
Context-based Handling of Mobile
Process Activities

Rüdiger Pryss and Manfred Reichert

University of Ulm, Institute of Databases and Information Systems, Germany

ABSTRACT
Process technology constitutes a crucial component of information systems. In this context, high
flexibility is required as business functions must be quickly adaptable to cope with dynamic
business changes. As recent developments allow for the use of mobile devices in knowledge-
intensive areas, it is often demanded to enhance process-aware information systems with mobile
activity support. In general, the technical integration of this activity type with existing process
management technology is challenging. For example, protocols governing the communication
between mobile devices and process management systems must be adapted. If a mobile context
shall be additionally considered, the integration gets even more complex. However, the use of a
mobile context offers advantages. For example, the mobile activity execution time may be
decreased if mobile activities are only assigned to those users whose location is beneficial. This
work proposes an approach to enable the robust handling of single process activities on mobile
devices based on a mobile process model.

Keywords: Mobile Service, Human-centric Mobile Activities, Mobile Context, Mobile Process
Model, Mobile Worklist, Mobile User Assignment, Exception Handling, Exception Prevention

INTRODUCTION
Daily business routines more and more require mobile access to Information Systems. However,
the integration of mobile devices into existing infrastructures is laborious and error-prone. In
particular, the infrastructure must cope with ad hoc events, various types of exceptions (e.g.,
connectivity problems), physical limitations of mobile devices (e.g., limited battery capacity),
misbehavior of users (e.g., instant shutdowns), and the evaluation of data collected by mobile
sensors (Schobel et al., 2013). In general, proper exception handling constitutes a prerequisite for
any mobile activity support. In this context, adaptive and flexible process management
technology offers promising perspectives based on a wide range of techniques (Reichert &
Weber, 2012; Reichert & Weber, 2013). In particular, it allows for the proper handling of run
time exceptions. However, execution of process activities on mobile devices in the same way as
on stationary computers is not appropriate when the specific challenges of mobile environments
are not taken into account.

A service-oriented environment should allow for mobile activity support during business process
execution. This paper presents an approach developed in the MARPLE (Managing Robust
Mobile Processes in a Complex World) project. This approach enables the robust execution of
single process activities on mobile devices and is based on two services, a service that assigns
mobile users to mobile activities and an exception handling service for mobile activities. These

 2

services ensure that mobile activities are (a) only assigned to those mobile users that are
particularly appropriate based on a mobile context and (b) do not harm the overall process
execution when activity exceptions occur. In this context, a service-oriented architecture was
realized that integrates the services with existing process management technology. To be more
precise, the architecture allows for the instantiation, activation, and exception handling of mobile
activities.

This paper presents the support of mobile activities and the handling of exceptions during run
time without need for manually involving mobile users. Note that this is crucial with respect to
higher user acceptance of mobile business processes. Generally, the provisioning of self-healing
techniques is crucial for executing mobile activities in the large scale as well as for achieving
higher user acceptance.

We firstly discuss fundamental issues arising in the context of mobile environments. Their
understanding is crucial for developing the two fundamental services as well as for designing the
overall system architecture. In this context, the challenges (e.g., device failures) are considered
which must be tackled to ensure robust execution of mobile activities. In detail, challenges are
addressed that are related to the mobile environment itself (e.g., a mobile device loses its
connectivity), related to the business process execution (e.g., missing data caused by activity
exceptions), and related to the behavior of the mobile users (e.g., instant shutdowns).

BACKGROUND
Many domains crave for the integration of mobile devices into business process execution (Lenz
& Reichert, 2007; Pryss et al., 2016(a)). Figure 1 shows a simplified healthcare example
illustrating this. It depicts a ward round process for which mobile assistance is required (Pryss et
al., 2015). For instance, Prepare Ward Round constitutes an activity whose mobile support
would ease daily work of healthcare professionals.

 3

Figure 1. Adding mobile devices to process execution (mobile activities are indicated with an
icon)

The use of mobile devices during process execution raises several challenges with respect to
mobile activity support. For example, if the mobile device running the activity Determine Vital
Signs (see Figure 1) encounters physical problems, overall process execution might be harmed;
or if activities succeeding a mobile activity in the flow of control have to access data that is
usually provided by this mobile activity, standard exception handling strategies (e.g., to skip the
mobile activity) are not appropriate when the mobile activity fails. As shown in Figure 1, activity
Finish Ward Round is data-dependent on mobile activity Determine Vital Signs. In turn, this
might cause problems when activity exceptions occur, i.e., if Determine Vital Signs fails, the
process cannot terminate properly, since activity Finish Ward Round cannot be properly
executed due to the missing value of data element D1.

Challenges for Executing Processes with Mobile Activities
To be able to run selected activities on mobile devices during process execution, the challenges
imposed by mobile environments need to be properly addressed. These challenges relate to the
state of mobile devices as well as the behavior of mobile users. In addition, the specific
challenges relating to process execution must be considered as well; e.g., dealing with missing
process data due to failed mobile activities at run time. This section presents backgrounds on the
elicitation of challenges in this context, discusses relevant and challenges addressed, and
categorizes them into process-, mobile environment- and user- related.

 4

In the following, three advanced mobile application scenarios will be discussed. These scenarios
(case studies) base the considerations on relevant challenges when executing mobile activities in
the context of business processes. Thereby, only one scenario is relevant in the context of
business process execution. The remaining two scenarios are not concerned with business
process execution, but also constitute demanding scenarios for mobile application development
in general. As a result, they revealed similar challenges as have been identified for mobile
activity execution. The first mobile application scenario stems from the healthcare domain,
whereas the second from the field of augmented reality, and the last one from the psychological
domain.

Supporting Medical Ward Rounds with Mobile Task and Process Management
In hospitals, ward rounds are crucial for decision-making in the context of patient treatment
processes. In the course of a ward round, new activities are defined and allocated to healthcare
professionals. In clinical practice, however, these activities are not properly addressed. During
ward rounds, they are jotted down using pen and paper, and their later processing is prone to
errors. Furthermore, healthcare professionals must keep track of the processing status of their
activities (e.g., medical orders). To relieve healthcare professionals from such a manual activity
management, the MEDo (MedicalDo) approach (Pryss et al., 2015) supports ward rounds by
transforming the pen and paper worksheet to a mobile user interface on a tablet integrating
process support, mobile activity management, and access to the electronic patient record. Based
on the lessons learned from this case study, requirements have been derived for mobile activity
support in the context of medical ward rounds. As a particular challenge, the following has been
identified: if mobile assisted activities will be interrupted and not properly continued later,
exceptions like missing data frequently occur. Altogether, Table 1 summarizes which challenges
in terms of parameters for executing processes with mobile activities have been identified from
this mobile application scenario.

