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For enterprise-wide and cross-organizational process-oriented applications, the execution
of workflows (WF) may generate a very high load. This load may affect WF servers as
well as the underlying communication network. To improve system scalability, several
approaches for distributed WF management have been proposed in the literature. They
have in common that different partitions of a WF instance graph may be controlled by
different WF servers from different subnets. The control over a particular WF instance,
therefore, may be transferred from one WF server to another during run-time if this
helps to reduce the overall communication load. Thus far, such distributed approaches
assume that exactly one WF server resides in each subnet. A single server per subnet,
however, may become overloaded. In this paper, we present and verify a novel approach
for replicating WF servers in a distributed workflow management system. It enables an
arbitrary and changeable distribution of the load to the WF servers of the same subnet,
without requiring additional communication.

Keywords: workflow management, scalability, distributed workflow execution, load bal-
ancing, hashing.

1. Introduction

Workflow management systems (WIMS) deliver a state-aware control service for
process-oriented applications 2. Designed for a distributed environment, they in-
crease the number of work processes that can pass through an electronic workplace.
In detail, the WIMS routes, assigns, activates, and tracks the tasks of workflow
(WF) instances according to their predefined WF schema.

This work was partially performed within the research project “Scalability in Adaptive Workflow
Management Systems”, which was funded by the Deutsche Forschungsgemeinschaft (DFG).
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The key advantage of WEMS is that they make WF-based applications easier
to develop and to maintain when compared to traditional coding systems 2. By
extracting business process logic from the code of the application programs, one
obtain a set of activities, which represent the application components, instead of
one big and monolithic program. The process logic between these activities is
specified in a separate control and data flow definition. It determines the order and
the conditions for the execution of these activities as well as the data exchanged
between them. Usually, workflows can be modeled at a high semantic level, which
decreases error rates and increases process consistency. In addition, non-automatic
activities can be associated with user roles, which enables the WfMS to insert
corresponding tasks into the worklists of potential actors at run-time.

A serious deficiency of existing WIMS is their insufficient scalability in case
of a high number of users and WF instances *. In such a scenario, the load of
the WF servers and of the underlying communication network may become very
large >8. To avoid overload situations, therefore, the load has to be distributed
to multiple system components in an appropriate manner. In this paper, we focus
on approaches for avoiding overload situations in a distributed WIMS (cf. Fig. 1);
i.e., a WfMS with WF schema partitioning and distributed control of the different
partitions for the respective WF instances "8. This is achieved in a way that
does not imply any significant disadvantages for the communication behavior; i.e.,
additional communication is avoided as far as possible.

1.1. Workflow Partitoning and Distributed Workflow Execution

First of all, we summarize important properties of the ADEPT WF distribution
model ?, which are necessary for the understanding of this paper. We consider
an enterprise-wide or even cross-organizational application scenario, where business
processes often span multiple domains of an organization and where the large num-
ber of users and concurrently active WF instances may result in a very high load
410,11 " This load is caused by the numerous tasks the WfMS has to fulfill, like the
refreshing of user worklists, the synchronization of workitem choices, the starting
of activity programs, or the transferring of activity parameter data.

In order to avoid an overloading of system components (WF servers, subnets,

gateways), in our ADEPT approach 1213 a particular WF instance may not always
be controlled by only one WF server. Instead, several disjoint partitions of the
control flow graph — called WF graph for short — may be created at build-time and
the corresponding WF instances may then be controlled “piecewise” by different
WF servers during run-time 7. An example is given in Fig. 1, where a WF graph
is subdivided into three partitions controlled by the WF servers sy, s3, and s3. If,
for example, activity a is completed (cf. Fig. 1 a), the control over partition 3 will
be transferred to the WF server s3, whereas the WF server s; will retain control
over the partition 1 (cf. Fig. 1 b). To perform such a WF instance migration, a
description of the state of the WF instance has to be transferred from the source
to the target server. In order to reduce the synchronization effort between the
different WF servers, activities of parallel execution branches (e.g., activities ¢ and
d in Fig. 1) are controlled independently from each other. For example, the server
so does not need to know the state of activity d, which is controlled by WF server
S3 .
Why do we need WF graph partitioning and WF instance migrations at all?
A very important goal of our work is to reduce the overall communication costs.
Experiences we made with existing WfMS have shown that numerous messages be-
tween a WF server and its clients have to be transferred; e.g., when updating user
worklists or when transferring activity parameter data '*. In some cases, large data
volumes must be exchanged, which may result in an overloaded communication sys-
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Figure 1: a) Migration of a WF instance from WF server s; to s3 b) Resulting state
of the WF instance after this migration: Activity d is activated and both servers, s;
and sz, are now involved in the control of the WF instance. Additionally, activity
b has been started.

tem. To avoid such an overloading, in ADEPT, for each activity the WF server is
chosen in a way that minimizes the overall communication effort at run-time. This
is achieved by calculating the minimum of a cost function 7, which also considers
the data flow between activities and the costs for WF instance migrations. As a
rule of thumb, in most cases the WF server of an activity is selected in that do-
main, in which the majority of its potential actors resides (a domain is considered
as a subnet together with the WF servers and clients residing in it). In doing so,
consecutive activities with the same server assignment are combined to partitions
(i.e., compound sub-graphs of the WF graph). To avoid misunderstandings, it is
important to mention that in ADEPT the unit of distribution is the partition and
not the single activity. Usually, the latter granularity is too low to minimize the
overall communcitation costs, since migrations themselves require some communi-
cation between WF servers. How to calculate an optimal partitioning for a given
WF graph, however, is outside the scope of this paper and was reported in earlier
publications of our group 7?. In any case, the concrete number of partitions and
their composition depend on the respective WF type and its attributes.

WF schema partitioning and WF instance migrations offer several advantages:

e The total communication costs can be significantly reduced since subnet-
spanning communication between a WF server and its clients can be avoided
in many cases.

e Response times are improved and system availability is increased since the
execution of activities does not require a gateway or a WAN (Wide Area
Network).

Comparable observations have been made by several other research groups 8, which
consider issues related to distributed WF management as very important as well.
Since business processes very often span multiple domains of an organization, for
many cases, WF graph partitioning and WF instance migrations lead to signifi-
cantly better results than distributing whole workflows at the instance level (see
also Section 2).
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Following the sketched approach, the partitions of a WF graph are statically
defined; i.e., the WF servers have to be assigned to the WF activities already at
build-time. In some cases, however, this static approach is not sufficient to achieve
good results, especially if dependent actor assignments are used (e.g., "activity n
has to be performed by the same actor as the preceding activity m"). As the
potential actors of such a dependent activity can only be calculated at run-time,
it is advantageous to determine its WF server at run-time as well. The WF server
can then be chosen in a domain that is beneficial for these actors.

In ADEPT, we use so-called variable server assignments %1% to satisfy this re-
quirement. As an example, such an assignment may require that activity n has
to be controlled by the server from that domain to which the actor of the pre-
ceding activity m belongs. Variable server assignments are defined at build-time
and are evaluated at run-time in order to calculate the server that has to control
the dependent activity. Generally, the use of variable server assignments results in
significantly reduced communication costs °.

