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Abstract

In the recent years smart devices and small low-powered sensors are becoming ubiqui-

tous and nowadays everything is connected altogether, which is a promising foundation

for crowdsensing of data related to various environmental and societal phenomena. Very

often, such data is especially meaningful when related to time and location, which is

possible by already equipped GPS capabilities of modern smart devices. However, in

order to gain knowledge from high-volume crowd-sensed data, it has to be collected

and stored in a central platform, where it can be processed and transformed for various

use cases. Conventional approaches built around classical relational databases and

monolithic backends, that load and process the geospatial data on a per-request basis

are not suitable for supporting the data requests of a large crowd willing to visualize

phenomena. The possibly millions of data points introduce challenges for calculation,

data-transfer and visualization on smartphones with limited graphics performance.

We have created an architectural design, which combines a cloud-native approach with

Big Data concepts used in the Internet of Things. The architectural design can be used

as a generic foundation to implement a scalable backend for a platform, that covers

aspects important for crowdsensing, such as social- and incentive features, as well as

a sophisticated stream processing concept to calculate incoming measurement data

and store pre-aggregated results. The calculation is based on a global grid system to

index geospatial data for efficient aggregation and building a hierarchical geospatial

relationship of averaged values, that can be directly used to rapidly and efficiently provide

data on requests for visualization. We introduce the Noisemap project as an exemplary

use case of such a platform and elaborate on certain requirements and challenges also

related to frontend implementations. The goal of the project is to collect crowd-sensed

noise measurements via smartphones and provide users information and a visualization

of noise levels in their environment, which requires storing and processing in a central

platform. A prototypic implementation for the measurement context of the Noisemap

project is showing that the architectural design is indeed feasible to realize.
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1
Introduction

This Chapter motivates the subject of the thesis and introduces related problems. Further

we briefly describe the objective and give an overview about the structure of the following

Chapters.

1.1 Motivation

The importance of visualizing geospatially related information on a map to gain aware-

ness of facts hidden in the information is known since 1854, as Dr. John Snow supposedly

used a map containing points of Cholera outbreaks in the city of London, to identify

a water pump as the root cause with the help of spatial distance patterns. Although

certain facts are criticized as myths [50], this is the first known example of how to use

a combination of visualization and spatial analysis on geospatial data to get evidence

for a phenomenon. Technical advancements, such as the Internet or the creation of

Geographic Information Systems (GIS), have drastically enhanced and extended the

subject area of geospatial analysis since then.

Further developments in information technology will help to find more and more use

cases for geospatial data, their visualization and analysis. The vision of an Internet

of Things (IoT) is one of the most popular trends in computer science and one of the

driver’s in Big Data. A large section of the IoT-picture has to do with data collection in

which context the “Things” are essentially small sensors attached to generic low-power

communication technology, that is somehow connected to each other and the Internet.

Smart mobile devices, such as smartphones, smartwatches and fitness tracker, are
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1 Introduction

not different from that point of view but have become increasingly more pervasive in

the recent years, now often being a ubiquitous companion for humans. There have

been over 2 Billion smartphone users worldwide in 2016 and the number is predicted to

grow beyond 3 Billion by 2021 [16]. Because smartphones, or smart devices in general,

include various sensors, they offer great potential to build a “mobile sensor network” for

crowdsensing geo-distributed environmental and societal phenomena. The fact, that

smartphones are already distributed around the globe, is an enabler for producing large-

scale data that is referenced with geo-locations determined by smartphone’s internal

GPS capabilities. To visualize and analyze the data all the different user-owned devices

produce, it has to be brought together and processed in a common platform.

1.2 Problem statement

In order to create valuable datasets, a certain density and distribution of users is needed,

demanding specifically implemented features in relation to crowdsensing, such as

sufficiently provided incentives for users. When growing awareness of crowdsensing

and additionally deployed IoT sensors lead to an invisible comprehensive sensing

utility, the result will be a “generation of enormous amounts of data which have to

be stored, processed and presented in a seamless, efficient, and easily interpretable

form [32].” Cloud computing is a promising foundation providing enough resources to

handle and process that data. However, traditional monolithic designs have drawbacks

in utilizing the flexibility of the cloud for faster and more modular development as well

as scalable and elastic operation. Additionally, crowd-sensed data about environmental

or societal phenomena often have a geospatial context, that must be considered when

processing the data. Computations on geospatial data are more complex because of

costly operations on fine-grained coordinates for aggregating the right data together.

Therefore choosing an efficient concept for indexing and visualizing geospatial data and

the resulting aggregates is important. A simple request-based aggregation for hundreds

of thousands of users will either overwhelm badly designed systems and databases or

at least result in high latency for data requests on large-scale datasets.
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1.3 Objective

1.3 Objective

We pursue the development of a conceptual architectural design, that is scalable and

general in a sense, that it is useful as a starting-point to develop specific platforms for

crowdsensing of diverse geospatial data. The backend should be able to collect, process

and efficiently return data for visualization via a state-of-the-art interface. We focus on a

cloud-native approach with an architecture around bounded contexts, microservices and

specific underlying infrastructure principles. We will combine this approach stream pro-

cessing used in the Internet of Things for decoupled processing of incoming geospatial

data. We precisely describe a use case in form of a project for crowdsensing of geospa-

tial noise data and use its requirements as a guideline to define the capabilities for our

generic design. Further we implement interesting parts of the design in the context of this

project. The cloud-native approach is supposed to offer already some inherent scalability

as well as a decoupled modular system design beneficial for distributed development in

research groups with different focuses.

1.4 Structure of the thesis

We are going to introduce certain fundamental concepts useful for the understanding

of the work in Chapter 2. After that, Chapter 3 is introducing the Noisemap project for

crowdsensing of geospatial noise data, which we use as an example to identify generic

capabilities that a platform for crowdsensing of geospatial data must have. Chapter 4 is

describing the fundamental principles and technology we use to conceptually design the

architecture of such a platform and subsequently Chapter 5 is highlighting interesting

aspects of the design in form of a prototypic implementation. We will discuss the

feasibility and scalability aspects of the design and compare our platform to the identified

requirements in Chapter 6. The finishing Chapter 7 is summarizing the thesis and giving

an outlook on further ideas and possible refinements, that someone implementing a

precise use case must make.
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2
Fundamentals

This Chapter introduces terms and concepts that are critical fundamentals for this work.

The common understanding of these terms is helpful for the other Chapters.

2.1 Crowdsensing

Crowdsensing is a concept for collectively bringing together sensor-data from a large

group of individuals. With the advent of integrating sensors in ever getting smarter

mobile phones, such data can be directly collected by users with their smartphone,

which we more precisely call Mobile Crowdsensing because mobile devices are used.

To understand the origin of Crowdsensing, we are going to introduce the more mature

term Crowdsourcing as a generalization of Crowdsensing.

2.1.1 Crowdsourcing

Crowdsourcing as a term has been made popular by Howe in 2006. It describes a

combination of crowd and outsourcing [37], where it is seen “as the act of taking a task

traditionally performed by a designated agent (such as an employee or a contractor) and

outsourcing it by making an open call to an undefined but large group of people [38]". A

refreshed scientific definition is an integration of multiple Crowdsourcing initiatives and

narrows the term to online activities:

Definition 1. Crowdsourcing is a type of participative online activity in which an individ-

ual, organization, or company with enough means proposes to a group of individuals
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2 Fundamentals

of varying knowledge, heterogeneity, and number, via a flexible open call, the voluntary

undertaking of a task. The undertaking of the task, of variable complexity and modu-

larity, and in which the crowd should participate bringing their work, money, knowledge

and/or experience, always entails mutual benefit. The user will receive the satisfaction

of a given type of need, be it economic, social recognition, self-esteem, or the develop-

ment of individual skills, while the Crowdsourcer will obtain and utilize to their advantage

that what the user has brought to the venture, whose form will depend on the type of

activity undertaken [24].

The specific clarification of the mutual benefit is an important aspect of every Crowd-

sourcing initiative to attract and retain a meaningful user-base. The task-receiver (from

now on called user) must understand the benefit he gains in exchange for undertaking the

task. Without proper clarification of incentives, users are per se reluctant to participate

in online Crowdsourcing activities. Taking part in sensing-activities often includes users’

time, battery of mobile devices and consumption of quota from the available data plan.

Additionally, the long ongoing social discussion about privacy issues of online-activities

in general, is an inhibition for users to take part in such activities.

2.1.2 Incentive Management

Well-understood benefits fill the role of user incentives. The motivation of users with

well-chosen incentives is one of the fundamental problems of every application that relies

on the crowd. For Mobile Crowdsourcing Zhang et al. reviewed three types [84]:

• Entertainment: Using gamification or location-based mobile game concepts in-

volving sensors of users’ mobile devices in order to motivate them to use the

application. This incentive category must be well-aligned to the actual sensing-

activities and the phenomena of interest. Therefore, its applicability is limited and

requires considerable effort in gamification of the original problem.

• Service: A user has to fill out both roles (Contributor and Consumer) in order

to use the system. This incentive category is universally applicable to many

environmental problems. Features, such as visualization of the monitored values,
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2.1 Crowdsensing

can be restricted with fine-grained access-control based on the degree a user is

contributing to the overall application. This can motivate a user to contribute and in

exchange get access to more enhanced information. However, there must be an

intuitive and attracting user experience in order to gain users in the first place and

users should not be annoyed with bad resource usage, such as battery, data-quota

and private-data consumption.

• Money: Contributing users are paid money for their provided data. These incentives

are the most general type, because it is independent of the application and can

even reimburse the user for leak of private data. It can also compensate bad user

experience to some extent.

2.1.3 Mobile Crowdsensing

The term Mobile Crowdsensing (MCS) has been coined by Ganti et al. and is the

manifestation of general Crowdsensing, that involves smart mobile devices with the

capability of sensing the environment to gather information, that can lead to valuable

knowledge of an objective. We call that objective a phenomenon. Although, we do not

limit MCS to the actual usage of the various sensors of smart devices, but also include

the collection of subjective feedback about a phenomenon from the crowds’ mobile

devices in the scope of Mobile Crowdsensing.

We define a sensing-action as the actual task of gathering information about a spe-

cific phenomenon. If that phenomenon pertains to the individual that has sensed the

information, the sensing-action is categorized as personal sensing and is often a per-

sonal record-keeping of a phenomenon directly related to the individual. Movement

patterns or health attributes of an individual could be examples for personal sensing.

More interesting, because harder to monitor, are large-scale phenomena that require

the involvement of many individuals to gain some knowledge about it. Such sensing

actions, called community sensing, require many individuals acting as a community.

Instead of merely keeping a personal history, records of the community are combined for

analyzation for common patterns that might show further insights about the phenomenon

[28].
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2 Fundamentals

The user-involvement in the sensing-action can be differentiated between high and low.

Some actions require the user to become explicitly active and initiate the sensing-action,

this is called participatory sensing. Actions carried out autonomously in a continuous

manner and therefore require almost no user-involvement, are called opportunistic

sensing [46]. However, a user always has to participatory opt-in (in the Crowdsourcing

sense) by downloading software, actively registering or activating a service at first to

enable opportunistic sensing.

2.1.4 MCS-Spectrum

For Ganti et al., MCS is a range of community sensing paradigms and therefore exclud-

ing personal sensing from the concept of Crowdsensing. According to them, Community

sensing can be described a spectrum of the user involvement from participatory to oppor-

tunistic sensing [28]. However, personal sensing is still strongly related to Crowdsensing,

because the record that is taken by sensing the large-scale phenomena, is usually of

interest to the individual in some degree anyway, since it can be also used for keeping

track of the personal record history. Vice versa we state, that a comparison of many

personal phenomena, for example to find common patterns in a social group, is an action

regarding a large-scale phenomenon and therefore can be seen in a Crowdsensing

context.
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Figure 2.1: MCS-Spectrum for Crowdsens-
ing and personal-sensing repre-
sented as a 2D-spectrum.

This consideration allows to view MCS

as a two-dimensional MCS-spectrum as

shown in Figure 2.1, with manifestations

in user-involvement and the kind of pro-

cessing of the sensed record. Crowdsens-

ing starts when at least two personal

records of two independent individu-

als are processed together in order to

gather further insights. If an applica-

tion can perform multiple sensing-actions,

each can be placed individually within the
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2.2 Internet of Things

spectrum as a point. The connected points describe the Crowdsensing characteristic

of an application. If for example, the dots are mostly placed on the upper left, the appli-

cation can be described as opportunistic for large-scale phenomena. Otherwise, when

a mobile application senses information and only performs processing locally without

exchanging results their characteristic is placed at the bottom of the spectrum and we

consider the application to only perform personal sensing. As soon as an application is

exchanging results (either with a central backend or decentralized) and is taking these

results into account while processing, it is effectively using results coming from the crowd

and therefore is considered a Crowdsensing application.

2.2 Internet of Things

Alongside Crowdsensing, technical advancements are an enabler for large-scale en-

vironmental sensing. Enhanced micro-electromechanical systems (MEMS) and new

low-powered communication technology have enabled cheap miniature sensors able to

communicate wirelessly with each other or a gateway. Such wireless sensor networks

(WSN) are already used in environmental monitoring applications. These small devices

are one part of what is popularly called the Internet of Things (IoT). Definition 2 is

provided by Gubbi et al. to clarify what is meant by the IoT [32].

Definition 2. Interconnection of sensing and actuating devices providing the ability to

share information across platforms through a unified framework, developing a common

operating picture for enabling innovative applications. This is achieved by seamless

large scale sensing, data analytics and information representation using cutting edge

ubiquitous sensing and cloud computing.

While the IoT is also about actuating devices and machine to machine (M2M) communi-

cation in general, for environmental monitoring the WSN-part is of special interest. Other

than an ever moving human crowd, such devices can be mounted at specifically chosen

urban locations and perform their sensing actions without requiring certain incentives.

Additionally, their data can be assumed to be of higher quality in general, because once

mounted, the context of the device is not changing considerably anymore, as opposed

9



2 Fundamentals

to mobile smartphones carried around by humans. However, even with the availability

of cheap sensors, building a large-scale sensor-network with a certain density requires

considerable planning, monetary resources and effort for maintenance. But there is

new emerging communication technology, such as Long Range Wide Area Network

(LoRaWan), that can be a reliable link for direct communication between sensors and

gateways using a long-range, low-power and unlicensed communication channel [80].

This technology has the ability to cover a large urban area with only a few well-placed

antennas and is currently being deployed in an ever-increasing number of urban areas.

2.2.1 Crowdsensing, the IoT and the Maker Movement

The Maker Movement is currently one of the users of free communication technology,

such as the mentioned LoRaWan. The movement has emerged from a culture focusing

on “Do it yourself" (DiY) in the non-digital world. It is lately gaining momentum in

digitalization and content production for online-platforms. Cheap micro-controllers and

sensors enable the Maker Movement to take DiY one step-further and let them create

applications for smart environments themselves. This has been resulting in a “manifesto

for diy internet of things creation [22]" together with countless online available tutorials to

create own applications for hobby or educational purposes. For Silvia Lindtner, who has

conducted research about Hackerspaces1 in China, “this contemporary maker culture

is concerned not only with open Internet technology and digital things, but also with

physical things such as hardware designs, sensors, and networking devices that bridge

the digital and physical worlds. While the earlier movement was concerned with the

workings of software code and the workings of the Internet, this contemporary maker

movement is concerned with hardware designs and the workings of the Internet of

Things [48].”

Despite they are in general independent technological and societal concepts, a combi-

nation of Crowdsensing, the IoT and the Maker Movement has not only the potential to

create new ideas for sensors or how certain sensors could be used in different ways

1“Hackerspaces are community-operated physical places, where people share their interest in tinkering
with technology, meet and work on their projects, and learn from each other [33].”
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2.2 Internet of Things

and at never thought of locations. The combination also entails a potential to create

community-based sensor networks by using the motivation and eagerness of the Maker

Movement to build and deploy custom devices. This will form a new type of Crowd-

sensing, that is not necessarily mobile like ubiquitous smart mobile devices, but still

sufficiently distributed to cover large areas for environmental sensing. Much of the

sensor data coming from such community-based sensor networks could also easily be

integrated in existing Crowdsensing initiatives to enhance their data-quality and extend

their use-cases into fields, where Mobile Crowdsensing is lacking continuity, because

the crowd is moving around all the time.

Figure 2.2: Typical self-made sen-
sor for measuring mass
concentration in the air.
Image by [41] cz.

One example where the Maker Movement cre-

ated their own Crowdsensing application is the

“Luftdaten-Projekt“. They introduced a platform

called luftdaten.info, where everyone interested in

technology and environmental transparency can

build their own air quality sensor. The sensor,

shown in Figure 2.2, can be mounted outside of the

house to measure the mass concentration in the

air and provide the platform with sensor data about

air pollution [30]. Although often not profession-

ally certified, such sensors can deliver reasonable

accuracy to unveil a relative spatial distribution of

certain phenomena [7].

2.2.2 Big Data

When we perform Crowdsensing worldwide and do not constrain the collection to a

certain geospatial area, problems related to scale in multiple aspects can arise. When the

number of active users grows above a certain size, the data volume exceeds processing

capabilities of conventional approaches. We call such data volumes Big Data, when they

are of high-volume, high-velocity, high-variety and/or high-veracity information assets,
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2 Fundamentals

which are not easily processable with conventional information handling. New and

innovative approaches for cost-effective processing are needed to enable further insights

into the data [29].

2.2.3 Stream Processing

This paradigm is related to BigData and the IoT, because it is an enabler to continuously

process data coming from all kinds of sensors in large volume. The term “refers to

the ongoing processing of one or more event streams” [56]. The foundation is a data

stream (or event stream), which is an abstraction for infinite and ever-growing datasets,

where over time new data is arriving constantly. Examples are datasets like credit card

transactions, stock trades or in our case simple measurements, that are constantly

produced by the crowd. Additional attributes of such streams are ordering, immutability

and ability to replay, because we know which event occurred before or after another

event and events that happened, can by definition never be modified again at a later

point, making the stream deterministically replayable.

Narkhede et al. place the stream processing paradigm between Request-Response,

as the low latency programming paradigm and Batch Processing, as the high-latency

paradigm. In Request-Response, processing only happens on request, making the

paradigm suitable for problems where processing only requires a few milliseconds.

Batch-Processing on the other hand, happens based on a certain schedule, for example

once per day, and is mostly used with data analytics frameworks like Apache Hadoop or

conventional data-warehousing, where the processing of large data often takes several

minutes or even hours. Stream processing is filling the gap between those two paradigms

by continuously processing new results in an asynchronous manner. This is helpful for

problems where request-based processing would take too long to calculate the response,

but scheduled processing is not reactive enough [56].

We can describe stream processing as a pipeline. Data is injected on one side as soon

as it enters the system at time t and is then piped through multiple processing steps

where it is possibly separated and joined together with other data several times. On the

other side of the pipeline there is a continuous output of different results, that are based

12



2.3 Geospatial Data

on the most recent available data, which is the data from time t and earlier. As we ingest

new data into the system at time t+1, it is piped through the same processing steps and

ultimately updating the former outputted result, which is now based on data from time

t+1 and earlier.

2.3 Geospatial Data

In our physical world we often want to know where events happened or where objects

are. Even when we put a signature under a formal contract, we usually have to provide

the name of the location where the signing happened. The same premise is effectively

relevant for Crowdsensing of environmental data. Certain phenomena are measured at

a particular geographic location either by humans or statically deployed sensors. When

we collect such events or measurements, we produce data with a geographic relation.

These relations can be made in a direct or indirect manner:

• directly: The mapping is provided by coordinates in a spatial referencing system.

• indirectly: The mapping is provided by a reference to an entity, which itself has a

geographic relation that can be indirect or direct. However, at some point the chain

of indirect relations has to end in a direct relation. In this way every indirect relation

can resolve the direct mapping by following the path of indirect relations.

Figure 2.3 shows an example of indirect and direct relation types for certain entities.

For example, a noise measurement performed with a regular smartphone using GPS

capabilities, is geographically related directly by the attached latitude and longitude

coordinates the GPS-sensor provides at the time of the measurement. A sport or music

event however, is often only related to a specific venue, such as an arena or a stadium,

which usually can be found at a regular address with zip-code, street and number. The

reference of the event to the venue and the reference of the venue to the address both

are indirect geographic relations. However, the address is directly related to geographic

space, because for example in Germany the “Zentrale Stelle Hauskoordinaten und

Hausumringe” is maintaining a register with exact coordinates for every building [45].

13



2 Fundamentals

Figure 2.3: Example for different types of geographic relations.

The example shows, that both relation types can be used to find out where something

has happened and therefore we provide the following definition:

Definition 3. Geospatial Data (geodata) describes data, that can be directly related

to geographic space. In order to directly relate initially indirect data, we demand that

all related data forming the chain to the direct relation is contained in the same data

document, for example by nesting the related data in the root entity.

This definition allows a distinction between geospatial and non-geospatial data. For

example, a data-document containing a Sport Event and only the Name and Address

of the Venue where the Event is happening is not geospatial data, because it cannot

be directly related to geographic space without querying for further data. The same

document would be geospatial data, if the address is already resolved to geographic

coordinates and therefore already directly related to geographic space.

2.3.1 Coordinate Referencing System

The relation of data into geographic space is usually something like a position or a

few positions forming an area or more rarely positions forming a corpus. A coordinate

referencing system (CRS) or sometimes spatial referencing system (SRS) allows us to

describe the distribution of positions in the space. It has the purpose of unambiguously

identify any point in the geographical space. We can however express each point in
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different formats because there is not just one CRS. A point is usually described by

latitude2 and longitude3, but the representation of the angles is different for each CRS

and some systems do net even use latitude and longitude to uniquely define a point

in the space, especially systems that are constrained to a particular region, like the

Ordnance Survey National Grid reference system used for surveys in Great Britain [4].

Additionally, the CRS defines a Geodetic Datum as a set of points to reference places

on the Earth.

The World Geodetic System (WGS) is one of the most commonly used datums,

particularly the revision WGS84 (often also known under the code EPSG:4326[2]),

because it is used by the well-known Global Positioning System (GPS) that is used in

navigation and many other location-dependent applications by millions of people every

day. It approximates the sea-level of the earth by using a defined ellipsoid. For practical

computational use, we can express the latitude and longitude values in decimal degrees

representing the respective angles. Depending on the number of digits, points can

be expressed with a certain precision, that is again dependent on the distance to the

meridian and the equator. In WGS84 the equator has a length of about 40075 kilometers

and is separated into 360°. With no decimal digits for longitude values, this results

in a precision of about 111.320km for points on the equator. Similarly, this is roughly

the precision for the latitude value of any point, because the length of the arcs from

north-pole to south-pole are about 20004km long but only separated into 180°. Table 2.1

shows calculated precisions for different numbers of decimal digits. As the Table shows,

for longitudes the precision error decreases the further away a point is from the equator,

because the length of the parallel to the equator is less for points closer to the poles.

Knowledge about geospatial precision is useful for efficient storage and calculation of

geospatial data, because if a device is only capable of determining the geodetic position

of a point with an accuracy of a few meters, like smartphones are able to, it is useless to

store and perform calculations with coordinate values containing more than 5 decimals.

2Latitude: angle describing the position in north-south direction ranging from 90° at the north pole, 0° at
the equator and -90° at the south pole

3Longitude: angle describing the position in east-west direction. It is defined by 0° at the meridian in
London and the anti-meridian at ±180°, crossing the Fiji-Islands.
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Table 2.1: Precision values for numbers of decimal digits at latitude and longitude values
for coordinates.

Decimal digits
Precision of Latitude or

Longitude at 0° (equator)

Precision of Longitude at 45°

(cirumference ∼28385km)

0 111 320 m 78 847 m

1 11 132 m 7 884.7 m

2 1 113.2 m 788.5 m

3 111.32 m 78.85 m

4 11.132 m 7.885 m

5 1.1132 m 788.5 mm

6 111.32 mm 78.85 mm

7 11.132 mm 7.885 mm

8 1.1132 mm 0.7885 mm

9 0.11132 mm 0.07885 mm

2.3.2 Representation

While indirectly related geospatial information is a sole reference, direct geospatial data

can be of various types. The data structure must be able to represent points, lines,

areas, areas with holes or even volumes. To ensure interoperability between libraries,

tools and services the Open Geospatial Consortium (OGC) published the OGC Simple

Feature Access Specification [40], that defines how to deal with geographical structures.

The Simple Feature Specification defines a feature as an “abstraction of real-world

phenomena”, which usually has a geometric object assigned to it, in order to provide a

relation to a CRS. The GeoJSON Format is one of many geospatial data interchange

formats, such as its alternatives Geographic Markup Language (GML), Well-Known Text

(WKT) and Well-Known Binary (WKB). They were all developed to represent geodata

based on Simple Features. GeoJSON must use coordinates based on a WGS84 datum

with longitude and latitude expressed in decimal degrees. Section 4.5.4.1 provides

further details about GeoJSON.
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2.3.3 Data Binning

In order to analyze geospatial data, it is helpful to partition individual data records into

buckets, often specifically chosen polygons or circles on the earth’s surface. These

buckets can be declared manually on purpose, to utilize human knowledge for getting

results in a specific area of interest. Such human defined buckets could be boundaries

of cities and states or at finer granularity boundaries of areas divided by postal-codes to

aggregate and average values for those areas. However, getting access, creating and

storing such information for worldwide analysis requires a lot of effort and may only be

suitable for certain areas of interest.