Location-based Mobile Augmented Reality Applications
In the AREA (Augmented Reality Engine Application) project (Pryss et al., 2016(a); Geiger et
al., 2013), an advanced mobile application, which enables location-based mobile augmented
reality on three different mobile operating systems (i.e., iOS, Android, and Windows Phone) has
been designed and implemented. This kind of mobile application is characterized by high
resource demands since various sensors must be queried at run time and numerous virtual objects
may have to be drawn in real time on the screen of the mobile device. Therefore, the lessons
learned when implementing real world mobile business applications with the mobile augmented
reality engine, have revealed profound insights into challenges of mobile application
development in general. Table 1 summarizes again which challenges in terms of parameters for
executing processes with mobile activities have been identified from this mobile application
scenario.

Applying Mobile Technology to Psychological Questionnaires
Many psychological studies are performed with specifically tailored "paper & pencil"-
questionnaires. Such a paper-based approach usually results in a massive workload for
evaluating and analyzing the collected data afterwards, e.g., to transfer data to electronic
worksheets or any statistics software. To relieve researchers from such manual tasks and to
improve the efficiency of data collection processes, mobile device applications have been

 5

developed in the context of the QuestionSys1 project for existing psychological questionnaires
(e.g., Schobel et al., 2016(c)). Based on these applications, the usefulness of mobile devices for
mobile data collection in the context of psychological questionnaires has been demonstrated.
Although the implemented applications already have shown several advantages in respect to data
collection and analysis, they have not been suitable for psychological studies in the large scale
yet. Consequently, new challenges emerged when using the mobile applications in such
demanding scenarios. Table 1 summarizes which challenges in terms of parameters for executing
processes with mobile activities have been identified from this mobile application scenario as
well.

Considered Context for Executing Processes with Mobile Activities
The mobile context is represented by a parameter catalogue. The parameters were identified in
the discussed real-world scenarios. In addition, the catalogue is based on a comprehensive
literature study. For several reasons, we assign parameters to four categories: First, parameters
related to the mobile device of a mobile user (SMD parameters) are managed. For example, a
battery status is managed for mobile devices. Second, all parameters associated with mobile
activities (MA parameters) are managed. For example, the execution location of the mobile
activity is captured. Third, parameters that can be related to the overall process execution are
managed. This category became necessary to cope with the complexity of managing a multitude
of parameters. For several parameters, it would be costly to manage them separately
for each mobile activity. Therefore, a parameter applying to all mobile process activities is used,
e.g., to manage a generally demanded battery status for the activation of all mobile activities of a
process. Finally, parameters associated with mobile users (MU parameters) are managed, e.g.,
the usual location of a mobile user. The entire parameter catalogue is presented in Table 1. In
addition, Table 1 presents in which real world scenarios a parameter was crucial. Column T of
Table 1 further indicates whether a parameter is of type symbolic or measured. From the
considered application scenarios, we revealed that such differentiation is useful. Symbolic
parameters are used in related work to define parameters on an abstract level (Becker & Dürr,
2005). For example, regarding the location of a mobile activity, the symbolic parameter
emergency room might be used. First, symbolic parameters are considered as they can already be
evaluated before starting a process. For example, consider the following scenario: Symbolic
parameters are managed for mobile users and mobile activities. Hence, it can be indicated before
the execution of a mobile activity takes places how many mobile users are closely located to the
location of the mobile activity that shall be performed based on a simple comparison of the
symbolic parameters. Apparently, it is just an indication, but has shown its advantages in
practice. Second, for the assignment of mobile users to mobile activities symbolic parameters
can be advantageous as well. For example, if precise location information (e.g., GPS) cannot be
obtained for a user location due to a connection loss, the symbolic parameter may be used
instead. Conversely, measured parameters are automatically determined after starting the process
instance. For example, if a mobile activity shall be executed, the battery status of all mobile users
is gathered.

Selected parameters require a brief discussion. The form factor parameter is used to indicate the
mobile device type (i.e., tablet or smartphone). Geometric coordinates, in turn, are measured and
correspond to GPS coordinates in an outdoor scenario and WLAN coordinates in an indoor

1 Further information to the project can be found at: http://www.dbis.info/questionsys

 6

scenario. Parameter location range refers to the location of a mobile activity defining a radius
around its geometric coordinates. Mobile users located inside this radius are considered for
executing this mobile activity. Urgency value defines a period (or point in time) during which the
mobile activity shall be executed. Furthermore, response frequency is a value that determines the
frequency with which the mobile device of a particular user must report its online status to the
process management system. If the mobile device does not obey this reporting frequency, an
exception handling is triggered. Related to response frequency is parameter offline mode. If the
latter is set to true for any mobile activity, the mobile device may ignore the response frequency
to enable offline execution of this mobile activity. In practice, this was frequently demanded.
Finally, network type is used to capture the network connection of a mobile device (e.g., WLAN
or UMTS).

In addition, the parameter catalogue contains two threshold parameters. User threshold indicates
the number of users that need to be available to activate a mobile activity. In turn, the instant
shutdowns parameter captures the behavior of mobile users. Note that in practice users may
instantly shutdown their mobile device without reflecting on the consequences of this shutdown.
Usually, this constitutes a short-term problem and the device can be restarted soon in most cases.
If a user exhibits many instant shutdowns, however, this misbehavior should be considered in the
context of mobile activity assignments. To cope with such careless shutdowns, a mobile device
sends a message to a service that an instant shutdown will take place soon. In this context,
several mobile development frameworks were evaluated (i.e., Google Android, Apple iOS,
Microsoft Windows Mobile) and it could be demonstrated that this solution for detecting instant
shutdowns is feasible for all of them. Finally, to assess user behavior over time (e.g., whether or
not a user performs many instant shutdowns), parameter instant shutdowns is managed. Related
to it, a general process parameter instant shutdown threshold is managed for all mobile activities
that is compared with the parameter managed for a particular mobile user. If the parameter value
of a mobile user is above the instant shutdown threshold parameter, he or she will be particularly
considered for the execution of the mobile activity.

Regarding the presented parameter catalogue, we do not claim that it captures all possible or
required parameters. It rather reflects insights we gathered from our analysis of real-world
scenarios. Furthermore, the application of the parameters identified in other practical scenarios
was promising. More specifically, domain experts were able to determine useful parameter
values.

 Parameter Description Type MEDo AREA QuestionSys

M
ob

il
e

E
nv

ir
on

m
en

t Category I: Mobile device (SMD)

SMDBS Battery Status M x x x

SMDFF Form Factor S x x -

SMDNT Network Type M x x x

SMDGC Geometric Coordinate M x x -

P
ro

ce
ss

 Category II: Mobile Activity (MA)
MASC Symbolic Coordinate(s) S x - -

MAGC Geometric Coordinate M x x -

 7

MALR Location Range S x x -

MABS Battery Status M x x x

MAU Urgency Value S x - -

MAOFF Offline Mode S x x x

MAFF Form Factor S x x x

MARF Response Frequency S x x x

MAUT User Threshold S x - -

Category III: Process (P)
PIST Instant Shutdown Threshold S x - -

U
se

r
B

eh
av

io
r Category IV: Mobile User (MU)

MUSC Symbolic Coordinate(s) S x - -

MUIS Instant Shutdowns S x - -

| Type: M=Measured, S=Symbolic | (x): relevant | (-): not relevant |
Table 1. Excerpt of considered real world projects revealing parameters for executing processes with
mobile activities

Mobile Process Execution Approaches
Next, we will discuss alternatives for realizing processes that comprise mobile activities and
describe corresponding process models. For realizing processes with mobile activities, three
different approaches exist (see Figure 2):

Approach 1 (Physical Process Fragmentation aka Process Partitioning):
A process (i.e., process schema) is physically partitioned during design time. The resulting
process fragments and their activities are then assigned to a number of mobile devices before run
time (and on an instance-per-instance basis, see Approach 1 in Figure 2). Consequently, the
execution of process fragments must be synchronized during run time. This is a complex task to
accomplish. For example, if the same data element is written by different process fragments,
sophisticated synchronization techniques become necessary to ensure data consistency. Another
challenge emerges if a device encounters physical problems (e.g., a lost connection).

