
Universität Ulm | 89069 Ulm | Germany Faculty of
Engineering, Computer
Science and Psychology
Databases and Information
Systems Department

Rule-based Evaluations
for Mobile Data
Collection Applications
Bachelor’s thesis at Universität Ulm

Submitted by:
Daniel Rollenmiller
daniel.rollenmiller@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert

Supervisor:
Johannes Schobel

2018

Version from October 9, 2018

c© 2018 Daniel Rollenmiller

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Composition: PDF-LATEX 2ε

Abstract

Paper-based data collection is often directly associated with high cost and high delays.

Collected data is often shipped to domain experts in order to be analyzed. This, in

turn, leads to waiting times before results are available. However, in many clinical or

psychological cases, e.g., with the purpose to detect potential risk factors, real time

analysis would be a major improvement for all stakeholders. To achieve the latter an

electronic data collection approach is needed instead of a paper-based one. A framework

was developed to allow domain experts to create mobile data collection applications

by themselves. This framework is shortly introduced in the beginning of this thesis.

The framework makes the creation of questionnaires much more efficient. Domain

experts are able to create mobile applications without needing IT expertise. Furthermore

the framework allows the definition of so-called rules. Rules provide the possibility to

analyze the answers of a questionnaire. To increase the efficiency of this framework

further, this thesis will create a tool providing the functionality to automatically evaluate

these rules with the result of the questionnaire in order to provide real time analysis and

feedback. This tool is meant to be integrated into the existing framework and executed

on a participant’s mobile device or browser. Since rules may contain malicious code,

they have to be executed in some sort of a secured context to provide safe evaluation.

After comparing several different approaches, the tool was implemented with the use of

the best fitting solution. In order to evaluate rules, necessary information is extracted

from the questionnaire result and model and a sandbox with variables and functions

build. Then a single rule is evaluated without access to any data outside its own context.

Altogether this thesis implements a tool as an addition to the framework to provide safe

real time analysis.

iii

Contents

1 Introduction 1

2 Background and Fundamentals 3

2.1 Mobile Data Collection Applications . 3

2.2 The Questionnaire Model . 5

2.3 The Questionnaire’s Result . 6

3 Requirements Analysis 9

3.1 Functional Requirements . 9

3.2 Non-Functional Requirements . 12

4 Related Approaches 15

4.1 Expression Parser . 15

4.1.1 Javascript’s Eval . 15

4.1.2 JavaScript Expression Language 16

4.1.3 Notevil . 17

4.2 Sandboxes . 17

4.2.1 NodeJS’ VM . 17

4.2.2 VM2 - An enhancement to Node’s VM 18

4.3 Comparison . 19

5 The Evaluation Data 23

5.1 Rule Context . 23

5.2 Evaluation Result . 23

5.3 Result Context . 24

6 Architecture and Implementation 27

6.1 The Components . 27

6.2 Class Diagram . 28

6.3 Predefined and Custom Functions . 31

6.4 Creating the Sandbox and Evaluation . 32

v

Contents

7 Summary and Future Work 35

A Sources 39

vi

1
Introduction

Interviews and questionnaires are widespread instruments for collecting data. In several

domains, for example, in clinical environments they also help to detect psychological

risk factors, e.g., during pregnancy. Therefore they are an important instrument for

prevention and intervention. As mentioned in [1], the interviewers are often not psy-

chologically trained so they cannot analyze the results properly or there may not be

enough personnel to allow local analysis. Paper-based data collection methods are

costly and need a lot of time, for example, if the paper-based data has to be delivered to

a psychologist to analyze the latter. This is obviously highly inefficient and the detection

of psychological risk factors is delayed [1]. Fully automatic analysis with the use of

electronic data collection approaches could provide real-time analysis of the data and

faster intervention for those affected.

Electronic data collection, according to [2], can save approximately 50-60% of cost

compared to paper-based data collection. However, creating electronic questionnaire

needs besides the psychological or clinical knowledge, IT expertise as well. This entails

some issues as stated in Section 2.1. [3] introduces an approach that allows domain

experts, e.g., psychologists or study directors to simply create an electronic data collec-

tion instrument running on mobile devices without needing IT expertise. Furthermore, it

allows to easily deploy the questionnaire to participants via a web service and also to

analyze the answers by defining so-called rules.

This thesis will be concerned with the analysis of the results. A tool, extending the

framework, will be developed that automatically evaluates conditions to analyze a ques-

tionnaire and its result. In order to meet safety requirements the evaluation of a rule will

take place in some sort of a secured context. Furthermore, a predefined set of functions

1

1 Introduction

and the possibility to add custom functions to the evaluator tool allows deep analysis of

the result due to complex rules.

In the beginning of this thesis, Chapter 2 provides details on the underlying approach of

mobile data collection applications. Furthermore, the relevant data of the questionnaire’s

model and result is depicted. Next the functional and non-functional requirements of the

rule evaluator tool are analyzed in Chapter 3. Chapter 4 presents different approaches

for evaluating condition strings, as given within a rule definition. These approaches are

compared amongst each other. The one fitting the requirements the most is selected for

the further development of the rule evaluator.

Details on the implementation of the tool are provided in Chapter 6. First the components

of the evaluator and its structure are depicted. After that the class diagram is presented

and the operating principle of the predefined and custom function sets explained. At

the end of this chapter details on the creation of a safe context, as well as the safe

evaluation, are provided. In the end an outlook for future development of this tool and

the underlying framework itself, is presented in Chapter 7.

2

2
Background and Fundamentals

This chapter explains the background of this thesis, i.e, the idea of using smart mobile

devices for data collection. In particular the overall framework is shortly introduced and

afterwards details on the data received, provided.

2.1 Mobile Data Collection Applications

Smart mobile devices are part of almost everyone’s daily life and with that in mind it

makes sense to use those devices for mobile data collection, e.g., online surveys. There

are a lot of reasonable benefits, like high-quality data and less paperwork that needs to

be evaluated and archived manually. With the usage of mobile devices, surveys can be

done automatically. However, a study director for example, has no or only little IT exper-

tise and is most likely unable to create a mobile application himself (cf. [4]). Therefore,

there is the need for IT experts to implement and maintain a mobile application for exactly

that purpose. On the implementation side new challenges, like privacy issues or issues

due to different operating systems arise. Additionally there may also be communication

issues between a study director and IT experts because of them being experts in very

different domains, having their own language.

These problems were addressed in [3], which is the basis for this thesis. The researchers

experienced high maintenance cost in some of their projects due to domain experts

never being fully satisfied. They came to the conclusion that it would be best if domain

experts are able to create mobile data collection applications themselves without needing

IT expertise.

Therefore, their aim was to create a model-driven generic framework, named Question-

3

2 Background and Fundamentals

Sys, that empowers domain experts to simply create mobile data collection applications

by describing a questionnaire as a process model. The latter is then run on a smart

mobile device by a lightweight process engine (cf. [5]).

For their architecture they took an process-driven approach relying on the ADEPT2

process model, because a process model can be mapped easily to a questionnaire, e.g.,

a page can be mapped to a process activity and a question to a process data element.

First collection instruments can be created with a configurator where for example the

flow logic, pages and data elements are specified. Data elements represent questions,

which are connected to pages, which structure the questionnaire and represent single

screens on a mobile device. The configurator also offers the possibility to skip questions

or pages by navigation operations for example if the answer to a previous questions

makes a future question unnecessary. Also rules can be defined, whose evaluation will

be the main part of this thesis.