Discrete Global Grid Systems (DGGSs) are a more universally usable alternative to

human defined buckets. The OGC published a specification for a DGGS in 2017, where

they define it as [66]:

Definition 4. A DGGS is a spatial reference system that uses a hierarchical tessella-

tion of cells to partition and address the globe. Sahr et al. characterize a DGGS by

the properties of its cell structure, geo-encoding, quantization strategy and associated

mathematical functions and is providing the following definition.

The system represents a series of discrete global grids, where each grid is having an

increasing number of cells with respect to its predecessor grid and therefore having a

finer resolution. DGGSs can be created in various ways. Sahr et al. describe five design

choices to consider when specifying a DGGS [67]:

1. A base regular polyhedron, such as an octahedron or an icosahedron as shown in

Figure 2.4 on the left.

2. A fixed orientation of the base regular polyhedron relative to the Earth, such as the

R. Buckminster Fuller’s Dymaxion Orientation for an icosahedron.

3. A hierarchical spatial partitioning method defined symmetrically on a face (or set of

faces) of the base regular polyhedron. Depending on the used polyhedron different

polygonal shapes such as triangles, squares, diamonds and hexagons are used.

An example is shown in Figure 2.4 in the center.
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4. A method for transforming that planar partition to the corresponding spherical/ellip-

soidal surface like shown in Figure 2.4 on the right.

5. A method for assigning points to grid cells.

Figure 2.4: Example DGGS based on partitioning of an icosahedron.
Image by [73] cba

DGGSs, such as the one shown in Figure 2.4 have the advantage, that they cover the

whole spherical surface of the earth and can therefore be used generically to partition

data collected at every place on the earth. Additionally, a system with different resolutions,

like presented in [14], allow to represent the same data efficiently in differently sized

buckets which is important to visualize and aggregate data on different scales. Because

the grid is calculated deterministically with the help of the system-internal functions,

we do not have to store the boundary of the cells to place points accordingly. We can

use the system’s method described in design choice 5 to calculate, in which bucket a

specific geospatial location has to be placed and inversely, can calculate the boundary

of a bucket if we know the index of a specific bucket.

2.4 Cloud-Native

The term cloud-native has already been used, to vaguely describe applications that have

been developed specifically for the cloud to leverage its advantages. It has been the
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research community that introduced the term, but since 2015 the industry is more and

more using it to describe a concept, that focuses on modular application design around

containerized microservices that are operated on cloud resources by the help of tools

and platforms for dynamic scheduling [43].

We will clarify our understanding of the cloud and introduce a few important terms before

providing our definition of cloud-native.

2.4.1 The Cloud

In information technology, “the Cloud” is a well-known general term. Originally a cloud-

graphic has been used in network-diagrams to represent the Internet, which was some-

one else’s concern [76]. In part, that notion is still valid for our general understanding

of the Cloud today. Without further specification the term actually cannot describe

more than “something is usable via network access”. Vaquero et al. have proposed a

definition for Clouds by studying more than 20 other definitions and integrate them:

Definition 5. Clouds are a large pool of easily usable and accessible virtualized re-

sources (such as hardware, development platforms and/or services). These resources

can be dynamically reconfigured to adjust to a variable load (scale), allowing also for an

optimum resource utilization. This pool of resources is typically exploited by a pay-per-

use model in which guarantees are offered by the Infrastructure Provider by means of

customized SLAs. [75]

The National Institute of Standards and Technology (NIST) belonging to the U.S De-

partment of Commerce, thinks of the Cloud as a model or paradigm for the access and

usage of computing resources as well as application resources and formed one of the

most popular definitions around the Cloud concept:

Definition 6. Cloud computing is a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction. This cloud model is com-
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posed of five essential characteristics, three service models, and four deployment mod-

els. [51]

Both, Definition 5 and 6 highlight an easy and flexible access to an adjustable pool of

resources. This notion is expressed in the essential characteristics of the cloud model,

namely On-demand self-service, Broad network access, Resource pooling, Rapid elas-

ticity and Measured service. The flexibility of self-service provisioning enables a cloud

consumer to get access to resources without contacting other human business partners

and without conducting time consuming negotiations of contracts. Instead, the con-

sumer would often use an application programming interface (API) to perform resource

provisioning and adjustment. The placement of the resource, for example in which

data-center rack, is transparently handled by the provider, the only important aspect for

the consumer is getting network access to that resource. Because there are often no

long-living contracts for resources, the consumer can elastically provision and shutdown

resources as needed and can therefore better align the computing power to the load of

a system, which is one of the large benefits of the Cloud.

Cloud Service Models allow consumers to decide how much control they want to

have about the resources in terms of configuration and maintenance. The different

categories are important for early decisions in software development, when the resulting

application should leverage cloud computing. This decision often conforms to Make or

Buy decisions at, for example, producing a car. The NIST has defined the following

categories for these offerings [51]:

• Infrastructure as a Service (IaaS): The consumer can provision fundamental com-

puting resources and is able to deploy and run arbitrary operating systems and

applications. He does not manage the underlying physical infrastructure but has

full access to configure operating systems and control storage or deployed applica-

tions.

• Platform as a Service (PaaS): The consumer can deploy applications using pro-

gramming languages, libraries, services and tools supported by the provider.

Operating systems, storage and underlying infrastructure are managed by the
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provider. He has control over deployed applications and configurations regarding

application hosting.

• Software as a Service (SaaS): The consumer uses applications of a provider, that

are running on cloud infrastructure. He does not manage anything regarding

application- or infrastructure configuration and only uses an application’s capabili-

ties through an interface.

Iaas in the example of producing a car would be equal to a car maker getting raw sheets

of iron and all of the following steps are subject to the value chain of that particular

car maker, giving him full control of the production process and quality outcome. PaaS

however, would deliver the car maker not raw sheets of iron, but already bended doors or

tailgates with certain holes already drilled. The car maker is no longer performing all parts

of the value chain on its own but only some special steps like drilling additional holes

for optional components, apply specific coloring and integrating specifically engineered

components. SaaS would mean, a car maker is only focusing on the assembly part of the

value chain when building a car. He would buy finished components and only assemble

them together using defined screw holes and wires. In the software development context,

these holes and wires would represent certain APIs that we can leverage to integrate

their service into our platform product, rather than developing the service on our own.

2.4.2 Scalability and Elasticity

One of the main advantages of using the Cloud is easier elasticity and inherent scalability

of resources, such that provisioning and de-provisioning of computing resources can

happen automatically. If the expected load is unknown and volatile, the Cloud is a good

choice to minimize the effort for adapting the available resources to the current load.

This benefit is strongly related to elasticity, that in order to be defined, needs scalability

clarified as a precondition. Both scalability and elasticity have been described and

differentiated by Herbst et al [36].

• Scalability is described as the ability to sustain increasing workloads by using

additional resources. It does not consider temporal aspects of how fast, how often,
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at what granularity scaling actions can be performed and is not related to how well

the provisioned resources match the demand at any point in time.

• Elasticity is described as the degree to which a system is able to adapt to workload

changes by scaling in an autonomous manner, such that resources match the

demand as closely as possible at any point in time.

Accordingly, we first need a system that is able to scale, in order to achieve true elasticity.

Scaling can happen either vertically, by increasing the power of the resource we currently

have, or horizontally, by adding new resources. Cloud computing offers both types. Most

providers have differently sized computing types that a user can easily change if more

power is needed. At some point however, the largest computing type represents the

upper limit for the vertical scalability. For truly scalable systems in a more and more

connected society, it is inevitable to be horizontally scalable to overcome the limited size

with an increased number of resources and therefore having the capability of theoretically

scaling endlessly. Making a system scalable by replicating services or sharding4 data

into partitions can often be achieved easily. Achieving true elasticity however, requires a

well-designed architecture and software platforms capable of orchestrating resources

according to metrics describing the load of the system.

2.4.3 Microservices

Microservices became a popular alternative to monolithic software architectures after

companies of the “Internet-Economy”, with Amazon and Netflix leading the way, pub-

lished learnings of their internal software architecture. In 2014 Fowler and Lewis provided

one of the most popular articles about the, as they define it, “Microservice-Architectural

Style” [27]:

Definition 7. In short, the microservice architectural style is an approach to develop-

ing a single application as a suite of small services, each running in its own process

and communicating with lightweight mechanisms, often an HTTP resource API. These
4Describes a horizontal partitioning of a database to distribute data between multiple smaller database

instances instead of maintaining one large database.
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services are built around business capabilities and independently deployable by fully

automated deployment machinery. There is a bare minimum of centralized manage-

ment of these services, which may be written in different programming languages and

use different data storage technologies.

In earlier research, we concluded, that the term “Microservices” is not only describing

the component and the resulting architecture, but also a style, that is manifesting a

culture and methodology of a software-developing organization approaching a specific

business field. If a correct decomposition of such a business problem into microservices

is missing, even a by definition decoupled Microservices-Architecture, will eventually

become tightly coupled. However, it is undefined how to make such a decomposition

making the result depending on the favored degree of modularity [11].

2.4.3.1 Bounded Context

A Bounded Context is a popular idea for decomposition of business fields having its

roots in Domain Driven Design [25] and is often used as the modularization concept for

defining certain microservices along business capabilities.

The term is best described by Evans himself as “a description of a boundary (typically a

subsystem, or the work of a particular team) within which a specific model is defined and

applicable [26].” The contexts serve as inner boundaries for a global domain, like Crowd-

sensing of geospatially related data is, and are the result of strategic decomposition of

a large domain into smaller subject-specific parts with a strong inner cohesion. They

correspond to distinct business capabilities as mentioned in Definition 7 and represent

autonomous business domains. If the boundaries are set correctly, each context-model

can be very specific for the intended business capability, resulting in an Ubiquitous

Language for the specific domain context. This language is the common understanding

of domain experts, developers, business and project management. By avoiding a global

canonical domain model, which would require dealing with unnecessary model attributes

not relevant for a specific business context, we can prevent misunderstandings and

maintain a smaller context model that is easier to overview and thus easier to change

and enhance [55].
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2.4.3.2 Microservices-Style

Microservices are a concept to modularize software, that emphasizes continuous delivery,

automation through applying DevOps principles and organizations composed of small

autonomous teams focused on a specific business capability of a larger software system.

The style aims at solving shortcomings of other styles, that focused on teams aligned

with their technical competences like Frontend-Development, Backend-Development or

Database Administration. These other styles, often seen in monolithic architectures or

early enterprise-SOA initiatives, require complex coordination between teams, because

almost every change requires cross-team coordination, since changes often concern

the whole stack from frontend to the database and most certainly operations, because

someone has to deploy that change.

The Microservices-Style is forcing organizational structures composed of teams being

aligned with bounded contexts and having full-stack responsibility for frontend, backend,

database and sometimes even operation of their services. The assumption is that,

if the system is well-separated into bounded contexts with services being aligned to

those contexts, most changes are only context-internal and do not require cross-team

coordination and therefore allow faster deployment cycles of changes, which ultimately

results in faster feature development.

2.4.3.3 Microservices-Architecture

A Microservices Architecture is usually the result when an organization applies the

Microservices-Style. On the macro-level the architecture is a distributed application

composed of microservices that communicate over lightweight mechanisms such as

Representational State Transfer (REST) or lightweight messaging and together provide

the overall functionality of the application system.
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2.4.3.4 The Microservice

One Microservice can be seen as an independent application that has its own lifecycle

and might use a different technology stack than other services in the system. Each ser-

vice should perform a single task in the sense of the Single Responsibility Principle5 to

maintain a modular architecture and prevent side effects on features that actually are not

changed at all. To allow independent development and deployment, each service is only

allowed to be maintained by exactly one Team in order to have fast and unbureaucratic

decision making and prevent conflicts in schema and model changes.

For the same reason services should have its own database and services in other

contexts should only be able to retrieve the data via defined APIs by lightweight com-

munication technologies. The consequence is that direct access to the database of a

service in another context or integration of two services should be avoided when using

microservices, because it contradicts the modularization of logic and data. An exception

to this principle may be two services residing in the same functional context, which is

usually managed by one functional team that can therefore still develop and deploy

independently of others.

2.4.4 Self-contained Deployment Unit

Building an application out of many independent services can be challenging in terms

of deployment and packaging. Just deploying every service onto the same machine

leads to many problems and conflicts in library versions, port numbers, configuration

settings and not to forget great effort of managing dependencies, when moving some

services onto other hosts. This is especially cumbersome to scale, because the exact

environment has to be rebuild on every additional machine.

In a cloud-native environment we want to have services baked into a “self-contained

deployment unit”. According to the Open Container Initiative (OCI) it should encapsulate

the software-component, which is implementing the logic of the service, and all of its

dependencies “in a format that is self-describing and portable, so that any compliant

5One component should deal with only one responsibility, so that there is only one reason to change the
component, which is when the requirement for the responsibility changes [49].
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runtime can run it without extra dependencies [59].” In the cloud-native sense such a

deployment unit is a standard container implementing the OCI runtime specification.

Other than Virtual Machines, that have their own user and kernel space, containers share

the underlying operating system of the machine and actually are just isolated processes

using certain kernel features. The most prominent container-technology currently used

in the cloud-native context is Docker6, because it has been the first technology to provide

certain concepts and tools, that help managing the lifecycle of such standard containers.

Some of the core notions of Docker described as follows:

Dockerfile Is a structured text file containing instructions telling Docker how to build

an image. Every Dockerfile must describe a Base-Image which is used as a start

state. Further, it describes certain commands that change the state of the image

by copying certain files at specific directories or installing additional software.

Image Is a portable representation of a containers state. Images are named in the

format of Name:Tag, where the tag usually represents the version of the application

contained in the image. They have intermediate layers corresponding to one

command in the Dockerfile, that can be reused in other images and thus saving

disk usage.

Registry Is a central place to store and host Images. The container runtime can then

pull those centrally stored images onto a specific computing node and run a

container of it.

Container Is a concrete instance of an image. The container can be started, stopped,

paused and snapshotted into other images.

2.4.5 Cloud-Native Definition

As it is the case with many previous hypes in information technology, there has not

been an exact definition of what “cloud-native” means. The scientific community has

used the term from about 2012, as Kratzke & Quint identified in their survey of research-

publications containing the term. They worked out some aspects, that show a “common

6https://www.docker.com/what-container
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but unconscious understanding” across several of the studies and provided Definition 8

[43]:

Definition 8. A cloud-native application (CNA) is a distributed, elastic and horizontal

scalable system composed of (micro)services which isolates state in a minimum of

stateful components. The application and each self-contained deployment unit of that

application is designed according to cloud-focused design patterns and operated on a

self-service elastic platform.

From an industry’s point of view the hype about this term has multiple reasons. On

the one hand, it emerged from Google’s approach to mange its production workload in

several giant clusters managed by an orchestration system called Borg, which has been

open-sourced under the name Kubernetes 7 in 2014 [77]. On the other hand, a rising

interest in Docker-Containers is equally relevant for the cloud-native hype [52]. A further

major reason is the preceding hype of developing everything distributed and scalable in

form of microservices, which is now slowly becoming mature and state-of-the-art. The

need of special tooling to use Microservices efficiently, gave birth to an ecosystem of

numerous tools, technology and services for managing all the hard parts of developing a

complex distributed system in the cloud context (see Appendix A.1).

The Cloud Native Computing Foundation (CNCF) has been established in 2015

as a subgroup by the Linux Foundation to foster collaboration between cloud-native

participants, mainly cloud-vendors and creators of the tooling mentioned in the former

paragraph. It is currently in possession of the strongest interpretational sovereignty

within the software industry of what “cloud-native” means. Their Technical Oversight

Committee currently uses the following definition [18]:

Definition 9. Cloud native technologies empower organizations to build and run scal-

able applications in modern, dynamic environments such as public, private, and hy-

brid clouds. Containers, service meshes, microservices, immutable infrastructure, and

declarative APIs exemplify this approach. These techniques enable loosely coupled

7https://kubernetes.io/
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systems that are resilient, manageable, and observable. Combined with robust au-

tomation, they allow engineers to make high-impact changes frequently and predictably

with minimal effort.

Cloud-Native is nowadays a term with a broader meaning than just describing some sort

of application architecture, thus we use the following definition:

Definition 10. (Being) Cloud-Native is an organizational commitment to use cloud-

native technologies (as defined in 9) as an enabler to build cloud-native applications

(as defined in 8) in order to operate their software system reliable while at the same

time constantly having developers applying changes to the software.

2.4.5.1 Summarization

A cloud-native design can be summarized by emphasizing the three fundamental pillars:

• Microservices oriented: Application-Systems are separated into small indepen-

dent components which increases the overall agility and maintainability of applica-

tions.

• Self-contained Deployment Units: Every service component of the application-

system is a self-contained deployment unit, that has already packed libraries and

environment dependencies in the correct versions within a container technology.

• Dynamically orchestrated: The self-contained deployment units are actively

scheduled by cluster management tools to optimize resource utilization and auto-

matic recovery of failed components.

We will use these pillars in Chapter 4 and 5 as a basis for the design and implementation

of our platform backend.
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This Chapter introduces the Noisemap project we use as an exemplary guideline for

the design and implementation of our platform proposal. We are going to introduce

its contextual terminology and is presenting incentives, requirements and challenges

regarding that project, which are considered as a guideline in the following chapters.

3.1 Introduction of the Noisemap Project

Today’s cities represent noisy environments because of various sources such as traffic,

crowded streets with pubs, restaurants, nightclubs and possibly lots of additional con-

struction work going on. For people with chronic disorders like tinnitus, this represents a

challenging environment and has a direct effect on their condition in day-to-day life. Ob-

viously, additional noise exposure supports hearing loss resulting in more severe tinnitus,

therefore people already having hearing disorders should avoid noisy environments.

3.1.1 Tinnitus

Tinnitus is a subjective phenomenon difficult to assess and for which it is hard to gather

data that is useful for researchers. TrackYourTinnius is one Crowdsensing approach that

follows the ecologically momentary assessment using mobile smartphone applications

for assessing symptom severity by collecting self-reports about the perception of tinnitus

combined with objective measurements [68]. They showed that Crowdsensing is a

promising approach and users are actually motivated to use mobile Crowdsensing

applications to provide patient feedback for tinnitus assessment [63]. They also started to
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use the data provided by the crowd in several scientific follow-up studies in [61], [65] and

[62], which is an example for how Crowdsensing can help gathering valuable statistical

data. Although applications like TrackYourTinnitus can help patients in understanding

their tinnitus better, it is still hard for them to control noise exposure in public environments,

because of missing information about noisy areas.

3.1.2 The Noisemap-Project

We like to introduce this Crowdsensing approach to help tinnitus patients, but also people

caring about their hearing ability, to get information about noise levels in certain areas

to avoid noisy places as a preventive measure. The project can collect and visualize

noise levels via Crowdsensing, by leveraging the ability of recording noise with mobile

smartphones and correlating the measurements to the current geographic coordinates

of the device. The focus of the project is on environmental (or recreational) noise

exposure of users. As opposed to occupational noise exposure, there are almost no

noise limits because of insufficient policies or lack of enforcement. In fact, each person is

self-responsible, for how much it exposes itself to noise in their recreational time. Popular

activities, such as sport events, music events or hanging around in a bar with music, can

be threatening regarding loss of hearing or tinnitus in the long term. The problem is that

most people are not aware of the amount of noise they are exposed to until they notice

first symptoms of tinnitus. Cranston et al. show, that Fans in an indoor Hockey arena are

exposed to sound levels with an average of 97dBA and a threatening peak of 124dBA

sound pressure level [21].

Even if they care about their hearing ability, it is hard for them to track their consumption

of noise and avoid noisy areas proactively. The problem is even worse considering the

fact, that many workers are already exposed to a noise dose (see Section 3.3.3) of 100%

during their work shifts. All non-occupational activities, such as pub visits, add to their

total noise exposure, which is exceeding healthy limits as a result. Regular exceeding

of noise dose limits in a worker’s career is hazardous and a substantial risk factor for

hearing damage [47].
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The goal is to provide people, that care about their noise expose, with an option

to regularly measure the noise around them with their mobile phone and use those

measurements locally, to calculate an estimation of the daily noise dose for each user.

Additionally, we want to use all measurements collectively in the Crowdsensing sense, to

give users a geospatial visualization with best effort live data on a map. Users that care

about their hearing, can use that information to be aware of current and past noise levels

at certain places or events and perhaps decide to avoid them or take further measures

like earplugs before visiting. The collected data produced by this Crowdsensing initiative

is also very valuable for additional purposes such as city-planning, assessments in the

real-estate market or scientific research of noise pollution by applying statistical methods,

as the TrackYourTinnius project did on their data.

3.2 Related Work on Noise-Sensing Platforms

Using Mobile Phones for measuring noise is not a new approach. Schweizer et al. have

developed a participatory sensing application and an urban sensing platform to enhance

the sparse dataset of noise pollution in cities. Their application is based on the Android

operating system and leverages the smartphone’s microphone and GPS-sensors to

perform location-related noise-measurements. However, the measurements only focus

on raw SPL measurements, rather than measuring frequency weighted samples like an

LAeq. The measurements are submitted into an open urban sensing platform, called

da_sense, where it is stored linked to a user-account, which can control the public

visibility of the data for privacy reasons. The platform allows access to the data via a

visualization website using a heatmap overlay or through APIs [70]. The City Soundscape

project for noise monitoring and acoustic urban planning published by Zappatore et

al., is able to produce acoustic measurements with smartphones and collect them in

a cloud-based platform “in order to help city managers in improving the life quality of

their cities’ [83]. A web-based visualization application is able to suggest certain noise

reduction interventions to city planners and helping them meeting the European laws

and regulations.
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Both platforms however, offer no visualization of the measured noise levels directly within

the mobile application and only focus on web-based approaches, where a focus on

data-quota and energy consumption is no priority.

3.3 Noise and Sound

In order to understand Noise we have to introduce Sound as a physical phenomenon

of small pressure variations in form of vibrations that propagate as audible waves. The

human ear or technical means like microphones can notice these audible waves and

direct them to signal processing. From a linguistic point, the term Sound has no negative

or positive association and therefore solely describes the physical phenomenon that can

be measured.

Noise however, refers to “a sound, especially one that is loud or unpleasant or that

causes disturbance” [60], and is therefore negatively associated and often not desirable

for human persons. The disturbance can happen subliminal, when the noise has the

form of a constant background noise, for example from distant traffic. Although, there

are background sounds, which might be natural, like rustling leaves, a waterfall or a

water-stream, where it is not clear whether the sound is unwanted or not, we can classify

them as background noise, too [74]. Additionally, we classify the exposure to sound from

activities a human deliberately undertakes as “noise exposure”, when the effect of that

sound is unwanted, like for example hearing loss. Examples are music events that a

human visits even if it is common knowledge that their sound levels are harmful.

While noise is omnipresent, the exposure to noise can be classified according to the

setting. The World Health Organization (WHO) uses occupational noise for every noise

that corresponds to a workplace setting and environmental noise for every other setting

of human activities, which might be noise from traffic or playgrounds when residing in

their homes or noise from nearby sport- and music events or bars. Environmental noise

is also often called recreational noise [19].
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3.3.1 Sound Measurement

In an occupational setting sound measurements are typically performed with a profes-

sional device, like depicted in Figure 3.1 and called Sound Level Meter (SLM).

Figure 3.1: The functionality of a typical
professional Sound Level
Meter (SLM). Image by [3]
cba.

According to the Occupational Safety and

Health Administration (OSHA), which is re-

sponsible for enforcing safety regulations at

workplaces in the United States, these devices

must be calibrated and meet the ANSI Stan-

dard S1.4-1971 (R1976) or S1.4-1983 [6]. A

SLM measures variations of pressure in the

air with a diaphragm in a microphone. These

variations result in the output of a sound pres-

sure level (SPL) in decibels, which is defined

as an effective sound pressure in relation to

a reference value, often 20µPa, the thresh-

old of human hearing. The logarithmic scale

of decibels seems to correlate to the human

perception of sound and the interpretation of

loudness. Therefore 0dB for a human is usu-

ally silence and 120dB, which is 1Pa, can be

the threshold of pain for human ear [20].

Recreational Noise Measurement is hardly possible for a large part of the population,

because these SLMs are expensive and only meant for occupational use. To close this

gap and provide the population with an easy and uncomplicated way of performing

recreational noise measurements is exactly the target of this project. It tries to use a

large crowd to perform geospatial mapping of average noise levels. However, because

usually contributors to our platform do not have professional SLMs, we only can rely on

results of built-in microphones of smartphones.
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3.3.2 Weighting Filters

The SPL is a pure physical value that is not perfectly suitable for depicting the human

perception of sound. Therefore, SLMs often apply frequency-selective weighting filters,

that are better aligned to human hearing.

The most popular weighting in human noise exposure research is the A-weighting curve

measured in dBA. It accounts for the less sensitive perception of the human ear on low

frequencies and therefore has a better description of the relative perceived loudness.

However, it is not a useful approximation of the human ear’s response to frequencies, but

rather “an approximation of equal loudness perception characteristics of human hearing

for pure tones relative to a reference of 40dB SPL at 1KHz”[10] and therefore actually

only valid for quit sounds with a relatively small SPL and pure tones. Although, by

comparing different weighting filters empirically, it has been concluded that A-weighting

gives a better estimation on the impact of given waveforms on human hearing than other

weightings.

