additionally, the heuristics net can be converted into other types of process

models, like Petri nets, allowing for further analysis with tools like ProM.

The Fuzzy Miner was specially designed to deal with highly unstructured behavior and

large numbers of activities. By using significance and correlation metrics the Fuzzy Miner

is able to interactively simplify a process model to a desired level of abstraction. This

allows to leave out less important activities even if they have a high frequency. Moreover,

a fuzzy model allows to animate an event log on a process model, but unfortunately,

cannot be converted to other process modeling languages.

The Genetic Miner solves many problems, but is too complex to set up in order to be

used in real life situations. Additionally, due to the high amount of randomness, it cannot

guarantee good results and reproducibility.
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After covering the topic of control-flow discovery in the previous chapter, this chapter

focuses on another situation. Both the process model and the event log are available

and it is irrelevant if the process model was constructed by hand or discovered. This

situation translates to the second form of process mining which is conformance checking.

Conformance checking allows to find discrepancies and commonalities between the

process model and the event log. The event log represents the actual behavior while

the process model represents the modeled behavior. One of the more traditional use

cases of conformance checking is fraud or inefficiency detection during replay. Moreover,

conformance checking can be used to measure the performance of a mining algorithm

by comparing the discovered model with the actual event log, or to repair a process

model to be more in line with reality.

To be able to apply conformance checking algorithms, it is necessary to relate the events

within an event log to the activities of the corresponding process model. There are three

different ways of doing so, which are shown in Figure 6.1 [14].

The first way is called play-in. During play-in, information from the event log is used to

generate the process model. Process discovery algorithms may be categorized in here.

The second way is not only the opposite of play-in but also the traditional use of process

models. In this case, example behavior from the process model is generated by playing

out the process model. In doing so, example behavior of the process model is generated

and documented in an event log. This is called play-out.

The third way is replay. Replay utilizes both the process model and the event log

to check how good they fit together. Moreover, replay can also be used to identify
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Figure 6.1: Three ways of relating event-logs with a model [14]

bottlenecks, support decision analysis, predict the behavior of running process instances

or recommend suitable actions. During this chapter, the focus will be on replay as a

technique to check conformance.

Figure 6.2 shows the general idea of conformance checking. By comparing the actual

behavior documented in an event log with the possible behavior of a process model,

discrepancies, as well as commonalities, can be identified. These results may be

differentiated in global and local conformance measures. Global measures lead to more

general statements like "42 % of the cases in the event log fit into the model", whereas

local diagnostics drill down deeper into the model and analyze specific activities within

the process model. A resulting statement from a local diagnostic could be "Question

number 12 was answered 3 times although this was not allowed at this point in the

process model" [14].

Different points of view need to be taken into account when interpreting deviations found

during conformance checking. It is always possible that the process model is wrong

and doesn’t reflect the reality, or that the event log deviates from the process model

because corrective measures are needed. Since both perspectives are important, and

conformance checking should support both aspects, Figure 6.2 indicates deviations in

both the event log as well as the process model [14].
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6.1 Footprint Comparison

Figure 6.2: Conformance checking: global conformance and local diagnostics [14]

This chapter is structured as follows. In general, there are three approaches to confor-

mance checking, which will be described. The first approach abstracts the behavior

seen in the event log and the process model to then compare it. The notion of footprints

can be seen as such an approach and is described in Section 6.1.

A second approach is replaying the event log on the process model in order to find

deviations. The Token Replay Algorithm uses this approach and is described in Section

6.2.

The third approach is the most advanced approach of the three. An optimal alignment

between the event log and the most similar behavior represented by the process model

is computed to detect deviations. This approach is described in Section 6.3 [82].

Additionally, an approach based on Linear Temporal logic is presented in Section 6.4.

6.1 Footprint Comparison

A footprint is a matrix displaying causal dependencies, introduced in Section 5.1.1, and

contains the relations a → b, a#b and a||b. It is independent of the process modeling

language because it relates to the behavior instead of the language [83, 84].

Footprints can be derived from an event log as well as a process model. The footprint

of an event log may be derived from the "directly follows" relation ( a > b ) previously

introduced in Section 5.1.1. The footprint of a process model may be generated by

playing out the process model, recording an event log in a way that each possible path
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through the model is taken at least once. Based on this event log, a footprint can be

derived which represents the behavior of the process model.

When comparing the two matrices, differences are revealed.

On the one hand, may this information be used to get detailed diagnostics on which

parts of the log or model are not conforming, on the other hand, a fitness measure is

easily computed by dividing the found differences by the total amount of cells in the

matrix. For example, if 12 out of 64 entries differ, the fitness is 12
64 = 0.8125 or 81,25 %.

The possibility that footprints can be generated from both an event log and a process

model yield interesting potential. On the one hand are the relations between events

documented in the event log described in the footprint of an event log, on the other hand

does the footprint of the process model represent how activities in the model relate to

each other [84].

This allows to compare all three combinations of event log and process model. Com-

paring the footprints of a process model and an event log allows checking whether they

represent the same ordering of activities, and is already explained above.

Comparing two process models allows to estimate their similarity. Even if their graphical

representation is different, they may still be (partly) equivalent regarding their behavior.