Second after modeling the questionnaire, it should be executed and for that purpose

there was the need of a process engine for mobile devices, which is able to render the

model locally and allows for flexible applications.

Their third goal was to relieve IT experts. Therefore all data is exchanged and stored

as XML documents and automatically managed by a Web Service. This service au-

tonomously performs the process of creating a questionnaire by taking the questionnaire

model created with the configurator by a domain expert and automatically deploying it to

smart mobile devices. After that the process engine, running on the device, renders and

executes the questionnaire. Then the service automatically captures and stores infor-

mation about the execution in log files for evaluation and analysis purposes. However,

when the Web Service provides the result back to an analyst they must be anonymized

and encrypted due to privacy regulations. This procedure is illustrated in Figure 2.1 (cf.

[3]). The usage of a standard document format and a Web Service that does everything

automatically makes, for example, the deployment of a new version possible without the

need of IT experts.

However, times have changed since 2016 and today not XML is used as a document

format, but JSON.

4

2.2 The Questionnaire Model

Figure 2.1: Workflow of the automatic Web Service

2.2 The Questionnaire Model

This section describes the structure of the JSON files that are created by the configurator

and contain the model that is then rendered on the client-side on mobile devices as well

as rules. In Listing A.1 you can see the basic structure of the overall model. It starts

with some meta information for example contact information of the author, name of the

questionnaire, available languages, etc. However, this information is not necessary for

this thesis and therefore not further explained here. Next in the model file is the model

itself which is of course the most important part.

Listing A.2 provides an example of how the model object could look like. It consists

of a nodeDataArray where the questions are defined. In the given listing there is an

example for a FreeDate question where the user simply has to enter his or her birth date.

A question is uniquely identified by its key and contains a lot of information, such as the

question itself that may be given in multiple languages within the element object, a name,

the question type, etc. However, the only information needed for rule evaluation are the

types of questions. Section 2.3 shows more details on the existing question types.

The most important part of the model is located within the rules array (cf. Listing A.3).

These rules are those to be evaluated after finishing the questionnaire and, therefore,

the main element of this thesis. A rule, in turn, is uniquely identified by a unique key,

a name, a conditionString, a variablesMapping and a positive and negative result. The

5

2 Background and Fundamentals

conditionString, as its name implies, is a string that represents a Boolean condition,

which can consist of variables, numbers, strings, function calls, mathematical operators,

logical operators and comparison operators as used in Javascript. Variables somehow

need to be resolved to constant values in order to evaluate the condition and for this

purpose the variablesMapping is needed. The latter is an array that consists of multiple

objects that contain the variableName and the questionId that identifies the question

containing the associated value. However, with the information given in the variables

mapping it is possible to retrieve the value of the variable from the result. This allows to

evaluate the condition which results in a Boolean value or an error.

Positive and Negative contain a headline and a description that can be given in multiple

languages and used after the evaluation, whether it was true or false, to give feedback

to the user.

2.3 The Questionnaire’s Result

The result contains a lot of logging information as well as the evaluated results for the

questions. The most important part of the result object is the payload object (cf. Listing

A.4). The payload comprises several arrays: The processLog and componentsLog con-

tain logging information with timestamps for any actions happening during the execution

of the questionnaire.

The results object contains the final answers given by the user. The id of a question

references to the question definition within the model. The relations between the model

and result is illustrated in Figure 2.2. Within the result the question id is mapped to an

array that contains an object for every iteration. In the example there is only one iteration

and, therefore, only one object within the array. This object consists of a timestamp, the

name and exportname as well as the count of the iteration and most important a value

field. The value field can be a single value or a object that maps keys to value or keys to

keys depending on the question types.

In Listing A.5 some examples for question results are shown. In the first result there is

a simple free float question. In this case the question id is enough to identify a result.

The second result is of a single choice question where keys from every possible choice

6

2.3 The Questionnaire’s Result

Figure 2.2: Relation between Model and Result

are mapped to either true or false according to what answer was checked or not. Due to

multiple input options the question id is not enough to retrieve a single value from this

kind of question. There are also other question types that map keys to other datatypes

as shown in other examples, however the key-value principle stays the same. In the third

example the result is a key mapped to another key, which can only result from a matrix

question. The first key identifies the row of the matrix and the second key identifies the

column, which means that at this row and column in the matrix the participant checked

an answer. The examples below the matrix question slightly differ from the examples

mentioned above, but the principles remain the same. How these different values are

resolved when evaluating a rule will be explained in 6.4.

While the results contain the final answers for each question, the dataHistory includes

the steps the participant took towards answering the question. For every question it

contains a history array where any change to the answer options, like checking a check-

box or entering some text into a textfield are saved with the (partial) value and a time

stamp. With that it is possible to understand the history of a question and may even

allow analyzing the steps the user did while answering the question.

7

3
Requirements Analysis

The following chapter describes requirements in the context of the rule evaluator. The

rule evaluator is a tool that allows to evaluate the rules defined in the model within

the context of a result. The evaluator tool extends an engine that is part of another

project about mobile data collection applications. This helps with analyzing the results

by evaluating rules and allows the user to receive feedback immediately. The exact

functional requirements for the rule evaluator as well as non-functional requirements are

explained below.

3.1 Functional Requirements

Req.# Requirement Description Priority

1 The tool should analyze the results of the questionnaire according

to the defined rules.

High

2 It must be possible to integrate and run the tool in a web applica-

tion.

Medium

3 The evaluator should primarily be available in a mobile application

written with angular/ionic.

High

4 Evaluation of malicious code should not endanger the application.

Therefore there should be no access to the global context when

evaluating condition strings.

High

9

3 Requirements Analysis

5 Human mistakes while defining rules or answering the question-

naire, e.g., wrong syntax should not result in a failure of the appli-

cation.

High

6 The evaluator needs to take and parse the questionnaire results

to a simpler result context with only necessary information.

High

7 The evaluator needs to receive the questionnaire model and ex-

tract the rules and all other needed information from it.

High

8 From the result and model the evaluator needs to create a context

for every rule that contains only the variable mappings needed for

evaluating this rule.

High

9 From a context of a rule, it should not be possible to access the

context of another rule or any information not directly related.

High

10 The variable mappings defined for each rule need to be resolved.

A variable is defined by the question id, that refers to one question

and a value array that identifies the value if more than one are

available. How the value array looks like is determined by the

question types:

• Zero Elements: FreeFloat, FreeDate, SliderSingle and Free-

TextArea questions

• One Element: Single- and MultipeChoice, YesNo, Distribu-

tion, Ranking, SliderRange and ButtonGrid questions

• Two Elements: Matrix question

High

11 The tool should be able to evaluate the condition string, which, if

no error exists, results in a Boolean value.

High

12 After evaluation the evaluator should return a evaluation result for

every rule with its id, whether it was true or false as well as the

positive and negative fields.

High

10

3.1 Functional Requirements

13 If an error occurs or some data is missing an appropriate result

with the cause of the error should be returned instead of true or

false.

Medium

14 A predefined function set with common functions for math, dates,

string and shapes should be available by default.

High

15 It should be possible to inject further custom functions. It should

be possible to override predefined functions.

Low

16 A timeout should be available if the evaluation takes too long (i.e.,

if a function contains an infinite loop).