Other filters such as C-weighting can be useful in comparison with A-weighted values to

determine if a sound has significantly low-frequency components, where its value would

be higher than the A-weighted values [10].

3.3.3 Noise Dose

This abstraction is a personal value representing a total sound exposure normalized

to eight-hours. However, as Tingay and Robinson showed, the Noise Dose value is

defined differently by various regulations including different terminology and ultimately

showing significantly different results in the end [72]. Together with the ISO-Standard,

that is used within the EU, the NIOSH regulations show the highest results, because

they define an exchange rate of 3dB, which means that an increase by 3dB is doubling

the value outcome. The NIOSH Noise Dose is measured at a criterion level of 85dBA

for a criterion time of 8hours, which would represent a Noise Dose of 100%. When for

example, the individual is exposed to 88dBA continuously, it reaches the 100% mark

after only 4 hours [17].
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Although the Noise Dose is a mean to regulate noise exposure in occupational settings,

the noise collected in recreational activities is contributing to the overall Noise Dose.

A visit in an average discotheque or of a sport event, such as an NFL game, is likely

reaching or even exceeding the limits of the daily Noise Dose alone [47].

3.4 Mobile Application

The project includes the mobile application shown in Figure 3.2, which is developed

independently of this work by Robin Kraft at the Databases and Information Systems

Department of the University of Ulm. The IOS application is capable of measuring the

SPL for a certain time-window of a few seconds and subsequently, aside from a regular

Time-Weighted-Average (TWA), deriving different weighted values, such as A-weighted

(LAeq) and C-weighted (LCpeak). Since the purpose of microphones in smartphones is

recording voice and sounds for multimedia applications, their accuracy for measuring

the SPL is usually not comparable to professional SLMs. To at least provide some

measurement accuracy, the application is using correcting factors for the measured

SPL, which are retrieved through calibration. Each microphone behaves differently and

finding out the correct factor for calibration requires laboratory equipment, which is the

reason why the mobile application is developed for IOS based devices in the first place,

because the operating system is limited to a smaller group of device types than the

Android operating system. However, even after calibration the values cannot reliably

be used for exact testimonies of noise levels, but they should still be good enough to

highlight significant differences between quiet, moderate and noisy areas [54].

35



3 Project Context: Noise Sensing

(a) Screen to measure noise. (b) Screen to visualize aggregated mea-
surements on a map.

Figure 3.2: Example mobile application for measuring and viewing noise data by [42].

3.5 Incentives

Like other crowd sensing initiatives this project has some requirements in order to

be successful. It is critical for the project to attract many users and motive them to

actively measure noise in different areas to maintain a steady input stream of noise

data. Considering that users running the frontend application on their mobile phone

have drawbacks like battery drainage, they have to be provided with sufficient incentives.

Noisemap is currently a small scientific project with a limited financial budget, therefore
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incentive types, that involve paying money to users are not considered. We favor a

combination of the Service and Entertainment categories, as they are defined in Section

2.1.2.

3.5.1 Service Incentives

One option of the platform is providing information as an incentive. Sharing the collected

data with users is an obvious first step to motivate users to take part in sensing-actions.

They provide measurements and the platform offers them information about collected

measurements, either by visualizing them or showing a list of conducted measurements

by other users nearby. This way we compensate a user’s effort with information he would

not be able to get without using our platform.

As a next step, we can create fine-grained access control for different types of information

based on a user’s activity. This will privilege actively contributing users. A simple

classification of users into Member Levels can help to build such an access-control:

Guest An unregistered individual independent of whether it is contributing or not, be-

cause we cannot distinguish guest measurements. They only have access to

pre-aggregated values of the past day and only within a certain radius, for example

1 km, of their current location.

Newcomer A registered person until it has mastered a certain task, like provided at

least one measurement a day for five days. Like Guests they have only access to

information within a certain radius of their current location, however Newcomers

can also show pre-aggregated values which are more recent than 1 day.

Member A registered person when it has mastered the Newcomer task. Once a person

reaches this class, we value the effort of mastering the Newcomer entrance and

never downgrade it the person further, even if it is no longer actively contributing.

This should keep the hurdle small to become an active contributor again. Members

can visualize pre-aggregated values without any constraint on current location and

additionally access single measurements within, for example a 1km radius, of their

current location.
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Active Member A Member that has either submitted at least one measurement in the

last hour or more than 168, which is the number of hours in one week, measure-

ments in the last seven days, not including the current day. Being active has the

benefit, that all features of the platform are accessible without constraints for the

current location. An Active Member can not only request single measurements or

pre-aggregated values for any area on the world, but also request live-aggregations

to show an aggregated visualization of the measurements collected in the most

recent 15-minute window.

Premium This is a reserved class for possible payed features that can be introduced in

such a platform in the future.

An additional information incentive can be the personal noise exposure calculation in

form of a Noise Dose, that is calculated if a user is constantly performing automatically

scheduled measurements in the background. Such information can be very valuable for

any user that is caring for their hearing ability.

3.5.2 Entertainment Incentives

Integrating certain social aspects into the platform can additionally enable the possibility

of using entertainment incentives. Most of the entertainment incentives result in social

reward and by that try to motivate users for actively contributing to the platform. The first

and obvious step is to collect user statistics that each user can share with other users on

a custom user profile. The next step would be integration of Gamification. The creation

of a concept for Gamification would exceed the scope of this work, because it is strongly

related to specific use-cases and involves aspects of human psychology. Still, we want

to provide exemplary approaches, that show how such a Gamification could look like.

We would use a concept of Challenges and corresponding Awards.

Challenges Describe specific tasks, which can be consistently or temporarily available

and can be additionally geographically constrained and reoccurring randomly.

Users can view these Challenges in the application, or even on a map in the
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case of geographically constrained Challenges. Further, a user might receive

notifications advertising Challenges concerning its interest.

Awards Describe medals or pins that can be shown in a user profile once achieved a

specific Challenge. There could also be a publicly available board, where other

users can view recently awarded users.

Examples could be Challenges being inviting to measure continuously, like at least one

measurement every quarter of an hour for a certain number of hours, or inviting to

measure geographically distributed, like providing a measurement in at least 5 geograph-

ical cells within a certain timespan. Additionally, certain areas without good coverage

could be used in Challenges as special areas with bonus rewards to foster a balanced

geographical coverage.

3.6 Requirements of the System

Pryss et al. have developed a set of requirements useful in the context of Crowdsensing

and mHealth that are based on RESTful principles. Some of them have been used as

a rough guideline to develop the specific set of requirements in the Noisemap project

[64]. We do not constrain the term system to the backend system of the platform, but

also take frontend requirements into account, too. Also system and application might be

used interchangeably in this section. We identified and listed the requirements divided in

two categories:

• Functional: The functionality the system should have and which represents the

business functions that an implementation must provide is listed in Section 3.6.1.

• Non-Functional: The constraints and quality criteria not directly related to function-

ality, but should also be fulfilled is listed in Section 3.6.2.
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3.6.1 Functional Requirements

The following requirements in Table 3.1 present the functionalities, the system should

provide to fulfill the purpose of the project. We categorized them in Noise Level Mea-

surements, Visualization, Users, Notifications, Incentives and Privacy.

Table 3.1: Functional Requirements for the Noisemap-Project.

Nr. Requirement Description

1 Noise Level Mea-
surements

The system should offer a functionality to measure the ob-
jective noise level (LAeq, LCPeak, TWA) at a certain area
utilizing sensors of mobile devices.

1.1 Noise-Dose The system should be able to continuously measure the
noise around a user and provide the user with information
about his current noise dose.

1.2 Triggers The system should differentiate between triggers (User-
Initiated, certain Locations, Time, Notification) for measure-
ments that can be configured by users.

1.3 Subjective noise
Level

Additional to objective measurements, the system should be
able to measure the subjective noise level of users.

1.4 Offline capability The system should be able to let the user measure within
areas with bad/none cellular connection and re-sync when
the connection is established again.

2 Visualization The system should offer a visualization of the noise level
in a specific area as a map overlay. The map should be
adjustable by the user, for example to scroll and zoom in the
map.

2.1 Heatmap The system should offer a Heatmap of single measurements,
filterable by time and measurement types until the user
zooms out of a certain detailed zoom level.

2.2 Aggregations The system should offer a visualization of aggregated mea-
surements within certain polygons in a defined resolution for
different zoom levels.

3 Users The system should allow users to register and login.
3.1 User Profile The system should allow users to maintain a profile.
3.2 Groups The system should allow users to join groups and discuss

about noisy hotspots.
continued . . .
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Table 3.1 continued: Functional Requirements for the Noisemap-Project.

Nr. Requirement Description

4 Notifications The system should be able to notify the user when some-
thing interesting happens (group related activity, awards
and promotions) or when the system notices that the user
resides in an area of interest (requesting a measurement,
notifying about critical noise levels).

5 Incentives The system should motivate users to register and contribute
measurements.

5.1 Restrictions / Re-
wards

The system should restrict certain functionality to registered
users and reward their contributions with additional function-
ality.

5.2 Gamification The system should offer different gamification features in
order to animate the user to submit data more frequently.
Features may include but are not limited to statistics, sub-
mission streaks, awards or comparisons with other users in
the user’s area.

6 Privacy The system should maintain user-privacy interests as far
as possible and only share information about the user with
others, which that respective user has explicitly configured
to be shareable.

7 Fraud-Protection The system should take measures to notice and prevent
ingestion of false data. Questionable data should be logged
somewhere and users with a high degree of false data can
be notified, penalized or blocked by the system.

3.6.2 Non-functional Requirements

Beatty and Wiegers worked out the following 16 qualities of non-functional requirements

divided into internal and external (refer to Table 3.2). A quality is external, if it is mostly

important to users of the software, such as Usability, Performance and Availability. A

quality is internal if it is mostly important for development and operations, such as

Modifiability, Efficiency and Scalability.
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Table 3.2: The qualities types of Non-Functional Requirements after [79].

Nr. Name Type Description

1 Efficiency Int. How efficiently the system uses computer re-
sources.

2 Modifiability Int. How easy it is to maintain, change, enhance,
and restructure the system.

3 Portability Int. How easily the system can be made to work in
other operating environments.

4 Reusability Int. To what extent components can be used in other
systems.

5 Scalability Int. How easily the system can grow to handle more
users, transactions, servers, or other extensions.

6 Verifiability Int. How easy it is to confirm that the software was
implemented correctly.

7 Availability Ext. The extent to which the systems services are
available at any given time.

8 Installability Ext. How easy it is to correctly install, uninstall, and
reinstall the application.

9 Integrity Ext. The extent to which the system protects against
data inaccuracy and loss.

10 Interoperability Ext. How easily the system can interconnect and ex-
change data with other systems or components.

11 Performance Ext. How quickly and predictably the system re-
sponds to user inputs or other events.

12 Reliability Ext. How long the system runs before experiencing
a failure.

13 Robustness Ext. How well the system responds to unexpected
operating conditions.

14 Safety Ext. How well the system protects against injury or
damage.

15 Security Ext. How well the system protects against unautho-
rized access to the application and its data.

16 Usability Ext. How easy it is for people to learn, remember
and use the system.

We specified the project’s internal requirements in Table 3.3 and the external require-

ments in Table 3.4.
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Table 3.3: Internal Non-Functional Requirements for the Noisemap-Project.

Nr. Quality Description

1 Efficiency The system should use computing resources in the back-
end in a balanced manner between storage and computing
efficiency. Often required expensive computations should
be based on pre-computed persistently stored aggregates.
Additionally, the system should minimize the size of the
required bandwidth, especially to at public facing APIs, to
prevent too much data consumption of users’ quota.

2 Modifiability The system should be designed in a modular manner with
defined interfaces. A change in one module without chang-
ing the interface should not affect other modules at all. It
is desirable that even an extension of functionality in one
module should not affect other modules.

3 Portability The system should be composed of self-contained mod-
ules that can be transparently located across computing
resources. The package of each module should contain the
required environment configuration and dependencies and
abstract from the underlying infrastructure.

4 Reusability The modules should be implemented with generic interfaces
to be reused for other contexts than noise-measuring with a
minimal change effort.

5 Scalability The system must be highly scalable on module level. Only
the module under load should be required to scale by just
adding more instances of the module. The system must
support horizontal scalability to avoid limitations of vertical
scalability.

6 Verifiability The system can implement certain measures to test and
verify the correctness of interfaces and used algorithms. Cor-
rectness can be confirmed manually within an integration-
environment before releasing a module to production.
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Table 3.4: External Non-Functional Requirements for the Noisemap-Project.

Nr. Quality Description

7 Availability As a platform that is dependent on user satisfaction, we
should avoid outages longer than a few seconds and if not
possible, at partial failures silently hide faults in certain mod-
ules and give the user at least a partial response of the
working modules.

8 Installability The user-facing application must be easy to install and ac-
cessible through an application store native to the underlying
operating system.

9 Integrity The system should use only technologies that are able to
replicate and possibly allow backups of stored data. How-
ever occasional loss of a measurement before or within the
processing pipeline is not critical.

10 Interoperability The system must have an API that is accessible through the
Hypertext Transfer Protocol (HTTP). The API should mostly
follow the REST style.

11 Performance The application must be able to react on user requests within
a few-hundred milliseconds. If not feasible, the user-facing
application should tell the user that this is a sophisticated
operation and might take a few seconds.

12 Reliability Regular outages should be avoided to maintain a good user
satisfaction.

13 Robustness The system should deal with partial failure of certain mod-
ules and automatically try to restore the module within the
cluster. Healthchecks should help noticing failed compo-
nents and recreate them before actual failures propagate to
the user.

14 Safety No special requirement
15 Security The system must secure certain API-endpoints and autho-

rize every request. Sensitive user data like credentials must
only be stored in form of a hash.

16 Usability The user-facing application must provide a natural look and
feel that is native to the device-platform and therefore help
the user to quickly understand the functionalities. Settings
should provide hints or tooltips that explain the effect of the
setting in detail, especially for privacy settings.
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3.7 Challenges

Using a smartphone application for Crowdsensing unleashes multiple challenges. Es-

pecially using opportunistic Crowdsensing to measure autonomously without manual

user actions offer problems regarding the smartphone context while performing the

measurement. Automatically detecting some contextual situations is a challenging task

for the Crowdsensing application.

This Section lists some problems and explains, why they are critical especially for a

crowd-based noise measurement system, that partly uses opportunistic activity.

3.7.1 Public-Private Detection

The platform is supposed to collect measurements of environmental noise levels, but

also be a tool for the user to measure his personal noise dose over the course of

his recreational time. Assuming that users have activated opportunistic features to

perform measurements in the background, the system has problems to recognize which

measurements are relevant for the crowd. While noise measurements performed in

private space are perfectly suitable for personal calculations, they do not provide any

value or even distort values intended for the crowd.

For example, a user living next to a noisy place like the Time Square in New York City

might have his smartphone lying around next to a window that is well shielded to prevent

infiltration of outside noise. In that case an automatically performed measurement would

measure the inside-noise of the privately owned flat and relate that measurement to a

GPS-location almost exactly placed at the Time Square. Using this measurement for

aggregations will result in distortion of the environmental value at the Time Square.

Indoor-Outdoor Detection could mitigate the problem by some degree with the cost of

losing measurements, that are performed at public indoor places like restaurants or other

event locations. Assuming that GPS-sensors in smartphones work reliably, we could

use the signal strength of received satellites. Deep inside a building with no windows

the GPS is only reaching a few satellites or the signal even might not be available. The
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inverse effect should be observable at an open space somewhere outside, because the

GPS-receiver can receive the signal of multiple satellites in probably good shape and

determine the position very accurately. Outer walls of buildings are problematic because

they harm the GPS-signal even from outside when approached closely and inversely

windows are beneficial for receiving signals indoor. There might be certain accuracy

values for positions determined by the GPS, that cannot be reliably assigned to indoor or

outdoor scenarios.

Related Work on Indoor-Outdoor Detection is conducted by Wang et al.[78], who

are using a machine learning approach leveraging signal strengths of GSM base stations

to reliably determine one of four scenarios. They describe the problem by splitting the

context into four environments, a phone-carrying person can be in. Table 3.5 shows the

types including their definition.

Table 3.5: Four environments related to indoor-outdoor contexts based on [78]

.

Environment Open Outdoors Semi-Outdoors Light Indoors Deep Indoors

Definition Outside a build-

ing

Close to a build-

ing

In a room close

to windows

In a room with-

out windows

Example

They employ different algorithms to learn patterns of available base station and corre-

sponding signal strengths. They tested the results in experimental areas different from

the training area and showed, that the Random Forest algorithm can determine the

scenario with an accuracy of 95.3%.

Zhou et al. introduce a system called IODetector using multiple sensors, such as accel-

eration, proximity, light and magnetic field sensors, as well as cell-tower received signal
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strength (RSS) to detect outdoor, semi-outdoor and indoor scenarios. They employ

a light-detector using light intensity as a first component output, when the proximity

sensor indicates, that a valid measurement is possible, and the time suggests daytime.

Additionally, they associate different patterns of cell-tower RSS with certain scenarios as

a component output and lastly employ a magnetic field sensor to scan distinct magnetic

patterns of indoor and outdoor environments. These component outputs are aggregated

to compensate weaknesses of the different approaches. Their evaluation showed that

IODetector is capable of detecting the scenarios with an overall accuracy of 82% [85].

3.7.2 Pocket Detection

A smartphone will produce invalid measurements when the microphone is covered while

measuring noise, because the sound waves are disturbed and do not represent real

outside noise. Additionally, while a phone is residing in a pocket or a bag, there might be

newly created sources of noise that are close to the microphone coming from friction or

clattering keys next to the phone.

The mobile application must therefore be able to reliably prevent such measurements in

opportunistic scenarios, where it is automatically performing the measurement activities.

One approach might be, to only measure when the user is actively using the phone,

which is detectable for example by checking if the screen is turned on or off. A more

complex approach would use techniques to provide contextual awareness and determine

the placement and movement of the smartphone to predict, whether the microphone is

covered or not.

Related Work on Pocket Detection is conducted by Yang et al. with an approach,

that uses a combination of values coming from the proximity- and light-sensors of

smartphones [82]. They synchronized both sensors before feature extraction of 40

distributed samples contained in a 4-second-wide window. In a subsequent step they

average the 40 values and use thresholds to get input variables for a joint rule-based

classifier that can for example decide, that a phone is “likely in pocket”, when proximity

value is close and light value is dark. To prevent certain false-alarms they apply validation
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by checking for example the pattern of the proximity distribution within that 4 seconds.

They claim that the overall accuracy of their system is above 98% with a negligible CPU

processing power consumption.

3.7.3 In-Vehicle Detection

Measurements taken when a person is sitting in a car is also a class of measurements,

that is not interesting for the crowd, because they are not representing the environmental

noise level in the streets. Some cars are well-shielded against outside noise and

therefore engine sounds and sounds from multimedia systems are the main source of

sound, which are however irrelevant for other users interested in environmental noise

levels.

A simple approach could be, to calculate the distance a user has moved during the

measurement and discard the measurement if the distance is above a certain threshold,

which would indicate a fast traveling user. Although, this would not solve situations where

a vehicle is waiting at traffic lights or in traffic jam. Another approach might be, to let the

user activate a setting, that tells the application, which Bluetooth connected device is the

multimedia system of car and block measurements for the time this device is connected.

Related Work on In-Vehicle Detection is conducted by Nikolic and Bierlaire in a

review of multiple transportation mode detection approaches [58]. They concluded

that several valuable data sources are not used by the reviewed approaches. Using

real time traffic information and innovative sensors such as temperature, barometer or

humidity could be exploited to form more accurate models for decision making regarding

the current type of transportation mode. They also mentioned, that generative models

are unpopular for classification tasks on the mobile device itself, because of higher

computation costs. On a mobile device models based on Decision Trees provide the

best combination of accuracy and resource usage. Overall the approach of Stenneth et

al. [71] produced the most satisfactory accuracy.
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Backend Design

This Chapter introduces the structural- and architectural concepts we use to design the

backend of a more generically usable platform for applications like the Noisemap-Project.

Further, selected functional capabilities of such a platform are elaborated to show certain

challenges and potential solutions.

4.1 Concept

The backend will make use of state-of-the-art technology and concepts. We think the

cloud-native concept, introduced in Section 2.4, is a promising enabler to build an

extendable cloud-based platform, that can scale with a growing amount of data and

number of users. We also believe, that there will emerge additional use cases for

the collected data in the future and therefore pay attention to maintain a decoupled

architecture, that is making it easier for developers and researchers to introduce new

features, new approaches for calculation or even completely new use cases in the

long-term future.

The cloud-native design is following the microservices style, which divides functional

responsibilities into different bounded contexts and is thereby separating functionalities

in multiple microservices. These contexts will be hard borders for team collaboration

because there is only exactly one team responsible for each context to keep all the

decisions of the internal design within a small group of people, making it able to perform

changes fast and prevent coordination overhead. This design is making it possible to have

multiple developers or researchers work on independent parts of the platform without
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interfering other components. Such an approach can be beneficial when researchers

with different focuses work on new approaches in their field and like to test them within

the platform. They can develop and deploy their features in their own pace, rather than

being forced to wait for colleagues deciding to make a new deployment of the application

in a monolithic approach. The only point where minimal coordination happens is at

outside-facing interfaces of each context, making it possible to access data of other

bounded contexts in a reliable way.

The technology we consider for the design is popular open-source technology, that has

its focus on supporting the development of cloud-native applications by either being

highly dynamic in terms of scalability and elasticity or providing automation for certain

tasks related to development and operation. Because of the decoupled platform design

with independent services, its architecture is effectively polyglot and therefore giving

each team free choice of programming language, database technology and libraries.

The can use what is best suited for their problem or simply preferred because of former

knowledge or already present code snippets. Section 4.3 is elaborating on how we

use self-contained deployment units that are dynamically orchestrated, to provide an

abstracted infrastructure layer, that makes it possible to allow each team defining their

own automated build- and deployment pipelines by declaratively specifying the pipeline

and infrastructure configuration text-files.

4.2 Overall Architectural Design

First, we like to introduce the overall architectural design, which is a composition of

multiple bounded contexts. To start, we identified the current core capabilities (others

might be introduced as new services easily in the future) needed in a platform for

crowdsensing of geospatial data and assign those to the best matching bounded contexts.

We take into account the requirements of the Noisemap project as a guideline. Table

4.1 is providing an overview of the capabilities assigned to different bounded contexts,

which define the first level of modularization for our architectural concept.
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Table 4.1: Key business capabilities of the backend mapped to bounded contexts

Nr. Capability Bounded Context

1.1 Let users register and authenticate with the backend. User Identity

1.2 Let users change their password and provide lost-password recov-

ery.

User Identity

1.3 Let users deactivate and delete their account. User Identity

2.1 Let users maintain a User Profile with personal information. Social

2.2 Let users join groups and start, follow and contribute to discus-

sions.

Social

2.3 Provide geospatial relation of groups and discussions. Social

2.4 Trigger a notification to the user on new contributions in subscribed

discussions or subscribed areas of interest.

Social

3.1 Collect measurements provided by smartphones and other IoT-

devices and streamline them as a common input stream.

Measurements

3.2 Aggregate the measurements to provide min- ,max- and average

values within certain geospatial areas and time-based windows.

Measurements

3.3 Allow geospatial request filtering by specifying the area of interest

and time windows.

Measurements

3.4 Allow access to single stored measurements with a pagination like

limitation for the number of results.

Measurements

3.5 Provide an API that returns the results in a common geospatial for-

mat to allow straightforward visualization with frontend technology

Measurements

4.1 Track user contributions for authorization of additional functionality

and to show them their progress

Incentive

4.2 Maintain awards and streaks for certain achievements that moti-

vate users to continue in contributing measurements.

Incentive

5.1 Inform users about certain events via email. Communication

5.2 Inform users about certain events via push-notifications. Communication

5.3 Let the user define preferences for the type of events he likes to

be informed.

Communication

6.1 Manage meta-information about statically deployed sensors. Sensors

51



4 Backend Design

Each bounded context can have one or more services that are responsible for providing

the desired functionality. Each context is also using their own database and a data-

schema that fits their use case best. The proposed overall architecture is shown in

Figure 4.1. The infrastructure fundamentals for our architectural design, is described in

Section 4.3, where we introduce tooling, concepts and systems that allow to deal with

the increased complexity of such a distributed system. In the subsequent Section 4.4,

we are going to introduce Kafka as the data-system at the architecture’s heart, which

is allowing to process data in a stream processing manner and additionally is useful

for messaging purposes in the communication between services. Kafka is concretely

used in Section 4.5, which is covering the core functionality of collecting, processing and

accessing the measured data. We are additionally providing details about authentication

mechanisms for dealing with user identities in a distributed environment in Section 4.6.

The remaining Sections briefly describe ideas useful for implementing the other contexts.

Integration of services beyond context boundaries is possible at defined interfaces via

HTTP or RPC in the backend but should be kept at a minimum and make extensive

use of caching and fault-tolerance. Otherwise a failure in one context might harm the

functionality of another context, which results in a fragile application architecture. Certain

integration can happen by asynchronous messaging via Kafka topics. However, where

possible, we favor integration of data from multiple contexts in the frontend or at a

specific API-Gateway that unifies endpoints of multiple services for specific use cases.