1.2. Problem Statement and Contribution of the Paper

As already mentioned, the most important goal of the ADEPT approach is to
distribute WF activities to WF servers in a way that minimizes the overall com-
munication costs during run-time. For each WF activity the optimal subnet for its
control is calculated automatically at build-time. Corresponding to this, the activ-
ities are assigned to the WF servers by server assignment expressions. Thereby,
consecutive activities with the same server assignment build one partition. Gener-
ally, the problem with such a commonly used approach is that only one WF server
can be used for a given domain (cf. Fig. 1). Otherwise, it would be ambiguous
which server has to control an activity assigned to this domain.

In order to avoid WF server overload, we have to overcome this restriction. As
depicted in Fig. 2, it should be possible that a domain comprises more than one WF
server. Since these WF servers are located in the same subnet, they are equivalent
with respect to the communication costs occuring during activity execution. It
does not matter, therefore, which of them actually executes a particular activity.
Consequently, it is not possible to calculate a “most suited” WF server with respect
to a particular domain at build-time. This means that only the domain of the
WF server controlling an activity is determined at build-time, but not the WF
server itself. We therefore require a method that dynamically selects a concrete
WF server for the execution of an activity at run-time (e.g., in Fig. 2 for activity ¢
of partition 2 one of the servers s, 1, S22, or sz 3 has to be chosen). Following this
approach, one has to realize some kind of “load balancing” between these servers. In
addition, it must not require any communication overhead. For example, it should
not be necessary to synchronize the WF servers of the same domain or to migrate
WF instances between them. Such an overhead cannot be accepted in a heavily
burdened WfMS.

In this paper, for the first time, we examine how multiple WF servers may be
realized within the same subnet in an intelligent way; i.e., without producing the
overhead mentioned above. The corresponding method has to respect some WF
specific peculiarities, which are discussed in Section 3.3. In addition, the following
requirements have to be fulfilled:

¢ Requirement 1: The WfMS administrator must be able to distribute the
load to an arbitrary number of WF servers within one domain. This load
distribution must be realizable in an arbitrary and definable ratio that corre-
sponds to the capacity of these WF servers. It must be possible, for example,
to distribute the load among two existing WF servers of a domain at the
ratio of 3:2. This is the only way to ensure that no WF server will become
overloaded if an arbitrary set of server computers is assumed.
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Figure 2: Using several WF servers within the same domain (with assignment of
partitions to domains, but not to a concrete WF server).

o Requirement 2: The usage of several WF servers within one domain must
not affect the advantages achieved by the distribution model of ADEPT (e.g.,
the reduction of the communication load). During WF execution, therefore,
it should not require any (additional) communication between WF servers
of the same domain. The selection of a concrete WF server for an activity
instance must be possible without requiring synchronization between these
WF servers.

Requirement 3: It is not favorable to use a central server for distributing
the load, since this would cause additional communication costs. In addition,
such a central component would represent a (potential) bottleneck and affect
the availability of the WfMS. We, therefore, need a distributed approach for
selecting the server of a given activity instance.

Requirement 4: To be applicable in a broader context, the approach has to
work in conjunction with variable server assignments (cf. Section 1.1) as well.
In addition, in the context of dynamic WF instance modifications (e.g., to

insert or delete activities during run-time 2-13), it must be possible to detect
the server that actually controls a given WF instance without large effort '°.

To summarize, our goal is to develop an approach that allows an arbitrary and
changeable distribution of the load to the WF servers and that does not require any
additional communication.
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1.3. Assumptions and Preconditions

This section discusses issues with respect to the system environment assumed by
this paper. Considering the operative usage of WfMS the following assumptions
hold:

e The WF servers control a large number of WF instances and, therefore, have
to cope with a high load, especially if enterprise-wide and cross-organizational
applications have to be considered. In addition, in such an environment, it
can be assumed that powerful computers are used as WF servers. Each single
server machine may therefore control a large number of WF instances.

e The computers used as WF servers are (to a certain degree) reserved for this
purpose. There is no reason to assume that their capacity fluctuates due to
other duties.

e The capacity of the WF servers of a domain is somewhat larger than required
(i.e., there is a reserve) since the total load of the domain may fluctuate.
Therefore, smaller fluctuations in the load of a single server can be compen-
sated as well.

The next section discusses some solution approaches generally possible. In Sec-
tion 3 we describe how the concrete server of an activity instance is selected in our
approach. Section 4 considers important issues concerning the modification of the
chosen load distribution. The approach is verified in Section 5 by means of simu-
lations. In Section 6 related approaches are discussed. The paper concludes with a
summary and an outlook on future work.

2. General Solution Approaches

In this section we discuss general approaches that may contribute to cope with a
high WF server load (cf. Fig. 3). Besides different methods for the replication of
WF servers, we discuss several other approaches for improving WIMS scalability,
like the use of a powerful, centralized computer system, load balancing at the WF
instance level, and load balancing by changing server assignments.

WfMS with one server WfMS with multiple servers
| distribute whole WF WEF graph partitioning
usinga —jnstances to WF servers and distributed WF control
powerful
computer . . .
system load balancing one server per domain multiple servers per domain
by concepts l l l l
corresponding ) i 4 e -
to features of changing server physical logical distribute activity
application assignment splitting of splitting of instances to the
servers expressions the domains  the domains WF servers

Figure 3: General Approaches for Coping With High WF Server Loads

An obvious possibility is to use a single, but extremely powerful computer (e.g., a
centralized mainframe system). For WIMS with one WF server, the ADEPT model
could be applied without any modification. High performance systems, however,
normally come along with very high acquisition costs, and even such systems may
reach their limits. Apart from this, distribution issues often stem from organiza-
tional facts, like business processes spanning multiple domains of an organization.
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As pointed out by several research groups '77188:11.19) " therefore, it is worth to
deal with issues related to WEMS with multiple WF servers.

For WfMS with multiple WF servers, a general possibility would be to distribute
whole WF instances to the WF servers !7>!8; ie.. to realize load-balancing at the
WF instance level. This can be achieved, for example, by using the load balancing
capabilities of application servers. Obviously, this approach contributes to avoid
the overloading of WF servers. As explained in the previous section, however, it
may result in an unfavorable communication behaviour and in increased response
times, if the potential actors of a WF are geographically spread.

To avoid these problems, several approaches for distributed WF management
have been proposed in the WF literature 2%:218:22, As ADEPT, most of them use
WF graph partitioning and distributed WF control. The different proposals made
in this context are discussed in more detail in Section 6.2. For the remainder of this
section, we present general possibilities for coping with high WF server loads in a
distributed WEMS (as the one described in Section 1.1).