Approach 2 (Logical Process Fragmentation aka Migrating Processes):
A process schema is partitioned logically. In this case, the resulting process fragments and their
activities are executed on different mobile devices. Contrary to the first approach, the original
process schema will be preserved during run time when executing the process fragments
(Approach 2 in Figure 2). Usually, migration techniques are applied in this context (Zaplata et
al., 2010). More precisely, based on the original process schema, it can be determined how the
migration between logical process fragments shall be accomplished at run time. Accordingly, it
is dynamically determined which device shall execute which process fragments. In particular,
this allows for dynamic exchanges of devices already assigned to a fragment. Another challenge
emerging in this context is synchronization of the execution of parallel process branches
concurrently executed on different mobile devices, i.e., a synchronization method is required to
cope with data inconsistencies when joining the execution of the different branches.

 8

Approach 3 (Single Mobile Activity Handling):
Single process activities are executed on mobile devices. For this purpose, a mobile device must
cover a subset of the functionality of a stationary process client, e.g., a worklist component that
is continuously updated by the process engine (see Approach 3 in Figure 2).

Discussing the Approaches and Related Work
In the following, only a brief discussion about Approaches 3 will be given. Approaches 1 and 2
are predominant in research on distributed processes in general and for distributed mobile
processes in particular. However, the robust execution of mobile activities (i.e., Approach 3) has
not been researched extensively. As this paper deals with Approach 3, only this approach is
discussed in more detail. More information to the other approaches can be found in (Pryss &
Reichert, 2016). In general, by following Approach 3, our focus is on the robust execution of
mobile activities, while at the same time not burdening mobile users when exceptions occur.
Note that Approach 1 is generally not considered in MARPLE as it reveals too many drawbacks.
Approach 2 is considered in MARPLE, but not subject to this paper. Figure 2 finally summarizes
all presented approaches.

Approach 3 and related work: Note that Approach 3 only focuses on single mobile activities of a
business process. Therefore, only related work is important which focuses on the challenges to
perform single activities on mobile devices properly. In (Alonso et al., 1995), the challenges of
disconnected clients in the context of business process execution have been early discussed with
no mobile context. Since disconnections of a device performing an activity constitute the most
important aspects for mobile activity execution, (Alonso et al., 1995) can be regarded as first
work dealing with challenges relevant for mobile activities in the context of business processes.
In sequel to that early research work, less work (e.g., (Tuysuz et al., 2013)) on how to properly
execute mobile activities on mobile devices exist. In particular, many characteristic challenges
imposed by mobile environments are less considered. Only the aspect of missing or inconsistent
data is predominant subject to many research works in this context (Hahn & Schweppe, 2009).
For example, (Hahn & Schweppe, 2009) proposed the apply transaction techniques to mobile
processes. To deal with failures of mobile devices (e.g., a disconnected device) mobile activities
are executed within transactions. Furthermore, transactional properties are defined to determine
in what cases a transaction has to be cancelled. Used techniques in this and similar work do not
deal with exceptions like presented in this paper. In particular, they do not focus on how to
compensate exceptions while ensuring same execution semantics as originally intended. Another
research work relevant in this context is proposed by (Pryss et al., 2015). The presented MEDo
approach deals with mobile task handling in the context of medical ward rounds. In turn, MEDo
does not deal with fine-grained considerations on mobile activities, i.e., user-, process-, and
environment challenges, as constituted by the above presented seven challenges.

Furthermore, recent related works address exception handling in the context of mobile services
(Chen, Cardozo, & Clarke, 2016; Marinescu, et al., 2015). However, they do not focus on
human-centric mobile activities. Furthermore, preventing exceptions in a mobile context is not
explicitly considered. For example, approaches dealing with mobile agents (Marinescu, et al.,
2015) focus on exception prevention. Again, they do not specifically consider human-centric
mobile services as the presented framework does. Finally, existing commercial process
management systems supporting the integration of mobile activities do also not provide a
particular exception handling concept (IBM, 2018).

 9

Figure 2. Approaches for realizing mobile processes

Defining Processes with Mobile Activities
This section introduces the notion of our developed process meta-model that is crucial for the
match-making model (i.e., assigning mobile activities to concrete mobile users) of the mobile
activities (see Fig. 3, 1). The meta-model, in turn, is based on an extensive literature review (e.g.,
(Zaplata et al., 2010; WFMC, 2018)). Consider that Fig. 3 also illustrates mobile worklist
management in the context of the meta-model (see Fig. 3, 6; (Pryss et al., 2016(b))). Note that all
entities concerned with worklist management are marked accordingly. As can be seen,
fundamental adaptations were required to enable worklist management for mobile activities. The
meta-model is denoted as mobile process meta-model. In the context of worklist changes, two
algorithms were developed (see Fig. 3, 2&3). The first algorithm manages user assignments and
the execution of mobile activities (see Fig. 3, 2). It is denoted as Selection Algorithm, meaning
that all mobile users determined by the algorithm are qualified to execute the mobile activity.
The qualification, in turn, is based on three concepts: authorization (e.g., roles (Sandhu et al.,
1996)), constraints; e.g., to ensure two activities will be executed by the same user (Pryss,
Musiol, & Reichert, 2013), and a mobile context (see Fig. 3, 4). As frequently changing
circumstances and limited resources have to be properly addressed in mobile environments, the
goal should be to find those mobile users with appropriate capacities (e.g., being closely located
to the place the mobile activity shall be enacted) on one hand. On the other, the determined
mobile users shall minimize the occurrence of exceptions. In this context, the Selection
Algorithm evaluates the resource situation of all qualified mobile users as well as the best
environment matching (e.g., the user is closely located to the mobile activity.). Note that a good
matching in these aspects revealed quicker execution times of mobile activities and hence
reduces exceptions. The second algorithm, the Ranking Algorithm, handles exceptions (e.g.,
mobile device crashes) during the execution of mobile activities (see Fig. 3, 3). To enable a
proper exception handling, changes in respect to the state model of mobile activities (see Fig. 3,
5) became necessary, i.e., compared to non-mobile activities, the behavior of specific state
transitions had to be changed and new states had to be added.

 10

Figure 3. Mobile Process Meta-Model

MOBILE PROCESS ACTIVITY INTEGRATION ARCHITECTURE
This section presents the proposed architecture in terms of the delegation and backup concept
and discusses the management of user lists for the delegation service. First of all, the run time
architecture is sketched, in which delegation and backup services are applied.