For example, consider the frontend-task of showing a user profile, consisting of personal

information, contributions to discussions and awards. According to our bounded contexts

specified in Table 4.1, this would require data from social and incentive bounded contexts.

We can load the data in the frontend separately from the two different endpoints and

automatically graceful degrade1 when one of the services has failures, because we still

have something valuable to show to the user. We can either ignore the failure silently or

show a warning to the user that something has gone wrong on one part of the data.

1Graceful degradation is the ability of a system to stay at least partly functional when some parts of the
system break down.
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Figure 4.1: Graphical representation of the overall architecture. This work provides detail
about orange components, the blue components are only described briefly
for completeness.
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4.3 Fundamental Infrastructure and Automation Principles

The architectural fundamentals of the backend are aligned to the summarized cloud-

native pillars described in Section 2.4.5.1. A good starting point to get an overview

about cloud-native technology, tools and services, that can be used to design the overall

architecture, is the cloud-native landscape showed in the Appendix A.1. The different

categories presented there cover distinct functionalities in a cloud-native environment

and often rely on the capabilities of underlying categories.

Our goal is to have a cloud-native application set up as a collection of self-contained

microservices, running as containers in a horizontally scalable cluster of computing-

nodes provided by a cloud-provider. We approach the architecture from the bottom up,

starting with the infrastructural fundamentals.

4.3.1 Infrastructure and Provisioning

In theory, every type of computing-node that can run containers conforming to the OCI

specification is usable as the underlying computing primitive. Even dedicated non-

virtualized machines would be suitable for a local development cluster, although with

certain drawbacks regarding automatic provisioning and state-management due to the

lack of storage APIs.

To avoid manual and repetitive steps in the infrastructure setup, we recommend to use

tools specifically designed to support automatic provisioning of computing-nodes. They

use declarative code, that is specifying operating system configuration and dependency

requirements, to perform the necessary installation steps autonomously. Section 5.1.2 is

describing how we provisioned the infrastructure of our integration cluster.

4.3.2 Cluster Runtime and Orchestration

The next layer above the basic infrastructure is the cluster, which is the essential

system for automatically schedule cloud-native applications across the nodes forming

the cluster. It has important responsibilities such as providing persistent storage for
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stateful containers or creating a cluster-internal network for communication between

containers. But most importantly it should provide a runtime to run the containers

representing our self-contained deployment units.

To reduce the effort of getting a suitable cluster, many cloud-providers have developed

PaaS products, that provide an already configured and usable cluster. For example,

Amazon has the Elastic Container Service for Kubernetes (Amazon EKS), Google has

its Kubernetes Engine (GKE) and Microsoft has Azure Kubernetes Service (AKS). They

all have in common, that the consumer specifies the size of your cluster, for instance the

number of computing-nodes with corresponding specifications for CPU, Memory and

Storage. The cloud-provider offers API-access and often a graphical user-interface to

the personal cluster, which is running on the reserved computing-nodes. The cluster

and its coordinating resources however, is maintained by the provider. At the time of

writing, Amazon and Microsoft are even able to completely abstract away the underlying

computing resources with Container as a Service (CaaS) offerings. Using CaaS, a

customer only specifies the resource requirements of a specific container. The provider

handles the placement, orchestration and underlying resources transparently in a generic

cluster. Obviously because of the greater management effort for the provider such

services would usually become more expensive than a well-sized regular cluster.

We will be using Kubernetes for orchestrating containers across the cluster, because it

is the industries state-of-the-art and has a very good integration with other tools in the

cloud-native context.

4.3.2.1 Kubernetes

Kubernetes (K8S) has been originally developed internally by Google and later open

sourced as an orchestrator for containerized applications [15]. Because K8S provides us

with tooling to build reliable and scalable distributed systems it is a perfect fit to deploy

cloud-native applications in form of microservices.

The overall architecture of K8S is composed of master-nodes and worker-nodes as

shown in Figure 4.2. The core component is a distributed key-value store called etcd2,
2https://coreos.com/etcd/
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which is used as storage for cluster state. All of the cluster management is performed

automatically by constant alignment of two state abstractions. A large part of Kubernetes’

idea is built around reconciling those two states [8]:

• Desired State: Describes which resources should be deployed including correct

configuration and scheduling restrictions. This is the state that corresponds to a

declarative description we provide to Kubernetes via deployment descriptors.

• Actual State: Describes the current state of the overall cluster, which is collected

by K8S system components. All central components are constantly monitoring

their state and try to reconcile with the desired state.

Master Node

Worker Node
Worker Node

Worker Node

kube-apiserver kube-proxy

kubelet

Container-Runtime (e.g. containerd + docker)

kube-controller-
managerkube-scheduler

Admin
bash> kubectl Users

- Kubernetes-Specific Containers
- Ingress-Containers for Service 

Exposure
- Microservices
- Database-Containers as Stateful 

Sets

Figure 4.2: Internal architecture of Kubernetes. Based on a drawing from the official
documentation [44].

A Pod is a K8S specific notion and instead of single containers, the primary entity for

scheduling. It describes a package of one or multiple containers, that are closely related

or required to work closely together. K8S will make sure, that containers forming a pod

are scheduled and replicated together to minimize network latency. However, in most

use cases pod is equal to exactly one container.
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Master-nodes are the coordinating part of the cluster and are persisting information,

that describes the desired state of the cluster in etcd. In a larger cluster these nodes are

typically dedicated computing instances, which are not considered by the scheduler when

actual application workload has to be placed within the cluster. Additionally, they are

replicated for fault-tolerance reasons by leveraging the distributed consensus capabilities

of etcd. Besides etcd, the master-nodes are hosting other important components:

• Scheduler: Is responsible for distributing the pods across the worker-nodes in the

cluster. The scheduler makes sure that each pod is getting the resources needed

and that replicas of pods are distributed between the worker-nodes. It does that by

annotating the desired state with information that binds the pod to a specific node.

This information is posted to the API-server and persisted in etcd.

• Controller-Manager: This component is actively working with the API-Server to

check if at any given time the number of pods is equal to the desired number. If

not, it will trigger the scheduler component to create pods that fill the gap.

• API-Server: This is the point, where all internal components and external tools can

retrieve and change the state of the cluster. Posting our deployment descriptions

to the API-Server will tell Kubernetes how a deployment of our application should

look like and how many replicas of each component we would like to have.

Worker-nodes are only running two small components, in order to save computing

capacity for actual application workloads. The kube-proxy is responsible for managing

the host-network and publishing specific ports of services for external access. The more

important component is kubelet, which connects the worker to the master-node. It is

synchronizing with the API-Server, to gain its part of the “desired state”. The remainder

of the worker is left to a container runtime engine, such as containerd. That engine

is essentially responsible for pulling container information from a registry, running the

containers and providing metrics about the runtime-state back to kubelet.

Deployment of services to Kubernetes can happen with the help of a command-line

tool called kubectl. As Kubernetes follows a declarative approach, we must specify all
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resources, that should be deployed in the cluster, in structured YAML-Files (see Listing

A.3 for an example) and apply them utilizing the kubectl tool. As the example flow in

Figure 4.3 shows, K8S recognizes the desired resource and automatically configures

itself to provide the desired service.

create pod description
(e.g. sh>kubectl apply) write

watch (new pod discovered)

bind pod

API-Server Scheduler Kublet

write

watch (new bound pod discovered) run container
(e.g. docker run)

status
 "container-pulled"

status 
"container running"

update pod status

update pod status

write

write

Figure 4.3: Example flow of information through Kubernetes for creating a pod. Based
on a diagram in [9].

4.3.3 Version Control and Image Builds

While developing software, it is essential to version code changes. This is especially

helpful when multiple developers work on the same software, because merging two

features often lead to broken versions of the software. Git is the most popular tool

to version software and additionally a safe way of developing in branches that can be
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merged together. There is usually one master-branch into which feature-branches are

merged after a feature is completed.

Because we develop a set of independent microservices, we are facing the decision

between using one “Mono-Repository3” for all microservices or multiple repositories,

where each microservice’s code is separated in a distinct repository.

“Mono-Repositories” are highly beneficial in terms of management effort because there

is minimal overhead in configuring the repository and managing user-access. Every

developer can simply clone the repository and has access to all the code relating

to the project. Additionally, code-sharing would be easier, because libraries can be

managed within that single repository and is accessible by referencing the corresponding

library directory. However, they limit configuration possibilities needed for independent

microservices and additionally allow developers to make changes beyond their assigned

context. This will inevitable introduce coupling of contexts in the long-term, because

developers will come up with the easiest workaround for their specific problem and

therefore create a large distributed monolith, when certain boundaries are not enforced.

Our approach uses individual repositories for every microservice with additional project

and group abstractions. This approach enables us to define fine-grained user-access

on project and group-level, but more importantly we are able to configure independent

pipelines and have independent image-registries, that can be used to realize automated

continuous delivery, which is one core part in a cloud-native microservices-style.

4.3.3.1 Continuous Delivery

Continuous Delivery has been introduced by Humble et al. as an extension on Con-

tinuous Integration, which in essence is “the practice of working in small batches and

using automated tests to detect and reject changes that introduce a regression [39]”.

It is a concept preventing anti-patterns like deploying software manually in scheduled

release plans or deploying to production environments without ever having operated the

application in a production-like environment at first.

3All of the source code is kept in one large repository. Code for different services is often structured via
subfolders within that repository.
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Instead, every code change that is committed into the repository is validated and

subsequently built into a deployable artifact, which is possibly tested against certain

requirements and optionally automatically deployed into a development-, integration- or

even production environment.

Note

This is one point where using container technology, such as Docker, is advantageous

over using virtual machine (VM) images or software-packages as deployment

artifacts. Building a new VM-image for every code change is not feasible because

of their size, which is sometimes 10x as large as a container-image. On the other

side, software-packages, such as .jar files or executable binaries, lack the defined

environment allowing to use independent library versions and configuration, that is

required for self-contained deployment units. Additionally, smart layering technology

of certain container formats is beneficial in terms of image persistence, because

only the piece within the container that has changed is persisted as a new layer,

which sometimes only account for a few megabytes.

Many GIT-hosting platforms, such as Gitlab, allow to define custom pipelines for a

continuous deployment concept, which is described in the following steps:

1. Once a user pushes or merges a new change into the repository, a pipeline-run is

triggered and performs the steps defined in a gitlab-ci.yaml file.

2. In a first step the pipeline performs optional unit-tests and a build of the software

to gain an executable software-package. This can be either a binary or a .jar

file. If the build fails, we instantly stop the pipeline because the changes probably

introduced faults into the software.

3. If build and tests are successful another step is automatically creating a new version

of the docker container for that service, which can be used as a deployment ready

artifact representing our self-contained deployment unit. The image is uploaded

into the provided container-registry4 and tagged with the hash of the commit to

uniquely identify the image.
4A hosted service for storing container-images. Docker instances on various machines can then use the

service to pull the images and run them on their machine.
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4. If the change has been on the master-branch or the pipeline-run is caused by a

release, we automatically trigger a service upgrade in our Kubernetes cluster.

If anything occurs suspicious after the deployment, we can easily rollback by running the

deployment step of the previous working version. With this flow, we can use a simple

GIT -command to deployment a new version into our integration environment.

4.4 Apache Kafka - A Distributed Streaming Platform

A large part of our platform is about collecting and shifting data around. If many

users take part in our Crowdsensing initiative, we might have to deal with a lot of data,

requiring a scalable approach for data processing. One system currently emerging

as the industries standard for dealing with Big Data in the IoT is Apache Kafka, from

here on just called “Kafka”. Used as a common component, it can provide decoupled

information exchange between different services in an asynchronous manner. Services

can publish certain events to Kafka topics and every interested service can act as a

consumer that polls messages from such topics. The real benefit however is, that libraries

such as Kafka-Streams and Kafka-Connect allow an easy implementation of Stream-

Processing, introduced in Section 2.2.3. This approach is helpful in order to streamline

the data coming from smartphones and IoT-devices for a subsequent aggregation of that

geospatial measurement data.

The official documentation [1] and the book by Narkhede et al. [56] describe the internal

fundamentals best. Kafka is based on a distributed commit log that is maintained by a

cluster of “Brokers” coordinated by Apache Zookeeper5, a system capable of forming a

consensus in a distributed and fault-tolerant manner, a precondition for Kafka’s scalability

and replication capabilities. As Zookeeper is mostly used to store the configuration state

of the Kafka-Cluster, such as how many Brokers, consumers and topics are there, it

is not exposed to heavy load. However, professional deployments should nonetheless

consider to deploy Zookeeper in replicated fashion to prevent losing information about

the Kafka-Cluster state.
5https://zookeeper.apache.org/
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4.4.1 Distributed Commit Log

The distributed commit log is the fundamental abstraction in Kafka and presented in

more detail in Figure 4.4. The Figure is showing a graphical overview of how Producers,

Consumers, Consumer-Groups and the distributed commit log are related to each other.

The core notion of a distributed commit log is based on the following three pillars:

Message Is a generic key-value data record with additional meta-data belonging to an

offset in a certain partition of a topic. It is somehow comparable to a row or record

of a database table.

Topic is an abstraction for messages of the same semantic meaning, similar to a

database table for rows. They can be separated into multiple partitions based on a

partition strategy, which is defaulting to use the message-key.

Partition Is a single commit log of a topic and represents a distinct subset of all mes-

sages in a topic, since a message is only appended to exactly one partition. The

concept is important for Kafka’s scalability and redundancy, because each partition

of a topic can be hosted by a different Broker. This distribution spreads messages

of a topic across several Brokers, that together hold all messages and provide

them to a set of consumers accordingly.

The distributed commit log is essentially based on multiple partitions, that each on its

own represent a single commit log of append operations for messages. Because there

are no transactions, Kafka can only provide message-ordering guarantees within a

single partition, but not across the distributed commit log of a whole topic. Since our use

case of averaging noise-measurements is a commutative operation, this drawback is

acceptable.

However, if a global ordering of events is critical across partitions, such as a topic wide

knowledge about which event happened before another, the implementation must take

further measures. For example, a non-commutative matrix multiplication with messages

from multiple partitions can issue indeterministic results, since there are no guarantees

for global ordering and the result of the operation will depend on the order, in which

messages are read from different partitions by the consumer calculating the product.
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4.4.2 Components

From an architectural viewpoint Kafka is a regular client-server system, where the

server is usually a cluster of Brokers and the clients are Producers and Consumers or

higher-level clients such as Kafka-Streams or Kafka-Connect.

Brokers Are responsible for receiving, storing, replicating and responding messages.

Within a cluster, one Broker is the cluster controller. Additionally, all Brokers are

leaders for a distinct set of partitions as mentioned before. For redundancy reasons

however, it can be the case that a Broker is as well holding replicas of a partition

led by another Broker.

Producer Is responsible for creating messages in specific partitions of topic. The exact

partition for a message is usually determined by a hash strategy of the message

key, to guarantee that all messages with the same key will get assigned to the

same partition.

Consumer A consumer is assigned to a set of partitions of a topic and is reading

messages from them. It is maintaining on its own, which offsets it has already

read from a partition. Multiple Consumers are managed in Consumer-Groups,

which are an abstraction to divide the responsibility for partitions of a topic between

Consumers, which are then only responsible for a distinct subset of partitions.

Kafka-Streams Is a common Java Library that provides a high-level Domain Specific

Language to easily create a topology of transformations, joins and aggregations

on Kafka topics. The Library transparently handles consuming and producing of

messages and therefore allows to implement a stream processing pipeline, using

the Kafka-cluster as a means to shift data between certain pipeline steps.

Kafka-Connect Is a runtime directly implemented into Kafka for running connector-

plugins, that allow a scalable and reliable way of moving data between Kafka and

other datastores. This allows to easily inject data already present in conventional

datastores into Kafka to have it usable for stream processing or to persist data

from Kafka into conventional datastores or clusters such as Hadoop for analytical

reasons.
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Figure 4.4: Structure of the distributed commit log of an “Example Topic” and the cor-
responding Producer and Consumer dependencies. Image is based on
multiple drawings in [56].
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The Figure in 4.4 shows a Kafka cluster with three brokers holding an “Example Topic”

with 4 partitions and a replication-factor of 3, which will distribute 2 replicas of each

partition across the brokers in the cluster. A producer is creating a “ProducerRecord”

to append a message to the distributed commit log. Based on the given “Userid” it has

previously determined the corresponding partition using a certain strategy. It will append

the message to partition 3 at offset 11 on the end of the partition’s commit log in broker

2. This partition is currently covered by two Consumer-Groups with “Consumer 1” and

a “Connect-Worker” for Kafka-Connect, which will both read all messages in the order

of commit-offsets to constantly catch up with the end of the partition’s commit log. As

shown, in “Consumer Group 1” two consumers are active and splitting the responsibility

of partitions in a non-overlapping fashion.

4.5 Bounded Context: Measurements

Measurements are the core element of our system and hence this bounded context is

more sophisticated compared to the others. In fact, it is internally divided into multiple

microservices. The general responsibility of this context is to ingest measurements, pre-

process and aggregate the measurement-records and finally provide access to the end

results for visualization purposes. The business problem of collecting measurements

is strongly related to IoT scenarios and Big Data, which is why we have to prevent

conceptual failures regarding data-volume, processing-time and protocols. The following

Sections provide further elaborations on our approach.

4.5.1 Volume and Variety

As we described in Section 4.2 our design must be able to deal with data coming from a

variety of sources, which are not necessarily using HTTP. Additionally, we must assume

that many users ingest massive amounts of data into the system.
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4.5.1.1 Problem

In the World Wide Web, a request-response approach based on HTTP is typically

used to post data to a system. The data is usually validated, possibly transformed and

subsequently persisted in a database or file-system. When the performed validations are

no longer simple filters but rather sophisticated statistical approaches, like calculating a

standard deviation of a set of measurements from a specific region within a time window

of 5 or 10 seconds to filter runaways, the round-trip time of a post request might however

be of magnitude seconds, rather than a few milliseconds. This would not only be bad in

terms of user experience, but rather more severe for IoT sensors focused on low-battery

consumption. Indeed, such sensors often are not even powerful enough to communicate

via a document-centric HTTP protocol and instead use more lightweight data centric

protocol such as Message Queuing Telemetry Transport (MQTT)6, which transfers data

as byte arrays using a publish-subscribe model. Our data ingestion strategy must be

able to deal with these protocols as well and can therefore not solely rely on an HTTP

endpoint for data ingress.

The data access latency might additionally be negatively affected by sophisticated

ingress validations and a general constant load produced by incoming measurements.

The other way around, high load on data access because many users are viewing

visualizations would affect the data ingress response times and can potentially result in

timeouts and therefore losing incoming measurements.

4.5.1.2 Solution

Our designed solution decouples the data-ingress and data-access into two distinct

microservices and therefore making them load- and error independent. Failures because

of implementation errors or overload in either ingress or access is not affecting the

other part of the system. To maintain low latencies, each measurement that is posted

to the ingress-service gets accepted after a short format-validation and the service is

6MQTT is a messaging-based protocol requiring a broker as a global database for every client’s com-
munication state. It enables M2M communication with low-performance devices over high latency
connections with limited bandwidth.
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responding to the submitting device immediately, after it has published the data to the

Kafka topic for raw measurements.

Since measurements coming from an IoT sensor via MQTT might be in a different data-

format, we have to streamline them with the measurements provided by smartphone

users. Differences can be attributes, such as a sensor id rather than a user id. The

streamlining should happen in a first stream processing step, to allow further check- and

validation steps on a common data format.

4.5.2 Aggregation

In order to gain knowledge from the collected data, a user must be able to view and visu-

alize the data on his device, which will likely be the smartphone running the associated

mobile application. Interesting aspects of such data might include averages and min- and

max values for areas of different sizes or within certain time windows as the functional

requirements in the Noisemap project show in Section 3.6.1. We have to provide a

variety of visualization options, which is requiring a summarization of measurements.

4.5.2.1 Problem

While performing aggregation on the frontend device is absolutely reasonable, this

approach is limited to visualization for a small set of measurements, because each has

to be transferred to the device. At a certain number of requested measurements, the data

to transfer reaches a size, that would affect not only the data-quota of a mobile user, but

also results in increased latency from initial request to finished visualization. That latency

is composed of multiple effects large set-sizes bring along. Costly database operations,

JSON-serialization, data transfer over sometimes limited mobile bandwidth and finally

JSON-deserialization as well as possibly complex aggregation and visualization on a

mobile device with limited power are some of them. Therefore, the classical way is

to provide the frontend with already aggregated results for visualization. Although a

substantial improvement for large sets, the conventional approach of just storing raw

measurements in a database and aggregate them on the fly for each visualization
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request has drawbacks. Getting the matching measurements from the database is still

transferring a large number of measurements between the service and the database for

each request. Additionally, the set of measurements to be aggregated can also reach a

size, where the aggregation would affect the response time of the request negatively.

4.5.2.2 Solution

To limit the load on the system and provide data for visualization rapidly, we apply

certain preprocessing to have already aggregated results in the database, that can either

directly be responded on a request or used as an intermediate result to apply further

aggregation. The preprocessing assumes, that in general the measurements provided

are conceptually just a continuous stream of sensor data making it suitable for stream

processing. We have introduced the Kafka-Stream library to build simple microservices

capable of performing stream processing without having an additional cluster. This is

beneficial over other frameworks such as Apache Flink or Apache Spark.

Figure 5.3 in the prototypic implementation shows, how the stream processing phase

uses simple microservices that are poling single measurements thereby in different steps

calculate different aggregates of certain time windows and geospatial areas. These

results will be stored in the database and can be accessed and returned to the user

directly. This avoids numerous similar aggregations of hundreds of thousands of records

for every request on the fly.

4.5.3 Proposed Internal Architecture

The approach can be described by the following three phases:

• Data Ingress: In this phase either a smartphone will post data an endpoint, which

is handing the data over to Kafka, or it is coming from IoT-Sensors via MQTT and

is directly ingested into Kafka.

• Stream Processing: This phase represents the actual processing business logic.

Several validation checks can be made, such as filtering measurements with
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nonsense or unrealistic values. The measurements will then be split into multi-

ple data-fragments for privacy reasons. Further, geo-temporal information from

measurements will be used to calculate average values for different sizes of time

windows and areas. The last step of this phase offloads the data into a database

using Kafka-Connect.

• Data Access: The data-access phase is decoupled from the other phases, since

it only accesses data already available in the database. Multiple database-indexes

allow to query the data efficiently and filters specified in request-parameters narrow

the matching result set.

The graphical representation of the phases in Figure 4.5 show how Kafka is used as

a central data hub, where ingress-services put their data, stream processing services

get their input from and put their results to and connectors consume the finished results.

Kafka although, is grayed out, because we do not see it as a context internal component,

but rather an infrastructure service that is provided within the cluster and usable by any

service regardless of the context.

4.5.4 Geospatial Data-Handling

One central part of the measurement context is geospatial data. The geographic relation

of the measurement data is important for aggregating the right data together, but also

to visualize the data on a map. At first, we need a format to store and transfer data

with a geospatial context. We would like to introduce GeoJSON for that purpose. Since

it is state-of-the-art to use JSON for public REST APIs, GeoJSON can be seamlessly

integrated and is additionally supported natively by many visualization- and mapping

libraries used in frontend-applications.

4.5.4.1 GeoJSON Format

The RFC7946 [31] specifies GeoJSON as a data interchange format for geospatial data.

It is based on Features and FeatureCollections belonging to the OGC Simple Feature

Access Specification introduced in Section 2.3.2. The concepts are derived from other
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Figure 4.5: Conceptual internal architecture of the Measurement Context showing differ-
ent phases for data processing and access.

formats, but have been adapted to be used with JSON, which better suites modern API

development. In GeoJSON, a FeatureCollection is a JSON-Array of Feature objects,

where one such Feature object has an attribute type with the value Feature and an

attribute geometry with the value being a Geometry object or null. A Geometry object is

of one of the possible types shown in Table 4.2. The fundamental construct however,

is the notion of a Position array, which is the basic element for the coordinates attribute

of each geometry type and has a maximum of three elements. The order of them is

longitude, latitude, elevation, but the elevation is usually skipped for two dimensional

contexts. A coordinates attribute can be differently shaped depending on the type of
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geometry it is attached to. For a Point it is a usual Position, for MultiPoint and LineString

it is an array of Positions and for a MultiLineString or Polygon it is represented as an

array of arrays of positions. For a MultiPolygon however, the coordinates attribute is an

array of multiple Polygon’s Coordinates and for the GemoetryCollection more generically

and array of multiple coordinates of several types.

Table 4.2: Geometric Types supported by GeoJSON.
Type Example JSON Graphical

Point

1 {
2 "type" : "Point" ,
3 "coordinates" : [
4 9.956971 ,48.422899
5 ]
6 }

MultiPoint

1 {
2 "type" : "MultiPoint" ,
3 "coordinates" : [
4 [9 .956971 ,48.422899] ,
5 [9 .95528 ,48.421694]
6 ]
7 }

LineString

1 {
2 "type" : "LineString" ,
3 "coordinates" : [
4 [9 .956971 ,48.422899] ,
5 [9 .95528 ,48.421694]
6 ]
7 }

continued . . .