Low

17 The predefined function set should contain important mathemat-

ical functions, such as computing the sum, maximum value or

minimum value of a series of numbers as well as the mean or

median.

High

18 Functions for strings, e.g., if a string contains a certain substring

or a sentence contains a certain word, etc. should be predefined.

Medium

19 The moment library for date comparison and arithmetic should be

available as well as some predefined functions to make the usage

of moment more intuitive.

Low

20 To allow working with shapes, e.g., checking if a point is within a

bounding box the function set should contain a simple function to

check whether a point is within a polygon or not.

Low

11

3 Requirements Analysis

3.2 Non-Functional Requirements

Data security

The tool needs to ensure that the data is handled confidentially, which specifically means

that information is only available when needed and cannot be accessed from outside the

specific rule context.

Maintainability

Since the main project of the configurator is still in development, adjustments may also

be required for the evaluator, e.g., when the model or result changes. Therefore, the

code must be easy to read, to understand and to maintain in order to implement new

requirements. To ensure consistency the Airbnb JavaScript Style Guide1 is adapted.

Platform compatibility

The tool must be available on modern mobile platforms, such as iOS 8 or newer and

Android 4.4.X or newer, as well as in modern web browsers, such as Safari, Chrome,

Firefox and Edge.

Robustness

The tool must be robust to human errors. In case of errors such as wrong rule definitions

with wrong syntax or functions and variables being undefined the evaluator must not

crash or stall the application.

1https://github.com/airbnb/javascript

12

https://github.com/airbnb/javascript

3.2 Non-Functional Requirements

Test coverage

All components of the evaluator must be covered by test cases to ensure that the code

is working as intended. As a minimal guideline the test cases should cover about 80% of

written code.

13

4
Related Approaches

A rule, thereby, consists of a condition string, which is a JavaScript expression that

evaluates to true or false, and variables that map some identifier to the value of a

question. This chapter deals with the evaluation of boolean conditions given as a string.

Several different approaches will be introduced and differentiated into categories.

4.1 Expression Parser

This section contains different approaches that use the JavaScript compiler or an own

parser and evaluator for evaluation of a string.

4.1.1 Javascript’s Eval

When thinking about running an expression given as a string the first that comes to

mind is javascript’s built-in function eval(). Eval is a function that takes a string, calls the

JavaScript compiler and evaluates the string as an expression. Even if this sounds good

so far, eval is often referred to being “evil” and its usage must be considered closely.

Eval isn’t necessarily evil. It is totally fine for evaluating a string whose input is known

and can be trusted. But that is exactly the problem. The condition string of a rule, as

well as the answers to questions are inputs given by random users mostly without IT

expertise. So there might be mistakes in, either the rule definition or an answer that

leads to errors while evaluating the latter. However, this wouldn’t be a serious problem

unless poor implementation without any error handling techniques. But another obvious

scenario would be malicious input done by the user himself with a bad purpose in mind.

15

4 Related Approaches

The problem is that the malicious expression a user enters is not only run on his client,

where it couldn’t do more harm than the developer console of any browser, but on any

other device. For example, a study director could write malicious rule definitions that are

then run on the study participant’s mobile device or if the tool is used on the server both

the study director and the participant could inject malicious user inputs. Obviously eval

is safe if the user input can be fully trusted or validated. However, in the given scenario

this may not be the case, therefore, using eval is a security risk that cannot be taken

and another approach may be needed here.

4.1.2 JavaScript Expression Language

The JavaScript Expression Language1 (further referred as Jexl) provides an eval func-

tion that comes along with its own expression parser and evaluator. Due to having an

own grammar that is different from JavaScript and therefore an own parser and evaluator

it is evaluated without direct access to the JavaScript compiler or objects outside the

function. Jexl supports all standard operators for arithmetic, logic and comparisons

providing a good alternative at first sight. Another advantage of Jexl, due to not having

access to objects and variables outside the function, is the possibility of handing over a

context that are simple JavaScript objects and can be used within the expression. So

for every rule a dedicated context can be created that contains the needed variables.

Listing A.6 shows a simple example of Jexl’s usage, including error handling. However,

there are also some downsides of Jexl as it does not support custom functions. It does,

however, support transforms, which act almost the same as functions (cf. Listing A.7).

Although the latter almost work like functions they bear a huge disadvantage by having

their own specific syntax. It may be requested to import external modules to use their

functions. But since the syntax of calling transforms differs from the syntax of a function

call in JavaScript every function has to be rewritten as a transform. Therefore Jexl is not

the perfect solution and another approach is desired.

1https://github.com/TomFrost/Jexl

16

https://github.com/TomFrost/Jexl

4.2 Sandboxes

4.1.3 Notevil

The notevil2 package offers a function called safeEval that evaluates JavaScript expres-

sions similar to the built-in eval function but in a safe context. It parses the expression

to the JavaScript Abstract Syntax Tree and then evaluates it and returns the evaluated

result. As Jexl, safeEval is also context-based, which means that it is possible to pass a

context with objects and variables for every rule. Contrary to built-in eval, safeEval does

not have access to global objects, only to the context that is passed when calling the

function, which makes it robust for evaluating untrusted user inputs. Listing A.8 shows a

brief example with a simple context in Line 3 and 4, containing a simple variable x and

a function max that computes the maximum of a series of numbers. As this example

illustrates it is possible to simply pass functions with the context, which makes it also

easy to allow other libraries, e.g., for working with dates without having to rewrite any

function.

Another upside of safeEval is that it contains a technique that prevents infinite execution

and interrupts the evaluation when a maximum amount of iterations is reached. However

there is a small drawback, because the amount of iterations is predefined within the

code and, therefore, cannot be set by the user individually. Still, this feature is nice to

have, as it prevents an application from stalling. All in all, the notevil module provides a

valuable function and depicts a good choice for evaluating rules.

4.2 Sandboxes

Another approach to executing code in a safe manner is running it within a sandbox. The

following section introduces two specific sandboxed approaches.

4.2.1 NodeJS’ VM

NodeJS offers a module, namely vm that provides the feature of a sandbox. VM allows

to execute code without the access to global objects and the standard node library in
2https://github.com/mmckegg/notevil

17

https://github.com/mmckegg/notevil

4 Related Approaches

a new context with its runInNewContext function. A short example presents a simple

context with a variable and a function which is then used for evaluating a function call

(cf. Listing A.9). Although standard libraries such as console are by default not available

they can be injected into the context as well as external modules. This allows not only

every rule to have its own context but also the usage of complex modules. In addition,

VM’s runInNewContext function comes with the possibility of setting options with a third

parameter. One of these options is a timeout in order to terminate the execution. This

helps to protect against infinite loops and, unlike notevil, it can be individually set by the

user.

Although VM is considered safe so far as it cannot access global objects, this is not quite

the truth. Listing A.10 shows a valid exploit that is available when the context contains

not only primitives (cf. [6]). Since for this thesis it is not affordable to only use primitives,

due to the need of functions, VM might not be as safe as required even if it fits perfectly

otherwise.

4.2.2 VM2 - An enhancement to Node’s VM

The vm23 module comes with two different sandboxes one called VM and the other

called NodeVM. Both are based on NodeJS’ VM module. However, they rely on the use

of proxies in order to provide extra security checks to prevent code from “escaping” the

sandbox, which is to some extent a problem with NodeJS’ module.