Footprints may also be used when changing a process model to better represent the

observed behavior represented in the event log, and the amount of change needs to

be quantified, as the changes will be represented within the footprints. By replaying all

possible behavior from the old and the new process model, footprints are derived from

both process models. A comparison of these two footprints identifies the changes.

Comparing two event logs helps to identify so-called concept drifts. A concept drift refers

to a situation in which the observed process changes during analysis [14].

Of course, the footprint representation is only one of many representations of an event

log, and other representations may suit the notion of conformance better. In theory, any

temporal or heuristic measure can be used instead of the "directly follows" relation or

the logic may also be extended with a time window. It is possible to extend the distance

between activities when deriving the causal relations. A possible extension could be:
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"activity a was followed by activity b within 3 steps and the other way around in more

than 50% of the cases". In a similar fashion as with the Heuristic Miner, frequencies

might be taken into account when constructing the footprint matrix [14, 85, 86].

6.1.1 Footprint Comparison in the Context of Data Collection Scenarios

In the context of data collection scenarios, the comparison between two models can

be used to compare two different versions of a questionnaire. This enables quantifying

the behavioral change between different iterations of a questionnaire. Being able to

quantify both the fitness and the change between two iterations of the questionnaire

allows measuring the effectiveness of changes made between multiple versions of a

questionnaire. Comparing two event logs allows to identify the differences between

different iterations of a questionnaire, e.g. the first run of the questionnaire, second run,

and so on. As the footprint may also be derived on the instance level or of different

groups within an event log, e.g. from a special user or a department within a company

that answered the questionnaire, its behavioral change may also be derived over time.

The simple comparison between the log and the process model as described in Section

6.1 might help to get a first impression of the fitness. More robust approaches to quantify

fitness are presented in the next sections. Additionally, questionnaires are often times

specially tailored towards a topic, so extending the representation may lead to new

relationships between answers. Extending the distance of the observed relations may

also lead to new insights within a questionnaire.
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6.2 The Token Replay Algorithm

As described in Section 4.3.1, there exist four quality criteria. In this section the notion of

fitness is introduced, which represents the proportion of the behavior seen in the log that

can also be generated by the process model.

A very a naive approach for checking conformance is to only count the traces in the log

file which can be replayed correctly on the model. If 97 out of 100 traces can be replayed

correctly, this would then lead to a fitness of 97%. When a deviation between model and

log occurs, the corresponding instance is not further considered. This allows a rough

first impression, which, however, has some weaknesses. It cannot be differentiated

how bad the trace fits the log. There should be some kind of gradation regarding the

severity of the deviation. The fitness between a trace and the model should be higher

if the deviation is smaller. While the naive approach neglects all traces that do not fit

perfectly into the model, this approach clearly does not take any severity into account,

and therefore, cannot differentiate between different deviations.

The Token Replay Algorithm can distinguish between different deviations and can,

therefore, take severity into account, by quantifying the mismatch.

Because we have already introduced another notion of fitness earlier in Section 5.1.8,

please note that this notion of fitness is not sufficient enough for the selection phase of

Genetic Mining. For other aspects of process mining, the Token Replay Algorithm is a

sufficient fitness measure.

The idea behind the Token Replay Algorithm is really simple [87, 88]. Four different

counters are recorded for each activity in the log.

p = Produced tokens (incremented if a new token is generated)

c = Consumed tokens (incremented if a token is consumed)

m = Missing tokens (incremented if the log indicates firing a transition while there are

not enough tokens in preceding places)

r = Remaining tokens (tokens that are remaining in the model after the trace has

been replayed)
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6.2 The Token Replay Algorithm

Initially p and c are set to 0. At the start, the environment produces one token in

the start place and as a result p is increased by 1. Then, for each of the activities in

the log the respective activity in the net is executed. This means that all tokens from

preceding places are consumed, and new tokens are added to the succeeding places.

Each consumed token increments the consumed counter c, and each produced token

increments the produced counter p.

If the event log indicates that an activity is executed while the respective transition in

the net is missing some tokens to be enabled, it is still executed as if the token would

be in the correct place. For each of the missing tokens the missing counter m is then

incremented by one.

After all activities from a trace are replayed as described, all tokens that are still remaining

in the process model are counted and the remaining counter r is incremented accordingly.

As a last step, the environment needs to consume a token form the final place, which

increments c by 1.

With the gathered information from the four counters, the fitness of a specific trace with

the model can be calculated. The fitness of a trace σ and a workflow net N is defined as

follows:

fitness(σ,N) = 1
2 ∗ (1− m

c ) + 1
2 ∗ (1− r

p)

The first part of this formula computes the relation between missing and consumed

tokens. If there are no missing tokens, this part equals 1, and decreases with more

missing tokens. The last part is defined equally in regard to remaining tokens. This

formula values missing tokens equal to remaining tokens, which both represent unwanted

behavior and therefore reduces the fitness of model and trace [14, 87].

In a similar way the fitness of a log file containing various traces can be calculated.