71



4 Backend Design

Table 4.2 continued: Geometric Types supported by GeoJSON.
Type Example JSON Graphical

MultiLine-
String

1 {
2 "type" : "MultiLineString" ,
3 "coordinates" : [ [
4 [9 .956971 ,48.422899] ,
5 [9 .95528 ,48.421694]
6 ] , [
7 [9 .956971 ,48.422899] ,
8 [9.957479 ,48.422905]
9 ] ]

10 }

Polygon

1 {
2 "type" : "Polygon" ,
3 "coordinates" : [
4 [
5 [9 .956971 ,48.422899] ,
6 [9 .95528 ,48.4223494] ,
7 [9 .955979 ,48.4217] ,
8 [9.956971 ,48.422899]
9 ] ,

10 [
11 [9 .95595 ,48.4218] ,
12 [9 .95682 ,48.42281] ,
13 [9 .9555 ,48.422271] ,
14 [9 .95595 ,48.4218]
15 ]
16 ]
17 }

continued . . .
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Table 4.2 continued: Geometric Types supported by GeoJSON.
Type Example JSON Graphical

MultiPoly-
gon

1 "type" : "MultiPolygon" ,
2 "coordinates" : [ [
3 [ [9 .956971 ,48.422899] ,
4 [9 .95528 ,48.4223494] ,
5 [9 .955979 ,48.4217] ,
6 [9 .956971 ,48.422899] ] ,
7 [ [ 9 .95595 ,48 .4218 ] ,
8 [9 .95682 ,48.42281] ,
9 [9 .9555 ,48.422271] ,

10 [9 .95595 ,48 .4218] ]
11 ] , [
12 [ [9 .956327 ,48.421807] ,
13 [9 .95782 ,48.4226] ,
14 [9 .9580868 ,48.422] ,
15 [9 .956327 ,48.421807] ,
16 [9 .956327 ,48.421807] ]
17 ] ]

Geometry
Collection

1 "type" :"GeometryCollection" ,
2 "geometries" : [
3 {"type" : "Point" ,
4 "coordinates" : [
5 9.956971 ,48.422899]} ,
6 {"type" : "Polygon" ,
7 "coordinates" : [ [
8 [9 .956327 ,48.421807] ,
9 [9 .95782 ,48.4226] ,

10 [9 .9580868 ,48.422] ,
11 [9 .956327 ,48.421807] ,
12 [9 .956327 ,48 .421807] ] ]
13 } ]

Polygons take an important role to represent areas on surfaces and because of a

missing notion of circles in GeoJSON, they are used to approximate curved shapes

like a circle or an ellipse. Since our geospatial indexing library described in Section

4.5.4.2 is based on hexagonal polygons, we are mostly going to use the Polygon type
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aside from regular points. In order to be able to exclude areas within a polygon, the

coordinates are specified as an array of arrays of positions. Each array of positions is

a closed LinearRing, where the first and last element must be equal, which is why the

boundary of a triangular polygon needs four position elements. The first LinearRing of a

Polygon’s coordinates attribute is the outer boundary and the rest of the LinearRings are

holes, which are excluded from the area of the holistic polygon [31].

4.5.4.2 Geospatial-Indexing

When it comes to the question of which records should be aggregated together, we can

answer differently depending on the specific use case. According to Section 2.3.3 we

can use manually defined polygons and aggregate together all the records which are

contained in that polygon. However, this is only suitable and feasible with reasonable

effort, for a narrow number of custom defined areas and a limited granularity. Since we

rather want the platform to work universally worldwide, a more general solution based

on Geodesic DGGSs is considered here as a viable option to assign measurements to

geographical buckets. An additional benefit we get from indexing with DGGSs, is an

index for each bucket that can be easier handled than geographic coordinates, can act

as a key for Kafka topics and a simple database index.

H37 is a “hexagonal hierarchical geospatial indexing system” based on DGGSs, pro-

vided by Uber. It has originally been developed for optimizing ride pricing and dispatch

but is now available as open-source. The system uses a hierarchical index based on

hexagons and allows to allocate single data points into buckets assigned to different

hierarchical layers. Each bucket is represented by a hexagon and has a unique index key.

A detailed description of H3’s theoretical and practical background is provided by the

original Uber engineers in a blog post [14]. The basic functionality is transforming a given

latitude and longitude of a point together with a specified resolution between 0 and 15

into a 64bit H3 index, that identifies a specific grid cell of the DGGS and is represented

as a hexagon. The resolution is determining the size of the hexagon. The real-world

7https://uber.github.io/h3
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hexagon’s edge length reaches from 51cm at resolution 15 and ends at resolution 0

with a length of 1,107km. The layer in resolution 15 is divided into 569,707,381,193,162

small hexagons with unique indices, whereas resolution 0 only is composed of 122 large

hexagons.

According to the characteristics of a DGGS described in Section 2.3.3, these 122 base

cells are spread across the 10 faces of an icosahedron. Since it is not possible to tile an

icosahedron only into hexagons there are 12 pentagons at each of the icosahedron’s

vertices. However, they use a spherical icosahedron orientation, which is the only

known, that places all 12 vertices in the water when projected onto the earth’s surface,

minimizing the effect of the pentagons for applications targeting the mainland.

An example of how we can use H3 can explain the benefits of the library best. It allows us

to automatically shard our data points based on spatial distribution and use the provided

indices of the buckets for simple data access and as the key for aggregation as well as

topic partitioning in Kafka. Before the actual aggregation in the stream processing phase,

we use H3 on each single measurement, to gain the index-key in a high resolution.

Based on the index-key we know exactly which data has to be aggregated together.

They additionally represent the hexagonal geographic area a measurement is contained

in and imply, that the measurements getting the same key are close to each other. Figure

4.6 shows an example of geospatial indexing of two locations on the campus of the

University of Ulm. At resolution 10, shown in Figure 4.6b the locations are actually

(a) Two regular GeoJSON
points

(b) Indexed with H3 at resolu-
tion 10, resulting in Indexes
“8a1f8c1007affff”(right) and
“8a1f8c100787fff”(left)

(c) The points indexed with H3
at resolution 6, both result-
ing in one common Index
“861f8c107ffffff”

Figure 4.6: Plots of two regular Points and their differently sized H3 hexagons.

75



4 Backend Design

indexed with two different H3-indexes. Figure 4.6c shows the same two points indexed

at resolution 6, resulting in one large hexagon that is covering a large part of the area

north of the city of Ulm. All measurements in that area would get the same index-key at

resolution 6 and will therefore be easily selectable for aggregation.

Figure 4.7: Plot of a H3 index, split-
ting the city of Philadel-
phia in the middle.

The drawback of indexing based on DGGS is

shown in Figure 4.7. The statically assigned

hexagons can have certain disadvantages for visu-

alization of phenomena only relevant in a specific

region. The hexagon shown, is placed unfavorable

for visualizing a certain fact in the city of Philadel-

phia, because it is cutting the city in two almost

equally sized halves. In such a scenario using

real city borders can be a superior solution to a

DGGS. Data for such borders can be retrieved from

sources such as GADM8 but integrating that data

into a stream processing pipeline requires additional steps, such as scanning the GADM

data in a database for each provided measurement to find the correct polygon.

4.5.5 Storage

The storage solution used for the measurements preferably supports geospatial queries

natively. Two fundamental pillars of such a feature is efficient internal geospatial indexing

at first and second, the possibility to specify sophisticated queries for different use cases

related to geospatially distributed data. One perfectly suitable and battle-tested solution

would be the relational database Postgres with the PostGIS9 extension on top. However,

Postgres has certain limitations in terms of scalability related to write-performance.

We already have experience with another solution called MongoDB10. The database is

based on documents and one of the most mature NoSQL databases. It allows horizontal
8https://gadm.org is providing spatial data for all countries and their administrative sub-divisions.
9https://postgis.net/

10https://www.mongodb.com
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replication and scalability of the database via ReplicaSets and Sharding of Collections

by a defined key. More details about the principles is provided in Section 6.2.2. One

drawback of MongoDB is its proprietary API for specifying queries, rather than following

the common SQL standard. However, that API has substantial geospatial features that

rely on sophisticated geospatial indexes internally used by MongoDB. They can be

created on coordinate pairs or GeoJSON-objects, but it is additionally possible to create

compound indexes, which are a combination of geospatial indexes and non-geospatial

indexes. Particularly the 2dsphere index is helpful for our purpose, since it supports

queries for inclusion, intersection and proximity of different reference geometry types on

an earth-like sphere.

4.5.6 Privacy

For users providing measurements there are privacy concerns regarding their location.

Every measurement is referenced with the user id, which is critical if such information

is being exposed via the API, since one could easily analyze all measurements, match

locations to user ids and create a movement pattern of users. However, at the same

time it is important for the system to maintain a relationship between users and measure-

ments to enable incentive management, social features and certain personal statistics.

Therefore we provide the user with an option to define fine-grained, which type of users

should know, that a measurement has been made by that particular user. All users not

included in that type will only be able to retrieve anonymized measurements at the API.

The conceptual privacy solution avoids storing user ids together with measurements in

the first place. We split user-related information from measurements while processing

and store a mapping of user ids and measurement ids, which we can use internally to

recreate the relationship. This way, we can securely publish all measurements through

our API without exposing critical user information. Although, each requesting user can

explicitly tell the system, to check for each measurement in the result set about to be

returned, whether the user is allowed to see the creator and populate that information.

This however, is a costly operation and should only be used by frontend applications, if

that information is actually used, which is not the case at simple visualization.
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4.5.7 API Access

The API is an essential part, because it allows frontend applications to retrieve data in

order to visualize it. It must support geographic bounding, time-based filtering or any

form of pagination or it has to enforce certain limitations to prevent denial of service

due to overload. Requests without bounding or filtering are therefore either rejected or

performed with defaults, such as limitation for a few thousand elements per request.

Single measurements are only viable for small-scale views on streets or neighborhoods

but would exceed rational sizes when requesting measurements of a whole city with

many active users. To allow visualization of larger areas and broader timescales, the API

must provide endpoints to request a set of already aggregated results, which is smaller by

multiple factors and therefore much more mobile friendly in terms of quota-consumption

and processing power required to visualize the results on a map.

The downside of pre-aggregated windows is, that they are unsuitable for real-time

visualization. Because pre-aggregating “the last 15 minutes" or the “the last 24 hours" is

a problem. The definition of “last" is constantly shifting with time, resulting in the need for

constantly recalculating the aggregated result. For aggregation, we are currently focusing

on tumbling time windows, which are fixed-sized, gap-less and non-overlapping time

windows. Their advance interval is equal to their window-length, which has the effect, that

a data-record belongs to exactly one window. For example, we can have 15-minute time

windows with the beginning of window w1 at the full-hour and the beginning of window

w4 at three-quarters [23]. We also can define windows with an interval of one day from

midnight to midnight, noon to noon or any other suitable starting-time. The point is, that

these tumbling windows are badly satisfying the definition of the constantly shifting “last”.

We can only decide between either using the last completed time window or using the

current unfinished window, which might be only a few seconds old and is not containing

any values yet. A solution might be to use overlapping hopping windows, as defined in

[56], which we did not consider because of unknown effects on stream-processors at

massive data-volumes.
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4.6 Bounded Context: User Identity

Handling user identities is a critical part of most information systems. For certain

functionalities (e.g. in the Social- and Communication Context) it is inevitable to maintain

user identities with at least a username and an email. In the Measurement Context

however, user identities are just another way of identifying sources of data apart from

unique device-ids of IoT-sensors. For collecting statistics user identities are a better

option, because they are easier to transfer between devices and a user will not lose any

statistical progress on device change, such as using a new smartphone.

4.6.1 User Identification in a Distributed Application

An additional typical use case is authorization, which is important for all systems with

a public API. Sometimes even just to prevent fraud and misuse. A high-level view of

processing a request to an API can be split in three parts:

1. Authentication: Identify the subject (often a user), that is making the request.

2. Authorization: Apply checks to authorize the subject to perform the request.

3. Business Functions: Execute requested business logic on behalf of the subject.

In a traditional monolithic application all three parts are performed by one single appli-

cation that has access to all necessary information to authenticate a subject, such as

stored credentials. In a distributed environment, where multiple services must authorize

requests, there are certain challenges.

4.6.1.1 Problem

All services have to perform the authorization autonomously, but at the same time

autonomous authentication at each service is a bad pattern, because it would require

storing the subject’s credentials in multiple services [81]. As shown in Figure 4.8,

authorization in a distributed system of microservices has to be handled differently

compared to a monolithic application. The authentication should be performed in an
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Figure 4.8: Authentication and Authorization in a monolithic vs distributed environment.

isolated authentication-service that can be especially trimmed for security, because it is

the only point where credentials are used. However, in order to authorize requests at

each of the business services we somehow need to know, that the subject performing

the request, has a valid identity. Redirecting each request from the business services

to the authentication-service is a suboptimal option, because it introduces additional

latency and load in the system. What we want is, that the business services are already

presented with a valid authenticated identity, that can be used to authorize the request,

without performing a precedent authentication.

4.6.1.2 Solution

This issue is solved by using cryptographically signed tokens, that are issued by the

authentication-service. That service is the only point where a subject can authenticate

and get a testimony, that says “user xyz has been correctly authenticated by our service”.

We call that testimony an Access Token, which can be used to perform requests at

business services. They do not have to perform an authentication again, but rather only

validate the token and subsequently perform the authorization based on the information

in the token. The identity used in the authorization logic (e.g. a user id) is often encoded

into the token in form of claims, that can be relied on after proper validation of the token.

OAuth 2.0 is the standard tool-set used for the flow of authorization-related information

and is specified in RFC6749 [34]. However, it is not a protocol for authentication,

but rather a tool for authorizing a “third-party application to obtain limited access to

an HTTP service, either on behalf of a resource owner by orchestrating an approval
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interaction between the resource owner and the HTTP service, or by allowing the third-

party application to obtain access on its own behalf [34].” An example would be a third-

party application for analyzing measurements of a user, that is requesting measurements

made by that user at our API. To close the authentication gap, the OpenID Foundation

developed the OpenID Connect (OIDC) specification as a simple identity layer on top of

OAuth 2.0 [57].

Strongly simplified, OIDC and OAuth2.0 know the following main terms:

• End-User: Human Participant, typically the Resource Owner.

• Relying Party (RP): In the simplest form an application controlled by the End-User.

• OpenID Provider (OP): A server that is capable of authenticating the End-User

and providing Access Tokens to a Relying Party.

• Resource Server: The service that has to respond on requests for the protected

resource after validating Access Tokens.

• Claim: One piece of information about an entity.

Access Tokens are usually Bearer tokens. A party in possession of such a token “[...]

can use the token in any way that any other party in possession of it can [35]” and does

not require any of the parties to proof possession of other cryptographic material. Hence,

Access Tokens should be protected from disclosure to unwanted parties, because any

party in possession can use the token equally as long it is valid. However, for a cloud-

native microservices architecture they give us the benefit, that a service can append the

token on subsequent requests to other internal upstream-services, which would then be

able to validate and authorize the request in the same manner.

JSON Web Token (JWT) are one way of transferring claims between multiple parties.

They are specified in RFC7519 [12] and are widely used in state-of-the-art cloud- and

mobile applications, where they make up for the missing concept of cookies. These

tokens consist of header, payload and signature and are usually sent in the form of an

encoded string. Header and payload are cryptographically signed and therefore not

changeable without rendering the token invalid. Both, synchronous and asynchronous
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cryptography is suitable for signing the tokens. The decoded content of a typical JWT,

representing an Access Token that can be used as a bearer token, is presented in Listing

4.8.

1 header : {

2 "alg" : "RS256" , //type of the cryptographic

3 "typ" : "JWT" //type of the token

4 } ,

5 payload : {

6 "exp" : 1534350840, //expiration time, how long the token is valid

7 "nbf" : 1534347340, //not valid before

8 "iat" : 1534347240, //issued at time

9 "iss" : "auth_service" , //who issued the token (Our authentication-service)

10 "aud" : "auth_service" , //who issued the token (Our authentication-service)

11 "sub" : "5b729f090132e5000db53b42" , //subject of authentication (userid for

Reference)

12 "role" : "member" , //users role level which is important for authorization

13 "typ" : "Bearer" //OIDC the type of the token (Refresh,Bearer, Identity)

14 }

Listing 4.8: Decoded Content of our JWT-Token

4.6.2 Authentication Example

Figure 4.9 shows an example of information flow of requesting and using Access Tokens.

Credentials of users are only processed by an authentication-service, which has access

to a distinct database holding credentials information. For signing the tokens, the service

uses either a private key or it is using a shared secret with the other services. Validating

the token can happen with the shared secret or a public key matching the private key

used for signing.

1. The mobile application is presenting an input for the user’s credentials.

2. The user enters the credentials and triggers the login flow.

3. a) The mobile application is requesting an Access Token by passing the user’s

credentials.
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b) If the user has already logged in and the mobile application is in possession of

a Refresh Token, it will pass the Refresh Token to request a renewed Access

Token.

4. After the authentication-service has checked the credentials or the Refresh Token

for validity, it will issue a new Access Token (and on initial login an additional

Refresh Token) and pass them back to the mobile application.

5. The mobile application can now use the Access Token to request protected re-

sources on other data services, that trust our authentication-service. For example,

the user’s protected profile from the social-service, which will verify the token and

use the provided user-id claim to authorize the request.

6. The protected profile in step 5 may include statistics, which the social-service has

to get from the upstream services, which will need the same Access Token to

perform their own authorization.

1. Ask User for Credentials

Mobile 
App 

Authentication 
 Service User 

Credentials 

Measurement 
Service 

Social 
Service 

2. Provide Credentials

3.a Request Access Token 
 with Credentials

3.b Request Access Token 
 with Refresh Token 

4. Return Access Token 

5. Use Access Token to  
access protected resources 

6. [optional] use same access token 
 to access subsequent 
 protected resources 

Authentication Service is the  
only Service with access to the 

 User Credentials Database 

Shared Secret or  
Public Key

Shared Secret or  
Public Key

Shared Secret or  
Private Key

Figure 4.9: Example of a typical information flow using distributed authentication.

Usually, it is not possible to revoke or blacklist an already issued Access Token based

on JWTs, because they are meant to be usable by multiple other resource servers

on their own without double checking their status. Hence, they must expire after a

relatively short time, for example after 10 minutes, in order to prevent damage, if an

Access Token actually gets disclosed to an unwanted party. In that case it is at least only
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valid for a short time. Since Refresh Tokens are only meant to be used on the issuing

authentication-service, they can be easily stored and revoked later, if a user suspects

his client application compromised. Their lifetime can therefore be longer, for example

multiple days.

4.7 Bounded Context: Social

The Social Context can be composed of a simple microservice and a dedicated database.

That service is covering any functionality related to social activity of users on the platform,

which is briefly explained in this Section.

Users should be able to engage in discussions about phenomena in different geospatial

areas. Since we already have introduced DGGS as a means to index and separate

geospatial area, we want to follow this approach in the design for social activities. We

propose a structural approach for discussions, that is similar to common Internet forums,

with a tree of sub-forums and multiple topics within one specific sub-forum. The forum-

tree is aligned to the hierarchical index of the DGGS, in our case the different cells

produced by H3. This approach has the benefit, that a user can open a discussion within

exactly one geographical region, specified by the hexagonal cell in a certain resolution.

Child cells of that geographical region are realized as further sub-forums.

Since DGGS are not always covering exactly the area of interest and a larger cell is

to over-sized. We propose the additional concept of groups. Groups can be created

and joined by any registered user. The group owner should be able to name the group,

provide a simple description and most importantly, specify multiple geographical H3-

cells, that group is specifically focused on. To keep the concept simple, we propose a

flat hierarchy with only one level of discussions within groups. However, tags with the

H3-index can be used to filter discussions geographically within groups. These tags

could also be used to show discussions actually opened within groups in the regular

forum-structure under the corresponding sub-forum and mark it as a discussion opened

in a group.
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Additionally, users can maintain a simple profile with picture and description. They should

be able to follow other users and discussions to get notified when new contributions

happen. By creating a relationship between users, we can allow users to notify their

followers of recent submitted measurements and achieved awards. Therefore, this

bounded context might use a separate Kafka-Streams or Kafka Consumer instance

to listen on measurement- and incentive topics, in order to notify the corresponding

followers.

While the concept is simple and obvious, the user-experience for social activities is

strongly relying on the specific frontend-side implementation and how well social fea-

tures are integrated into the application. For example, there should be a map-based

geographical search for certain forums showing the different cells on a map. Addition-

ally, a user might be interested in related discussions, when clicking on a item in the

measurement-visualization.

4.8 Bounded Context: Incentive

The Incentive Context is responsible for managing user engagement and to keep users

motivated for contributing measurements. We currently see two types of incentives as

important pillars of our platform, Service Incentives and Entertainment Incentives.

4.8.1 Service Incentives

As specified in Section 3.5, we use Service Incentives to limit platform features for

users that are not contributing and in turn reward actively contributing users with certain

exclusive features. Two major challenges for using such incentives within our system

are related to actually calculating the different Member Levels of users in a continuous

way and then eventually make that information available to the access-service in order

to perform authorization with those Member Levels at the data access API. Since

these levels are dependent on the number of contributed measurements within a given
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timespan, certain business logic must check incoming measurements of all users to

notice when a user has achieved the requirements for a new Member Level.

4.8.1.1 Calculation

The calculation could be performed using the same Stream-Processing principles, as

described in Section 2.2.3. The proposed design of the Measurement Context is already

performing stream processing and has certain measurement data and mappings of

measurement ids and user ids already present in Kafka topics. The Incentive Context

could also use these topics with own microservices leveraging the Kafka-Streams library

to perform custom processing of measurement-user relationships and aggregate certain

metrics within different time windows to continuously refresh the Member Level of users.

4.8.1.2 Publishing

Publishing of Member Level changes could as well be performed using a specific Kafka

topic. Every time the implementation concludes, that a certain user has reached a new

Member Level it will publish the change to Kafka and interested services can read those

topics. A level expiry can be added to these updates, to inform other interested parties for

how long this level is valid, because for example Active Member will be downgraded after

a certain timespan with no contributions. Additionally, an API Endpoint for requesting the

latest level for a user would also be beneficial to give services like the access-service,

the possibility to request the level of a user on-demand and cache such level until expiry

or state-updates via the Kafka topic.

Another approach would leverage capabilities of JWTs to transport claims. This would

however require the frontend application to be aware of the current Member Level and

Member Level changes, because it must maintain the Incentive-JWT as a second token

aside from the Access Token. We could use the Incentive-JWT in a similar way as the

approach used at authentication in a distributed system (see Section 4.6.2), where they

transport the claim, that a user has successfully authenticated with the system. We could

provide an API Endpoint to issue an Incentive-JWT containing the current Member Level,
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which is valid until the predicted time the user will lose his Member Level. On request for

data access the frontend application must provide both tokens to the access-service in

order to access data with the correct Member Level. However, the first approach has

the benefit, that is completely transparent for the frontend application, because level

updates are handled solely in the backend.

4.8.2 Entertainment Incentives

The Entertainment Incentives we have addressed in Section 3.5.2 are based on the

collection of statistics. We can use another stream processing service to listen on

every single measurement provided by a user, transform them into statistics containing

attributes like values, H3-Indexes and timestamps. Gamification however, is lot harder

to realize, because each challenge requires a Kafka-Streams instance with a custom

implementation of the business logic describing the challenge. Once a user has fulfilled

a certain challenge he is rewarded with an Award and the information is persisted in

a database to be requested via an API-Endpoint shown within a profile view in some

frontend implementation.

4.9 Bounded Context: Communication

The role of this context is more kind of a helper-role than an actual business use case.

However, having a central context for communicating with the user, has the benefit that

only that context is needing the contact information. An additional benefit of a central

Communication Context is easier legal auditing, because every communication could be

logged in the database. It is responsible for sending native device notifications, emails

or, if any use case has the need for, even SMS. A typical use case might be the Social

Context recognizing, that there is a new post in a discussion a user follows. Depending

on the settings of the user, the Social Context will order the Communication Context

to trigger a notification, email or even both. The implementation of this context is then

responsible for delivering such information to the user.
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4.9.1 Email

The context must know at least the user id and the matching email address. Because of

the decoupled design, it must get access to such information before it can send emails to

the user. Since the user is probably already using an email to register with our platform

in an authentication-service, we could integrate a step within the registration process,

that is posting the contact information to a communication-service which stores it in its

own database. Since a user could change his login-information and therefore his email

address at the authentication-service, we would have to make sure that an update in the

Communication Context is performed, whenever a user changes his contact information

in order to prevent inconsistent information. Inconsistencies would result in a situation

where the user would get emails to an obsolete address and might never be able to

read them. Additionally, such an implementation would render the two contexts tightly

coupled in which case merging the contexts altogether should be considered.

Alternatively, we could use a publish/subscribe messaging approach using Kafka and

have the authentication-service make information changes of users available globally.

Every interested service, such as a communication-service could follow these changes

and store them in their database for fast access. Another reactive approach would

be, to let the communication-service request the contact information of users at the

authentication-service every time it has the need for something like an email address

and probably cache it for a certain time.