In a WEMS with multiple WF servers and with WF graph partitioning, the load
of a WF server may be reduced by re-assigning some of the activities under its
control to WF servers of other domains. This can be achieved, for example, by
changing the server assignment expressions of these activities accordingly. Corre-
sponding changes may be applied statically (and may therefore be only valid for
future activity instances) as well as dynamically during run-time. First of all, fol-
lowing this approach, there is no need for WF server replication within one domain.
This method, however, increases the overall communication costs, since the original
servers have been chosen in a way that minimizes these costs. It, therefore, violates
the basic idea of the ADEPT model. In addition, it cannot be used if the WF
servers are “globally overloaded”; i.e., if the total load is higher than the current
capacity of the WF servers. Note that with this approach it is not possible to in-
troduce additional WF servers in order to increase the total capacity of the WfMS
since only one WF server per subnet is used.

In summary, the approaches discussed so far (powerful centralized computer
system, load balancing at the WF instance level, and change of server assignments)
are not suited to completely satisfy our requirements. In the following we discuss
more sophisticated solutions, which are based on the replication of WF servers.

2.1. Splitting Domains

If a WF server gets overloaded, the corresponding domain may be divided into
several sub-domains, each of them possessing its own server and subnet. Following
this approach, additional servers and subnets are introduced. As a variant, one
may create only logical domains, each of them with its own server, but belonging
to the same subnet. Independent from which variant is applied, the users of the
“original domain” have to be distributed to the resulting domains. This approach
is recommendable if a “natural splitting” of the domain exists; i.e., the domain
can be separated into largely disjoint parts (with separate activities and separate
users). If, in addition, the corresponding subnet is heavily burdened, a splitting
of the domain into disjoint subnets will be recommendable as well. For this case,
however, the splitting of the domains requires the rebuilding of the communication
network.

Both variants have some serious disadvantages: In many cases, a proper splitting
of the domains is not possible. As a consequence, there is no reasonable distribution
of the users to the new domains. In addition, it is difficult to distribute the load
according to the demanded ratio. The load of a WF server depends on the users as
well as on the number and the kind of activities which are assigned to its domain.
Thus, it is not possible to directly define a ratio for the distribution of the load to
the WF servers. This violates Requirement 1 of Section 1.2.
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2.2. Using Multiple Workflow Servers Within One Domain

If multiple WF servers are used within one domain (cf. Fig. 2), the domains will
not have to be changed with respect to users and subnets. Instead, to cope with
overload situations, additional WF servers may be introduced into the respective
domain. The problem then is to find a way to distribute activity instances to
multiple servers of one domain. This will be discussed in Section 3.

With this approach, instead of a concrete server for each activity, only the
corresponding domain has to be defined at build-time. The assignment of a concrete
server to an activity is considered as a physical aspect that has not to be handled
by the WF designer at build-time. The usage of several WF servers per domain,
in principle, enables an arbitrary distribution of the load to them. A positive side
effect is the increase of system availability, since users are connected to several WF
servers of their domain. If one of them breaks down, they may continue their work
with the other ones.

The usage of multiple WF servers within one domain may influence the com-
munication behavior when updating user worklists. Since it increases or decreases
the communicated data volume only marginally, depending on the method used
for updating the worklists, we do not discuss this aspect further in this paper. A
detailed discussion of this topic can be found in .

To sum up, splitting of domains is not appropriate to solve the given problem.
Instead, it is more favorable to allow the usage of multiple servers per domain.
Until now, we have not inspected ways to select the concrete WF server of a given
domain, which has to control a particular activity instance. This is crucial for the
presented approach. We discuss related issues in the next section. Thereby, the
goal is to achieve an arbitrary definable distribution of the load to the WF servers.

3. Selecting the WF Server of a Domain

In the previous section, we have shown that it is favorable to replicate WF servers
within a domain (cf. Fig. 2). Following this approach, an activity server assignment
no longer defines a concrete WF server. Instead, it only fixes the domain to which
the WF server (for the control of the respective activity) should belong.

The problem now is to find a way to select a concrete server of the designated
domain for a given activity instance. Such a selection method has to fulfill the
requirements as discussed in Section 1.2. Otherwise it would counteract the ad-
vantages of any efficient distribution model (such as ADEPT). In particular, an
arbitrary distribution of the load must be possible in order to enable the WfMS
administrator to define a suitable configuration with respect to the number of WF
servers in use and the corresponding load distribution. This task could also be
performed automatically by a monitoring component; if a WF server has to cope
with a load that is too high or too low in the long term, this component may
redistribute the load or may even start and stop WF servers. In addition, any solu-
tion approach also has to consider more advanced system features (such as variable
server assignments) and, as far as possible, it should be realized without additional
communication.

Issues related to the changeability of the load distribution during run-time (Re-
quirement 5) are presented in Section 4. In the following, we discuss several solution
approaches: static, load dependent, random, and hash server assignments. Finally,
a method is developed that fulfills the Requirements 1-4.

3.1. Static Assignment of Workflow Servers at Build-Time

A simple approach to distribute the load between the WF servers of a domain is as
follows: Just as with the domain, the WF server which has to control a particular
WF activity may be explicitly defined at build-time in the WF model (e.g., in Fig. 2
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" instances of activity ¢ have to be controlled by the server s; 3 of the domain 2").
Using this approach, distinct activities, which belong to distinct partitions of the
WF graph, may be controlled by different WF servers of the same domain.

Following this approach, the servers for the WF activities are statically defined
(cf. Section 2.1). Consequently, it is almost impossible to realize the required load
distribution. This, in turn, violates Requirement 1. In addition, this static approach
cannot be used in conjunction with variable server assignments. Such an assignment
is defined by an expression that is evaluated at run-time in order to determine the
domain of the activity (e.g., "server in the domain of the actor of activity a"). Using
these expressions, it is not possible to define the WF server within the resulting
domain explicitly.

3.2. Load-Dependent Selection of Workflow Servers at Run-Time

A desired distribution of the total load between the WF servers of a domain can
be achieved by choosing the server with the lowest current load (compared to its
intended load) for activity execution. To identify this server, for each domain the
corresponding load information must be available. Generally, there are two possi-
bilities to offer this information:

1. The load information may be distributed to all servers of the WfMS — peri-
odically or by “piggybacking” 23 together with other communications. When
performing a WF instance migration, this information will be locally avail-
able within each domain. The target server of the migration, therefore, can
be directly selected.

2. The load information may be only notified to a dispatcher in the local domain.
Consequently, this dispatcher performs the selection of a WF server if an
activity instance has to be executed.

The first approach results in a larger effort with respect to the distribution of the
load information — each WF server has to be informed about the current load of all
other servers. The second approach reduces this effort. Only the dispatcher, which
is located in the same domain, requires the corresponding load information of a WF
server. With this approach, however, for an activity instance the selection of a WF
server becomes more expensive since a communication with the dispatcher of the
respective target domain is required. In addition, the dispatcher is a central compo-
nent of the domain, which is required for each migration. It, therefore, reduces the
availability of its domain. To sum it up, both approaches violate Requirement 2.
The second approach additionally violates Requirement 3.

The main advantage of load-dependent methods is their capability to balance
fluctuations in the load of the WF servers. Such fluctuations may occur as a result
of WIMS external events, or when some of the WF instances controlled by a server
temporarily generate a particularly high load. The key disadvantage of both ap-
proaches is the additional effort required for communication and synchronization.
Therefore, the load the WF servers are able to manage does not, grow proportionally
to their capacity.