Therefore, every trace within the log needs to be replayed as described earlier. Then the

fitness between a log L and a workflow net N can be computed with the corresponding

formula:

fitness(L,N) = 1
2 ∗ (1−

∑
σ∈L

L(σ)∗mN,σ∑
σ∈L

L(σ)∗cN,σ
) + 1

2 ∗ (1−

∑
σ∈L

L(σ)∗rN,σ∑
σ∈L

L(σ)∗pN,σ
)
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This formula has the same properties as described before. The value of fitness(L,N)

is always between 1 (perfect fitness; no missing or remaining tokens in any trace) and 0

(bad fitness - all produced tokens are remaining, all consumed tokens are missing), and

decreases the more missing and remaining token occur.

Another aspect of the Token Replay Algorithm is that it also allows for diagnostics. It

is rather simple to assign the amount of tokens that passed each edge of the Petri net.

They represent the amount of produced and consumed tokens, and therefore indicate

how frequent a specific path was taken within the represented log. Places within the Petri

net can also be tagged with the information generated by the missing and remaining

tokens. Aggregating this information displays where which part of the model does not

conform with the log or which parts of the log deviate from the model. Additionally, this

allows to quantify the severity of the deviation. On the one hand, if the amount of missing

or remaining tokens is low, the severity of the deviation is low. On the other hand, if the

amount of missing or remaining tokens is high, the severity of the deviation is high and

can be an indication that changes in the model are required or there are problems with

the log [14, 89, 90].

6.2.1 The Token Replay Algorithm in the Context of Data Collection

Scenarios

As the process engine of QuestionSys does not allow for any deviations from the process

model, one could argue that the fitness of the event log and the process model will

always be 100 %. This is correct as long as only completed instances are taken into

account. If aborted instances are also taken into account, the fitness may be below

100 % due to the fact that an aborted instance result in remaining tokens in the net

and additionally results in a missing token in the sink place (the token that has to be

consumed by the environment in the last step).

This information can be used for different metrics. Statistics like, for example a completion

rate (e.g. 1− ( msink
#instances

) allow to estimate the percentage of participants answered the

questionnaire. Furthermore, the information gained by the remaining tokens can be used

to evaluate where most of the participants decided to stop answering the questionnaire.
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If it becomes evident that at a certain point within the questionnaire a lot of participants

decide to drop out, it might be necessary to improve the structure of the questionnaire.

Some participants might be offended a question and as a result decide to stop answering

the questionnaire, others may feel like the amount of questions is too high and, as

a result, quit. A structural change might be as simple as changing the order of the

questions, or the wording of a question. Having a lower rate of dropouts within a

questionnaire is obviously better because it allows to collect more complete data sets

from the participants. This makes the whole data collection process way more efficient

and reduces the time needed for data cleaning preparing.

Figure 6.3: Two places containing a
remaining token

Figure 6.4: One place missing two
tokens

Figure 6.4 and Figure 6.3 represent an example result generated with ProM. Please note

that for reasons of simplicity only the parts of the net in which deviations were identified

are shown. The fitness between the event log and the model is 93.55%. Additionally, we

can see that there is a remaining token in each of the places between question number

three and four and between question number four and the respective choice construct,

displayed in Figure 6.3. Both of these tokens are also denoted as missing in the last

place of the net, displayed in Figure 6.4. The questionnaire model has been discovered

by the Alpha Algorithm, and two cases have been added to the event log representing

participants dropping out of the questionnaire in a way that they only answer a part of the

questions from the questionnaire. These two cases represent the behavior described

above in which a participant dropped out of the questionnaire.
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6.3 Alignments

The algorithm described in Section 6.2 will work reliably in the context of QuestionSys,

because the event log will always be complete, and the engine does not allow for any

deviations [2, 37]. In reality, this is not always the case which is why the Token Replay

Algorithm has some drawbacks. One of the drawbacks is, that it is specific to Petri

nets, so if a mining algorithm that does not produce a Petri net is used during process

discovery, or the existing process model is not modeled as a Petri net, it is not possible to

use the Token Replay Algorithm without converting the model beforehand. Additionally, if

the process model and the event log are deviating heavily, the process model is flooded

with tokens. Having many tokens in a Petri net allows for any behavior possible in

the model and therefore no differentiation between correct and incorrect behavior is

possible.

Conformance checking with the Token Replay Algorithm is no longer supported in newer

versions of ProM because more sophisticated and robust algorithms such as Alignments

have been developed.

To create an alignment between the process model and the event log, it is necessary

to relate actions within the event log to the activities represented by the process model.

This sounds like an easy task but is a very difficult task once the event log and model

start to deviate [82].

When dealing with Alignments, the three different moves Synchronous move, Move on

model only and Move on log only need to be taken into account. They represent the

different behavior that may occur and has been introduced in [91].

1. Synchronous move

A synchronous move represents that a move within both the process model and

the event log was taken. In other words, they fit together.

2. Move on model only (Model moves)

Moves on model only represent that an activity in the process model had to be

executed without it being documented in the event log.

80



6.3 Alignments

3. Move on log only (Log moves)

Moves on log only may be seen as the opposite of modes on model only. An activity

within the event log is executed but no activity in the process model respectively.