Mobile Activity Run Time Architecture
The delegation and backup services allow for the robust execution of mobile activities.
Furthermore, their design allows for the use of existing service-driven business process engines.
Implementing a specific process engine which provides all functions for creating and executing
mobile activities constitutes another possible direction. However, if a process management
system is already in use, the introduction of a new process engine is usually a complex endeavor
due to high efforts for transferring process models to the new engine. Therefore, the presented
architecture provides an engine-independent interface for executing mobile activities. Since
communication with Web services constitutes a core feature of any modern process engine, a
service-driven approach has been realized (see Figure 4). The core of the run time architecture
for executing mobile activities is denoted as mobile execution environment (see Figure 4). Note
that the mobile execution environment extends existing business process environments without
any mobile support. It provides components to manage mobile users (list management), to
handle delegations, to perform the backup service, and the Interfaces 1 and 2. The list

 11

management component, in turn, maintains user lists to enable delegation management. Interface
1 is the connection to a business process management environment. Its purpose is to
communicate with the business process engine. It is designed and implemented to allow for the
integration of a wide range of existing business process environments (e.g., Intalio (Ghalimi,
2006) or Activiti (Meister, 2011)). Finally, Interface 2 is used to integrate mobile devices with
the mobile activity execution. Its purpose is to communicate with the mobile devices.
Furthermore, a mobile service client has been implemented which is deployed to mobile devices.
This client is used to push the following information via Interface 2 to the mobile execution
environment: battery status, connection status, user location, and instant shutdowns. Thereby, the
mobile device periodically sends status of user location, connectivity, and battery charge level to
the mobile execution environment. Note that instant shutdowns are determined as follows: if a
mobile device gets offline and recovers, it will be determined whether an instant shutdown has
been the reason for getting offline. For example, regarding Android devices, the “<action
android:name="android.intent.action.ACTION_SHUTDOWN"/>” will be determined. If an
instant shutdown has been identified, the shutdown counter for the respective device will be
increased.

Figure 4. Mobile activity run time architecture (simplified)

Delegation
We introduce the notion of delegation during process execution as well as a corresponding
approach (see Figure 5).

 12

Figure 5. Delegation mechanisms

Approach 1 (Transfer Rights):
Delegation permits a user to assign all or a subset of their authorization rights to other users not
possessing these rights at the moment (see the functionality of Approach 1 in Figure 5). Thereby,
they may either assign these rights in the context of a particular process instance or for all
process instances. (Schaad, 2003; Crampton & Khambhammettu, 2008; Gaaloul & Charoy,
2009) provide various reasons for delegating respective rights; e.g., a user may not possess
required documents, or an entailment constraint like separation of duties must be enforced
(Pryss, Musiol, & Reichert, 2013). In this context, delegation may be accomplished based on two
techniques: First, delegation may be applied based on user-defined rules stored in a repository.
Second, users may delegate their rights dynamically during run time. The two techniques can be
summarized as user-to-user interaction pattern: A user determines the context in which a
delegation may be applied. Finally, delegations only take place when an activity is in a desired
state. Note that Approach 1 constitutes the common notion for delegation in the context of
business processes.

Approach 2 (Exception Handling):
Delegation may be further applied in the context of exception handling. It will then be performed
when mobile users and their devices encounter problems. This pattern is applied in the proposed
architecture. Note that a delegation may be only performed to another mobile user possessing the
same rights as the mobile user who has caused the problem. The delegation will then be
performed in a system-to-user interaction pattern.

User List Management for Delegation and Backup
To foster robust execution of mobile activities, three different user lists are maintained: an initial
user list ulinit, a user list ulmob comprising appropriate mobile users, and a delegation list dlmob.
Note that all lists except ulinit are maintained by the mobile execution environment. ulinit is
provided by a process engine and contains all mobile users umob authorized to perform a mobile
activity tmob. Furthermore, ulinit constitutes the basis for determining the two other lists, which are

 13

determined based on an analysis of ulinit. Thereby, ulinit is created by considering the following
properties:

Property Description
Connectivity Indicates whether a user umob is online or offline.
Low Battery Status Indicates whether the user’s device has a low battery status.

User Location vs.
Activity Location

The user’s current location will be compared to the activity
location. For example, if the location attribute of a mobile
activity has value emergency unit and a mobile user is currently
staying at another ward, he/she will not be considered for ulinit.
Moreover, during this phase both the symbolic as well as the
geometric coordinates are used (see Table 1)

Pre-filter Indicates if umob has been excluded by a pre-filter.

Instant Shutdowns
The user’s current number of instant shutdowns will be
compared to the generally defined threshold for instant
shutdowns of a mobile activity.

Table 2. Properties for determining ulinit

As soon as mobile activity tmob becomes activated, ulmob will be calculated by the delegation
service as follows (see Table 3):

ulmob ← {}

FOREACH umob IN ulinit

IF (umob.connectivity) AND (¬ umob.pre‐filter)

 IF (umob.location = tmob.location) or (umob.location = {} and tmob.location=0)

THEN

ulmob.append(umob)

FOREACH umob IN ulmob

 umob.determine.ranking.value(umob.resource.behavior1)

ulmob.sort() based on ranking.value and in descending order

1= resource.behavior is a complex procedure not shown here due to space limitations. It evaluates the resource behaviour of a mobile
user (based on connection losses, performed instant shutdowns, failed delegations, and low battery times)

Table 3. Ranking Algorithm

According to this procedure, all mobile users from ulinit being online, not being pre-filtered (i.e.,
not being manually excluded for the process or an instance of the process), and are located
closely to the required location of the activity (again, both the symbolic and geometric
coordinates are evaluated), will be appended to ulmob. Then, ulmob will be sorted in descending
order based on a ranking value. The ranking value is determined for each mobile user and
determines his resource behaviour. The latter is calculated based on the connection losses,
performed instant shutdowns, failed delegations, and low battery times of a mobile user.
Thereby, a ranking with high value indicates good resource behaviour for a mobile user; i.e., he
has exhibited less connection losses, performed less instant shutdowns, caused less failed

 14

delegations, and showed less times a low battery status than other mobile users with a lower
ranking value. Finally, the mobile user in ulmob with highest ranking value will be notified about
the mobile activity being ready for execution. As a result, he will see this activity in his work list
on the mobile device. After the mobile user has claimed the activity, the delegation can be
started. If he declines the execution, ulmob will be used to identifiy the mobile user next in line
with respect to the ranking value. Then, this identified mobile user will be notified about the
mobile activity being ready for execution. The procedure is repeated until a mobile user accepts
the delegation request or he constitutes the one in ulmob with the lowest ranking value (i.e., the
final mobile user in ulmob). If the latter is the case, the mobile user cannot decline the delegation
request.

User Assignment and Race Conditions
The different lists maintained and presented above for delegation and backup service prevent
race conditions with respect to user assignments. As a result, only one mobile is responsible for
performing a mobile activity at any point in time. This will be enabled due to the following
reasons:

 Delegation ensures that a mobile user performing a mobile activity is distracted from the
respective mobile activity execution before delegation to another user is performed.