As already mentioned there are two variations available. While VM is a simple sandbox

with only the possibility of setting a context, timeout and, if necessary, a compiler like

coffeescript, NodeVM offers a lot more options. For example, it has the possibility for

allowing built-in or external modules. Even if NodeVM has more available options than

VM, it misses out a timeout feature. The latter is definitely a feature that has proven its

usefulness when working with untrusted user inputs. Therefore, the focus of this section

will be on the simpler VM further on.

As the example in Listing A.11 presents, VM works similar as previously discussed

approaches. In Line 5-8 the initialization of the sandbox is achieved with the context and

3https://github.com/patriksimek/vm2

18

https://github.com/patriksimek/vm2

4.3 Comparison

the timeout of one second. Line 10 shows the evaluation of an expression.

Required functions from external modules can be injected into the sandbox via the

context. All in all, VM does not change the functionality of NodeJS’ VM, but due to

extended security layers this module is a good choice for evaluating untrusted JavaScript

expressions, in general.

4.3 Comparison

As different approaches on how to evaluate rules more or less safely were presented

previously, now the pros and cons have to be weighed up. Recap that the given

expressions are user inputs that cannot be trusted. Therefore JavaScript’s default eval

function is not sufficient, as access to JavaScript’s compiler should not be granted.

However, there are a lot of alternatives available that need to be compared amongst

each others regarding different aspects. As already mentioned, security issues with eval

exist. Jexl due to having its own parser and evaluator is safer to any kind of attack with

plain JavaScript than eval. However, if an attacker manages to inject transforms that

contain malicious functions the attacker could inject infinite loops or something similar.

But he will not be able to access global objects similar to Listing A.10. Therefore Jexl in

case of safety would be a good choice.

NodesJS’ VM has a well known vulnerability, which allows to escape the sandbox. Not

even the timeout option may be able to compensate for it. This weakness is solved with

the vm2 module that offers the same functionality and adds further security layers that

makes it, at least very hard, if not impossible to escape the sandbox. This solution, in

turn, is not perfect as the timeout does not work for asynchronous calls, which makes it

vulnerable for infinite loops. Note that an infinite loop is far less dangerous than escaping

the sandbox would be. Therefore this would still be a good solution in case of security.

Last but not least notevil needs to be discussed in more details. It is safe to accessing

global objects unless injected via context, but if JavaScript’s process object is not injected

it is safe to the weakness of NodeJS’ VM. In addition, every loop calls an infinity checker,

which makes it robust for any kind of infinite loop. However, there is a vulnerability known

when using regular expressions as can be see in Listing A.12. This regular expression

19

4 Related Approaches

searches for all ways to arrange the nested groups which leads to an exponential

amount of time needed. So according to safety only Jexl, notevil and vm2’s VM are the

possibilities left.

Looking at the syntax, Jexl significantly differs from the others. Having the first parameter

in front of the function separated by a pipe, seems not to be very intuitive, especially

when not even having arguments to pass or a function contains another function as an

argument. Relying on plain JavaScript syntax, notevil and vm2 have the advantage here.

However, if thinking of making an external module available, e.g., for working with dates

the major downside of Jexl becomes obvious. Every function would have to be rewritten

and added as a transform instead of just easily injecting it with the context as it would be

possible with notevil and vm2. Therefore, Jexl is also not considered anymore.

The following Table provides a quick comparison of the different approaches as a short

reminder what was discussed so far.

Eval Jexl Node’s vm Notevil Vm2’s vm

Context Global Context-based

Syntax Javascript Own Syn-
tax

Javascript

Module import With global
objects

Rewritten
as trans-
forms

via context

Protection for in-
finite loops

No No Yes Yes Yes

Access to
global objects

Yes Only when injected into the context4

Table 4.1: Comparison of different approaches

The choice for the following realization is now between the notevil and vm2 modules,

since they are the safest approaches and importing functions or even whole modules

is easy with injecting them into their contexts. In addition, both are very simple in

their usage and both have some minor vulnerabilities regarding infinite loops. The

latter, however, are not considered a big threat, since they cannot cause a lot of harm.

4Node’s VM, however, has a known exploit to escaping the sandbox

20

4.3 Comparison

Basically the timeout and infinity checker are solid features to make the system more

robust against unwanted error from non-IT-experts. Since vm2 is in use far more often in

other projects and is still maintained, this is the module of choice for the further course

of this thesis.

21

5
The Evaluation Data

This chapter provides details on the data required for evaluating a rule and how the latter

is extracted from the given model and result (cf. Chapter 2). The questionnaire’s model

and result are simplified so that only necessary information are shown. Additionally,

details on the final result of the evaluation are depicted.

5.1 Rule Context

For every rule associated with a questionnaire, a specific rule context is build during

evaluation. This context contains only required information for evaluating a specific rule.

Keep in mind the structure of rule definitions as presented in Listing A.3. For evaluation

purposes only the rule identifier, its key, as well as the condition string and the variables

mapping are needed. The negative and positive objects as well as the rule’s name are

not relevant for the evaluation itself. The complete model of the rule context is presented

in Listing A.13.

This context is built for every rule and stored in an array. In every iteration a single rule is

evaluated. How the sandbox is build and the condition string executed, will be explained

in section 6.4. For now it is enough to know the required information from rule definitions.

5.2 Evaluation Result

The information left out for the rule context, because they were not needed for the

evaluation itself, however, are necessary for the evaluation result. The positive and

23

5 The Evaluation Data

negative objects contain descriptions in one or more languages that provide additional

information for the participant with respect to his given answers. For example, if someone

participates in a medical study and due to his answers he could suffer an addiction,

information about addiction counseling can be shown. Therefore, the evaluation result

contains the key and name to identify a rule as well as the positive and negative objects

from the rule definitions. In addition to that a result field is added.

Listing A.14 shows an enumeration with the different results that are possible.

Evaluation.True and Evaluation.False map to the corresponding Boolean values. Eval-

uation.MissingData appears as a result if some data, be it a variable or a function that

are not defined, is missing. Evaluation.Error appears on any other errors, for example, if

the condition string is not a valid JavaScript expression, or if the rule does not evaluate

to a Boolean value. In order to make debugging in case of an error easier, an optional

property error is added to the result that if the execution of a rule failed contains the

error message thrown.

Listing A.15 shows the entire evaluation result. The individual evaluation results are

altogether stored and returned as an array.

5.3 Result Context

The questionnaire’s results object (cf. Listing A.5) contains vital information about the

answers, which are transformed to the result context. A question is, first of all, defined

by its unique identifier. Furthermore, a question may have one specific type, which

determines how the result value looks like. For simpler questions the answer are a single

value, e.g., a number or string, for more complex questions the result looks different.

Details on the question types will be provided later on.

However, the result of a question can contain multiple iterations, each with different

values possible. Since iterations are not yet implemented in the main application, this

issues is not discussed in detail, but further mentioned in Chapter 7. However, because

iterations don’t make the result context more complicated, they are already represented

in the context, but not used during evaluation. Listing A.16 presents the result context.

The content array contains the value object for every iteration, which can be extracted

24

5.3 Result Context

from the questionnaire result. Information about the timestamp, the name, etc. are not

necessary for rule evaluation and, therefore, omitted.

To determine the structure of the result the type of the question is missing, which is

given within the questionnaires model. Recap Listing A.2 about the model object and

its nodeDataArray, which contains the definitions of the questions. From the element

object of a question definition, the questionType is retrieved. Summarizing, first of

all the necessary properties are extracted from the results object and then additional

information about the type is retrieved from the model. A single result context represents

the answer to a single question. These contexts are altogether stored in an array, which

represents the entirety of the result.