The cleanest approach in terms of the data-model, would shift the responsibilities for

contact information from the authentication-service to the communication-service and

let that context be the owner of that data, since contact information is a means to

communicate with users. This approach is still requiring the authentication-service to

post such information once during the registration process and then forget the email

address and use information such as a unique username for authentication.
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4.9.2 Notification

Notifications are usually sent via an externally hosted push service operated by a

provider. To push any notification, the communication-service must know a unique

device registration id. That device id has to be mapped with a currently logged in

user, to have the external push service contact the correct device for the user. The

communication-service must provide an API-Endpoint to allow mobile devices setting and

deleting such device registration ids whenever it changes, which is different depending

on the operating system.

4.9.3 Proposed Internal Design

Figure 4.10 shows a proposed design of the context. It is composed of one service with a

database for persistence of contact information and device registration ids. As mentioned

before, upon registration the authentication-service must create the user object within

the context, which it should anyway to initiate a verification of the email address by

sending an email to the provided address. Any subsequent contact information related

changes are performed directly at the API of the communication-service. A mobile

device can push and delete certain device registration ids at corresponding endpoints to

be able to start and step receiving push notifications. The actual information that has to

be communicated, must be triggered at two independent API-Endpoints for email and

notification. However, these Endpoints should not be published externally or must be

secured with a different authorization mechanism than user related JWTs. Otherwise

emails and notifications could be sent by any user capable of using an HTTP-API,

which should be prevented. Emails and notifications are typically not sent on behalf

of a user, but rather asynchronously when certain events occur in other contexts. The

communication-service can get the corresponding email address and device registration

id for the user from the database and subsequently send the information via email to the

user’s email account or trigger the corresponding Push Provider to deliver a notification to

the user’s device. The service can also possibly be extended to a “Customer Relationship

Management Service” with capabilities like newsletters or reminder-notifications. This
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Figure 4.10: Overall architectural design of the Communication Context.

could be one way for a Crowdsensing platform to remind passive users and motivate

them to become active again.
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Implementation

This Chapter explains some interesting implementation aspects of the platform specified

in the previous Chapter in more detail. First, we describe some deployment files, we

used to provision our development cluster and subsequently deploy our services via an

automated deployment pipeline following the continuous delivery concept. Afterwards,

we show how the measurement context representing the core functionality can be

implemented using the stream processing capabilities of Kafka and a lightweight Java-

Framework for HTTP-based data access.

5.1 Infrastructure

We are going to set up our infrastructure using the same principles and cloud-based

primitives we would assume to be available in a production environment. The ability

to have the software running in a production-like environment from the beginning is of

great importance. This can highlight architectural- and configuration shortcomings. At

the same time, it yields a first tendency of how the system will behave in production.

5.1.1 Integration Cloud Environment

Because the project is maintained by a research institution, we have access to a cloud-

provider specifically offering free resources for scientific purposes, which are sufficient

for our development cluster. The BWCloud SCOPE project (SCience, OPerations

and Education)1 has developed a private cloud offering hosted and maintained by a
1https://www.bw-cloud.org/en/project
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federation of Universities from Mannheim, Ulm, Karlsruhe and Freiburg. The IaaS offering

is based on the open source software Openstack, which provides features comparable

to commercial providers. Although, our BWCloud quota has some limitations in load-

balancing, networking and availability of public IPv4 addresses. We could use the

graphical UI to provision our virtual resources, this however, involves many manual

steps and is hard to reproduce. Reproducibility is of great importance, especially for

an integration cluster, which will likely break because its purpose is exactly to test

configurations there rather than in a production environment.

5.1.2 Infrastructure as Code

Constantly tearing down and setting up a cluster from scratch can become cumbersome

and often some steps are forgotten or performed in the wrong order. Additionally, manual

rollbacks my not be possible after wrong configuration. To solve this problem, there are

tools, that allow to describe the desired state of an infrastructure via structured text-files,

which are used to provision and configure that infrastructure using APIs provided by

cloud-providers. This has the benefit, that we can use a version control system, such

as GIT, to have all different infrastructure states versioned and documented in text-files,

which allow easier rollbacks when misconfiguration has happened. This concept is called

Infrastructure as Code (IAC) and is one of the central parts in building an application

based on cloud-native infrastructure [13].

We use a popular tool called Terraform to provision the infrastructure, because we

have previous experience with the domain specific language needed to describe the

infrastructure. Virtual Machines, Internal-Networks, Routers, Security- and Firewall-

Rules as well as FloatingIPs, used to access the Virtual Machines via the Internet are

specified via a text file similar to Listing A.2. The following commands in Listing 5.1 will

set up environment variables with credentials of our account at the BWCloud and trigger

Terraform to provision the infrastructure shown in Figure 5.1.

The result is a basic 3-node Kubernetes-Cluster managed by Rancher2.
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Listing 5.1: Shell setup and Terraform commands to provision the infrastructure
1 $ source ulm_dbis_crowdsensing−openrc . sh
2 $ te r ra fo rm i n i t #on ly re l evan t on f i r s t run
3 $ te r ra fo rm apply
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Figure 5.1: Diagram showing the integration infrastructure deployed by Terraform.

After a few minutes everything from networking to the computing-nodes is set up and the

specified commands for provisioning the individual nodes have run automatically. We

use CoreOS Container Linux as our operating system on the computing-nodes, because
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it is a lightweight Linux derivative specifically designed for cloud-native purposes. Other

than for example Ubuntu or CentOS, it has support for Docker out of the box, which we

require to run the Rancher and Kubernetes components.

5.1.3 Kubernetes Cluster

It requires a lot of effort to setup a functional and reasonable stable Kubernetes cluster

from scratch. Therefore, we use Rancher2 as a wrapper around Kubernetes to simplify

the creation of the Kubernetes cluster. Rancher2 is one of the easiest ways to set up

and manage a Kubernetes cluster to date. It minimizes the burden of knowing all the

little detailed configuration parameters, that are required for a stable Kubernetes cluster.

In fact, it can be a full-time job itself, to maintain the cluster once it has reached a certain

size. Rancher2 proxies all actions to the standard Kubernetes API via its Agents as

visualized with the green lines in Figure 5.1.

Since our quota is limited, we currently can only use two Floating IPv4 addresses to

access our machines via the Internet. As you can see in Figure 5.1, we have configured

the cluster with only one ingress-node, which is specified in the cluster configuration with

a node-selector and a label app: ingress (see Listing A.1). Kubernetes will automatically

make sure, that all pods having the same label are scheduled onto that particular

node. This will of course also apply to its own ingress-container, that is exposing

services to the outside via dynamically generated URLs usable to access our services.

Additionally, we have quota for eight data-volumes provided by the Openstack Cloud-

Storage provider Cinder, which is essentially a network attached storage solution and

dynamically provisioned and mounted to cloud-instances as regular data-volumes. The

cloud_provider object specified in Listing A.1 gives K8S access to the Cinder-API in

order to manage these data-volumes transparently according to the placement of pods

that need to persist their state.
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5.2 Deployment

After having set up all the infrastructure and a running Kubernetes cluster, we can start

to think about deploying our applications into the cluster.

5.2.1 Service Deployment

The initial deployment is of our application can be made either by using Ranchers

graphical user interface, which is more intuitive for non-experienced developers, or via

the kubectl command-line tool, which uses a YAML-based Kubernetes deployment file,

as shown in Listing A.3.

The commands in Listing 5.2 show how to deploy multiple Kubernetes resources via

kubectl and subsequently show all resources now deployed to the default namespace.

We assume that there is a kubeconfig.cfg-file, needed for authorization at the Kubernetes

API, and multiple .yaml Kubernetes deployment-files in the deployment/ -folder in our

directory. The tool will automatically find all matching files in that folder and deploy them

one after another.

Listing 5.2: Kubectl commands for applying and viewing deployment specifications

1 $ kubec t l −−kubeconf ig = . / kubeconf ig . c fg apply − f . / deployment / *
2 $ kubec t l get a l l −−namespace d e f a u l t

5.2.2 Continuous Delivery

We implement continuous delivery with a custom deployment pipeline specified in a

gitlab-ci.yml-File. It describes a topology of steps performed after another. A detailed

description of the functionalities can be found in the official Gitlab-Documentation2.

Other Platforms, such as Atlassian Bitbucket3 offer similar capabilities with a file called

bitbucket-pipelines.yml. As explained in Section 4.3.3, we favor distinct repositories

2https://docs.gitlab.com/ee/ci/
3https://confluence.atlassian.com/bitbucket

95



5 Implementation

for each microservice, instead of a mono-repository. This is important, because each

microservice requires an independent pipeline configuration due to different build and

deployment specifications as services could be implemented in different programming

languages. For example, for the services in the Measurement Context we use build and

test steps conforming to Java. The authentication-service based on GoLang however,

requires a different configuration.

5.2.2.1 Pipeline Configuration

The pipeline is based on different Docker Containers and scripts, that specify what

actions to perform in the pipeline. There are two main primitives for specifying a pipeline:

• Job: Defines a certain step within the pipeline. It has certain attributes, such as

image, stage and script, that define the environment as well as, when and what

the job is doing.

• Stage: Is a global element describing an order of levels. Jobs are then assigned

to stages, which is defining the topology of all jobs. Jobs in different stages are

executed successively. Jobs in the same stage are executed concurrently.

For example, our pipelines defined in Listing A.4 for the measurement-access-service

uses a build-, bake- and deploy-stage. We skipped a test-stage since we did not write

any tests for our prototypic implementation. While simple Unit tests would be performed

in the build-stage by a build-management-tool like Maven or Gradle, for production use

every pipeline should perform acceptance- or at least smoke-tests using the just created

container image, to ensure that there is no faulty image deployed to production.

The build-stage , shown in Listing 5.3, has only one job and is effectively triggering a

Maven build. Because we are using the official Maven Docker image we have access

to the tool mvn out of the box. The Gitlab-Runner will pull and start the maven:3-jdk-8

container and fetch the git-repository into the running container. All actions defined in

the script attribute are now executed in the root of the repository. In this example mvn

clean install will discover a pom.xml and execute the corresponding build. The artifacts
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Listing 5.3: Specification of the Gitlab CI pipelinefor the build step
1 b u i l d :
2 image: maven:3−jdk −8
3 stage: b u i l d
4 s c r i p t :
5 - mvn clean i n s t a l l
6 #declare artifacts which should be passed to the next stage of the pipeline
7 a r t i f a c t s :
8 paths:
9 - . / t a r g e t

attribute is specifying the files or folders, that are passed to the next stage in the pipeline,

after all the scripts have been successfully executed. However, these files are not added

to the repository as a committed change. In our case the build-artifact is an executable

.jar file,

The bake-stage , shown in Listing 5.4, differentiates between the type and branch of

the commit. Only the master-branch or tags, which are used for official releases of a new

service version, are going to be baked into a new container-image. We must declare

the build-job as a dependency to get access to the created artifact of that job. With

the only-attribute we specify which job is executed on either a commit to master or a

commit of a tag. The job is logging into the Docker-Registry using environment variables

automatically injected by Gitlab into the build-context. Subsequently Docker builds a new

image using the definitions specified in a Dockerfile4 placed in the root directory of the

repository. For referencing container-images to the exact version of the git commit, we

use the unique commit-hash as an image-tag. When a new version of the service has to

be released, we additionally reference the image with the tag-name, which usually has

the form of “v{majorversion}.{minorversion}.{fixnumber}"

4A file that describes the actions docker must perform in each layer on a build. Every available Docker-
Container can be used as a base container to stack the layers on top.
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Listing 5.4: Specification of the Gitlab CI pipelinefor the bake step
1 bake−master:
2 image: docker: l a t e s t
3 serv ices :
4 - docker:d ind
5 stage: bake
6 dependencies:
7 - b u i l d
8 s c r i p t :
9 - docker l o g i n −u "$CI_REGISTRY_USER" −p "$CI_REGISTRY_PASSWORD"

$CI_REGISTRY
10 - docker b u i l d −−p u l l − t "$CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG" .
11 - docker push "$CI_REGISTRY_IMAGE"
12 only :
13 - master
14

15 bake−tag:
16 image: docker: l a t e s t
17 serv ices :
18 - docker:d ind
19 stage: bake
20 dependencies:
21 - b u i l d
22 s c r i p t :
23 - docker l o g i n −u "$CI_REGISTRY_USER" −p "$CI_REGISTRY_PASSWORD"

$CI_REGISTRY
24 - docker b u i l d −−p u l l − t "$CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG" .
25 - docker tag "$CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG" "$CI_REGISTRY_IMAGE

:$CI_COMMIT_TAG"
26 - docker push "$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG"
27 only :
28 - tags
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The deploy stage , shown in Listing 5.7, requires us to configure some previous

settings. Since Kubernetes performs authorization, we must provide a kubeconfig-file to

the kubectl-tool.

Security Note

Problem: It is considered bad practice to maintain credentials as files within in

the repository, since it is introducing a critical security vulnerability. If we ever plan

to give third-parties any access to the code in the repository for any reason, even

just as “Guests”, they would be able to use exactly those credentials (e.g. the

kubeconfig-file) to perform actions on behalf of us (e.g. change any configuration in

our Kubernetes cluster). Deleting the credentials before has no effect, since even

deleted files are accessible in a versioned environment.

Solution: Gitlab allows to configure secret variables in the repository settings,

that are only accessible with extended rights on the repository. These variables are

injected into the pipeline context as hidden environment variables and therefore can

be used to secretly inject critical credentials into the pipeline and use them in the

scripts as regular environment variables.

The kubeconfig however, is a structured text-file that cannot be used as an environment

variable without further measures. We use base64-encoding, as shown in Listing 5.5, to

encode the file into a regular string that we can use as a secret environment variable.

Listing 5.5: Bash command to encode a kubeconfig into an environment variable.

1 $ ENCODED_KUBECONFIG=$ ( base64 kubeconf ig . c fg )

2 $ echo $ENCODED_KUBECONFIG

3 Output : # la rge s t r i n g

4 YXBpVmVyc2lvbj . . . DogImJ3Y2xvdWQi

We have to reverse that step in the pipeline-job using the command in Listing 5.6 to get

back the original kubeconfig-file in a structured form. Otherwise it will not be accepted by

kubectl. Now that we have a secure way to inject our kubeconfig into the job, we can use
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Listing 5.6: Bash command to retrieve the original kubeconfig-file from an environment
variable holding the encoded string.

1 $ echo $ENCODED_KUBECONFIG | base64 −d
2 Output : # la rge s t r i n g
3 apiVers ion : v1
4 k ind : Conf ig
5 c l u s t e r s :
6 − name : " bwcloud "
7 c l u s t e r :
8 . . .

any image that contains the kubectl-tool, like the image provided by Docker-Hub-User

“roffe”5, to issue commands to our Kubernetes cluster. This step is only executed, when

triggered manually in the Gitlab-UI, and only available at a service release in form of a

GIT-tag. The job orders Kubernetes to change the desired-state with the new image,

Listing 5.7: Specification of the Gitlab CI pipelinefor the deployment step
1 deploy:
2 stage: deploy
3 image: r o f f e / kubec t l
4 only :
5 - tags
6 when: manual
7 s c r i p t :
8 - echo $KUBE_CONFIG_INTEGRATION | base64 −d > kubeconf ig
9 - expor t SERVICE=nynm−measurements−access

10 - kubec t l −−kubeconf ig kubeconf ig set image deployments $SERVICE $SERVICE
=$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG

11 - kubec t l −−kubeconf ig kubeconf ig r o l l o u t s ta tus deployments $SERVICE |
grep s uc c e ss f u l l y

which triggers a merge with the actual state and applies the new image in the deployment.

We can query the rollout-state in the same manner and wait until the change has been

successfully deployed.

5https://hub.docker.com/r/roffe/
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5.3 Measurement-Context

After introducing our conceptual and architectural approach for the Measurement Context

in Section 4.5 and explaining our integration infrastructure and deployment methods in

the former Section, we are now providing a prototypic implementation for the Measure-

ment Context. The functional guideline is the Noisemap project introduced in Section 3.

As discussed in the design chapter, the functionality is internally divided into multiple

services, which we have implemented in Java because certain Libraries such as H3 and

Kafka-Streams are best supported in that language. For the API-facing services we use

a Java micro-framework called Javalin as it allows a fast and simple implementation of

HTTP endpoints with filtering capabilities for authorization.

5.3.1 Model

At first we want to use this Section to outline the the data model we identified and which

is shown in Figure 5.2. Measurements and aggregates are modeled as Simple-Features

using Type-, Geometry- and Property-attributes for better compatibility with certain

geo-libraries and data-storage in MongoDB, which supports indexing on GeoJSON

structures. Each measurement gets a unique id, certain timestamps and is additionally

geo-indexed using the H3-Library. The Properties attribute contains data relevant for the

subject-matter of collecting noise measurements. Each measurement can be composed

of multiple measurement types that are representing different weightings (LAeq, LCpeak,

TWA). One such type can be either related to a single measurement, in which case

only type and value are of relevance or it can be related to an AverageFeature, where

min-, max-, mean- and count-values are of interest. To cover the requirement of using

different sensor types and triggers, each measurement is tagged with the type of the

sensor (smartphone, statically mounted IoT-sensor and possibly future devices that allow

in-the-canal measurements6) and the type that triggered the measurement (manual,

schedule, event). These tags allow users to filter different types of measurements for

a visualization. Additionally, future analytical processing can take different types into
5https://javalin.io/
6A type of measurement, where the SPL is measured directly in the canal of the human ear.
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Figure 5.2: Diagram showing the data-model of the Measurement Bounded Context.

account, which allow to augment the platform to be usable with all kinds of measurement-

sources in the future. If required, we also could weight various types of sensors and

triggers differently based on their accuracy, to calculate more realistic averages.

To model the averages, we use AverageFeatures, which represent our aggregates. The

geographical area an aggregate is covering, is a hexagonal polygon described by the

Geometry -attribute. The different timestamps are describing the time window, for which

the average is calculated, and when the calculation has been performed. We additionally

maintain the center-coordinate of the polygon, the H3 index and the resolution of that

hexagon, which is already encoded in the h3index but would not be extractable without
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the library. However, we do not want to force frontend applications to use the library too,

just to extract the resolution of the cell.

As described in Section 4.5.6, we want to maintain the privacy of users and pursue an

approach, where we do not store any private data of users attached to a measurement

object. After pre-processing, the created_by_userid attribute in the Properties attribute

is erased and only the user-type (guest or member) is directly stored in the MongoDB

collection for measurements. This separation allows to publish any measurement without

privacy concerns. Instead, we store a mapping of user id and measurement id in a

separate collection. Additional information about the device used for the corresponding

measurement is also maintained in that mapping, which can be of interest for applying

other correcting factors for specific devices, if a laboratory can identify a generic pattern

for calibration in the future.

5.3.2 Implementation Overview

We have refined the conceptual architecture shown in Figure 4.5 and implement all three

phases. A typical data-flow of one measurement through the implemented phases is

shown in Figure 5.3.

5.3.3 Data Ingress Implementation

The first capability of the context is collecting measurements. This section focuses on

Steps 1-4 of Figure 5.3. Every time a smartphone has finished a measurement it is

posting a data object, shaped like the example in Listing 5.8, to an HTTP endpoint

of the ingress-service. The service is reconstructing the Measurement object using

the provided JSON data. The endpoint handler is attaching timestamps and the user

id as an created_by_userid-attribute, if any JWT has been provided for authorization.

Subsequently the configured Kafka Producer is publishing the measurement to the

Kafka topic for noise-raw-measurements using the created_at-timestamp as a key for

equal distribution on multiple partitions. If successful, it returns an HTTP-202 Accepted
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Figure 5.3: Concrete internal implementation of the Measurement Context shown all
major steps of the data-flow.

response to the smartphone, signaling that the data has been accepted but is still in

processing and not yet accessible.

IoT-Sensors related ingress was skipped for our prototypic implementation because of

limited time resources. Outlined however, this would involve an MQTT-Broker to collect

measurements from the sensors and publish all messages to a separate Kafka topic,

which would be called something like noise-iot-measurements. Either the pre-processor

or a distinct third Kafka-Streams service must then streamline the byte-data in that

topic into the common format of the noise-raw-measurement topic. Additionally, there

should be a service exposing an API for managing and linking deployed sensors to user

accounts and geospatial locations.
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5.3.4 Stream Processing Implementation

This section focuses on Steps 5-10 of Figure 5.3. The stream implementation is com-

posed of two different services implemented as regular Java applications that leverage

the Kafka-Streams library. Table 5.1 shows a list of all topics currently used in the stream

processing topology. To eventually persist the calculated results into MongoDB we

use Kafka-Connect with a configured MongoDB-Connector plugin. To prevent endless

growing topics, Kafka topics can be configured with data-retention policies to remove

Listing 5.8: Example structure for posting a measurement.
1 {
2 "type" : "Feature" ,
3 "geometry" : {
4 "type" : "Point" ,
5 "coordinates" : [
6 9.967101535538086 ,
7 48.384883089298114
8 ]
9 } ,

10 "properties" : {
11 "position_accuracy_in_meters" : 10 ,
12 "sensor_type" : "-1" , //type of the sensor (-1 corresponds to

testdataservice)
13 "trigger_type" : "-1" , //type of the trigger like notificatoin, schedule

or manual (-1 corresponds to test)
14 "measurement_types" : {
15 "LAeq" : {
16 "type" : "LAeq" ,
17 "value" : 70.5179
18 } ,
19 "LCpeak" : {
20 "type" : "LCpeak" ,
21 "value" : 102.255226
22 } ,
23 "TWA" : {
24 "type" : "TWA" ,
25 "value" : 61.82866
26 }
27 } ,
28 "device" : {
29 "brand" :"apple" ,
30 "model" :"iphone4,1" ,
31 "device_id" :"uuid" //optional
32 }
33 }
34 }
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Table 5.1: Current topics used in the noise stream-processing

Nr. Topic Key Description

1 noise-raw-
measurements

created_at Is the entrance topic for every measurement.

2 noise-user-
measurement-
mapping

userid Contains mapping objects that relate
measurement-id and user-id

3 noise-
anonymized-
h3-10-indexed

H3idx (10) Contains measurements that are filtered and
anonymized. The key is an H3 index of reso-
lution 10, in order to be correctly assigned to
partitions used in average aggregation.

4 noise-
anonymized-
h3-5-indexed

H3idx (5) Contains measurements that are filtered and
anonymized. The key is an H3 index of res-
olution 5, in order to be correctly assigned to
partitions used in average aggregation.

5 noise-average-
r10w15

H3idx(10) Contains small aggregations in H3-Resolution
10 and a window-length of 15 minutes.

6 noise-average-
r10w60

H3idx(10) Contains small aggregations in H3-Resolution
10 and a window-length of 60 minutes.

7 noise-average-
r5w60

H3idx(5) Contains larger aggregations in H3-Resolution
5 and a window-length of 60 minutes.

8 noise-average-
r10w1440

H3idx(10) Contains small aggregations in H3-Resolution
10 and a window-length of 1 day.

9 noise-average-
r5w1440

H3idx(5) Contains larger aggregations in H3-Resolution
5 and a window-length of 1 day.

data after a certain time or when a certain size threshold has been reached. We use a

default retention time of one day, which means, that Kafka marks messages for removal

after 24 hours. It is up to Kafka however, when exactly it removes the messages from

disk.

5.3.4.1 Pre-Processor

The pre-processor is processing all messages on the noise-raw-measurements topic.

First it is filtering measurement types that are not of the type LAeq, LCpeak or TWA and

is then checking each of the three remaining values if they exceed certain thresholds

that would not make any sense. A second step is then separating the created_by_userid
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attribute together with the measurement id and the device information into a separate

noise-user-measurement-mapping topic for privacy reasons. Next, it is trimming the

coordinates to 5 decimal digits which is about 1m precision (compare Table 2.1) for

efficiency reasons. We are using those coordinates to identify the H3-index in resolution

10, which is producing hexagons with an edge length of about 66m and the smallest

aggregation size we are going to support. Additionally, we create a unique id for the

measurement, which can be used by the database later. Apart from the index for small

areas in resolution 10 we publish the same anonymized measurement additionally with

an H3-index in an intermediate resolution of 5. This second index is used by the average

processors to calculate intermediate results for larger areas, which is beneficial in the

access-service for custom aggregations on requests in resolution < 5.

The resulting noise-anonymized-xyz topics do not have any user id attribute attached,

but rather keep the information whether a guest or a user has produced that particular

measurement for possible filtering requirements in a frontend implementation.

5.3.4.2 Average-Processor

The average-processor is taking the noise-anonymized-xyz topics as input, because

they are already filtered for fraud. It is producing multiple output topics in the format noise-

average-r<resolution-size>-w<window-minutes-lenght>, which contain the aggregations

for the different resolution and window combinations. Since Kafka-Streams is a high-level

streaming library, certain aggregation operations are already usable via simple methods.

An example for aggregating measurements within a 15-minute time window based on

the H3 index key is provided in Listing 5.9. As a first step we create the KStream

object representing the noise-anonymized-h3-10-indexed stream and group it by the

H3 index key in Line 4. Then we specify the window-length and set a retention-time

in Line 8, which specifies for how long the window is refreshed, if measurements for

that window arrive late. Line 7 specifies the generator for the initial aggregate and the

actual aggregation method that should be used for each measurement. In the actual

aggregation method, we calculate the average for each measurement-type using the

addValue(Type valueToAdd) method of the Type-Class. The mean-Value is calculated
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using a sophisticated formula due to the logarithmic nature of decibels. In Line 8-10 we

add certain window- and timestamp information to the message and publish it to the

specified topic.