It is worth mentioning that similar algorithms have been used for process
scheduling 24?° in distributed operating systems. In this area, however, the sit-
uation is somewhat different. In advance, almost no information is available about
the resources required by an operating system process. For this reason, normally,
dynamic methods are used for process scheduling. As opposed to this, in WfMS
much more information about WF types as well as WF participants is available
at build-time. Nevertheless, the basic problems, as known from process scheduling
methods, occur in our scenario as well. In particular, the success of these load-
balancing methods heavily depends on the quality of the available load information
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as well as on an adequately chosen frequency for the load information exchange.
For process scheduling methods, generally, it is very difficult to guarantee a good
quality of these values 2°. In WfMS the situation is even worse since workflows
may have a complex internal structure and may stay at the selected server for sev-
eral weeks. During this time, the load situation of the respective WF server may
totally change. To summarize, on the one hand load-dependent methods are an
(academically) interesting approach since they offer the possibility to compensate
load fluctuations. On the other hand, they generate additional communication load
and it is difficult to predict their behavior. We discuss the applicability of process
scheduling methods for WfMS in more detail in Section 6.1.

3.3. Random Selection of Workflow Servers at Run-Time

When a new partition is entered during the execution of a WF instance (i.e., when
starting or migrating the WF instance), the WF server of the target domain may
be chosen randomly.

For this purpose, a random number z of the interval [0, 1) is calculated. This
interval had been decomposed into disjoint sub-intervals, which were assigned to
the WF servers of this domain. For the target partition under consideration, now,
that WF server is selected for activity execution, in whose sub-interval z resides.
Obviously, the probability that a specific WF server is selected corresponds to the
length of its interval. Consequently, the same applies to its portion of the total
load. The intervals, and therefore the distribution function, can be easily defined
by the WIMS administrator according to the intended load of the server machines.

This random selection approach has several advantages: It allows an arbitrary
distribution of the load, which can be easily modified by changing the sub-intervals.
In addition, the approach can be used in conjunction with variable server assign-
ments as well (cf. Section 1.1). It is even possible to distribute the load with respect
to instances of a particular activity type to several WF servers. In case of a large
number of WF instances, significant deviations from the intended load distribution,
occurring due to shortcomings of the random number generator, are very improba-
ble.

To randomly select a WF server, however, has one crucial disadvantage: Prob-
lems occur when parallel WF execution branches have to be joined. This is explained
using the WF graph shown in Fig. 4. Assume that the migration M; . of a cor-
responding WF instance will be performed previous to the migration My, of the
same instance. Then, the concrete WF server within domain 3 will be selected when
executing My .. Since this server is normally not known to the WF servers of do-
main 2, it may happen that a different WF server from domain 3 is randomly chosen
when the migration My . takes place. This will generate a problem when joining
the parallel branches at activity f. If the different source servers of the migrations
have to coordinate the target servers, additional communication is required. This
violates Requirement 2.

Figure 4: Problem with random server selections, when joining parallel branches.
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3.4. Hashing of Workflow Instances to Servers

We now want to construct a selection method that keeps the positive properties
of the previous approach, but tries to avoid the problems arising in conjunction
with parallel joins. This succeeds with the following idea: The WF server is not
chosen randomly as described in Section 3.3. Instead, for a particular WF instance,
always the same WF server is selected within a given domain. This is achieved
by using a hash function, which maps a WF instance specific date (e.g., the WF
instance ID) to a number z € [0,1). To realize this hash function, for example,
a pseudo-random number generator may be used. Following this approach, for a
given WF instance always the same number z and, therefore, the same WF server
are calculated. With respect to the selection of the hash function, however, it is
important that it produces a good distribution. Even for similar input data, it must
be possible that they are mapped to widely spread random numbers.

By applying this hashing, all advantages of the approach discussed in Section 3.3
are preserved: An arbitrary distribution of the total load to the WF servers of
a domain is possible, all concepts of ADEPT (incl. variable server assignments)
can be further supported, and no additional communication is required. When
joining parallel branches, no problem occurs since all activities belonging to the
same partition of a WF instance are assigned to the same server. In summary, this
approach fulfills the Requirements 1-4 of Section 1.2. It can be expected that it
works better than load-dependent methods because no additional communication
becomes necessary and the system behavior is more predictable. Since the WF
servers possess a capacity reserve, a slightly unequal distribution of the load does
not matter. This is another reason why we do not need a method for actively
compensating such an unequal distribution.

Using the hash approach, the subset of the WF instances controlled by a par-
ticular WF server corresponds to its intended part of the load. Usually, each WF
server controls a large number of WF instances. It, therefore, manages its intended
load. Due to the large number of WF instances, potential differences in the effort
necessary to control specific WF instances are balanced. Since the different servers
of a domain control disjoint WF instances, no problems with data inconsistencies
will occur (the static schema data is replicated at all servers).

For all these reasons, for the remainder of this paper, the hash approach is con-
sidered. It possesses the following properties which are essential for load balancing
and for efficient WF execution:

e The concrete WF server that controls a WF activity is always determined at
run-time.

e For different WF instances (of the same WF type), the same partition (e.g.,
partition 3 in Fig. 2) may be controlled by different WF servers.

e For a given WF instance, all activities assigned to the same domain (e.g.,
activities ¢, e, and f in Fig. 4) are always controlled by exactly the same WF
server of this domain. Otherwise, synchronization overhead would become
necessary between the WF servers of a domain.

In the following subsection, we show how to realize the distribution function and
how to offer the required information to the WF servers. Section 4 discusses ways
to additionally fulfill Requirement 5 (changeability of the load distribution).

3.4.1. Realization of the Distribution Function

Our approach uses a specific date of the WF instance Inst in order to calculate the
WF server of the target domain D (e.g., when a migration has to be performed). For

this, the domain specific distribution function g (Inst) is applied (cf. Algorithm 1):
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The (unchangeable) instance specific date InstDat (e.g., the WF-ID) is hashed
to a value z of the interval [0, 1) which is then mapped to a server s; of the domain

D by the use of a function f”(z). Depending on the choice of this function, the
load distribution to the WF servers can be controlled. Since a hash function always
calculates the same result z with respect to a given input value InstDat, the WF
instance Inst is always controlled by the same WF server s; with respect to domain
D.

Algorithm 1 (Calculation of the Distribution Function gP (Inst)).
input
Inst:  WF instance for which the WF server has to be calculated
D: domain the WF server belongs to
result
logical ID of the WF server (of the domain D) selected for the WF instance Inst
begin
InstDat = instance_specific-data(Inst);
z = hash(InstDat);
function fD (z) defined by aP .. .aP_, and s1...8n:
case z € [0,a?) : return si;
case z € [a?,al) : return ss;
case z € [a}_;,1) : return s,;
end.