The following Figure 5.1 illustrates the flow of the collected information. Merging the

rule context and result context creates the sandbox context. After executing a rule the

evaluation result is provided with the result.

Figure 5.1: Information Flow within the Evaluator

25

6
Architecture and Implementation

The following chapter analyzes the components and classes to describe the architecture.

Also it depicts certain implementation details as well as required dependencies for certain

modules and libraries. After showing the relationship between different components and

the structure of the system’s classes, details on the sandbox context are provided.

6.1 The Components

The RuleManager, developed in the context of this thesis, can be divided into multiple

components, each presenting different functions. The QuestionnaireParser receives the

questionnaire model and result from the client, e.g., a mobile app or a web browser.

Furthermore it offers functions for parsing the rule and result context as well as the

evaluation result, described in the previous section. These contexts are then provided

to the RuleEvaluator itself. Furthermore there is a predefined set of functions that are

available on evaluation, since they are injected into the sandbox by default. In addition

there exists the possibility to define a custom function set outside the RuleManager

scope, that may override predefined functions, and inject it to the evaluator, as well.

The RuleEvaluator component resolves the variable mappings, given in the rule context

and builds the sandbox context. The latter consists of variables, functions and a timeout.

Next, the Sandbox is initialized with its context. Subsequently, the rule condition is

evaluated within the sandbox in a safe manner. An overview of the basic components

and their relations is shown in Figure 6.1

27

6 Architecture and Implementation

Figure 6.1: The Components of the Rule Evaluator

6.2 Class Diagram

The following section provides details on the implementation and discusses important

prerequisites. The tool will extend an existing Ionic project. Ionic is a framework for

creating mobile applications for multiple mobile platforms, such as iOS and Android, using

web technologies. It is build upon Google’s Angular framework [7]. Angular, however, is

a framework for creating web applications and therefore based on the web technologies

HTML, CSS and JavaScript [8]. Instead of JavaScript, Angular recommends TypeScript

as the programming language, which implements features of the ECMAScript 6 standard

[9]. Since the Angular framework supports Typescript and the tool is likely to be extended

from time to time, it makes sense to write the tool in a clean and object-oriented way,

using TypeScript as well.

Hence the classes and their structure as well as dependencies are analyzed first. The

28

6.2 Class Diagram

tool has three major dependencies with the moment.js 1 library , the vm2 2 module and

turf.js 3. Moment is a library for date manipulation and comparison and already used

in the main application. Vm2 as described in Section 4 provides the VM sandbox for

evaluating the condition in a safe context. Turf.js provides features to check whether a

point is inside a polygon or not. Figure 6.2 illustrates the class structure of the tool.

The package contextmodel contains the classes that were introduced in the previous

Chapter 5 and represents all vital information, which is extracted by the Question-

naireParser. The latter is initialized with the model and result and provides functions for

parsing the specific contexts and result.

The parser is called by the RuleManager class which is the entry point for the tool and

manages the evaluation procedure. Upon initialization the model and result as well

as the timeout for the sandbox are injected. Invoking the evaluation with the function

evalRules, also provides the possibility to inject a user-defined object, for example, a set

of functions. Within evalRules the parser is called and after the evaluation is finished the

result as well as the error message that may occur are inserted into the EvaluationResult.

However, the evaluation itself is conducted to the RuleEvaluator.

The latter is initiated with the complete result context, the timeout for the sandbox, as

well as the optional object. Calling the function evalRule invokes the evaluation of a

single rule. The VM is initiated with the given timeout and context, which is provided by

the createSandboxContext function that resolves the variables mapping.

After resolving all variables the condition is evaluated and its result analyzed and returned.

The RuleManager then inserts the result into the corresponding EvaluationResult object.

Figure 6.3 illustrates the message flow within and outside the tool.

1http://momentjs.com/
2https://github.com/patriksimek/vm2
3http://turfjs.org/

29

http://momentjs.com/
https://github.com/patriksimek/vm2
http://turfjs.org/

6 Architecture and Implementation

Figure 6.2: Class Diagram

30

6.3 Predefined and Custom Functions

Figure 6.3: Sequence Diagram

6.3 Predefined and Custom Functions

This section provides details on how the function sets are handled. The tool comes

with a predefined set that contains functions for Math, Date, Shapes and Strings. The

mathematical function, for example, allow to calculate the maximum and minimum of a

series of numbers and some more. The date functions allow to manipulate and compare

dates as desired and is based on the moment.js library. Furthermore functions to check,

for example, if a string is contained within another string or sentence are provided. Using

turf.js allows for checking, if a point is within a polygon.

Because other functions may be necessary in future, the tool implements the possibility

to inject a custom set of functions, when invoking the rule evaluation. These functions

are then passed to the evaluator and finally into the sandbox as illustrated in Figure 6.4.

If functions with the same name exist in both sets, the custom function will override the

predefined function.

31

6 Architecture and Implementation

Figure 6.4: Function

6.4 Creating the Sandbox and Evaluation

This section provides details on building and running the sandbox, which is used for

evaluating rules. To build the sandbox the variable mappings need to be resolved and,

therefore, a closer look at the question types is needed. Recap the existing question

types. These question types can be clustered because some of them act similar and are

resolved in the same or a similar way.

The questions of the first group contain only a single value in its result and, therefore,

need only the id of the question to retrieve the value. Listing A.17 shows an example

how the result looks like for these kind of questions and Listing A.18 a corresponding

variable mapping that retrieves the value and stores it in the variable. In order to receive

the value the evaluator simply has to get the result context for the given question id

and retrieve the content object and its value property. This works in a similar way for

FreeFloat, FreeDate, FreeTextArea, as well as SliderSingle questions. However, due to

JSON parsing the handling of the FreeDate question slightly differs since the value may

be converted to a Moment object before passing it into the sandbox.

The next group of questions contain multiple values mapped to unique keys as their

result. Listing A.19 shows an example result for these types of questions with multiple

32

6.4 Creating the Sandbox and Evaluation

key-value pairs. The variables mapping obviously has to contain not only the id of the

question, but also the key of the requested value (cf. Listing A.20). Since JavaScript

objects act like associative arrays the value is retrieved by first getting the content object

through the question id. Then the value property is extracted and the value of the variable

retrieved by accessing the property identified by the key. These two approaches fit to all

other question types, but the Matrix question.

A Matrix question contains pairs of keys and in contrast to the other questions, no direct

value. In order to identify a cell within a matrix, two indexes are necessary (cf. Listing

A.21). Together they identify a selected answer, which is represented as a Boolean true.

A corresponding variables mapping is presented in Listing A.22.

The first string given in the value array represents the row and the second one the

column. The value is resolved by verifying, if for a given row the column key in the

mapping is the same as the key within the result. In the given example the variable

would have the Boolean value false, because the column keys are different.

As the variables can be resolved now the sandbox can finally be build. Listing A.23

shows a simplified example how the sandbox is created and run. First of all, in Line 1 the

context is build by injecting the predefined set of functions. The latter may be overridden

in Line 3-5 by a user defined set of functions. In Line 7 to 9 all variables are resolved by

iterating through each mapping and adding it to the context. This is then, together with

the timeout option, passed to the VM’s constructor.