 User list management ensures that work lists on the mobile devices are synchronized and
only one user can claim a mobile activity.

 Delegation management only prioritizes mobile users according to the presented aspects
(e.g., battery status). As a result, the assignment of users is an atomic operation since it is
performed similar to user list management in existing business process engines (e.g.,
Reichert et al., 2009).

Protocol Management for Delegation
In a process management system that realizes that mobile process meta-model we developed, the
delegation concept needs a protocol definition between the mobile device and the process
management system. Therefore, the protocol coordinating the interactions between the mobile
process client and the process management system is presented (see Fig. 6). First, we present
required components (see Fig. 6), which were implemented as a service-oriented middleware that
interacts between an existing process management system and the mobile process client. The
basic components of the middleware include a service-centric play application and a MySQL
database connected to it. The delegation concept presented in this work is realized by the mobile
activity handler. Processes, in turn, are coordinated by the adaptive process management system
AristaFlow BPM Suite. The realized mobile process client consists of two components that
manage the entire communication: the worklist client and the execution client. Thereby, the
worklist client manages the worklist, whereas the execution client manages the communication
between the worklist client, an invoked mobile application, and the developed service-oriented
middleware. The invoked mobile applications, in turn, actually perform the mobile activity (e.g.,
invoking Mobile Microsoft Excel). Based on this, the delegation protocol was realized. It
governs the interactions between the mobile process client and the service-oriented middleware
in case of a delegation. The protocol steps are depicted in Fig. 6. Thereby, steps within the In-
Delegation box are crucial for handling delegations. In particular, they constitute the steps
performed after a delegation. Two scenarios must be distinguished. First, the mobile device
might no longer work after the occurrence of the exception. Second, it might still work, but no

 15

longer be connected to the process management system. In the first case, all steps shown for the
mobile process client are not performed. In the second case, all shown steps are performed. After
starting the delegation, the process management system performs the following steps. First, it
withdraws the mobile activity running on the mobile device by updating its status (see Steps 10'-
11'). Second, after updating the status it determines whether the mobile device has reconnected
in case the connection loss was only a short-term problem (see Step 12'). Third, depending on the
result of Step 12', it may start the delegation. The mobile process client, in turn, applies the
following steps. First, the running activity is stopped and the data created is locally cached (see
Steps 10-13). Second, after the mobile device reconnects to the process management system, it
requests the status of the delegation (see Step 14) and sends its cached data to the process
management system. Two additional scenarios need to be distinguished (see Fig. 6, 6) after a
reconnection. First, if a delegation has not been accomplished yet, the reconnecting mobile
device gets the activity execution back. Second, if the delegation is still running, the cached data
is transferred to the mobile device currently performing the delegation. This way it can be
ensured that no data is lost. In addition, a feature was realized that enables recipients to manually
decide whether or not to use cached data before it will be actually transferred. Furthermore, we
identified the protocol points at which the mobile context parameters shall be exchanged
between the mobile process client and the service-oriented middleware. Fig. 6 (2,4) depicts two
protocol points at which the service-oriented middleware requests parameter values from the
mobile process client. In turn, Fig. 6 (1,3,5) shows the points in time at which the mobile process
client sends parameter values to the service-oriented middleware.

 16

Figure 6. Delegation protocol

Adding Mobile Activities to Process Execution
For adding a mobile activity to a process model and hence integrating it with process execution,
two fundamental solutions exist. These will be presented in this section. In particular, it will be
shown how the challenges summarized in Table 4 are addressed by these solution approaches:

 17

 Parameter Description Type Design
Time

Instantiation
Time

Activation
Time

Delegation
Time

M
ob

il
e

E
nv

ir
on

m
en

t Category I: Mobile device (SMD)
SMDBS Battery Status M x - x x

SMDFF Form Factor S x - x x
SMDNT Network Type M - - x x

SMDGC
Geometric
Coordinate

M - - x x

P
ro

ce
ss

Category II: Mobile Activity (MA)

MASC
Symbolic
Coordinate(s)

S x - x x

MAGC
Geometric
Coordinate

M - - x x

MALR Location Range S x - x x
MABS Battery Status M - - x x
MAU Urgency Value S x - x x
MAOFF Offline Mode S x - x x
MAFF Form Factor S x - x x

MARF
Response
Frequency

S x - x x

MAUT User Threshold S x - x x

Category III: Process (P)

PIST
Instant Shutdown
Threshold

S x - x
x

U
se

r
B

eh
av

io
r

Category IV: Mobile User (MU)

MUSC
Symbolic
Coordinate(s)

S x - x x

MUIS Instant Shutdowns S - - x x
| Type: M=Measured, S=Symbolic | (x): relevant | (-): not relevant |

Table 4. Parameters for processes with mobile activities

First, a backup service will be introduced, which adds a backup activity to ensure a robust
execution of mobile activities. Second, a delegation service will be defined that automatically
delegates the execution of mobile activities among available mobile users, if required. Before
presenting these two services in detail, this section illustrates the basic steps required to add a
mobile activity to process execution. Overall, the procedure encompasses four phases. Figure 8
shows in which of these phases manual steps (i.e., user interaction) and automated operations
(i.e., delegation and backup service executions) are performed. Note that after creating an
instance of a process model comprised of mobile activities, mobile users are not burdened with
making decisions with regard to exceptions of a mobile activity. This behavior will be ensured
since delegation and backup services as well as the user list management are performed
automatically.

 18

Figure 7. Procedure for integrating mobile activities into process execution

Design Time
The design of a process model which comprises mobile activities consists of two phases. During
the first one, which is called mobile process transformation phase (see Figure 7(1)), a process
designer flags selected activities of the given process model as mobile, i.e., these activities shall
be executed by mobile users on their respective mobile devices during run time. In this context,
the process designer determines parameters to each mobile activity (see Figure 7(1)) that are
presented in Table 4 relevant for the design time. In addition, a mobile activity threshold may be
created. The latter defines the minimum number of users that shall be available at run time in
order to execute this activity, i.e., the threshold allows controlling the assignment depending on
the specific needs of the respective mobile processes. For all mobile activities, for which such a
threshold is defined during this phase, the list of users who may perform the mobile activity is
determined (Figure 7(1), validateThreshold) based on information stored in the user repository.
Finally, activities whose chosen threshold value lies beyond the number of currently available
users are highlighted to the process designer who may then alter this value.