The probability that server s; is selected corresponds to the length of its assigned
interval [a;_1, a;), assuming that the values of z are equally distributed within [0, 1).
This can be achieved by using a “good” hash function. Algorithm 1 starts with a
WF instance specific value. For this purpose, the ID of the WF instance may be a
good choice. Alternatively, its starting time (or a special random value generated for
this purpose) may be used. If, for example, the value representing the milliseconds
of the starting time is used as InstDat, it can be assumed that the values of InstDat
are equally distributed within the interval [0,1000). For this case, the function
hash(InstDat) := InstDat/1000 will be sufficient to achieve an equal distribution of
z in the interval [0, 1).

3.4.2. Replication of the Distribution Functions

When starting or migrating a WF instance Inst, one must be able to decide, which
WF server s of the domain D should control this WF instance. For this, the
function gP(Inst) has to be published to all servers of the WfMS. Since g” does
only calculate logical server IDs, its output has to be mapped to a physical address
(e.g., an IP address) by another function h(s), which must also be made known
to all WF servers. As both functions are changed seldomly (cf. Section 4), the
communication costs arising in conjunction with their replication can be neglected.

4. Dynamic Modification of the Load Distribution

The hash approach, described so far, already fulfills the Requirements 1-4. The
changeability of the load distribution (Requirement 5) has not been considered yet.
Such a changeability is indispensable to overcome overload situations or to modify
the system configuration.

A change may be triggered by an administrator or automatically by a “watch
dog” at a dedicated administration server. Other servers, however, may be involved
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in the change as well. Since a WF instance always has to be controlled by the same
server within one domain, it is really hard to realize such a change of the load dis-
tribution. Unfortunately, it requires a modification of the assignment between WF
instances and servers. This, in turn, requires additional communication in order
to publish the changed assignment to all WF servers. Since corresponding modifi-
cations are rather seldom and the communicated data volumes are usually rather
small, this additional effort is small when compared to the “regular” execution of
workflows. In the following, we show how WF servers may be replaced, added, or
removed in our approach. In addition, we discuss how a load distribution may be
changed on the fly. All these operations are necessary in order to fulfill Require-
ment 5. The challenge is to realize them without violating the Requirements 1-4.

4.1. Replacing Physical WF Servers

We shortly present an algorithm (cf. Algorithm 2) for replacing physical WF servers
in our approach. Assume, the WF server with the logical ID s;pange has to be
replaced by another one. Then, first of all, the new server is started and the old
server Scpange 1S locked for further migrations. In order to realize this lock, all
WF servers have to be informed that migrations to scpange are no longer possible.
In such a case, respective migrations are delayed until the lock is released. In
addition, schenge prevents the (local) creation of new WF instances. It is important
to mention that this procedure does not imply any restrictions for migrations to
other WF servers.

After having locked Scpange for further migrations, the function h(s), which
maps logical server identifiers to physical addresses, is changed. Afterwards, all
WF instances, which have been controlled by scpange thus far, are transferred to
the new WF server. Furthermore, the newly created function h(,41)(s) is replicated
to all servers of the WfMS, substituting the current function h,)(s). Consequently,
no migrations will arrive at S¢pange any longer. When finishing these steps, the
locks are released in order to enable migrations to the new server. Finally, schange
is stopped.

Algorithm 2 (Replacement of a WF Server).
input
Schange: logical ID of the WF server to be replaced
adr: physical address of the server, which has to obtain the logical ID Schange
hny(s):  the current function that maps the logical server IDs to physical addresses
begin
start the new WF server adr;
lock migrations (at all WF servers) to the server schange;
// assign the new server ID t0 Schange, leave all other mappings unchanged
h(n+1)(5change) = adr; Vs # Schange: h(n+1)(s) = h(n) (5)7
transfer all WF instances from the server h(,)(Schange) to the server h(,41)(Schange);
replicate h(,4+1)(s) to all WF servers;
release the locks for migrations to the WF server schange;
stop the WF server h(y)(Schange);
end.

Theoretically, the lock-request, the replication of h(,41)(s), and the lock-release
should be performed within one distributed transaction. As long as this transaction
has not been completed at all WF servers, migrations to the server scponge would
not be possible. Therefore, the breakdown of any server involved in the execution
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of Algorithm 2 would block the server s.pange. In addition, such a procedure would
require the execution of an expensive 2-phase-commit protocol.

In order to avoid these disadvantages, Algorithm 2 and the subsequently de-
scribed algorithms use the following technique: Again, all WF servers prohibit
outgoing migrations to Schange. After the execution of the corresponding lock-
request, no migration will arrive at the server s¢pange- The replication of the func-
tion h(p41)(s) and the release of the lock are merged into a single transaction: As
soon as a server has saved the new data (locally), it releases its local lock for migra-
tions to the server sqpange- Hence, it may perform corresponding migrations based
on the new function h(,41)(s). Using this technique, the locks are not released
simultaneously at the different WF servers. The possibility to migrate, however,
is still locked at a server or the server uses the new function h(,41)(s). Therefore,
no inconsistencies may occur due to the use of the different functions hy)(s) and
h(nt+1)(s). The crucial advantage of this technique is that each WF server may
continue its work without any restrictions, after having successfully stored the data
(locally). This will even be valid, if not all servers have performed the modification
of the mapping function so far, as in the case of a local system breakdown, for
example.

4.2. Changing the Load Distribution

Assume that the distribution of the load between the WF servers of a domain D has
to be modified, without introducing new servers to this domain. Then, the current

distribution function g{), (Inst) has to be replaced by a new one g, , | (Inst). Such

a replacement, however, is non-trivial in the context of WF instances with parallel
branchings. If it is applied in an unsynchronized manner to the WF servers, some
migrations of a WF instance may be based on the old function while others may
use the new one. Thus, a WF instance might be controlled by different WF servers
within the same domain. Obviously, this should be prevented, in order to avoid
unnecessary communication between the WF servers of a domain (Requirement 2).
This can be achieved by applying one of the following two approaches:

1. First we consider a time-based approach (cf. Algorithm 3). It assigns a time-
stamp T(2+1) to the new distribution function gaﬂ)(l’nst) of the domain D,
@H) (Inst). The newly introduced function

g(lz +1)(Inst) is only used for WF instances Inst with a creation time greater

which is replicated together with g

than Tg +1)> While other instances further use g(lzl)(lnst). It is important to

mention that migrations to the domain D are prevented until Algorithm 3

is finished. When migrating a WF instance with CreationTime > T(2+1) to

the domain D, therefore, the new function g(lz +1) (Inst) and the corresponding
time-stamp will have been already known to this domain. Following this
approach, it is always possible to perform corresponding migrations on the
basis of the new function g(l?l_i_l)(fnst).

2. An alternative method is to calculate the minimal set of WF instances, for
which a change of the distribution function may cause problems. For these
instances, the distribution of the load is further based on the old distribution

function. Algorithm 4 calculates the set Agl +1) which contains the IDs of these
WF instances. Each of them is characterized by the following properties:

a) The instance is controlled by a WF server of the domain D while the
distribution function is modified.



International Journal of Cooperative Information Systems

Algorithm 3 (First Method for the Modification of g (Inst)).
input
D: domain for which the load distribution has to be changed
gaﬂ)(Inst): new load distribution function of the domain D
begin
lock migrations (at all WF servers) to the domain D;
T(QH) = time(); // set the time-stamp to the current time
replicate (ga+1)(lnst), T(QH));
release the locks for migrations to the domain D;
end.

b) For this WF instance, the modification would result in a change of the
corresponding WF server within the domain D.