5.3.4.3 Kafka-Connect

This section focuses on Steps 11 and 12 of Figure 5.3. All the results produced by the

Stream Processors is still residing in partitioned topics within the Kafka Cluster. To allow

the access-service to efficiently query the data, we must persist the data in a database

that is able to index it appropriately. Kafka-Connect is the native runtime to transfer

existing data in- and out of Kafka using Source- or Sink-Connector Plugins running as

“Tasks” on Connect Workers. Since Kafka-Connect is already integrated tightly within

the Kafka-Cluster, all we need to provide is one or more Instances acting as the Connect

Workers and equip these instances with the corresponding Connector Plugins in form of

Java .jar packages. After the Connect Worker container is running and connected to the

Kafka-Cluster, we configure the different Connect Tasks by posting a JSON-configuration,

like the one shown in Listing 5.10, to an internal Connect-Endpoint in order to tell the

Connect Workers what to read from Kafka, how to transform and where to persist the

data. The corresponding Collections are defined by the connect.mongo.kcql-attribute

in a configuration scheme. We persist topics 2-9 of Table 5.1 with an “upserting”-

strategy. The UPSERT command is a made-up word, specified as “update if present else

insert” and is persisting the data coming from the specified topic into the corresponding

Collection based on the defined primary key.

5.3.4.4 Database

We use MongoDB as the persistence layer in our Measurement Context because its

geospatial support is based on the GeoJSON-Format, which lets us integrate the solution

seamlessly with our services. The support has been introduced to allow efficient queries

by using certain indexing mechanisms, which are a key enabler for efficient data access

of geospatial data. Otherwise a database would need to check the coordinates of all
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Listing 5.9: Code-snippet for aggregating noise measurements based on time-windows
with Kafka-Streams (certain Java Code is hidden for better readability).

1 / / c reate the stream ob jec t and group by the H3 index key
2 KStream<St r ing , MeasurementFeature> anonymized = b u i l d e r . stream ( " noise−

anonymized−h3−10−indexed " , Consumed . w i th ( s t r ingSerde , measurementSerde ) ) ;
3 i n t re ten t ionHours = 1; i n t lengthMinutes = 15; i n t r e s o l u t i o n = 10;
4 anonymized . groupByKey ( S e r i a l i z e d . w i th ( s t r ingSerde , measurementSerde ) )
5 . windowedBy ( TimeWindows . o f ( TimeUnit .MINUTES. t o M i l l i s ( lengthMinutes ) )
6 . u n t i l ( TimeUnit .HOURS. t o M i l l i s ( re ten t ionHours ) ) )
7 . aggregate ( AverageFeature : : new , performAggregat ion ( h3 ) , / * t h i r d

parameter hidden f o r s i m p l i c i t y * / )
8 . mapValues ( setWindowsAndTimestamps ( ) )
9 . toStream ( ( key , value ) −> value . getH3idx ( ) )

10 . to ( " noise−average−r " + r e s o l u t i o n + "−w" + durat ionMinutes , Produced
. w i th ( s t r ingSerde , averageSerde ) ) ;

11

12 / * * Method t h a t performs the aggregat ion using a s i n g l e measurement t h a t i s
added ontop of an a l ready present aggregate based on the h3idx * /

13 p r i v a t e Aggregator performAggregat ion ( H3Core h3 ) {
14 r e t u r n ( h3idx , measurementFeature , averageFeature ) −> {
15 / * i n i t i a l i z a t i o n hidden f o r s i m p l i c i t y * /
16 / / For each measurement type r e c a l c u l a t e the average sepera te ly w i th

i t s own count
17 measurementFeature . ge tP rope r t i es ( ) . getMeasurementTypes ( )
18 . forEach ( ( type , measurementType ) −> {
19 Type averageValue = averageFeature . ge tP rope r t i es ( ) .

getMeasurementTypes ( ) . ge tOrDefau l t ( type , new Type ( type , 0 ) ) ;
20 averageValue . addValue ( measurementType ) ;
21 averageFeature . ge tP rope r t i es ( ) . getMeasurementTypes ( ) . put ( type , v )

;
22 } ) ;
23 r e t u r n averageFeature ;
24 } ;
25 }
26

27 / * Method of the Class Type f o r adding a new Value to the average * /
28 p u b l i c vo id addValue ( Type value ) {
29 i f ( count == 0) {
30 min = value . min ;
31 max = value . max ;
32 }
33 min = ( value . min < min ) ? value . min : min ;
34 max = ( value . max > max) ? value . max : max ;
35 mean = (mean != n u l l ) ? mean : t h i s . value ;
36 value . mean = ( value . mean != n u l l ) ? value . mean : value . value ;
37 i n t t o t a l c o u n t = count + value . count ;
38 / / c a l c u l a t e mean dB over a l l prev ious values p lus the new value
39 mean = 10 * Math . log10 ( ( count * Math . pow(10 , 0.1 * mean) + value .

count * Math . pow(10 , 0.1 * value . mean) ) / t o t a l c o u n t ) ;
40 count = t o t a l c o u n t ;
41 }
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Listing 5.10: Example configuration for the MongoDB connector to persists the 15-minute
average results.

1 "connector.class" : "com.datamountaineer.streamreactor.connect.mongodb.sink.
MongoSinkConnector" ,

2 "tasks.max" : "1" ,
3 "topics" : "noise-average-r10w15" ,
4 "connect.mongo.database" : "measurements" ,
5 "connect.mongo.db" : "measurements" ,
6 "connect.mongo.batch.size" : "10" ,
7 "connect.mongo.kcql" : "UPSERT INTO average15-10 SELECT * FROM noise-average

-r10w15 PK window_id" ,
8 "connect.mongo.connection" : "mongodb://mongodb:27017" ,
9 "transforms" : "tstransform" ,

10 "transforms.tstransform.type" : "org.apache.kafka.connect.transforms.
TimestampConverter$Value" ,

11 "transforms.tstransform.field" : "to_date" ,
12 "transforms.tstransform.format" : "yyyy-MM-dd’T’HH:mm:ss.SSSXXX" ,
13 "transforms.tstransform.target.type" : "Timestamp" ,
14 "transforms.tstransform.type" : "org.apache.kafka.connect.transforms.

TimestampConverter$Value" ,
15 "key.converter.schemas.enable" : "false" ,
16 "value.converter.schemas.enable" : "false" ,
17 "value.converter" : "org.apache.kafka.connect.json.JsonConverter" ,
18 "key.converter" : "org.apache.kafka.connect.storage.StringConverter"

records and match them with a requested area, which is a costly computation. To query

geospatial results, there are certain helper functions that operate on a 2dsphere index.:

• $geoIntersects: Selects geometries that intersect with a GeoJSON geometry.

• $geoWithin: Selects geometries within a bounding GeoJSON geometry.

• $near: Returns geospatial objects in proximity to a point. Requires a geospatial

index.

• $nearSphere: Returns geospatial objects in proximity to a point on a sphere.

Requires a geospatial index.

Listing 5.11 shows a simple example using MongoDB’s geospatial feature set. The

example is presented in JavaScript, since the MongoDB proprietary query language

is based on it. Database drivers in other languages can have minor differences to

build those commands and queries. We are creating an index on a measurements

collection, create an item in the form of a GeoJSON-Feature within that collection

and use the geospatial query feature to define a bounding polygon for the former
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created measurement. The query will return the created measurement and all other

measurements contained within the defined query-polygon.

Listing 5.11: Example of a MongoDB geospatial query
1 //Create a geospatial 2dsphere index in mongodb
2 db . measurements . create Index ( { geometry : "2dsphere" } )
3 //Create a GeoJSON Feature representing a Measurement in the Database
4 db . measurements . i n s e r t ( {
5 "type" :"Feature" ,
6 "geometry" : {
7 "type" :"Point" ,
8 "coordinates" : [9 .96438 ,48.38262]
9 } ,

10 "properties" : { /* certain measurement related properties*/ } ,
11 "_id" :"5bc8a46055149a0001f01a88" ,
12 } )
13 //Query with the $geoWithin operator using a rectangle.
14 db . measurements . f i n d ( {
15 geometry : {
16 $geoWithin : {
17 $geometry : { //defines the box used to query the database entries
18 "type" :"Polygon" ,
19 "coordinates" : [ [
20 [10.002403 ,48.396015] ,
21 [10.002403 ,48.364034] ,
22 [9 .933223 ,48.364034] ,
23 [9 .933223 ,48.396015] ,
24 [10.0024033 ,48.396015]
25 ] ]
26 } } }
27 } )

We define the following Collections and associated indexes in the database:

aggregations{15,60,1440}-{5,10} These Collections have a 2dsphere index on the

geometry and center_coord attribute for efficient access. Further, they have a

regular index on the h3idx and the _id attribute to efficiently retrieve single items

from that Collections.

measurements Uses a 2dsphere index on the geometry attribute and regular indexes

on _id and created_at attributes to allow time-based filtering of measurements.

measurementusermappings Uses regular indexes on _id and created_at attributes

to allow time-based filtering of measurement mappings with users.
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The average15-10 is supposed to only hold the latest completed window to prevent an

endless growing dataset, therefore we have put a time-to-live index on the window-end

timestamp. This will tell the regularly scheduled MongoDB daemon to clean obsolete

data-items from the collection. Since the window-length is 15 minutes, this ttl index is

set to 900 seconds on the to_date, which will keep that document for a minimum of 15

minutes or a little bit longer in the database once the window is finished.

5.3.4.5 Data Access Implementation

This last Section focuses on Steps 13-17 of Figure 5.3 and is dealing with data access

for the visualization via an API. The service exposes an HTTP-based REST API with

multiple endpoints to access the measurement data in raw and aggregated form with

various optional filters applied. We have public routes and routes behind the top-level-

route "/internal", that require authorization because as specified in Section 3.5.1, certain

Member-Levels have limited access to the available data. Since Guests have access to

pre-aggregated results that are one day old, there are the public routes /aggregations/60

and /aggregations/1440, that represent hourly and daily aggregated data. At the hourly

route, a “from” and “to” query-parameter must be present and specify a timestamp

before the beginning of the current day.

Authorization is performed at internal routes, where the presence of a valid JWT is

checked and the corresponding user-information, such as roles, is added to the request

context. With that information, each of the following endpoints can determine whether a

user has the correct status to be able to access the corresponding data:

/internal/aggregations/{60,1440} Returns multiple already aggregated results for cer-

tain H3indexes in a specific boundary and timestamp. The result will contain a

Map of H3 indexes, where each key is containing a list of results in different time

windows.

/internal/aggregations/{15,60,1440}/latest Returns results of the latest completed pre-

aggregated window, depending on the given window-size specified by the URL-

parameter, a specified boundary and target H3 resolution.
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/internal/measurements Returns single measurements within a specified boundary,

time period and quantity limitation.

/internal/measurements/liveaggregation Returns aggregations for specified custom

time periods within a specified boundary and a given target H3 resolution. The

underlying handler is retrieving all matching measurements from the database and

subsequently performing an iterative live-aggregation of the desired area and time

period.

The access-service is using the official MongoDB database driver in version 3.7.1 to

construct queries and get the corresponding results from the database. It is making

use of the geospatial indexes and query capabilities. Most of the queries are of the

relatively simple type “geoWithin(bounding-polygon)” and are similar to the Javascript

version in Listing 5.11. Certain handlers, such as for live-aggregation, make use of an

iterative database query, where the results are aggregated one by one, to avoid memory

overflows because of a data set too large for the available memory.

Privacy preserving implementation is based on a simple Key-Value setting, which

users can store in an privacysettings Collection in the database, where the Key is a

PrivacyType of:

• accurate_coordinates: Link user id with single measurements.

• average: Publish an average value of measurements performed by that user.

• min_max: Publish minimum and maximum value of measurements performed by

that user.

• fuzzy_coordinates: Link user id with measurements where coordinates are

blurred.

The value is a PrivacyUserType, that specifies which users can access the corresponding

information of the above PrivacyTypes:

• none: No one is allowed to see the information.

• following: Only users, that the data-owner is following in a social-service imple-

mentation, are allowed to see the information.
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• group: Only users, that have one group in common with the data-owner in a

social-service implementation, are allowed to see the information.

• user: All registered users are allowed to see the information.

• guest: Everyone, even guests, are allowed to see the information.

As Section 4.5.6 described, if not specified explicitly, all measurement information is

returned without any user-related information. For requesting single measurements or a

set of measurements, a requesting user can specify a query-parameter populateUser,

which will take the measurement ids and find all corresponding users from the measure-

mentusermappings Collection. For each of that users it is getting their corresponding

privacysettings from the database, to check if the requesting user is allowed to see that

information.
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This Chapter is going to reason the feasibility of the approach and is subsequently

explaining the overall scalability related aspects of the concept proposed in Chapter 4.

Further, we compare how technical and conceptual design decisions would cover the

requirements of the Noisemap project introduced in Chapter 3, which are exemplary for

a platform dealing with crowdsensing of geospatial data.

6.1 Feasibility of the Approach

We showed in Chapter 5 how a concrete implementation of the proposed design con-

cept can look like. We have implemented an end-to-end delivery pipeline to deploy

code changes into a cloud-native environment using the hosted service of Gitlab.com.

Committed code changes are built and baked into new images. Each new version

release is automatically deployed into a Kubernetes cluster, which is specifically set up

as our integration environment to have a non-production system running for testing new

features and developing frontend applications without the risk of harming a production

environment.

To show that the approach is working, we implemented a Testdata-Service, that is

continuously posting random measurements located around Ulm, New-York-City and

Worldwide at certain intervals to the ingress-service. Additionally, we have implemented

a simple web frontend, capable of showing measurements and aggregations on a

map. The frontend is implemented as a Javascript Single-Page Application, which is

consuming the API of the access-service using asynchronous Javascript requests. Once
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the API results are received, they are shown on the map as depicted in Figures 6.1 and

6.2, using a visualization that colorizes certain noise levels using exemplary thresholds.

Figure 6.1: Prototypic web frontend showing a visualization of single test measurements.

Figure 6.2: Prototypic web frontend showing a visualization of aggregations in H3 reso-
lution 8 calculated by the stream processing pipeline.
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6.2 Reasoning the Scalability

We are going to reason platform scalability by conceptually explaining how each used

technology scales on its own and therefore contributes to the overall increased per-

formance. The reasoning follows along the line, that each of the Microservices is

independently horizontally scalable, but depends on a scalable persistence and commu-

nication layer. Since we use a scalable database technology and the Kafka ecosystem

is scalable as well, the fundamental scalability is only constrained by the available com-

puting resources. The resources are provided transparently and infrastructure agnostic

by Kubernetes, which is built as a scalable cluster technology from the ground up and

therefore allows to scale the available resources by adding usual computing resources

in virtualized or non-virtualized form.

The following sections are elaborating on the scalability of each component.

6.2.1 Microservices

The cloud native concept of microservices allows to scale the services independently of

each other. At times where there are a lot of measurements submitted, but only a few

visualizations are requested, we can increase the number of ingress-services and stay

with a small number of access-services. Vice versa, when there are a lot of requests

for data, but less contributions, we can increase the number of access-services. Since

all our services, which are exposing a publicly accessible API, are stateless, we can

endlessly scale these services horizontally to provide enough resources to handle the

number of API requests coming in from users or devices. The degree of scalability is

however limited to scalability-aspects of upstream components which are dealing with

state-handling, such as a database or Kafka.

6.2.2 Database

The scalability of the database is dependent on the technological solution that is used.

While all solutions naturally scale vertically by increasing the power of a single instance,
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horizontal scalability by increasing the number of instances is often not easily achievable.

We focus on the horizontal scalability aspect in this section.

We use MongoDB in our prototypic implementation. MongoDB can be operated as a

horizontally scalable cluster of multiple nodes, which is important to fit the performance

needs of massively scaled downstream services, such as the access-service or upstream

services like Kafka-Connect. MongoDB has two concepts that can be used to provide

horizontal scalability. The first concept is ReplicaSets, which is similar to a Master-

Slave replication. That concept is however merely providing scalability in terms of

read-performance and is mostly used for resilience and fault-tolerance related reasons.

Each ReplicaSet has a primary instance for read and write access to the data and one or

more secondary instances for data replication, which can also be used for read access.

6.2.2.1 Sharding

More important than the concept of ReplicaSets, is the concept of sharding. It focuses

on the scalability of read- and write-performance, because it “is a method for distribut-

ing data across multiple machines. MongoDB uses sharding to support deployments

with very large data sets and high throughput operations [53].” Figure 6.3 shows the

conceptual cluster architecture necessary to enable sharding in MongoDB. Instead of

replicating the data, as it is the case with ReplicaSets, the data of one Collection is

partitioned and distributed across multiple shards within the cluster. When every shard

is only responsible for a part of the data in a Collection, in theory it is only exposed to a

fraction of the overall load. The practical distribution of load however, is dependent on

the right strategy and attribute-key for distributing chunks of data across the cluster. In

an ideal case the data is distributed in a way, that the each shard is getting more or less

equal requests, but at the same time the accessed data in one request should be on

as less Shards as possible, because the Query-Routers will redirect the data-request

to all shards, that are possibly containing data matching the request. These routers

know where certain parts of a Collection are stored based on metadata stored in the

Config-Servers.
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Figure 6.3: Scalable MongoDB cluster architecture for accessing data shards. Based on
[53].

6.2.3 Kafka

The scalability aspect in Kafka must be viewed differentiated. One aspect is related

to the scalability of the cluster by adding more nodes and therefore provide horizontal

scalability and fault-tolerance. The other aspect is the scalability of the throughput of

one single topic in Kafka. A Kafka cluster can easily be scaled horizontally by simply

adding more nodes. All coordination and cluster specification is handled externally of

the cluster by a dedicated Zookeeper instance. However, merely increasing the number

of nodes in the Kafka cluster is not scaling the throughput of a topic directly, although it

is a prerequisite to be able to scale the throughput of topics.

Topics are actually scaled using a concept called partitions, which is similar to Mon-

goDB’s sharding-concept. Each topic can have one or more partitions and messages are
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assigned to exactly one of these according to the message-key. Adding more partitions

is therefore theoretically providing more throughput for the topic, in case of a well-chosen

partitioning strategy that is able to distribute the messages equally between partitions.

The partitions are itself distributed across Kafka Brokers within the cluster. If not enough

Brokers are present, one Broker will get multiple partitions, which is not effective in terms

of the topic throughput. But it can still be a valid option to have more partitions than

Broker-nodes to have the ability to scale the client applications that consume from Kafka

topics or produce to them, like Kafka-Streams or Kafka-Connect do.

6.2.3.1 Kafka-Streams

Since Kafka-Streams is merely a library to implement custom microservices for stream

processing, scalability is at first relying on the scalability of these microservices. We

have to be able to horizontally scale these services to process a larger amount of data.

As mentioned before, partitions are the key concept to scale topic throughput but also

the topic-dependent components like stream processors using the Kafka-Streams library.

We are able to deploy multiple instances of the same stream processing application,

which will form a Consumer Group and internally coordinate all instances to distribute the

responsibility for available partitions equally between all consuming stream processing

services. Each partition is exactly assigned to one instance, which limits the degree of

parallelism to the number of partitions a topic has. If a consumer is added or removed

from the group, partition reassignment is performed [56].

6.2.3.2 Kafka-Connect

The same principles of Consumer Groups and Consumers is applied in Kafka-Connect,

where a group of worker nodes is performing Tasks defined by a specific Connector

configuration. The degree of parallelism is defined by the number of Tasks running for

one Connector configuration, which would be for example moving data of one specific

Topic into a database. As with Consumers in Consumer Groups, the partitions of a topic

are assigned to one of the Tasks. The Tasks are transparently distributed between the
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group of workers, which can be increased or decreased and coordinate themselves via

“internal” Kafka topics.

6.2.4 Cloud-Native Cluster

The previous sections have shown, that all our core technologies and components are

able to provide horizontal scalability and therefore are able to cope with an increasing

number of users and measurement data. However, to actually be able to scale services

and components horizontally, an appropriate infrastructure is needed. The cloud-native

concept we used throughout our design is providing a combination of infrastructure,

automation and decoupled design, that is enabling infrastructure agnostic horizontal

scalability of all components. All components of the previous sections are operated and

scaled within the Kubernetes cluster, which abstracts away certain infrastructural notions

such as specific nodes and service discovery.

The scalability of the overall system is therefore fundamentally dependent on the scala-

bility of the Kubernetes cluster, because all components share the computing resources

available within the cluster. Since Kubernetes clusters can easily be extended with

further worker-nodes and a scheduler is transparently handling the placement of the

components within the cluster, it is satisfying the fundamental requirement of being able

to increase computing resources available to the application components.

6.3 Requirements Comparison

We specified certain requirements for the Noisemap Project, introduced in Section

3.6, which have been used in Chapter 4 to identify certain generic capabilities, that a

platform for crowdsensing of geospatial data should have. The proposed design has

been used to implement a prototypic version for parts of the platform. Table 6.1 and Table

6.2 briefly discuss how the design is covering different functional and non-functional

requirements and especially how the prototypic Measurement Context implementation

fits the Noisemap requirements.
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Table 6.1: Discussion of the design in relation to functional requirements of the Noisemap-
Project.

Nr. Requirement Description

1 Noise Level
Measure-
ments

We designed and implemented a system, that offers an HTTP-API
usable by smartphones to post objective measurements.

1.1 Noise-
Dose

This is currently not explicitly implemented in the backend system,
since it is possible to calculate the value on the frontend device.

1.2 Triggers Triggers have to be implemented on the frontend application. How-
ever, our system allows to specify the type that has triggered the
measurement in the measurement-object, which could be used for
filtering and statistics.

1.3 Subjective
noise Level

This requirement has not been considered in the design, but
external Frameworks and Systems like QuestionSys [69], could
easily be integrated to provide a tool-set for defining and collecting
questionnaires.

1.4 Offline-
capability

The frontend application has the possibility to post measurements
at anytime with a specified created_at-attribute. The stream pro-
cessing phase in the Measurement Context however, will not
consider late arriving measurements older than one day for aggre-
gation in the current prototypic implementation.

2 Visualization The system offers a data access API to request measurements
and aggregations in the GeoJSON format, that can be used to
visualize their values on a map. The data access API allows to
request within specific geospatial boundaries allowing the frontend
to request only data for the area the map is currently showing. Data
access however, is dependent on certain user Member Levels
because of incentive-related reasons.

2.1 Heatmap Heatmaps are not rendered in the backend. However, a frontend
application can access single measurements within a certain re-
gion and use client-side Heatmap implementations to show the
data on a map.

continued . . .
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Table 6.1 continued: Discussion of functional requirements.

Nr. Requirement Description

2.2 Aggregations Aggregations are not rendered in the backend. However, a fron-
tend application has data access to already aggregated polygons
represented in the GeoJSON format, that can be directly used for
visualization on a map like shown in Figure 6.2.

3 Users We have designed an authentication-service that offers registration
and login in order to access certain other APIs of the system via a
distributed concept based on JWTs.

3.1 User Profile A user profile can be maintained in the Social Context of the
system. The design proposes to use a simple HTTP API to access
such profiles from a frontend application.

3.2 Groups The Social Context is designed to provide mechanisms to form
groups and discussions in a forum like manner. The geospatial
context can be created by geo-tagging discussions and groups
using the same geospatial indexes as the Measurement Context.
Therefore, the functionality can be seamlessly integrated into visu-
alization of a frontend application.

4 Notifications We have not exactly specified when users get notified and how to
identify when a user enters an interesting area, however we have
specified and designed the technical needs within a Communica-
tion Context, which is able to send emails and push notifications
to the user’s device.

5 Incentives We have proposed a system composed of two different incentive
mechanisms and briefly outlined how these mechanisms could be
realized within our platform design.

5.1 Restrictions
/ Rewards

Restrictions and Rewards are based on certain Member Levels
which can be calculated within an Incentive Context using similar
stream processing approaches as used in the Measurement Con-
text. We have described two approaches for publishing Member
Level state changes for users to interested services either via
messaging in the backend or transportation using JWTs, which
is favorable to maintain a decoupled backend design but requires
more effort in frontend applications.

continued . . .
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Table 6.1 continued: Discussion of functional requirements.

Nr. Requirement Description

5.2 Gamification We have only briefly mentioned the possibility to implement differ-
ent Challenges and collection of statistics. Such statistics could
be used to award certain users with medals or pins presented in
their public user profile.

6 Privacy Privacy related features are not centrally managed, this is rather
the responsibility of each context alone. We have designed a key-
value based approach in the Measurement Context that allows
each user to specify, who has access to certain measurement-
related user information.

7 Fraud-
Protection

The prototypic implementation uses only a pretty rudimentary
approach to filter certain measurements based on thresholds.
However, the pre-processor implementation in the stream process-
ing pipeline can be extended to implement different analytical and
pattern-based approaches to identify fraud and redirect question-
able measurements into explicitly designed topics.
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Table 6.2: Discussion of the design in relation to non-functional requirements of the
Noisemap-Project.

Nr. Requirement Description

1 Efficiency We have implemented stream processing to aggregate certain
results in advance. Aggregations are favorable in terms of data
size of data-requests for visualization compared to thousands of
single measurements. However, we do not aggregate in every
available h3-resolution in order to save required disk space. But
the two available aggregations can be used as intermediates to
efficiently calculate aggregates for different resolutions.