The second design time phase is the dependency check (see Figure 7(2)). In this phase, it is
determined for which mobile activities the backup service can be provided. While the mobile
process transformation is done manually (except the validation of the threshold), the dependency
check can be performed automatically. In this context, scenario specific dependency checks can
be used. For example, a dependency check for mobile activities that write data elements, the
following check will be automatically accomplished: First, all mobile activities are analyzed with
respect to the data elements they provide for subsequent process activities. If a mobile activity
writes such data, the backup service will be added for this mobile activity (see Figure 7(2),
addBackup). If this does not apply, the mobile activity may be skipped during run time without
need for additional exception handling, i.e., operation setSkippable may be applied to such a
mobile activity (see Figure 7(2)). Accordingly, attribute IS_SKIPPABLE of this mobile activity
is set to true. While the backup service (or setSkippable operation) is automatically added to a

 19

mobile activity, the third operation of this phase (Figure (2), addValidationActivity) is performed
manually, i.e., the process designer must decide whether or not the execution of backup activities
must be manually confirmed during run time. In order to enforce this behavior, the process
designer activates the validation activities set by the backup service, i.e., the sync flag read by
the validation activities will be set to true.

To understand the next three phases with respect to design and run time, Figure 8 summarizes
the lifecycle of a mobile activity. Thereby, it relates all phases shown in Figure 7 with the
lifecycle (see 1-4 in Figure 8).

Figure 8. Mobile activity lifecycle

Instantiation Time
When creating a process instance, a service is provided to change the run time configuration of
this instance (see Figure 7(3), addFilterList). This service aims to cope with the dynamics of
mobile environments. To perform such a change, the following steps are applied. First, for all
mobile activities, user lists are computed. Thereby, only currently online users are considered.
Second, for each mobile activity it must be decided whether to change its location or urgency. In
addition, users authorized to execute other activities may be removed. The latter option allows
covering different kinds of mobile business scenarios properly. For example, the mobile device
of a physician who needs to cope with an emergency should not be the target for upcoming
mobile activities.

Delegation Time
When delegating a mobile activity at run time, it is automatically delegated to another user
possessing same rights. Further, for each mobile activity, a delegation list is managed. This list
will be created after the first delegation becomes necessary. It also stores a history of all
delegations for this mobile activity.

Generally, the following issues are crucial with respect to mobile activity execution (see Figure
11):

 An execution exception of a mobile activity that produces data that is consumed by
subsequent process steps may cause severe run time exceptions (Reichert et al., 1999;
Reichert & Weber, 2012) (see missing data in Figure 9).

 20

 An execution exception of a mobile activity might cause a deadlock (see deadlock in
Figure 9), i.e., if a mobile activity cannot be properly completed, succeeding activities
might not be activated.

 Regarding mobile activity execution, usually, a time period is specified indicating the
maximum duration of this activity. For example, it might be required that a blood test is
finished within 5 minutes. Accordingly, any execution exception of a mobile activity
should be handled in time in order to meet respective temporal constraints.

Figure 9. Mobile activity execution challenges

SERVICE-ORIENTED SOLUTION APPROACH
The solution approach towards the robust execution of mobile activities, which is presented in
this section, tackles the challenges introduced before. Table 5 gives an overview of the main
challenges by showing which service, i.e., mobile process transformation (MPT), backup service
(BS), list management (LM), and mobile delegation service (MDS) addresses which of these
challenges.

Challenge Component Description
Connectivity LM

MDS
Only connected devices will be added to the user and
delegation lists. The MDS refreshes these lists continuously
and accomplishes any delegation required when a mobile
device loses its connection.

Resource
Behavior

LM
MDS

Only mobile users having a sufficient resource behavior
will be added to the user and delegation lists.

User Location LM If a location X is explicitly assigned to mobile activity, only
users whose current location matches X are added to the
respective user lists.

Data
Dependencies

BS The backup service ensures that exceptions during the
execution of a mobile activity do not harm overall process
execution, e.g., if subsequent activities are data-dependent
on the failed mobile activity, the latter will be replaced by a
respective backup activity added to the process model.

Location MPT A mobile activity may require a certain location for its
execution.

 21

Urgency MPT
MDS
BS

The urgency of an activity may be set at design time. In
turn, the MDS then utilizes this information as trigger for
delegating the mobile activity, i.e., a backup service ensures
that the mobile activity will be always executed within the
specified time frame.

Table 5. Parameters and solution components of mobile activities

Delegation Service
During mobile activity execution, the mobile delegation service (MDS) ensures that already
assigned mobile activities are automatically re-delegated to another authorized mobile user in
case of exceptions. Since this delegation service maintains several user lists, the latter are first
summarized before presenting the MDS.

User List Management
To enable a flexible delegation and hence to foster robust execution of a mobile activity t, three
user lists are maintained for it: ulinit, ulmob, and dlmob. User list ulinit contains all mobile users that
are, in principle, authorized to perform mobile activity t. Based on ulinit,the mobile user list ulmob
is determined. Thereby, a mobile user from ulinit is only added to ulmob, if the user is currently
online, user’s location complies with the one of t, and the user is not excluded by any filter
defined at instantiation time. Based on ulmob, t is assigned to available mobile users.
Furthermore, if t shall be delegated, a mobile delegation list dlmob is determined. First of all, all
users contained in ulmob are added to dlmob. Then, dlmob is ordered by taking the resource behavior
of mobile users into account. A low priority is assigned to a mobile user if his resource behavior
is inappropriate. Both lists ulmob and dlmob are re-calculated when the connectivity status of a user
from list ulinit changes.
Overall, when considering these three lists, the mobile delegation service may enter six different
states (see Figure 10). The latter are denoted as t(<STATE>) and respective state transitions as
Ti. Note that the delegation service starts when a mobile activity t becomes activated. The
delegation service will be activated before executing the respective activity only if the mobile
activity has a value set for urgency and no authorized mobile user will promptly execute the
activity, then it will be delegated to an authorized mobile user, i.e., delegation is used for
changing activity state to running.

Figure 10. Mobile delegation service flow during run time

 22

The scenarios shown in Table 6 are relevant when taking urgency (specified period of time when
the activity must be finished) tou (tou = 0 denotes a timeout), user list threshold thmul, and the
ability to skip a mobile activity t into account.

Scenario Description State Chain
Normal
activity
execution

usera ∈ ulmob starts mobile activity t and performs it.

t(PENDING) T3
t(STARTED) T4
t(FINISHED)

Delegated
activity
execution

usera ∈ ulmob starts mobile activity t. Then user state
changes to offline or tou = 0 holds, such that t will be
automatically delegated to another user userb ∈ ulmob who
finishes the mobile activity.

T3 t(STARTED)
T5.1
t(DELEGATED)
T6.1 t(FINISHED)

Forced
delegation

A forced delegation becomes necessary if the following
holds:
t(PENDING) ∧ |ulmob | thmul ∨ tou 0) ∨
t(DELEGATED) ∧ tou 0 ∨ State userb changes to
offline t must be delegated to another user usern ∈
ulmob.