The new load distribution function g(lz +1) (Inst) is not valid for WF instances
Inst with ID(Inst) € A{:H-l)' Instead, they further use the old function
g(ny(nst) (or g[} | (Inst) if ID(Inst) € Af), additionally holds, etc.). Conse-
quently, we can ensure that all parallel branches of such a WF instance are
always controlled by the same server with respect to a given domain D. For
all other WF instances (with ID(Inst) ¢ AgH_l)), solely the “new” function
g(lz 1) is applied; i.e., also for these WF instances no problems will occur when

joining parallel branches.

Algorithm 4 (Second Method for the Modification of g (Inst)).
input
D: domain for which the load distribution has to be changed
g(I,)IH)(Inst): new load distribution function of the domain D
Sp:  WF server set of the domain D
begin
lock migrations (at all WF servers) to the domain D;
activeWFs = UseSD {Inst | the WF instance Inst is active at the WF server s};
// WF instances, which are active in the domain D, for those the WF server would
// change:
A(I:LH) = {ID(Inst) | Inst € activeWFs A Server®” (Inst) # g(DnJrl)(Inst)};
replicate (g(IfLH)(Inst), A(Dn+1));
release the locks for migrations to the domain D;
end.

The time-stamp-based method only requires a very small effort. The new distribu-
tion function ggH_l) (Inst), however, may not be applied to all WF instances as long

as there are ones, which had been created before this function was introduced. Since
WF instances may be long-running (up to several weeks or months), it may take
a long time to reach the intended load distribution. Although, the second method
requires a larger effort than the first one (due to the calculation and replication

of Agl +1))’ it has the advantage that the new load distribution function can be

used for already running WF instances as well. Which one of the two methods is
more suitable, depends on the respective goals. If the load distribution has to be
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adjusted only for a longer term, the first method is sufficient. If the effects of the
modification must be observed and evaluated immediately, however, the long delay
coming with this time-stamp-based approach cannot be accepted. For this case, the
second method has to be applied. The resulting costs are acceptable as for most
scenarios, a modification of the load distribution is required only seldom.

4.3. Introducing Additional Servers

If a new WF server has to be installed for a given domain D, first a logical server
ID sy must be defined. Afterwards, the new WF server is started and its logical
server ID sp¢ is mapped to its physical address adrye, (cf. Algorithm 5). This is
realized by changing the function h(s) and by replicating it. Initially, no interval
of the distribution function is assigned to spew. It, therefore, will not be used
immediately. Thus, the procedure described by Algorithm 5 does not require any
locks. In order to enable the new server to control WF instances, first of all,
the function gP(Inst) has to be modified (i.e., an interval of the load distribution
function has to be assigned to the new WF server) as described in the previous
section.

Algorithm 5 (Introduction of a New WF Server).
input
Snew: logical ID of the new WF server
adrpeqw: physical address of the new WF server
h(ny(s): current function, that maps logical server IDs to physical server addresses
g(I,)I, +1)(Inst): new distribution function of the domain D which respects the server
Snew as well
begin
start the WF server adrpew;
hnt1)(Snew) = adTnew; V8 # Snew: Rny1)(8) == h)(s);
replicate hn41)(s);
change ga,)(lnst) to g(Dn,H)(Inst) using Algorithm 3 or 4;
end.

4.4. Removing Servers from a Domain

If a WF server s,;q has to be removed from the domain D, first of all, it must be
locked for further migrations (cf. Algorithm 6). Following this approach, all WF
instances controlled by s,;q are subsequently transferred to the server sje.,, which
(temporarily) takes over its tasks. In order to prevent incoming migrations at the
“old” server, its logical server ID s,;4 is “redirected” to the physical address of the
“new” one. This is achieved by changing the function h(,(s). Afterwards, the

resulting function h(,41)(s) is replicated and all locks are released.

Following this approach, the old server no longer controls any WF instances.
In addition, no WF instance may migrate to this server in the future. The server,
therefore, can be stopped. In order to remove its logical server ID, after the com-
pletion of Algorithm 6, the load distribution function should be modified as well.
For this, the methods presented in Section 4.2 can be applied, such that no interval
is assigned to s,;4 anymore. Furthermore, the load that was managed by the server
Sold, thus far, may be distributed to the other WF servers by adjusting all intervals
adequately.

The load distribution function may be realized efficiently and with good statis-
tical properties. As we have shown, it is even possible to change this function in a
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Algorithm 6 (Remove a WF Server).
input
Soia: logical ID of the WF server to be removed
Snew: logical ID of the WF server, that takes over the tasks of so4
hny(s): current function, that maps logical server IDs to physical server addresses
begin
lock migrations (at all WF servers) to the server so4;
hin+1) (Sotd) 1= hn) (Snew); Vs 7 Sota: hnt1)(s) 1= heny(s);
transfer all WF instances from the server h(,(So1a) to the server h(,)(Snew);
replicate h,41)(5);
release the locks for migrations to the server so4;
stop the WF server h(,)(So1a);
end.

running WIMS arbitrarily. Our approach, therefore, does not only fulfill Require-
ments 1-4 — as already shown in Section 3 — but also Requirement 5 (cf. Section 1.2).

5. Simulation

To verify the effectiveness of the presented methods, we performed numerous sim-
ulations. For this purpose, we had realized a program that simulates the arrival of
WF instances at the WF servers of the inspected domain and, in addition, their
retention at these WF servers.

The simulation considers multiple WF types, whereas the corresponding WF
instances cause different loads. In addition, these WF instances have an unequal
starting frequency. It is assumed that their arrival at an inspected partition is
distributed equally over time. Since no influence on the results of the simulations
is expected, to simplify matterns, we further assume that the retention periods of
these WF instances are also distributed equally over a certain period of time. For
the different WF types, however, this time period is non-uniform.

For the simulation time of one year, the load behavior of the different WF
servers that belong to the inspected domain is recorded. These data are used as
basis for the analyses presented in the following. In order to allow an evaluation
of the statistical quality of the results, the simulation was performed 10 times. We
observed, thereby, that the result of the simulation is very exact; for all presented
values the 99% confidence interval is smaller than +1% of the value itself. The most
interesting parameter of the performed simulations is the number of WF instances
which had been concurrently active in the inspected domain. As expected, the
deviations from the intended load will be smaller if this number becomes larger (cf.
Fig. 5). In addition, even the maximal and minimal deviations from the intended
load, which occur during the simulation, become very small, when simulating a
large number of WF instances.

As an example, we present the results of one simulation in order to show that
the deviations from the intended load are extremely small if a reasonable number
of concurrent WF instances is simulated. We consider a simulation for a domain
with 3 WF servers. For this domain, we assume that the available capacities of
the corresponding server machines make it necessary that the load is distributed
with the ratio 20% : 30% : 50% to them. The simulation treats WF instances of 4
different WF types, whereas each WF type possesses different attributes (e.g., with
respect to starting frequencies, generated loads, or retention times of corresponding
WF instances). Four simulation variants have been considered, each of them with
a different number of concurrently active WF instances (on the average) within the
domain.
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Figure 5: Result of the simulation for 10, 100, 1000, and 10000 concurrently active
WF instances within a domain. The numbers above the bars indicate the relative
deviation of the maximal and minimal load from the average value.