Model moves and log moves represent deviations and should, therefore, reduce the

fitness. By calculating costs for log moves and model moves, deviations can be rep-

resented by a lower fitness. A possible fitness function is defined in [91]. Of course,

different costs can be assumed for each activity and each type of move. Activity X may

have a cost of 5 when there is a model move, while activity Z has a cost of 1 if a log

move occurs. This allows for an even more precise representation and more important a

weighting of deviations, not only on the type level but also on the activity level.

Alignments allow for more detailed diagnostics based on the instance level, which may

be aggregated into diagnostics regarding the whole process. In addition, Alignments

can indicate which activities are often skipped (represented by model moves) or that

an activity is frequently executed at times where it is not supposed to, according to the

process model (represented by log moves). This allows to relate the behavior from the

event log to the process model in a more precise way [14].

Calculating Alignments is not a trivial task, because there may be multiple Alignments

for a single instance, and the goal is to find the best fitting one. Some Alignments are

not optimal in a sense that there is an alignment with lower cost, especially if the costs

are customized. The implementation in ProM guarantees to return an optimal alignment

[91]. If you are interested in the formal definition of Alignments please be referred to

[91, 92].

6.3.1 Alignments in the Context of Data Collection Scenarios

When using a version of ProM that is newer than version 5.2, the conformance checking

tool automatically uses Alignments instead of the Token Replay Algorithm. With the

same event log and process model as already used in Section 6.2, the result looks a

bit different this time. Figure 6.5 displays the result when checking conformance using

Alignments instead of the Token Replay Algorithm.
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The result presented in Figure 6.5 contains more than one information. It incorporates the

frequency of different questions by changing the color of the question in the questionnaire

model. A darker color of a question represents a higher frequency. Some of the questions

in Figure 6.5 have a red border, indicating a model move. The green and purple bar

on the bottom represents the ratio between model moves and synchronous moves.

Based on this result, there was a model move in the fourth question, resulting from one

participant dropping out of the questionnaire. Each subsequent question indicates a

model move because Alignments do not recognize the abortion of a process instance.

Instead, the instance is completed via model moves, reducing the fitness. Looking at

the posterior questions of the questionnaire, they indicate that there are 50% (2 out of

4) model moves, resulting from the two dropouts added to the event log. Of course, it

is possible to also calculate the fitness, and in this scenario, the fitness is significantly

lower than compared to the Token Replay Algorithm. While the fitness using the Token

Replay Algorithm was 93.55%, with Alignments the fitness is only 77.88% [92].

Figure 6.5 is created with the ProM plug-in called Replay a Log on Petri Nets for Con-

formance Analysis.

Figure 6.5: Conformance checking using Alignments
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6.4 The Linear Temporal Logic Checker

While the previously mentioned algorithms, Footprints comparison (Section 6.1), Token

Replay (Section 6.2) and Alignments (Section 6.3), compare the event log with the

process model as a whole to estimate how well they fit together, the Linear Temporal

Logic approach pursues another goal. In many cases, there are other constraints

towards the process, like the "4-eyes principle" in which certain activities are not allowed

to be executed by the same person. Constraints like this can be verified directly on

the event log, without even taking the process model into account. As a result, this

approach doesn’t fit 100% into conformance checking because conformance checking

relates the behavior within the log and the model with one another. Nevertheless, this

approach can yield high potential in the context of process mining as it allows to control

for undesired behavior or check constraints regarding the whole process (in the context

of data collection scenarios the whole questionnaire). How the LTL-based approach can

be used in the context of process mining, is described in detail in [93].

The idea of Linear Temporal Logic (LTL) is to extend the classical logical operators by

temporal aspects. These temporal operators may be always (�), eventually (�), until (t),

weak until (W ) or next time (©) [94].

Linear Temporal Logic is not limited to checking if the execution of activities fits with

the expected behavior. It allows to take other attributes like the originator or data into

account. This way other aspects, like temporal constraints (e.g. the time between

executing two activities should not be longer than 15 minutes) or data constraints (e.g. if

the patient is female and has stomach ache a pregnancy test has to be executed) can

be defined and checked for conformance with these rules directly on the event log. The

LTL checker will then separate the initial event log into two event logs. One of the event

logs contains all compliant traces while the other one contains the non-compliant ones.

Additionally, there is a lot of well-established research in the area of logical expression

which can also be applied in this context [14, 93, 95].

Currently, there are 52 common properties already implemented in ProM that may be

used to check certain constraints. These properties can be used without any prior
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knowledge about the LTL language. It is also possible to create new, and situation

specific, formulas for the LTL-Checker in ProM [93].

6.4.1 The LTL-Checker in the Context of Data Collection Scenarios

The most intuitive approach would be to use some of the predefined LTL formulas

in ProM. Providing a general example is hard because these constraints are highly

dependent on the questionnaire and its structure.

When conducting a study which uses a questionnaire to collect data, there may be

assumptions which should be tested. For this case, the LTL checker offers a great

and intuitive approach on checking these assumptions without even having to apply a

process discovery algorithm. If the questionnaire is about employee satisfaction, and the

assumption is that free beverages and fruits help to increase employee satisfaction it can

easily be checked which share of instances in the event log satisfy the corresponding

LTL-formula. The LTL checker then separates the event log into two event logs which

may then be used as an indication which share of instances complies with the behavior

from the assumption. This way it is easy to see if the assumption could be valid or not.