T5.2
t(DELEGATED) ∨ T6.2
 t(DELEGATED)

Skip or
Backup

Skip or backup will be performed if the following holds:
If t(PENDING) ∧ tou 0 ∧ |ulmob | 0 ∨
(t(DELEGATED) ∧ tou 0 ∧ |dlmob | 0 .
Furthermore, if IS_SKIPPABLE(T)=true, t will transit to
SKIP, otherwise to BACKUP

t(PENDING) T5.3
t(SKIP) ∨ t(BACKUP)/
t(DELEGATED)T6.3
 t(SKIP) ∨
t(BACKUP)

Table 6. Scenarios in which mobile delegation service is applied

Backup Service
A particular challenge arises if no mobile user is available for processing an activated mobile
activity that produces data during run time, i.e., if no delegation is possible anymore. In order to
ensure that these mobile activities can still be processed, a backup service is provided. Basically,
it consists of two operations, which are added to a process fragment replacing the mobile activity
in case of exceptional situations. The first one is called simple backup operation, while the
second is called complex backup operation. Before presenting the backup service in detail, three
questions have to be briefly discussed with respect to the backup service: (1) Since the backup
operation is performed on a stationary computer and hence failures are more unlikely than using
a mobile device, the question arise why performing the activity on a mobile device at first? One
can argue that in this case the mobile device is not necessary and affects overall robustness. (2)
How are skipping of mobile activities and the backup service relate to each other? (3) Does it
make sense to provide the validation activity with the backup service since it may block
execution and resulting in the same exceptional situation as caused before by the mobile device?
The first two questions will be discussed in the following, while the third one will be discussed
after presenting the simple backup operation.

First of all, see Figure 11. Note that the backup service is only applied to mobile activities which
write data or have other specifically defined attributes. In turn, the case using the backup service
in the context of mobile activities that write data is the one mainly addressed. As depicted in
Figure 11, in the best and average case, a normal execution or delegation prevents using the

 23

backup service. Note that in case no more delegation is possible, i.e., no more suitable mobile
user is able to perform this activity. Only then, the backup operation becomes necessary.
Question 2 can now be answered based on this. Skipping an activity and the backup service are
not related. Activities to which the backup service is applied can only be delegated or finalized
based on the backup service. In general, skipping an activity is only possible for those activities
that do not write data. Regarding Question 1, a mobile activity is intended to be performed in a
mobile manner. Since the backup operation constitutes a very final alternative, originally
intended behavior is preserved more properly. For example, assume the following situation: Two
physicians work on urgent mobile activities with their mobile devices. Then, both devices run
out of battery (frequently observed in the context of the above presented MEDo project). Further,
no other physicians are able to perform these mobile activities (frequently observed as well). In
this case, using stationary computers to complete the activities are highly welcome. For this
purpose, the backup service will be used. Due to the lack of space, the way how mobile activities
are adjusted to be executed on stationary computer can be obtained from (Pryss & Reichert,
2016).

Figure 11. Use case of backup operation

CURRENT RESEARCH
Among others, our current research on mobile activity support deals with the following issues. In
general, certain constraints may have to be obeyed when executing mobile activities. As
example, consider entailment constraints that may exist between different mobile activities.
When executing a mobile process, for example, it might be desirable that two mobile activities
are executed by the same user. Related research on integrating such constraints with business
processes has received growing attention recently. However, realizing entailment constraints in
the context of mobile processes and activities raises additional issues, which must be integrated
with our backup and delegation services. Furthermore, a way to specify rules for enhancing the
delegation service must be developed; e.g., users should be allowed to specify their own
delegation rules.

CONCLUSION
This paper presented an approach for enabling business processes with mobile activity support.
The backup service as well as the mobile delegation service allow for a robust process execution.
For this purpose, four fundamental issues need to be considered. First, the specific challenges of
executing process activities in a mobile environment must be well understood. Second, these
challenges must be properly addressed at both design and run time. Third, mobile activities must
be executed in a robust way, the backup service and mobile delegation services foster such

24

robustness with respect to mobile activity execution. Fourth, user acceptance is crucial in the
context of mobile activity support. Accordingly, the presented services do not involve mobile
users in exception handling directly. Finally, a sophisticated architecture has been described
showing how the presented approach can be realized in a service-oriented environment.

REFERENCES

van der Aalst, W.M.P., & Weske, M. (2001). The P2P approach to interorganizational
workflows. In Advanced Information Systems Engineering (pp. 140-156). Springer
Berlin Heidelberg.

Alonso, G., Agrawal, D., El Abbadi, A., Kamath, M., Gunthor, R., & Mohan, C. (1996).
Advanced transaction models in workflow contexts. In Data Engineering, 1996.
Proceedings of the Twelfth International Conference on (pp. 574-581). IEEE.

Alonso, G., & Schek, H. J. (1996). Research issues in large workflow management systems. In
Proceedings of NSF Workshop on Workflow and Process Automation in Information Science.

Alonso, G., Gunthor, R., Agrawal, D., El Abbadi, A., & Kamath (1995). Exotica/FMDC:
Handling disconnected clients in a workflow management system.

Ayora, C., Torres, V., Reichert, M., Weber, B., & Pelechano, V. (2013). Towards run-time
flexibility for process families: open issues and research challenges. In Proc. Business Process
Management Workshops (pp. 477-488).

Barros, A., Dumas, M., & Oaks, P. (2005). A critical overview of the web services choreography
description language. BPTrends Newsletter, 3, 1-24.

Battista, D., & Leoni, M., & Gaetanis, A., & Mecella, M., & Pezzullo, A., & Russo, A., &
Saponaro, C. (2008). ROME4EU: A Web service-based process-aware system for smart devices.
In: Proc. ICSOC'08 (pp. 726-727).

Bauer, T., Reichert, M., & Dadam, P. (2003). Intra-subnet load balancing in distributed workflow
management systems. Int'l Journal of Cooperative Information Systems, 12, (pp. 205-223).

Becker, C., & Dürr, F. (2005). On location models for ubiquitous computing. Personal and
Ubiquitous Computing, 9(1), 20-31.

Chen, N., Cardozo, N., & Clarke, S. (2016). Goal-driven service composition in mobile and
pervasive computing. IEEE Transactions on Services Computing.

Cichocki, A., & Rusinkiewicz, M. (1998). Migrating workflows. In Workflow Management
Systems and Interoperability (pp. 339-355). Springer Berlin Heidelberg.

Crampton, J., & Khambhammettu, H. (2008). Delegation and satisfiability in workflow systems.
In Proc. of the 13th ACM symposium on Access control models and technologies (pp. 31-40).

25

Gaaloul, K., & Charoy, F. (2009). Task delegation based access control models for workflow
systems. In Software Services for e-Business and e-Society (pp. 400-414).

Geiger, P., Pryss, R., Schickler, M., & Reichert, M. (2013). Engineering an Advanced
Location-Based Augmented Reality Engine for Mobile devices. Technical Report, University of
Ulm.

Ghalimi, I. C., & CEO, I. (2006). BPM 2.0.

Hackmann, G., Haitjema, M., & Gill, C. (2006). Sliver: A BPEL workflow process execution
engine for mobile devices. In: Proc. ICSOC'06 (pp. 503-508).

Hahn, K. & Schweppe, H. (2009). Exploring transactional service properties for mobile service
composition. In: Proc. MMS'09 (pp. 39-52).

IBM Mobile Business Process Management (IBM),
http://www.redbooks.ibm.com/abstracts/sg248240.html?Open, 2014, [Online; accessed 12-
May-2018].