The simulation results are illustrated by Fig. 5. The y-axis denotes the part
of the total load a server has to handle. This load portion corresponds to the
part of the communication costs, processing costs, and other costs this server has
to cope with. Note that WF servers of the same domain are homogenous. For all
simulated scenarios, the average load of each WF server corresponds to the intended
load very well. Furthermore, the minimal and the maximal load occuring at a WF
server (within the simulated period of one year) heavily depend on the number of
WF instances concurrently active in the corresponding domain. The maximal load
of a WF server may exceed the value 1.0 if this server has to handle a load (at
one point in time) that is larger than the average total load of the domain. For
very small systems (e.g., a domain with only 10 concurrently active WF instances
is unrealistically small), great variations may occur with respect to these loads.
As opposed to this, for large systems with 10,000 or more concurrently active WF
instances, even the maximum variations are relatively small, namely less than +10%
of the intended load.

The presented simulation only analyses the load situation of the servers for
different numbers of WF instances concurrently active in the domain (on average).
This is permissible since almost all other simulation parameters (e.g., the number
of activities of the WF instances of a particular WF type or the loads generated
by these activities) have no influence on the overall simulation result. They only
concern one single WF type, and, therefore, merely influence the load that is created
when executing WF instances of this type. Nevertheless, for this load we assume
anyway, that it varies from WF type to WF type. The same holds for the created
number of WF instances (of the different WF types). In the following we argue that
the load actually created by the instances of a WF type, in fact, has no influence
on the result depicted in Fig. 5.

Fig. 6 shows that for each WF type, the part of the WF instances controlled by
a given WF server, corresponds to its intended value very precisely (s1: 20 %, s2:
30%, and s3: 50% in our example). For several reasons, it is crucial that this is also
valid with respect to the instances of each individual WF type, and not only for
the total number of WF instances. First of all, WF instances of different type may
generate an unequal load. In the given simulation scenario, for example, we have
assumed that each WF instance of Type 1 creates one load unit, each instance of
Type 2 three load units, each instance of Type 3 two load units, and each instance
of Type 4 four load units. Secondly, WF instances of different types may be started
with different frequencies (in our example: Type 1: 30%, Type 2: 25%, Type 3:
20%, and Type 4: 25% of the total number of WF instances started). In any case,
the resulting load is distributed (almost) identically to the different WF servers —
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for each individual WF type — as can be seen from Fig. 6. It is allowed, therefore,
to inspect the WF types jointly. That means, the fact that the different WF types
cause an unequal load (and how big it is) has no influence on the total loads of
the different WF servers depicted in Fig. 5. The same holds for the number of
activities of the individual WF types, the costs of single activities, the number of
their potential actors, and other parameters belonging to a WF type, because they
only affect the load created by the WF instances.

average number of concurrently active WF instances
49.88%

150 -

49.95% 50.02%

49.91%

100 4 30.11%

30.04%

20.02%
20.05%

50 ¢

s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3
Type 1 Type 2 Type 3 Type 4

Figure 6: Load of the WF servers for 1000 concurrently active WF instances (de-
picted separately for the different WF types).

In summary, our simulations have shown that the presented approach will allow
the load of a WF server to be kept very close to the intended value, if the WIMS is
sufficiently burdened. The presented methods, therefore, work very well.

6. Related Work

In this section we discuss work that is related to the presented approach. In de-
tail, we have a closer look at scheduling methods for distributed operating system
processes and at approaches for distributed WF management.

6.1. Process Scheduling

As already sketched at the end of Section 3.2, process scheduling in distributed
operating systems shows similarities to the assignment of activity instances to WF
servers.

6.1.1. Scheduling of Processes in Distributed Operating Systems

Distributed operating systems use load balancing algorithms to determine the pro-
cessor to which a particular operating system process shall be assigned. First of
all, it is important to mention that operating system processes do not correspond
to the WF instances of a WIMS. Usually, a WF instance consists of several activity
instances, which have to be assigned to the WF servers. In the same way, an appli-
cation consists of operation system processes, which are assigned to the processors.
Consequently, the operating system processes correspond to the activity instances.
The processor, however, is normally determined when starting an operating system
process (non-pre-emptive scheduling 24). As a consequence, no running processes
have to be transferred. Note that, similar to a migration, this would be an expensive
operation.

The goal of dynamic scheduling methods is to distribute the overall load to the
available processors such that they are equally burdened. These methods build the
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left sub-tree of the classification of global load balancing methods as depicted in
Fig. 7 (see also 24:2%). (Local scheduling denotes the distribution of the time slots
of one single processor to the local processes.) Dynamic load balancing algorithms
may be physically distributed or may be centralized. For centralized load balancing
algorithms, a central scheduler decides which processor has to execute which process.
One disadvantage of this approach is that for each processor, information about
its current load has to be transmitted to the central scheduler. In addition, this
central component represents a bottleneck, therefore, affecting system availability.
Concerning distributed scheduling methods, the decision is made jointly by multiple
processors. For this purpose, the locally available information about the load level
of the processors is used. Distributed scheduling algorithms may be cooperative; i.e.,
the different processors pursue a common goal. Contrary to this, non-cooperative
scheduling methods optimize the performance of the local processor. This may have
the consequence, however, that different processors make contradictory decisions.
Cooperative scheduling algorithms may achieve an optimal or sub-optimal result.
A sub-optimal solution arises if approximative methods or heuristics are used.

load balancing algorithms

local global
dynamic static
physically physically optimal sub-optimal
distributed non-distributed
approximate heuristic
non-cooperative cooperative
optimal sub-optimal
approximate heuristic

Figure 7: Hierarchical classification of process scheduling methods.

Static scheduling methods (cf. Fig. 7) assume that the resource requirements

of the operating system processes are known before they are started 2425. This
allows to select a processor that matches well to the properties of the process. Two
variants of such methods are distinguished: The first one calculates the optimal
distribution of the processes to the processors. The second one achieves only a
sub-optimal solution, which is determined by the use of approximation techniques
or heuristics. For the calculation of the optimal solution and for the approximation
of a sub-optimal solution, the same techniques are used, namely the (partially)
scanning of the possible solutions.

6.1.2. Comparison with Load-balancing in WfMS

Let us now discuss, how the presented load-balancing approach for WfMS is related
to these process scheduling methods. In addition to the general remarks given in
Section 3.2, the following statements can be made: In WfMS much useful informa-
tion is available about the WF types (e.g., the potential actors of the activities and
the subnets these users belong to). The situation, therefore, corresponds to that of
static scheduling methods. ADEPT uses this information to determine well-suited
domains for the WF partitions (cf. Section 1.1). For the selection of a concrete WF
server within a given domain, in principle, a dynamic load balancing method is ap-
plied. When such methods are used, normally, the problems described in Section 3.3
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occur in conjunction with parallel branches, and also in conjunction with operations,
that involve all servers currently controlling a WF instance. (An example for such
an operation is the dynamic modification of a WF instance in a distributed WfMS
16, For several reasons, in such a case, all servers currently controlling the modi-
fied WF instance have to learn the WF instance graph structure resulting from the
change.) To solve these problems, a load balancing method (random selection of
the servers) was extended that way that for one WF instance always the same WF
server is chosen. The result is the presented hashing approach.