Each of the separated event logs may again be used for further analysis. The formulas

of the LTL checker are not restricted to questions and their ordering, but may also be

used to analyze the answers given, the time needed to answer different questions or

how often the answer has been changed during execution of the questionnaire as long

as the corresponding information is documented in the event log. It may be interesting

to further investigate the instances in which a certain question was answered three or

more times. Moreover, the originator may also be used within the formula as long as the

event log contains such information.

Another use case of the LTL checker is to filter out dropouts. One of the predefined

formulas allows to check for the last activity within the event log. In the context of a

questionnaire, this may be used to either filter an event log for desired behavior or

remove certain behavior such as dropouts to improve the questionnaire discovered by a

process discovery algorithm.
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Figure 6.6 shows a screenshot of ProM. First, an event log is imported as a CSV-file,

which is then converted into a XES event log. Based on this XES event log, the LTL

Checker was applied to separate the event log into compliant and non-compliant traces.

Each of the different event logs may then again be used for further analysis.

Figure 6.6: Original CSV file, the resulting XES event log and the two results from
applying the LTL checker in ProM
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Enhancement

Within Chapter 5 Process Discovery was introduced, which can be used to generate

process models from information contained in an event log by applying various algorithms.

Different algorithms have been introduced which are more or less useful in certain

scenarios.

In the previous chapter, Conformance Checking was introduced, which is used to relate

an event log and a process model indicating improvement potential. Moreover, Confor-

mance Checking algorithms may be used to evaluate the quality of existing or discovered

process models.

Both Process Discovery and Conformance Checking only use a portion of the informa-

tion contained in an event log. In many cases, an activity within an event log can contain

additional information like an originator, data attributes, sensor data, timestamps or even

geographic information if the data is collected on mobile devices. While this information

is often not considered during both Process Discovery and Conformance Checking, this

chapter introduces enhancement techniques which can be used to enrich a process

model with such additional information. This chapter illustrates why process mining is

often referred to as the bridge between Data and Process Science [14].

Similar to Conformance Checking, Enhancement also uses both an event log and a

process model as an input. Moreover, this chapter assumes that a control-flow model

exists and enhancements of the process model with respect to the information contained

in the event log are introduced.

This chapter is structured as follows: First, temporal information from the event log is

used to enrich the process model with a performance perspective. Afterward, the concept
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of organizational mining is introduced, which utilizes information on who executed an

activity to discover relationships between different involved persons. Last, decision

trees are used to better understand which data generated during the process influences

decisions made within the process instance. All three approaches may be used to enrich

a process model with additional perspectives, therefore increasing its expressiveness

and allows to possibly discover novel correlations within a questionnaire.

7.1 Temporal Aspects

While process discovery mainly focuses on the ordering of activities, also known as

the control-flow perspective, this section will take the time perspective into account.

The focus of the time perspective is on all time-related aspects of a process. Activities

may occur at a certain time, take a certain amount of time until they are completed

or waiting times between activities are specified. If the event log contains temporal

information, like the duration of an activity or timestamps, this information can be used to

enhance the process model. While some event logs may only contain date information,

e.g. "14-08-2018", others provide timestamps with millisecond precision. As a result,

the different granularity of timestamps needs to be taken into account during analysis.

QuestionSys provides timestamps with millisecond precision, and this section will also

assume that the event log contains such precise timestamps. To enhance a process

model with temporal information, only a small modification to the Token Replay Algorithm,

introduced in Section 6.2, is necessary [14].

Depending on how the event log is structured, different temporal metrics can be mea-

sured. If the event log contains lifecycle information, for example started and completed

for each activity, the duration of each activity can be measured by subtracting the started

timestamp from the completed timestamp [14]. Additionally, the time between two activi-

ties can be measured by comparing the completion of the first activity with the start of

the next one. This then corresponds to a waiting time between two activities.
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Enhancing a process model with information from the time perspective can be used to

discover bottlenecks, or estimate the remaining time until a specific process instance is

completed.

In ProM, there are multiple plug-ins, such as "Replay a Log on Petri Net for Perfor-

mance/Conformance Analysis" [91] or the "Multi-perspective Process Explorer" [30]

that are able to take temporal aspects into account.

7.1.1 Enhancing Questionnaires with Temporal Information

In the context of QuestionSys, the event log used to create Figure 7.1 may be derived

from the results log, as this one does only contain a complete event of each question. As

a result, the duration of a question cannot be calculated in a similar way as explained in

Section 7.1. Because the following question is displayed immediately after the previous

one is answered, the time between two questions is assumed to be 0. Hence, the time

between the completion of two questions can be interpreted as the time needed to

answer the second question. To compute the duration of the first question, a timestamp

indicating the initial start of the whole questionnaire is necessary. An example of this is

provided in Figure 7.1.

Enhancing a questionnaire with temporal information allows for many new insights in

both the participant and the questionnaire itself. Figure 7.1 displays the result of applying

the "Multi-perspective Process Explorer"-Plugin in ProM to an event log which has been

extended with timestamps [30].