2 Modifiability The cloud-native principles help to maintain a decoupled design.
We have separated the system into different functional Bounded
Contexts, which can maintain their own data model and implemen-
tation logic. The services can make use of each other’s API or
published messages to a Kafka topic. As long as certain interfaces
are not changed, any context can extend their functionalities inde-
pendently of other services, which is beneficial to provide further
features in the long-term.

3 Portability We have implemented and design the platform around cloud-
native principles and package every service in a Docker container
including all libraries to form a self-contained deployment unit. Con-
figuration can happen via injected environment variables, which
allows us to run the same container in different environments,
such as development, integration or production clusters. Since the
Docker containers provide an environment, that already satisfies
the actual application code inside, the cluster scheduler can place
those containers on any computing-node that has free resources.

4 Reusability Certain parts that we have implemented as prototypes, are tai-
lored towards noise-measurements with custom logic for averaging
them. However, the overall system design is usable for any kind
of geospatial crowdsensing. Other contexts have not even been
specified in detail. The briefly described concept of Incentives
and Social discussions can be used for crowdsensing of various
environmental phenomena generically.

continued . . .
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Table 6.2 continued: Discussion of non-functional requirements.

Nr. Requirement Description

5 Scalability The cloud-native design and technology choices have been explic-
itly chosen to provide a scalable system. As discussed in Section
6.2, the conceptual design is based on a lot of cluster technologies
on different layers, which can scale horizontally.

6 Verifiability We have not specified any tests and verification methods in neither
the design concept nor the prototypic implementation. However,
because we use continuous delivery and have already specified
certain pipelines in the prototypic implementation, integration of
a testing phase before automatically releasing to certain environ-
ments is possible.

7 Availability All the contexts are operated independently of each other. Even a
short outage of the authentication-service should not be critical,
since already issued JWTs are still valid and can be used for
requests on other services. We separated ingress, processing
and data access of measurement data to form distinct failure
zones in the Measurement Context, in order to still be able to
consume or deliver measurements when errors happen in parts of
the Measurement Context.

8 Installability This is an external requirement not specified in our backend-
design, since it is subject to frontend technologies. However, we do
provide a prototypic web-based implementation for visualization-
only, that has no installation effort at all.

9 Integrity The system is not designed for 100% data integrity, because we
are not relying on transactions in neither the database nor the
stream processing pipeline. However, all technologies are based
on clusters and can replicate data to prevent loss. Additionally, a
loss of a single measurement is assumed not to be critical and
can be neglected.

10 Interoperab-
ility

All contexts offer standard HTTP-APIs to post and get certain
data and can therefore be integrated with other contexts and
external systems. Certain APIs should however only be accessible
internally, because they are only designed for system-internal use
like the proposed design for the Communication Context explains.

continued . . .
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Table 6.2 continued: Discussion of non-functional requirements.

Nr. Requirement Description

11 Performance The most critical part for frontend performance will be visualization
and API requests. We have explicitly designed the system to pre-
aggregate certain results in order to be able to respond quickly
to the user and maintain a relatively low data size to enable fast
data transfer and visualization. However, certain functionalities
still require loading substantial amounts of data which can take
certain time for data-transfer and visualization.

12 Reliability Since the cloud-native concept is based on clusters, we have al-
ready certain fault-tolerant capabilities built into the system. How-
ever, the effectiveness is dependent on how well certain clusters
are configured and how well the underlying cloud resources are op-
erated. Our custom configured integration cluster did not proof to
be very reliable, because of certain resource-quota limitations we
have been regularly exceeding. Although, in a hosted Kubernetes
environment with enough resources the system should be able to
cope with certain component and node failures and reschedule
the component to still working nodes in the cluster.

13 Robustness In order to detect certain component failures, one would need to
implement health checks for each service, which we did not focus
on. Currently only a few components of the prototypic implemen-
tation have health checks. However, they can be easily configured
in Kubernetes with certain configuration parameters, which will
enable the cluster to recognize failed components and replace
them.

14 Safety There has not been any special requirement.
15 Security We designed the system with authentication based on JWTs to

secure all public facing API Endpoints. User credentials are only
stored within one database, to reduce the effort for keeping that
information secure.

16 Usability This is no requirement for the backend system.
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6.4 Food for Thoughts

The last section of this chapter is dedicated to interesting aspects that we noticed while

researching, designing and implementing parts of the platform.

6.4.1 Secondary Benefits of the Cloud-Native Design

The decoupled design following the Microservices-Style has other benefits than providing

a scalable, expendable and maintainable platform. Projects, like the Noisemap-Project,

are often used to conduct secondary research on different related topics and aspects,

especially in the scientific context. For example, one group of researchers could be

interested in the noise data to draw certain conclusions about hearing loss in different

regions, another research group might be interested in how different incentive mech-

anisms affect crowdsensing and what possibilities for implementation are well-suited.

Others might be interested in social opinions and social participations around geospatial

or noise-related topics. The decoupled design allows each research group to cover

their own research interest in a Bounded Context and use their specific data-model and

technology fitting their problem best. They can extend and deploy their own services as

fast as they want and are not relying on other research groups. This would be the case

in a conventional monolithic system design, where releases and code changes must be

coordinated.

6.4.2 Fragility of the Design

While we showed, that the design is satisfying the use case and is feasible to implement,

we also acknowledge that it is still in a very fragile state. This is mostly related to the

fact, that Kubernetes and Kafka itself are very sophisticated and complex technologies

that require a lot of knowledge for correct configuration and a stable operation. Most

of the instabilities in our integration cluster are related to narrow resources on the

computing-nodes for the Kubernetes cluster, like to less disk space to let Kubernetes

pull and deploy further containers onto a specific node, and therefore at some point has
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not been able to recover from certain connection errors of some components. This is

eventually tearing down specific parts of the processing pipeline such as either Stream-

Processors, Connectors or Kafka itself and therefore prevented our generated test data

to be persisted into the database. We recommend to use hosted PaaS offerings for

Kubernetes from one of the available cloud-providers for the operation of the system in

production.

We also recommend implementing a solid monitoring and alerting concept for production

use. It is important to have an overview about the state of all components and the ability

to react on problems, that Kubernetes is not able to recover from. Most of the Kafka

components are already exposing certain metrics via JMX1 out of the box, that could

be collected and visualized using specifically designed monitoring systems, such as

Prometheus2.

6.4.3 Global Scalability

We designed the platform to be natively usable for any area worldwide due to the use

of a global grid system for geospatial data. However, we did not cover how to deploy

the platform at global scale across multiple data centers in various regions of the world.

Briefly outlined, this would at first require mirroring the data persisted in MongoDB

across the globally distributed data centers, in order to allow a European user connected

to a European data-center access data collected in a northern American data-center.

Furthermore, sophisticated DNS resolution techniques, such as Global Server Load

Balancing, are required to redirect the user to the closest located data center, in order to

prevent that users in Europe are redirected to a northern American data-center, which

would introduce a lot of latency.

1Java Management Extensions (JMX) is a specification integrated into Java to make runtime aspects of
applications available for monitoring.

2https://prometheus.io/
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Conclusion

This Chapter is recapitulating the thesis with a summary in Section 7.1, where we briefly

describe what we have covered. The closing outlook in Section 7.2 is providing our view

on further development towards a production-ready application.

7.1 Summary

Our target has been to develop a conceptual design usable as a starting point for a

platform-backend in the context of crowdsensing of geospatially-related data. In order

to understand the subject and technological backgrounds, we introduced and defined

important terms and concepts. To develop the generic use case, we described the

Noisemap project as a specific use case in crowdsensing of geospatially-related data.

The overall objective of the project is to use the smartphones of the crowd to measure

noise, then use their internal GPS capabilities to relate the produced data to geographic

space, send the data to a backend, where it can to be stored, combined with other

data and provided via an API for data visualization on the user’s device. We used the

refined requirements of that project to derive capabilities for a general platform-design

capable of dealing with geospatial data. The design uses a state-of-the-art cloud-native

approach to create a decoupled architecture in form of Microservices, that are hosted by

highly automated infrastructure and deployment concepts. The processing of incoming

data is designed to be performed by a stream processing methodology, in this case

precisely implemented with the help of the Kafka ecosystem and its provided libraries

to create the stream processing business logic. Geospatial capabilities are covered

with the help of the H3 library, which implements a discrete global grid system that can
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be used to aggregate and index geospatial data globally without manual effort. We

have additionally briefly described, how the different crowdsensing specific requirements,

such as social features and incentive management, can be realized as distinct bounded

context according to the design principles.

The prototypic implementation of the measurement context is showing the feasibility of

the stream processing methodology, but the operation in the test cluster also revealed

fragility when the infrastructure is not professionally operated and monitored, as dis-

cussed in Section 6.4. Finally, the scalability is reasoned by forming a scalability-chain

of components dependent on another and describe their specific technical scalability

to show, that the overall concept is providing sufficient scalability with the proposed

technology.

7.2 Outlook

We acknowledge, that the platform is not specified detailed enough to be instantly

used for a production use case. Further research and specification has to be done to

implement a minimum viable product, that is actually usable by the crowd.

For the frontend applications of various sensing applications it is crucial to know the

context of the device for opportunistic sensing actions. Section 3.7 mentioned some of

the challenges particularly for noise sensing, but they are still relevant for other environ-

mental sensing use cases as well. The goal of such research must be a framework for

mobile developers, helping them to easily access the current situation via a context API.

For example, this could be an enhanced form of something like the Google Awareness

API1 for Android, that unifies location, sensor and context signals to detect the user

status, like walking or driving, as well as the weather conditions at the current location.

Future topics regarding the backend system are most importantly related to further

specifying the different bounded contexts and implementing first prototypes of them.

For example prototypic implementations of the Incentive and Social Context will unveil

how well the measurement data in Kafka is usable for other contexts and whether
1https://developers.google.com/awareness/
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the feature separation of our design into the different contexts has been optimal. As

mentioned in Section 6.4.1, such further research and specification can be performed by

different groups independently to some degree. We recommend to involve corresponding

experts for refining the remaining capabilities. Furthermore, infrastructural refinement

is necessary as acknowledged in Section 6.4.2 and Section 6.4.3. There must be a

suitable monitoring solution to support maintenance and ensure that all the automation

that is related to DevOps principles does not harm operational stability. Also, further

reflections regarding global scalability will be needed when such a platform is starting to

become successful in some time.

Taken together all covered aspects and remaining question marks of this thesis, we

believe that such a platform can support transparency of environmental conditions by

unleashing the crowd’s potential. But refinement for different use cases and of course a

a natural user experience in frontend applications is needed, to make participating for

users a great experience of social participation and environmental awareness.
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A
Appendix

Listing A.1: Example of a Kubernetes cluster configuration to setup the cluster.

1 addon_job_timeout: 30

2 a u t h e n t i c a t i o n :

3 s t r a t egy : "x509"

4 bast ion_host :

5 ssh_agent_auth: fa lse

6 c loud_prov ider :

7 name: "openstack"

8 openstackCloudProvider:

9 block_storage: #Allows Kubernetes to create dynamic volumes and attach

them to Pods

10 ignore−volume−az: true

11 t r u s t −device−path: fa lse

12 g loba l :

13 auth−u r l : "https://idm01.bw-cloud.org:5000/v3"

14 domain−name: "Default"

15 password: "<xSecretx>"

16 reg ion : "Ulm"

17 tenant−i d : "<Tenant-UUID-String>"

18 username: "<user>@<domain>.de"

19 load_balancer :

20 create−moni tor : fa lse

21 manage−secu r i t y −groups: fa lse

22 monitor−delay: 0

23 monitor−max−r e t r i e s : 0

24 monitor−t imeout : 0

25 use−oc tav ia : fa lse

26 metadata:

27 request−t imeout : 0
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28 ignore_docker_vers ion: true

29 i ng ress :

30 node_selector : #Specifies a Node-Selector for the Ingress-Container

31 app: "ingress"

32 prov ide r : "nginx"

33 kubernetes_vers ion: "v1.11.2-rancher1-1"

34 moni to r ing :

35 prov ide r : "metrics-server"

36 network: #Defines the Network Type (others are: calico, flannel, weave ...)

37 p lug in : "canal"

38 serv ices :

39 etcd: #Important for Cluster Coordination of Kubernetes

40 ext ra_args:

41 e lec t i on −t imeout : "5000"

42 heartbeat− i n t e r v a l : "500"

43 snapshot: fa lse

44 kube−api :

45 pod_secu r i t y_po l i cy : fa lse

46 kube le t :

47 fa i l_swap_on: fa lse

48 ssh_agent_auth: fa lse
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Listing A.2: Terraform File describing the infrastructure via structured text.

1 prov ide r "openstack" {

2 user_name = "${var.user_name}"

3 tenant_name = "${var.tenant_name}"

4 password = "${var.password}"

5 au th_u r l = "${var.auth_url}"

6 reg ion = "${var.region}"

7 }

8

9 resource "openstack_networking_network_v2" "kube" {

10 name = "kube"

11 reg ion = "${var.region}"

12 admin_state_up = "true"

13 }

14 resource "openstack_compute_keypair_v2" "kube" {

15 name = "SSH keypair for kube instances"

16 reg ion = "${var.region}"

17 publ ic_key = "${file("$ { var . ssh_key_ f i l e } . pub")}"

18 }

19

20 resource "openstack_networking_subnet_v2" "kube" {

21 name = "kube"

22 reg ion = "${var.region}"

23 network_id = "${openstack_networking_network_v2.kube.id}"

24 c i d r = "${var.tenant_net_cidr}"

25 i p_ve rs ion = 4

26 enable_dhcp = "true"

27 }

28

29 resource "openstack_networking_router_v2" "kube" {

30 name = "kube"

31 reg ion = "${var.region}"

32 admin_state_up = "true"

33 ex te rna l_ne twork_ id = "${var.external_gateway}"

34 }

35

36 resource "openstack_networking_router_interface_v2" "kube" {

37 reg ion = "${var.region}"
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38 r o u t e r _ i d = "${openstack_networking_router_v2.kube.id}"

39 subnet_ id = "${openstack_networking_subnet_v2.kube.id}"

40 }

41

42 resource "openstack_networking_floatingip_v2" "float" {

43 count = 1

44 depends_on = ["openstack_networking_router_interface_v2.kube" ]

45 reg ion = "${var.region}"

46 pool = "${var.pool}"

47 }

48

49 resource "openstack_networking_floatingip_v2" "float-worker" {

50 depends_on = ["openstack_networking_router_interface_v2.kube" ]

51 reg ion = "${var.region}"

52 pool = "${var.pool}"

53 }

54 resource "openstack_compute_secgroup_v2" "kube" {

55 name = "kube"

56 reg ion = "${var.region}"

57 d e s c r i p t i o n = "Security group for the kube instances"

58

59 r u l e {

60 f rom_por t = 1

61 t o_po r t = 65535

62 i p _ p r o t o c o l = "tcp"

63 c i d r = "0.0.0.0/0"

64 }

65

66 r u l e {

67 f rom_por t = 1

68 t o_po r t = 65535

69 i p _ p r o t o c o l = "udp"

70 c i d r = "0.0.0.0/0"

71 }

72

73 r u l e {

74 i p _ p r o t o c o l = "icmp"

75 f rom_por t = "-1"
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76 t o_po r t = "-1"

77 c i d r = "0.0.0.0/0"

78 }

79 }

80

81 resource "openstack_compute_floatingip_associate_v2" "kube_floating_master" {

82 f l o a t i n g _ i p = "${openstack_networking_floatingip_v2.float.*.address[0]}"

83 i ns tance_ id = "${openstack_compute_instance_v2.kube-master.id}"

84 }

85

86 resource "openstack_compute_instance_v2" "kube-master" {

87 name = "kube-master"

88 reg ion = "${var.region}"

89 image_id = "${var.image_id}"

90 f lavor_name = "${var.master_flavor}"

91 key_pai r = "${openstack_compute_keypair_v2.kube.name}"

92 secur i t y_groups = ["${openstack_compute_secgroup_v2.kube.name}" ]

93

94 network {

95 uuid = "${openstack_networking_network_v2.kube.id}"

96 }

97 }

98

99 resource "null_resource" "cluster" {

100 depends_on =["openstack_networking_floatingip_v2.float" , "

openstack_compute_instance_v2.kube-master" ]

101

102 p r o v i s i o n e r "remote-exec" {

103 connect ion {

104 user = "${var.ssh_user_name}"

105 pr iva te_key = "${file("$ { var . ssh_key_ f i l e }")}"

106 host = "${openstack_networking_floatingip_v2.float.*.address[0]}"

107 }

108 i n l i n e = [

109 "docker run -d --name ranchermaster --restart=unless-stopped -p

8080:80 -p 8443:443 -v /host/rancher:/var/lib/rancher rancher/

rancher:latest"

110 ]
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111 }

112 }

113

114 resource "openstack_compute_floatingip_associate_v2" "kube_floating_worker" {

115 f l o a t i n g _ i p = "${openstack_networking_floatingip_v2.float-worker.address}"

116 i ns tance_ id = "${openstack_compute_instance_v2.rancher-worker-ingress.id}"

117 }

118

119 resource "openstack_compute_instance_v2" "rancher-worker-ingress" {

120 name = "rancher-worker-ingress-${count.index}"

121 count = "${var.worker_ingress_count}"

122 reg ion = "${var.region}"

123 image_id = "${var.image_id}"

124 f lavor_name = "${var.worker_flavor}"

125 key_pai r = "${openstack_compute_keypair_v2.kube.name}"

126 secur i t y_groups = ["${openstack_compute_secgroup_v2.kube.name}" ]

127 depends_on = ["openstack_compute_instance_v2.kube-master" ]

128

129 network {

130 uuid = "${openstack_networking_network_v2.kube.id}"

131 }

132 }

133

134 resource "null_resource" "worker-ingress" {

135 depends_on =["openstack_compute_instance_v2.rancher-worker-ingress" ]

136 t r i g g e r s {

137 c l u s t e r _ i n s t a n c e = "${openstack_compute_instance_v2.rancher-worker-

ingress.id}"

138 }

139 p r o v i s i o n e r "remote-exec" {

140

141 connect ion {

142 type = "ssh"

143 user = "${var.ssh_user_name}"

144 pr iva te_key = "${file("$ { var . ssh_key_ f i l e }")}"

145 host = "${openstack_compute_instance_v2.rancher-worker-ingress.

access_ip_v4}"

146 bast ion_host = "${openstack_networking_floatingip_v2.float.*.address[0]}"
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147 }

148 i n l i n e = [

149 "echo ’Starting to deploy ingress-worker!’" ,

150 "sudo docker run -d --name rancher-agent --privileged --restart=unless-

stopped --net=host -v /etc/kubernetes:/etc/kubernetes -v /var/run:/

var/run rancher/rancher-agent:v2.0.8 --server https://${

openstack_networking_floatingip_v2.float.*.address[0]}:8443 --token

${var.rancher_token} --ca-checksum ${var.rancher_ca_checksum} --

etcd --controlplane --worker --internal-address ${

openstack_compute_instance_v2.rancher-worker-ingress.access_ip_v4}

--address ${openstack_networking_floatingip_v2.float-worker.address

} --label app=ingress"

151 ]

152 }

153 }

154

155 resource "openstack_compute_instance_v2" "rancher-worker" {

156 name = "rancher-worker-${count.index}"

157 count = "${var.worker_count}"

158 reg ion = "${var.region}"

159 image_id = "${var.image_id}"

160 f lavor_name = "${var.worker_flavor}"

161 key_pai r = "${openstack_compute_keypair_v2.kube.name}"

162 secur i t y_groups = ["${openstack_compute_secgroup_v2.kube.name}" ]

163 depends_on = ["openstack_compute_instance_v2.kube-master" ]

164

165 network {

166 uuid = "${openstack_networking_network_v2.kube.id}"

167 }

168 }

169

170 resource "null_resource" "worker" {

171 depends_on =["openstack_compute_instance_v2.rancher-worker" ]

172 count = "${var.worker_count}"

173 t r i g g e r s {

174 c l u s t e r _ i n s t a n c e = "${openstack_compute_instance_v2.rancher-worker.*.

id[count.index]}"

175 }
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176 p r o v i s i o n e r "remote-exec" {

177

178 connect ion {

179 type = "ssh"

180 user = "${var.ssh_user_name}"

181 pr iva te_key = "${file("$ { var . ssh_key_ f i l e }")}"

182 host = "${openstack_compute_instance_v2.rancher-worker.*.access_ip_v4[

count.index]}"

183 bast ion_host = "${openstack_networking_floatingip_v2.float.*.address[0]}"

184 }

185 i n l i n e = [

186 "echo ’Starting to deploy’" ,

187 "sudo docker run -d --name rancher-agent --privileged --restart=unless-

stopped --net=host -v /etc/kubernetes:/etc/kubernetes -v /var/run:/

var/run rancher/rancher-agent:v2.0.8 --server https://${

openstack_networking_floatingip_v2.float.*.address[0]}:8443 --token

${var.rancher_token} --ca-checksum ${var.rancher_ca_checksum} --

etcd --controlplane --worker --internal-address ${

openstack_compute_instance_v2.rancher-worker.*.access_ip_v4[count.

index]}"

188 ]

189 }

190 }
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Listing A.3: A Kubernetes deployment description for the measurement-access-service
1 apiVers ion: apps / v1beta2
2 k ind: Deployment
3 metadata:
4 l a b e l s :
5 workload . user . c a t t l e . i o / work loadse lec to r : deployment−de fau l t −nynm−

measurements−access
6 name: nynm−measurements−access
7 s e l f L i n k : / ap is / apps / v1beta2 / namespaces / d e f a u l t / deployments / nynm−

measurements−access
8 spec:
9 progressDeadlineSeconds: 600

10 r e p l i c a s : 1
11 r e v i s i o n H i s t o r y L i m i t : 10
12 s e l e c t o r :
13 matchLabels:
14 workload . user . c a t t l e . i o / work loadse lec to r : deployment−de fau l t −nynm−

measurements−access
15 s t r a t egy :
16 r o l l i ngUpda te :
17 maxSurge: 1
18 maxUnavailable: 0
19 type: Rol l ingUpdate
20 template:
21 metadata:
22 creat ionTimestamp: nul l
23 spec:
24 a f f i n i t y : { }
25 con ta ine rs :
26 − env:
27 − name: MONGODB_HOST
28 value: mongodb
29 − name: MONGODB_PORT
30 value: "27017"
31 image: r e g i s t r y . g i t l a b . com/ noise−map−system / nynm−measurements /

accessserv ice
32 imagePu l lPo l i cy : Always
33 name: nynm−measurements−access
34 resources: { }
35 secu r i t yCon tex t :
36 a l l o w P r i v i l e g e E s c a l a t i o n : fa lse
37 p r i v i l e g e d : fa lse
38 readOnlyRootFi lesystem: fa lse
39 runAsNonRoot: fa lse
40 s t d i n : true
41 terminationMessagePath: / dev / te rm ina t ion −l og
42 terminat ionMessagePol icy: F i l e
43 t t y : true
44 dnsPol icy : C l u s t e r F i r s t
45 imagePul lSecrets:
46 − name: g i t l a b
47 r e s t a r t P o l i c y : Always
48 schedulerName: de fau l t −scheduler
49 secu r i t yCon tex t : { }
50 terminat ionGracePeriodSeconds: 30
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Listing A.4: Example pipeline specification for the measurement accessservice
1 stages:
2 - b u i l d
3 - bake
4 - deploy
5 b u i l d :
6 image: maven:3−jdk −8
7 stage: b u i l d
8 s c r i p t :
9 - mvn clean i n s t a l l

10 a r t i f a c t s : #which are passed to the next stage of the pipeline
11 paths:
12 - . / t a r g e t
13 bake−master:
14 image: docker: l a t e s t
15 serv ices :
16 - docker:d ind
17 stage: bake
18 dependencies:
19 - b u i l d
20 s c r i p t :
21 - docker l o g i n −u "$CI_REGISTRY_USER" −p "$CI_REGISTRY_PASSWORD"

$CI_REGISTRY
22 - docker b u i l d −−p u l l − t "$CI_REGISTRY_IMAGE" .
23 - docker push "$CI_REGISTRY_IMAGE"
24 only :
25 - master
26 bake−tag:
27 image: docker: l a t e s t
28 serv ices :
29 - docker:d ind
30 stage: bake
31 dependencies:
32 - b u i l d
33 s c r i p t :
34 - docker l o g i n −u "$CI_REGISTRY_USER" −p "$CI_REGISTRY_PASSWORD"

$CI_REGISTRY
35 - docker b u i l d −−p u l l − t "$CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG" .
36 - docker tag "$CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG" "$CI_REGISTRY_IMAGE

:$CI_COMMIT_TAG"
37 - docker push "$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG"
38 only :
39 - tags
40 deploy:
41 stage: deploy
42 image: r o f f e / kubec t l
43 only :
44 - tags
45 when: manual
46 s c r i p t :
47 - echo $KUBE_CONFIG_INTEGRATION | base64 −d > kubeconf ig
48 - expor t SERVICE=nynm−measurements−access
49 - kubec t l −−kubeconf ig kubeconf ig set image deployments $SERVICE $SERVICE

=$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG
50 - kubec t l −−kubeconf ig kubeconf ig r o l l o u t s ta tus deployments $SERVICE
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