6.2. Distributed Workflow Management Systems

Although issues related to distributed WF management are considered as very im-
portant in the WF literature 17-26:27,20,21.8,22,1L19 "+, our best knowledge, so far,
there has been no work on distributed WF management that deals with the appli-
cation of randomized methods to select the WF server for a given WF partition.
For the first time, this paper examines the problems, which result from the use of
several WF servers within one domain. Additionally, it shows how an appropriate
server can be selected for activity executions in such a scenario. In more detail, this
section offers a short overview of distribution models for WfMS as suggested in the
WF literature (see Fig. 8). We discuss, how the different distribution models are
related to the ADEPT approach and how the concepts presented in this paper may
be used in combination with these models.

distribution models for WfMS

WIMS with
several servers

WHMS with a servers are servers are server are completely
central server selected close to the close to the distributed
randomly actors application WiMS

Figure 8: Classification of distribution models for WfMS.

Some WF research projects, which have not been primarily concerned with
scalability issues (e.g., Panta Rhei 2® and WASA 29), and most commercial WfMS

(e.g., Staffware 3°) use a central WF server. Since such a central server represents
a bottleneck, these WfMS are not scalable.

Completely distributed approaches (e.g., Exotica/FMQM 26 and INCAS 27)
have no central WF server. Instead they realize the WF server functionality by the
use of the actor machines; i.e., a particular WF instance is always controlled by the
computer of that user who currently works on an activity of this instance. One dis-
advantage of such approaches is that the synchronization of the potential actors who
may work on an activity is very expensive since an additional distributed protocol
is required. Furthermore, for (almost) each activity execution, a migration of the
WF instance to the computer of the corresponding actor becomes necessary, which
results in high communication costs. Of course, using such a distribution model,
there is no central WF server (in the conventional sense) which could represent a
potential bottleneck. Consequently, no WF server may become overloaded, such
that there is no need for using our approach.

In the Exotica project, an approach was developed, which is based on the random
choice of a WF server (cluster) at the time a WF instance is started 7. The WF
instance remains in the selected cluster during its whole lifetime; i.e., there are no
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migrations (as in ADEPT). As already discussed in Section 2, such a distribution at
the WF instance level may be unfavorable if the potential actors of the activities are
geographically spread. For this case, it is generally not possible to achieve locality
between actor and server for all WF activities. Strictly speaking, this distribution
model corresponds to a central approach with a replicated WF server, whereas the
actual server for the control of a particular WF instance is randomly chosen (cf.
Section 3.3). Since a WF instance never changes the cluster, no problems occur
when joining parallel branches.

Many approaches use several WF servers, allowing that WF instances may mi-
grate from one WF server to another during run-time. These approaches use differ-
ent, strategies for partitioning WF graphs and for selecting the concrete WF server
of a partition. As ADEPT, MENTOR & and WIDE 2° follow an actor-centric ap-
proach. They choose the WF server “near” to the potential actors of the current
activity. Unlike ADEPT, these two approaches have the limitation that all potential
actors of an activity must belong to the same domain as the server of the activ-
ity. This may be contradictory to organizational facts. In addition, it may result
in unprofitable migrations (of the whole WF instance) if single activities are per-
formed by actors of another domain. METEOR; 2!, CodAlf 22, and BPAFrame 22
choose the server near to the application that belongs to the current activity. This
application-centric view may lead to an unfavorable communication behavior for
the users, because the server is not necessarily located in the subnet of the current
actors. For all these distribution approaches, a WF server may become overloaded.
The presented hash approach would allow to replicate such a WF server and to
distribute the load to the resulting servers.

MOBILE '® assigns the instances of distinct WF types to different WF servers.
Migrations are not supported. A sub-process, however, may be controlled by a
different WF server '°. This server is chosen at run-time, based on diverse cri-
teria (e.g., rights and weights). Some commercial products (e.g., IBM MQSeries
Workflow 331) enable remote sub-process execution as well. Principally, this corre-
sponds to an approach with a central WF server and an extension for distributed
WF execution. Its disadvantage is that each modification of the server assignment
also requires an expensive change of the WF model. Furthermore, following such
an approach, a WF server may become overloaded as well. In this context, our
approach could be used to solve this problem. As only whole sub-processes may be
controlled by other servers, parallel branches are always joined by that server that
controls the corresponding split node. Therefore, no problem (cf. Section 3.3) may
occur when joining parallel branches. Thus, it is also possible to use the suggested
variant with a random server selection.

There is another promising approach 32 that is orthogonal to the distribution
model of the WfMS. It uses continuous-time Markov chains to calculate the most
suitable configuration of a distributed WIMS; i.e., the optimal number of instances
of each system component. In this work, the performance and the availability of the
WIMS have been considered, whereas issues related to the resulting communication
costs have not been discussed. In our scenario, a similar model could be used to
calculate and adapt the intended load of the individual WF servers.

To summarize, the application of the presented methods is not restricted to
ADEPT. They may be advantageous for many other approaches as well. For ap-
proaches that do not use migrations, a randomly chosen server is sufficient. Other-
wise, the hash variant is best suited (as for ADEPT).

7. Summary and Outlook

The numerous tasks of a WF server may result in its overload. This can be pre-
vented if the WF server is replicated and the load is distributed to the resulting
servers. In this paper, we have presented an approach that hashes WF instances
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to the WF servers of a domain. By means of a simulation we have shown that
this approach enables an arbitrary and definable distribution of the load to the
WF servers. Basically, the approach does not generate any additional communi-
cation. Since only a simple hash function has to be evaluated, it requires a very
small computational effort. Furthermore, it allows to change the distribution of the
load between the WF servers while the system is running. Thus, the problem of
overloaded WF servers is solved.

In this paper, we have also discussed the applicability of load-dependent ap-
proaches for WF server selection. In general, these approaches have many disad-
vantages when compared to hashing. But they may be relevant for some special
applications. This will be the case if the available capacity of the WF servers fluctu-
ates, if the breakdown of WF servers has to be compensated by these methods, or if
a WF server is only able to control very few WF instances. In the latter case, even
a small unequal distribution of the load, as it may be caused by the hash approach,
would result in difficulties.

There are some topics, which are related to distribution aspects. Since we have
focused on performance issues, reliability and availability aspects have not been
discussed in this paper. They are independent from our work, because they concern
the use of backup servers *. In addition, ADEPT assumes a homogenous server
environment. To address interoperability questions, it should be examined if the
presented approach is also applicable in a heterogeneous environment, where remote
invocations of sub-workflows have to be used instead of migrations.
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