The process model displayed in Figure 7.1 is generated by the Multi-perspective Process

Explorer plug-in of ProM and is enhanced in multiple ways. Each edge from a place to a

transition contains two different measures. The first measure is the share of traces that

pass the edge during execution, represented by a percentage. If there is no percentage

assigned to an edge, the previous percentage is still correct. Additionally, the frequency

is also represented by the thickness of the edge. he second measure, the one that

this section is about, is a temporal one. Each edge between a place and a question is

labeled with temporal information. This time represents the average time needed from
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answering the previous question to answering the next question. Other metrics such as

the minimum, maximum, median time may also be displayed. In this example, it does on

average take 4,2 minutes to answer the question about the date of birth. Afterward, it

takes 1,9 minutes to answer the question about the gender.

The color of the transition represents how often the question was answered. As we are

only focusing on completed instances (how to identify dropouts has been explained in

Sections 6.2.1 and 6.4), all four instances of the questionnaire are completed. Further-

more, the model indicates that 50 % of the traces took the top path while the other 50%

took the bottom path at the decision point. This is also shown by the color of the two

involved questions as well as the color of the edges.

Figure 7.1: Process Model enriched with Temporal Information (average duration)

By enhancing the process model with the time perspective, valuable information, such

as the time needed to answer each question, may be generated about the participants.

It may be very difficult to collect such data from paper-based questionnaires.

Interpreting this may therefore lead to new insights for both the questionnaire as well as

the participant. On the one hand, if answering a question takes only a very short time

the participant might have just given a random answer. On the other hand, if answering a

question takes a very long time, the question might be too difficult, too private or maybe

the user interface was not optimal. Giving concrete time spans for when an answer is

given fast or slow is hard as it depends heavily on many different factors such as the

subject of the questionnaire, the surrounding in which the questions are answered and

of course the participant himself. Enhancing the process model with the average time

allows to get a good impression about the whole group of participants and may be a
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good starting point to drill down on those instances that took significantly more or less

time.

Additionally, the average time to complete a questionnaire may also be interesting to

investigate. By simply computing the duration between the first question and the last

question for each participant, the average time needed can be calculated easily, and

other aspects of QuestionSys can use this information. The average time needed

to answer the questionnaire can be displayed before the start of the questionnaire,

which allows participants to decide whether they have enough time to complete the

questionnaire or not, therefore reducing dropouts.

Figure 7.2 shows the performance perspective of Disco. The perspective is similar to

the performance perspective presented earlier in Chapter 5, but the event log used to

discover the questionnaire is the same as in Figure 7.1. The event log has been extended

with lifecycle information for each question. As a result, Figure 7.2 also indicates the

average time needed to answer each question. It is possible to calculate these times

based on different lifecycle transitions such as start and complete for each question in

the event log. Different colors indicate how long participants need to answer a specific

question. The example provided in Figure 7.2 indicates that participants need more time

to answer long questions compared to questions that are formulated short and concise.

The exception is the second question, which could indicate that the usability of some of

the elements used to answer this question might not be ideal. Note that this is just an

interpretation of this specific result, and for different questionnaires, the interpretation

may differ.
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Geben Sie ihr Geburtsdatum ein
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Sind Sie leicht für den Kauf eines Technik - Produkts zu begeistern ?

5 mins

Wie viel Prozent Ihres Jahreseinkommens geben Sie für Technik - Produkte aus ?

2.6 mins

In welchen der Folgenden Jahre haben Sie sich Technik-Produkte gekauft ?

3.5 mins

Was ist Ihnen beim Kauf eines Technik - Produktes am wichtigsten ?

3.1 mins

4.6 mins
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Was spricht für Sie gegen den Kauf eines Neuen Technik Produktes?

3.6 mins

Figure 7.2: Performance Perspective indicating mean waiting time between questions
and per question
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7.2 Organizational Mining

In the context of process mining, organizational mining refers to the organizational

perspective. Most event logs also document some kind of information about used

resources. Typically, such resources represent who executed a certain activity and are

represented as a resource or originator attribute within the event log. As process mining

is not limited to control-flow discovery, it is possible to analyze the relation between an

activity and its resource, allowing to assign an originator to an activity. Moreover, various

social networks may be created by analyzing the relation between different originators

during a process. A social network consists of nodes that represent organizational

entities and arcs that represent their relationship [96]. An organizational entity may

represent a person, certain roles, groups or even departments within an organization.

Figure 7.3, which can be found in [14], illustrates a version of a social network in which Y

is the most important node, indicated by both its size and the weight of 0.98 attached

to it. The relationship between Y and X is stronger than the relationship between X and

Z or Y and Z, which is again indicated by the thickness of the arc. Since the theory of

social network analysis has first been investigated by Jacob Levy Moreno back in 1934

[97], it is certainly not a new topic. Many metrics have already been defined to analyze

social networks. An overview about these metrics can be found in [98].

When constructing a social network from event logs, different metrics can be used

[99, 100].

1. Handover of work

A handover of work happens if two subsequent activities are completed by two

different resources.