Jones, V.M., van Halteren, A.T., Dokovski, N.T., Koprinkov, G.T., Peuscher, J., Bults, R.G.A.,
Konstantas, D., Widya, I.A., & Herzog, R. (2006). Mobihealth: mobile services for
health professionals. Technical Report TR-CTIT-06-38, Enschede.

Kunze, C.P. (2005). Demac: A distributed environment for mobility-aware computing. In Adjunct
Proc. of the Third International Conference on Pervasive Computing (pp. 115-121).

Lenz, R., & Reichert, M. (2007). IT Support for Healthcare Processes -Premises, Challenges,
Perspectives. Data Knowl. Eng., 61(1), pp. 39–58.

Marinescu, A., Dusparic, I., Taylor, A., Cahill, V., & Clarke, S. (2015). P-marl: Prediction-based
multi-agent reinforcement learning for non-stationary environments. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems (pp. 1897-1898).
International Foundation for Autonomous Agents and Multiagent Systems.

Martin, D., Wutke, D., & Leymann, F. (2008). A novel approach to decentralized workflow
enactment. In Enterprise Distributed Object Computing Conference, 2008. EDOC'08. 12th
International IEEE (pp. 127-136). IEEE.

Meister, V.G. (2011). Geschäftsregelbasierte Ansteuerung betrieblicher Anwendungssysteme am
Beispiel der Open Source Process Engine Activiti. Betriebliche Anwendungssysteme, 65.

Philips, E., van Der Straeten, R., & Jonckers, V. (2011). NOW: Orchestrating services in a
nomadic network using a dedicated workflow language. Science of Computer Programming.

Pryss R., Tiedeken J., & Reichert M. (2010). Managing Processes on Mobile Devices: The
MARPLE Approach. In Proc. CAiSE’10 Demos.

26

Pryss, R., Musiol, S., & Reichert, M. (2013). Collaboration Support Through Mobile Processes
and Entailment Constraints. In Proc. 9th IEEE Int. Conf. on Collaborative Computing:
Networking, Applications and Worksharing.

Pryss, R., Tiedeken, J., Kreher, U., & Reichert, M. (2010). Towards Flexible Process Support on
Mobile Devices. In Proc. CAiSE’10 Forum (pp. 150–165).

Pryss, R., Mundbrod, N., Langer, D., & Reichert, M. (2015). Supporting medical ward rounds
through mobile task and process management. Information Systems and e-Business Management,
13(1), 107-146.

Pryss, R., Reichert, M., Schickler, M., & Bauer, T. (2016). Context-Based Assignment
and Execution of Human-centric Mobile Services. In Mobile Services (MS), IEEE International
Conference on (pp. 119-126). IEEE.

Pryss, R., Geiger, P., Schickler, M., Schobel, J., & Reichert, M. (2016). Advanced Algorithms for
Location-Based Smart Mobile Augmented Reality Applications. Procedia Computer Science, 94,
97-104.

Pryss, R., & Reichert, M. (2016). Robust execution of mobile activities in process-
aware information systems. International Journal of Information System Modeling and Design,
7(4), 50-82.

Reichert, M., Dadam, P., Rinderle-Ma, S., Lanz, A., Pryss, R., Predeschly, M., ... & Goeser, K.
(2009). Enabling Poka-Yoke workflows with the AristaFlow BPM Suite.

Reichert, M., & Weber, B. (2012). Enabling Flexibility in Process-Aware Information Systems:
Challenges, Methods, Technologies. Springer.

Reichert, M., & Weber, B. (2013). Process Change Patterns: Recent Research, Use Cases,
Research Directions. In Seminal Contributions to Information Systems Engineering - 25 Years of
CAiSE, (pp. 398–404).

Reichert, M., Bauer, T., & Dadam, P. (2009). Flexibility for distributed workflows.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., & Youman, C. E. (1996). Role-based access control
models. Computer, 29(2), 38-47.

Schaad, A. (2003). A Framework for Organisational Control Principles. PhD thesis, The
University of York, York, England.

Schmidt, H., & Hauck, F.J. (2007). SAMPROC: middleware for self-adaptive mobile processes in
heterogeneous ubiquitous environments. In: Proc. 4th Middleware Doctoral Symposium (pp. 1-6).

27

Schmidt, H., Kapitza, R., & Hauck, F.J. (2007). Mobile-process-based ubiquitous computing
platform: a blueprint. In: Proc. 1st Workshop on Middleware-application interaction (pp. 25-30).

Schobel, J., Schickler, M., Pryss, R., Nienhaus, H., & Reichert, M. (2013). Using Vital Sensors in
Mobile Healthcare Business Applications: challenges, Examples, Lessons Learned. In Proc. 9 Int’l
Conference on Web Information Systems and Technologies (pp. 509–518).

Schobel, J., Pryss, R., Wipp, W., Schickler, M., & Reichert, M. (2016). A Mobile Service Engine
Enabling Complex Data Collection Applications. In International Conference on Service-Oriented
Computing (pp. 626-633). Springer International Publishing.

Schobel, J., Pryss, R., Schickler, M., & Reichert, M. (2016). A Lightweight Process Engine for
Enabling Advanced Mobile Applications. In OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems" (pp. 552-569). Springer International Publishing.

Schobel, J., Pryss, R., Schickler, M., Ruf-Leuschner, M., Elbert, T., & Reichert, M. (2016). End-
user programming of mobile services: empowering domain experts to implement mobile data
collection applications. In: IEEE 5th International Conference on Mobile Services (pp. 1-8). IEEE.

Stürmer, G., Mangler, J., & Schikuta, E. (2009). Building a modular service oriented workflow
engine. In Proc. Service-Oriented Computing and Applications (SOCA), 2009 IEEE International
Conference on (pp. 1-4).

Tuysuz, G., & Avenoglu, B., & Eren, P. E. (2013). A Workflow-Based Mobile Guidance
Framework for Managing Personal Activities. In Next Generation Mobile Apps, Services
and Technologies (NGMAST), 2013 Seventh International Conference on (pp. 13-18). IEEE.

Wakholi, P. K., & Chen, W. (2012). Workflow Partitioning for Offline Distributed Execution on
Mobile Devices. Process Aware Mobile Systems. Applied to mobile-phone based data
collection.

Wodtke, D., & Weikum, G. (1997). A formal foundation for distributed workflow execution based
on state charts. In Database Theory—ICDT'97 (pp. 230-246). Springer Berlin Heidelberg.

Workflow Management Coalition (WFMC), http://www.wfmc.org/, 2014, [Online; accessed 12-
May-2018].

Zaplata, S., Dreiling, V., & Lamersdorf, W. (2009). Realizing mobile Web services for dynamic
applications. In Proc. I3E'09 (pp. 240-254).

Zaplata, S., Hamann, K., Kottke, K., & Lamersdorf, W. (2010). Flexible execution of distributed
business processes based on process instance migration. Journal of Systems Integration, 1(3), (pp.
3-16).

Zaplata, S., Kottke, K., Meiners, M., & Lamersdorf, W. (2010). Towards run time migration of
WS-BPEL processes. In: Proc. WESOA'09.