In Line 14 the sandbox is build and the rule, respectively its condition, is evaluated. To

meet the requirement that a rule is not allowed to access any information that is not

directly related, every rule has its own separate sandbox and context.

The final result, however, is not only a boolean value. Furthermore, it is represented by

a enumeration consisting of the values True, False, Error and MissingData. The latter

also reports an error, but indicates that the error occurred due to missing data. This may

be the case when a ReferenceError4 appears. ReferenceError occurs if a object, i.e., a

variable or function, is called, but not defined. Error contains every other error that may

be thrown. Figure 6.5 illustrates how the different results come about.

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/
Not_defined

33

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/Not_defined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/Not_defined

6 Architecture and Implementation

Figure 6.5: The Different Results

34

7
Summary and Future Work

The framework for mobile data collection applications has been introduced, the given

data analyzed and an evaluation tool implemented. For evaluation purpose the results

object contains question ids mapped to the corresponding answers. The model contains

the rules array with rule definitions consisting of a condition string and variable mappings.

The latter are resolved with the id of a question and specific keys, retrieving a certain

value from the result. To prevent the application from errors or malicious code the vm2

module is used to execute a rule within its own and safe context.

The evaluator tool offers a predefined function set as well as the possibility to inject a

custom function set. These allow domain experts to create complex rules to deeply

analyze the questionnaire result. The automatic analysis with the evaluator tool can

lead to further time and cost savings compared to paper-based data collection. All in all

this thesis offers a tool that extends the underlying framework with the functionality to

evaluate defined rules in a safe manner.

However, with the development of the main application this tool may need further devel-

opment, as well. For example, the iterations of the result were omitted within this thesis.

Iterations appear if a question has to be answered multiple times, e.g., if a participant

is asked for his siblings. During evaluation the number of siblings may be interesting.

In other cases, answers of all iterations may be vital for rule evaluation. Therefore, the

answers need to be stored in some sort of iterable list. This would require changes within

the main application and its rule definitions, respectively the variable mappings as well

as the evaluator tool. At the current stage a variable resolved from its mapping does only

contain a single value. Allowing multiple values, e.g., by using TypeScript arrays and

appending additional array functions, could solve this problem. This would need some

35

7 Summary and Future Work

adjustments in the configurator as well as the evaluator tool. The amount of changes

needed, is dependent on the degree of changes on the rule definitions, respectively the

variables mapping. Allowing, only to access the same key within every iteration may

need a lot less changes than allowing different keys for different iterations.

Another approach that would need more changes to the evaluator than the configurator,

is to extend the variables mapping with additional properties that define if iterations and

how many should be used for evaluation. The evaluator tool then reads this properties

and executes a condition with all possible combinations of variables. This would need

some specification or more properties to define how to treat the different results. There-

fore, the first approach may be more practical.

However, the evaluator only analyzes a small amount of the given data, namely the final

answers. Remember, that the main application logs different information, such as the

data history (cf. Section 2.3). The latter contains information about how the question

was answered and, therefore, it may be utilized to draw conclusions on the participant’s

behavior. Analyzing this data may help detecting any kind of participant bias, such as

social desirability that leads to participants not answering truthfully [10].

36

Bibliography

[1] Ruf-Leuschner, M., Brunnemann, N., Schauer, M., Pryss, R., Barnewitz, E.,

Liebrecht, M., Kratzer, W., Reichert, M., Elbert, T.: Die KINDEX-App - ein In-

strument zur Erfassung und unmittelbaren Auswertung von psychosozialen Belas-

tungen bei Schwangeren in der täglichen Praxis bei Gynäkologinnen, Hebammen

und in Frauenkliniken. Verhaltenstherapie 2016, Volume 26, 171-181 (2016)

[2] Ivan Pavlović, Tomaž Kern, D.M.: Comparison of paper-based and electronic data

collection process in clinical trials: costs simulation study. Contemporary Clinical

Trials, Volume 30, Issue 4, 300-316 (2009)

[3] Schobel, J., Pryss, R., Schickler, M., Ruf-Leuschner, M., Elbert, T., Reichert,

M.: End-User Programming of Mobile Services: Empowering Domain Experts

to Implement Mobile Data Collection Applications. In: 5th IEEE International

Conference on Mobile Services (MS 2016), San Francisco, USA, IEEE Computer

Society Press (2016) 1–8

[4] Schobel, J., Pryss, R., Schickler, M., Reichert, M.: A Configurator Component

for End-User Defined Mobile Data Collection Processes. In: Demo Track of the

14th International Conference on Service Oriented Computing (ICSOC 2016), Baff,

Alberta, Canada (2016)

[5] Schobel, J., Pryss, R., Schickler, M., Schlee, W., Probst, T., Gebhardt, D., Reichert,

M.: Development of Mobile Data Collection Applications by Domain Experts:

Experimental Results from a Usability Study. In: 29th International Conference

on Advanced Information Systems Engineering (CAiSE 2017), Essen, Germany,

Springer (2017) 60–75

[6] Nadalin, A.: Eval no more: a journey through nodejs’ vm

module, vm2 and expression language. https://odino.org/

eval-no-more-understanding-vm-vm2-nodejs/ (2017) , visited 2018-09-

29.

37

https://odino.org/eval-no-more-understanding-vm-vm2-nodejs/
https://odino.org/eval-no-more-understanding-vm-vm2-nodejs/

Bibliography

[7] Griffith, C.: Mobile App Development with Ionic, Revised Edition: Cross-Platform

Apps with Ionic, Angular, and Cordova. O’Reilly media (2017)

[8] Hussain, A.: Angular 5: From Theory to Practice: Build the web applications of

tomorrow using the new Angular web framework from Google. CodeCraft (2017)

[9] Syed, B.A.: TypeScript Deep Dive. Samuari Media Limited (2017)

[10] Farnsworth, B.: What is participant bias? (and how to defeat it). https://

imotions.com/blog/participant-bias/ (2016) , visited 2018-09-12.

38

https://imotions.com/blog/participant-bias/
https://imotions.com/blog/participant-bias/

A
Sources

1 {

2 "meta": {...},

3 "model": {...},

4 "labels": [...],

5 "rules": [...],

6 "media" : [...]

7 }

Listing A.1: The basic structure of the model

1 "model": {

2 "nodeDataArray": [

3 {

4 "key": -1,

5 "isGroup": true,

6 "category": "Structure"

7 },

8 {

9 "text": "FreeDate",

10 "category": "Question",

11 "group": -9,

12 "element": {

13 "name": "FreeDate",

14 "placeholder": {"de": ""},

15 "question": {

16 "de": "Geben Sie ihr Geburtsdatum ein"

17 },

18 "questionType": "FreeDate",

19 "exportName": "",

20 "isMandatory": true,

39

A Sources

21 "instruction": {

22 "de": ""

23 },

24 "minDate": "1920-01-01",

25 "maxDate": "2017-01-01"

26 },

27 "key": -23

28 }

29],

30 "linkDataArray":[{

31 "from": 1,

32 "to": -10

33 },

34 {

35 "from": -10,

36 "to": -12

37 }

38]

39 }

Listing A.2: Small example of the model object

1 "rules": [

2 {

3 "key": "rule1",

4 "name": "Rule 1",

5 "conditionString": "$a > 5",

6 "variablesMapping":[

7 {

8 "variableName": "$a",

9 "questionId" : "-100",

10 "value": ["1232142"]

11 }

12],

13 "positive":