2. Working together

Within a working together social network, causal dependencies are not taken into

account. Instead the frequency of which resources perform activities in the same

case is counted. Individuals that work together more frequently will have a stronger

relation than individuals that only rarely work together.
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3. Similar task

This metric does not consider how resources work together. Instead it focuses on

how similar the executed activities are.

4. Subcontracting

The idea behind this metric is to count how often an activity is executed by a

different resource in between two activities from the same resource, which indicates

that there is a subcontract for that activity.

Y

X

Z

w = 0.98

w = 0.35

w = 0.30

w = 0.90
w = 0.80w = 0.15

w = 0.08

Organizational entity 
(person, role, department, 

etc.)

The size 
indicates 
the 
weight of 
the entity

The thickness of the 
edge indicates the 
weight of the 
relationship

Relationship

Figure 7.3: Social Network, as found in [14]

7.2.1 Organizational Mining in the Context of Data Collection Scenarios

In the current state, QuestionSys does not support behavior similar to different persons

executing preceding or subsequent activities, which would allow to construct a social

network based on the event log.
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However, in future releases it might be possible to extend the questionnaire with different

user roles. Multi-User support, as identified in the requirements in Section 3.4.2, would

allow the construction of social networks if the different user roles interact within the same

questionnaire instance. In the context of medical questionnaires it might be possible

to assign specific questions to the role of a doctor, while other questions can only be

answered by the patient or their relatives. If this extension is realized, the originator of

each question will also be documented in the event log, and it would then be possible to

mine a social network from the event log.

7.3 Mining of Decisions

After introducing the time and organizational perspective in the previous sections, this

section focuses on the data generated during the process, also called the data per-

spective. During almost every process execution decisions are made. In real-world

processes, this might refer to accepting or rejecting an insurance claim, or the decision if

an applicant does get a job offer or not. Based on the decision made, different activities

in the process model are executed. Many decisions are influenced by data generated

during the process, and the generated data is also captured in the event log. This

section describes an approach in which the generated data is used to identify which data

element, or combination of data elements, influence a decision. Data mining techniques,

like decision trees, are used to combine the data perspective of the event log with the

process model. The purpose of doing this is to extract characteristics of each case in the

event log and use them to find out in which way they influence certain decisions made

during the execution of the process [88].

As a first step, decision points have to be identified. When mining decisions it is irrelevant

if the model is a Petri net, an EPC or any other process modeling language, as long as

decision points can be identified [101]. A decision point is a point in the process model in

which a decision between two or more different activities is made, and only one can be

executed. Within Petri nets, this behavior is represented by a place that is an input place

for more than one transition. To be able to analyze which path through the model was
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taken by which instance, the set of possible decisions must be described with respect

to the event log. If the process model was discovered by a discovery algorithm, this

mapping is already done and is not necessary anymore.

In the next step, each decision point is translated into a classification problem. To do so,

structural patterns need to be discovered within the event log. The discipline of machine

learning, especially decision trees, may be used to discover such patterns [26]. For each

decision point, only those attributes which are known at the time the decision is made

are taken into account and are then used as training examples for the decision tree. The

further the process is executed, the more training attributes are taken into account. For

additional information about decision trees please be referred to [26, 27] or Section 3.3

of this thesis.

Logical expressions can be derived from the created decision trees. If the instance

is a leaf node, all of the predicates are fulfilled and therefore connected with an AND

connector. If the instance is represented in multiple leaf nodes, the expressions are

connected with an OR connector [101]. These logical expressions are used to represent

which data influences which decision point, and may yield huge potential when enhancing

a process model.

7.3.1 Decision Mining in the Context of Data Collection Scenarios

As the underlying process model is strictly specified within QuestionSys, Decision Mining

might not generate new information at first glance, as it will always rediscover the guards

specified during questionnaire creation.

The decision tree used by the Decision Miner takes all data into account that was

generated before the decision point. This might lead to the discovery of different guards

than the specified ones which indicates that either the guards are not ideal, or a new

relationship within the questionnaire was found.

Figure 7.4 displays the result of applying the Decision-tree mining plugin in ProM [102]

to an event log similar to the one used in Section 7.1. The event log has been modified

to also capture the answers to each question prior to the decision point. The answers
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are documented as data elements within the event log and displayed as yellow hexagons

in the process model. This enhances the process model and allows to identify at which

point in the questionnaire certain data is generated and which data influences which

decision.

In Figure 7.4 a decision is made after the fourth question is answered. The Decision

Miner indicates that the answer given to that question (data element answer) determines

which of the two questions is answered next. If the participant answered with "yes",

the next question is about the percentage of income spent for new electronic products,

whereas if the answer is "no", the participant is asked to provide reasons against

purchasing new electronic products. This decision is directly derived from the generated

decision tree.

Figure 7.4: Process model enriched with data indication decision-relevant data

The Decision Miner plugin in ProM also has the possibility to specify which data objects

should be considered as input variables for the decision tree. By removing the data

element "answer" from the considered variables, the Decision Miner is able to find a new

pattern in the data.

As displayed in Figure 7.5, the new guard is the data element "gender". Therefore, it

may be inferred that women are less likely to purchase new electronic products, whereas

men are easier to convince to purchase electronic products.