14 {

15 "headline" : {"de" : "lorem ipsum"},

16 "description" : {"de" : "Ut enim ad minim"}

17 },

40

18 "negative":

19 {

20 "headline" : {"de" : "Mauris commodo"},

21 "description" : {"de" : "ac tortor dignissim"}

22 }

23 },

24 {

25 "key": "rule2",

26 "name": "Rule2",

27 "conditionString": "$a > 5 && $b > 15",

28 "variablesMapping":[

29 {

30 "variableName": "$a",

31 "questionId" : "-100",

32 "value": ["1232142"]

33 },

34 {

35 "variableName": "$b",

36 "questionId" : "-99",

37 "value": ["1232"]

38 }

39],

40 "positive": {

41 "headline" : {"de" : "Fermentum iaculis"},

42 "description" : {"de" : "Orci eu lobortis elementum"}

43 },

44 "negative": {

45 "headline" : {"de" : "Facilis magna"},

46 "description" : {"de" : "Venenatis a condimentum vitae"}

47 }

48 }

49]

Listing A.3: Rule definitions

1 {

2 "data": {

3 "type": "results",

4 "attributes": {

41

A Sources

5 "instance": "2017-11-29T12:42:40.127Z",

6 "identifier": "Max Mustermann",

7 "description": "Lorem ipsum",

8 "locale": "de_DE",

9 "payload": {

10 "processLog": [{

11 "level": "INFO",

12 "source": "ENGINE",

13 "message": "Engine started...",

14 "timestamp": 1511959158753,

15 "id": "",

16 "action": ""

17 }],

18 "componentsLog": [{

19 "level": "INFO",

20 "source": "FREEFLOAT",

21 "message": "State:",

22 "timestamp": 1511959294354,

23 "id": -22,

24 "action": "FINISHED"

25 }],

26 "dataHistory": {

27 "-23": [{

28 "iteration": 0,

29 "history": [{

30 "timestamp": 1511959302375,

31 "value": {

32 "1505481288327966": 100

33 }

34 }]

35 }]

36 },

37 "results": {

38 "-23": [{

39 "timestamp": "2017-11-29T12:42:00.770Z",

40 "exportname": "Distribution",

41 "name": "Distribution",

42 "iteration": 0,

42

43 "value": {

44 "1505481288327966": 100,

45 "1505481761347780": 0,

46 "1505482088301257": 0,

47 "1505482119317299": 0,

48 "150548215163666": 0

49 }

50 }]

51 }

52 },

53 "flags": [],

54 "colors": [],

55 "collected_at": 1511959320,

56 "client": {

57 "os": "Android 6.0",

58 "device": "3574788e0e4fc2",

59 "application": "Questionnaire v.0.0.1 b.1"

60 }

61 },

62 "relationships": {

63 "purchase": {

64 "data": {

65 "type": "purchases",

66 "id": "wdmvbn8yw6y35a7r"

67 }

68 },

69 "product": {

70 "data": {

71 "type": "products",

72 "id": "vazd7x6gqrer4wq9"

73 }

74 },

75 "productversion": {

76 "data": {

77 "type": "productversions",

78 "id": "mqwlpk64kney39zo"

79 }

80 }

43

A Sources

81 }

82 }

83 }

Listing A.4: Basic structure of the result

1 "results": {

2 "-23": [{

3 "timestamp": "2017-11-29T12:39:11.783Z",

4 "exportname": "Free Float",

5 "name": "Free Float",

6 "iteration": 0,

7 "value": 55.437

8 }],

9 "-22": [{

10 "timestamp": "2017-11-29T12:39:11.821Z",

11 "exportname": "SingleChoice",

12 "name": "SingleChoice",

13 "iteration": 0,

14 "value": {

15 "1505478670111650": false,

16 "1505478723948697": true,

17 "150547872484694": false,

18 "1505479884619120": false

19 }

20 }],

21 "-21": [{

22 "timestamp": "2017-11-29T12:39:11.791Z",

23 "exportname": "Matrix",

24 "name": "Matrix",

25 "iteration": 0,

26 "value": {

27 "1505480828722": "1505480931808",

28 "1505481091481": "1505480713371",

29 "1505490936380": "1505931253808"

30 }

31 }],

32 "-20": [{

33 "timestamp": "2017-11-29T12:39:11.794Z",

44

34 "exportname": "FreeTextArea",

35 "name": "FreeTextArea",

36 "iteration": 0,

37 "value": "Lorem ipsum"

38 }],

39 "-19": [{

40 "timestamp": "2017-11-29T12:39:11.799Z",

41 "exportname": "YesNo",

42 "name": "YesNo",

43 "iteration": 0,

44 "value": {

45 "150548060740682": false,

46 "1505480607406600": true

47 }

48 }],

49 "-18": [{

50 "timestamp": "2017-11-29T12:39:11.804Z",

51 "exportname": "SliderSingle",

52 "name": "SliderSingle",

53 "iteration": 0,

54 "value": 10

55 }],

56 "-17": [{

57 "timestamp": "2017-11-29T12:39:11.809Z",

58 "exportname": "Ranking",

59 "name": "Ranking",

60 "iteration": 0,

61 "value": {

62 "1505480089975517": 4,

63 "1505480191977551": 3,

64 "1505480238343170": 1,

65 "1505480291247701": 2

66 }

67 }],

68 "-16": [{

69 "timestamp": "2017-11-29T12:39:11.813Z",

70 "exportname": "SliderRange",

71 "name": "SliderRange",

45

A Sources

72 "iteration": 0,

73 "value": {

74 "lower": 1460,

75 "upper": 5000

76 }

77 }],

78 "-15": [{

79 "timestamp": "2017-11-29T12:39:11.817Z",

80 "exportname": "FreeDate",

81 "name": "FreeDate",

82 "iteration": 0,

83 "value": "1997-01-01"

84 }],

85 "-14": [{

86 "timestamp": "2017-11-29T12:39:11.779Z",

87 "exportname": "Distribution",

88 "name": "Distribution",

89 "iteration": 0,

90 "value": {

91 "1505481288327966": 70,

92 "1505481761347780": 0,

93 "1505482088301257": 10,

94 "1505482119317299": 20,

95 "150548215163666": 0

96 }

97 }],

98 "-13": [{

99 "timestamp": "2017-11-29T12:39:11.825Z",

100 "exportname": "MultipleChoice",

101 "name": "MultipleChoice",

102 "iteration": 0,

103 "value": {

104 "12": false,

105 "13": false,

106 "14": true,

107 "150547959606220": true,

108 "1505479804089178": false

109 }

46

110 }],

111 "-12": [{

112 "timestamp": "2017-11-29T12:39:11.828Z",

113 "exportname": "btngrid",

114 "name": "btngrid",

115 "iteration": 0,

116 "value": {

117 "150547821213853": false,

118 "1505478329993168": false,

119 "1505478346579512": false,

120 "1505478360820218": false,

121 "1505478374543373": false,

122 "1505478375554589": false,

123 "1505478376396437": false,

124 "150547837719325": false,

125 "1505478377826144": false,

126 "1505478378587753": false,

127 "1505478379273398": true,

128 "1505478379989920": true,

129 "1505478380760857": true,

130 "1505478381546629": true,

131 "1505478382701237": true

132 }

133 }]

134 }

Listing A.5: Question types and results

1 var jexl = require(’jexl’);

2

3 var context = { age : 15 };