The example provided in Figure 7.5 is just one way of applying the Decision-tree mining

plugin included in ProM to generate new insights. Based on different questionnaires the

approach may lead to more new information.

97



7 Enhancement

Figure 7.5: Process model enriched with data indication decision-relevant data, excluding
the specified guard

Moreover, this approach is not limited to the answers given as data objects. Each ques-

tion is able to generate multiple data objects, which is displayed in Figure 7.6. Additional

information gathered from e.g. vital sensors or the microphone of the smartphone, may

also be used as input variables for the decision tree [36]. This would then allow to

use this data in addition to the answers to get an even more detailed view of the data

perspective.

Enriching an event log with such data allows to include this data in the decision tree and

may identify unknown relationships within the questionnaire. The provided data should

only be seen as examples of possible data that may be collected as there is no limit to

the various types of data that may be collected additionally.

Figure 7.6: Example of multiple data objects generated by a question
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Conclusion

This final chapter summarizes the thesis. A summary of the contribution towards the

objective is provided in Section 8.1. Section 8.2 provides an outlook on possible future

use cases of process mining in the context of questionnaires.

8.1 Contribution

In the course of this thesis, an overview of process mining was developed. After establish-

ing a basic understanding of process mining, various process discovery algorithms are

introduced. Existing properties such as short loops or non-free choice constructs are put

in the context of questionnaires, and possible novel analysis based on these properties

are presented. In addition, different process discovery algorithms are analyzed based

on these properties and their applicability in the context of data collection scenarios is

evaluated.

Process mining is in fact not limited to process discovery, and the second form of process

mining, conformance checking, may also be applied to questionnaires. Different algo-

rithms for conformance checking and their applicability in the context of questionnaires

are presented. Footprint comparison may be used to follow up on structural changes

between different versions of a questionnaire and help to quantify the effectiveness of

these changes. Other conformance checking techniques can be used to identify at which

point in the questionnaire participants drop out, and this information can then be used

to improve the questionnaire in further releases. Additionally, an approach based on

Linear Temporal Logic is presented which offers an intuitive way of testing assumptions
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by filtering the event log based on predefined formulas. The separated event logs may

then be used as input for other process mining algorithms to further investigate certain

properties.

Event logs offer the possibility to document additional data collected from question-

naires. This data can be used to enrich questionnaires in order to represent additional

perspectives and possibly discover new relationships within the questionnaire. In this

thesis, the temporal perspective is used to analyze the time needed to answer each

question and the questionnaire as a whole allowing for novel insights compared to

paper-based questionnaires. The data perspective is used to enrich the questionnaire

with data generated during its execution. Data collected by a questionnaire can be used

to identify which decision within the questionnaire is influenced by which data. The data

used in Chapter 7 of this thesis only represents a fraction of the possible extensions

as questionnaires are able to generate a plethora of different data. Depending on the

questionnaire, the generated data may vary and is not restricted to answers given.

Sensors within a smartphone may be used to measure the volume or the heart rate

when answering certain questions. Using this kind of data extends the capabilities of

analyzing a questionnaire substantially.

This thesis shows that process mining can be applied successfully in the context of

data collection scenarios. The event logs used in this thesis may also be used as a

guideline to create event logs for process mining in the context of QuestionSys. Not only

does this thesis provide an overview of different process mining algorithms, but it may

also be used to improve the effectiveness of questionnaire analysis in the context of

process-oriented questionnaires.

8.2 Outlook

As described in Section 1.2, the event logs used in this work are generated artificially.

A possible next step would be applying the presented process mining algorithms to

event logs from real-life studies performed with QuestionSys. Since process mining is a

relatively young research discipline, new and better algorithms are developed across
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all forms rather quickly. These new algorithms may also be beneficial in the context of

questionnaires.

Even if this thesis used an offline approach for process mining, the algorithms may also

be used online. To use process mining online, operational support capabilities need

to be included in existing information systems. This may be a challenging task, but it

would make real-time, instance-specific recommendations and predictions possible. In

the context of clinical questionnaires, a doctor may be informed based on the answers

given by the patient even before the patient completed the questionnaire. Doctors may

be supported with case-specific predictions derived from previous questionnaires.

Even if process discovery is the most prominent form of process mining and a lot of

research is done in this area, it is still very difficult to provide a general rule on which

algorithm to use. Each event log has different properties and most process discovery

algorithms are specially tailored towards a specific scenario. In the area of process

discovery, improvements to the representational bias are necessary to improve the

efficiency of process discovery algorithms and the quality of their results.

Both conformance checking and enhancement are also able to generate novel infor-

mation. Unfortunately, most of the commercial process mining tools do not support

conformance checking and enhancement to a satisfying degree. Better and more

efficient techniques need to be developed.

Event logs are crucial for process mining because process mining results are heavily

dependent on the quality of the underlying event log. Data or behavior that is not

documented in the event log cannot be used to derive relations or enhance the process

model with additional perspectives. Unfortunately, event logs are often scattered, in

an unusable format or events are simply overwritten which makes process mining

unnecessary complicated or even impossible. Among other things, the increasing

awareness of process mining should be used to increase the quality of event logs.
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