4

5 jexl.eval(’age < 18’, context, function(err, res){

6 if(err){

7 console.log(’Something went wrong’);

8 }else{

9 console.log(res);

10 }

11 });

47

A Sources

Listing A.6: A simple JEXL example

1 var jexl = require(’jexl’);

2

3 var context = { a : 10 };

4

5 jexl.addTransform(’max’, function(...args){

6 return Math.max(...args);

7 });

8

9 jexl.eval(’0|max(1,2,3,4,5,a)’, context).then(function(res){

10 console.log(res);

11 });

12 //prints 10

Listing A.7: JEXL transform

1 var safeEval = require(’notevil’)

2

3 var context = { x : 25,

4 max: function(...args){ return Math.max(...args)} };

5

6 var result = safeEval(’max(5, 15, x)’, context);

7 console.log(result); // prints 25

Listing A.8: Notevil safeEval

1 var vm = require(’vm’);

2

3 var context = { x : 25, max: (...args) => Math.max(...args)};

4

5 var result = vm.runInNewContext(’max(5, 10, x)’, context);

6 console.log(result); // prints 25

Listing A.9: NodeJS VM

1 var result = vm.runInNewContext(

2 ’this.max.constructor.constructor("return process")().exit()’

3 , context);

48

4 console.log(result); // is never executed

Listing A.10: Exploit to VM

1 import { VM } from ’vm2’;

2

3 const context = { x: 25, max: (...args) => Math.max(...args)};

4

5 const vm = new VM({

6 sandbox: context,

7 timeout: 1000

8 })

9

10 const result = vm.run(’max(5, 10, x)’);

11 console.log(result); // prints 25

Listing A.11: vm2 VM example

1 var safeEval = require(’notevil’)

2

3 safeEval(’/((a+)+)b/.test("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")’);

Listing A.12: Malicious regular expression

1 export class RuleContext{

2

3 key: string;

4 conditionString: string;

5 variablesMapping: VariablesMapping[];

6

7 constructor(key: string, conditionString: string,

8 varMapping : VariablesMapping[]) {

9 this.key = key;

10 this.conditionString = conditionString;

11 this.variablesMapping = varMapping;

12 }

13 }

14

15 export class VariablesMapping{

16

49

A Sources

17 variableName: string;

18 questionId: string;

19 value: string[];

20

21 constructor(variableName: string, questionId: string,

22 value: string[]) {

23 this.variableName = variableName;

24 this.questionId = questionId;

25 this.value = value;

26 }

27 }

Listing A.13: The rule context

1 export enum Evaluation{

2

3 True,

4 False,

5 Error,

6 MissingData,

7 }

Listing A.14: The enumeration with the possible results

1 export class EvaluationResult{

2

3 key: string;

4 name: string;

5 result: Evaluation;

6 error?: string;

7 positive: {

8 headline: {[lang: string]: string},

9 description: {[lang: string]: string},

10 };

11

12 negative: {

13 headline: {[lang: string]: string},

14 description: {[lang: string]: string},

15 };

16

50

17 constructor(key: string, name: string,

18 positive: { headline: {[lang:string]: string},

19 description: {[lang: string]: string}},

20 negative: { headline: {[lang:string]: string},

21 description: {[lang: string]: string}}) {

22 this.key = key;

23 this.name = name;

24 this.result = Evaluation.Error;

25 this.positive = positive;

26 this.negative = negative;

27 }

28 }

Listing A.15: The evaluation result

1 export class ResultContext{

2

3 questionId: string;

4 questionType: string;

5 content: Content[];

6

7 constructor(qId: string, qType: string, content: Content[]) {

8 this.questionId = qId;

9 this.questionType = qType;

10 this.content = content;

11 }

12 }

13

14 export class Content{

15

16 iteration: number;

17 value: any;

18

19 constructor(iteration: number, value: any) {

20 this.iteration = iteration;

21 this.value = value;

22 }

23 }

51

A Sources

Listing A.16: The result context

1 "-12": [{

2 "timestamp": "2018-08-29T12:42:00.770Z",

3 "exportname": "Single value question",

4 "name": "Single value question",

5 "iteration": 0,

6 "value": 52.3

7 }]

Listing A.17: Questions with only a single value

1 "variablesMapping":[

2 {

3 "variableName": "$f",

4 "questionId" : "-12",

5 "value": []

6 }

7]

Listing A.18: A variables mapping for a question with a single value

1 "-23": [{

2 "timestamp": "2017-11-29T12:42:00.770Z",

3 "exportname": "Multiple value question",

4 "name": "Multiple value question",

5 "iteration": 0,

6 "value": {

7 "12345": 70,

8 "12341": 0,

9 "12347": 30,

10 "12359": 0,

11 "12350": 0

12 }

13 }]

Listing A.19: Questions with multiple values

52

1 "variablesMapping":[

2 {

3 "variableName": "$d",

4 "questionId" : "-23",

5 "value": ["12347"]

6 }

7]

Listing A.20: A variables mapping for a question with multiple values

1 "-21": [{

2 "timestamp": "2017-11-29T12:39:11.791Z",

3 "exportname": "Matrix",

4 "name": "Matrix",

5 "iteration": 0,

6 "value": {

7 "15054": "15061",

8 "15055": "15063",

9 "15056": "15062"

10 }

11 }]

Listing A.21: The result of a matrix question

1 "variablesMapping":[

2 {

3 "variableName": "$m",

4 "questionId" : "-21",

5 "value": ["15054", "15063"]

6 }

7]

Listing A.22: A variables mapping for a matrix question

1 const sandbox = Object.assign({}, predefinedFunctions);

2

3 if (this.functionSet) {

4 Object.assign(sandbox, this.functionSet);

5 }

53

A Sources

6

7 for (const mapping of ruleContext.variablesMapping) {

8 Object.assign(sandbox, this.resolveVarMapping(mapping));

9 }

10

11 const sandbox = this.createSandboxContext(ruleContext);

12 const vm = new VM({ sandbox, timeout: this.timeout }) ;

13

14 const result = vm.run(ruleContext.conditionString);

Listing A.23: Building and running the sandbox

54

List of Figures

2.1 Workflow of the automatic Web Service 5

2.2 Relation between Model and Result . 7

5.1 Information Flow within the Evaluator . 25

6.1 The Components of the Rule Evaluator 28

6.2 Class Diagram . 30

6.3 Sequence Diagram . 31

6.4 Function . 32

6.5 The Different Results . 34

55

List of Tables

4.1 Comparison of different approaches . 20

57

Name: Daniel Rollenmiller Matriculation number: 867350

Honesty disclaimer

I hereby affirm that I wrote this thesis independently and that I did not use any other

sources or tools than the ones specified.

Ulm, .

Daniel Rollenmiller

	Introduction
	Background and Fundamentals
	Mobile Data Collection Applications
	The Questionnaire Model
	The Questionnaire's Result

	Requirements Analysis
	Functional Requirements
	Non-Functional Requirements

	Related Approaches
	Expression Parser
	Javascript's Eval
	JavaScript Expression Language
	Notevil

	Sandboxes
	NodeJS' VM
	VM2 - An enhancement to Node's VM

	Comparison

	The Evaluation Data
	Rule Context
	Evaluation Result
	Result Context

	Architecture and Implementation
	The Components
	Class Diagram
	Predefined and Custom Functions
	Creating the Sandbox and Evaluation

	Summary and Future Work
	Sources

