
February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

International Journal of Cooperative Information Systems
c© World Scientific Publishing Company

OBJECT-SPECIFIC ROLE-BASED ACCESS CONTROL

NICOLAS MUNDBROD AND MANFRED REICHERT

Institute of Databases and Information Systems, Ulm University,

James-Franck-Ring, 89073 Ulm, Germany

Received (Day Month Year)
Revised (Day Month Year)

The proper management of privacy and security constraints in information systems

in general and access control in particular constitute a tremendous, but still preva-

lent challenge. Role-based access control (RBAC) and its variations can be considered
as the widely adopted approach to realize authorization in information systems. How-

ever, RBAC lacks a proper object-specific support, which disallows establishing the fine-

grained access control required in many domains. By comparison, attribute-based access
control (ABAC) enables a fine-grained access control based on policies and rules eval-

uating attributes. As a drawback, ABAC lacks the abstraction of roles. Moreover, it is

challenging to engineer and to audit the granted privileges encoded in rule-based poli-
cies. This paper presents the generic approach of object-specific role-based access control

(ORAC). On one hand, ORAC enables information system engineers, administrators and
users to utilize the well-known principle of roles. On the other, ORAC allows realizing

the access to objects in a fine-grained way where required. The approach was system-

atically established according to well-elicited key requirements for fine-grained access
control in information systems. For the purpose of evaluation, the approach was applied

to real-world scenarios and implemented in a proof-of-concept prototype demonstrating

its feasibility and applicability.

Keywords: object-specific role-based access control, access control, authorization, role-

based access control, instance-specific access control

1. Introduction

Information systems are today’s key technology to automate business processes as

well as to offer related products and services to customers, employees, and other

stakeholders. For enterprise information systems, sophisticated access control to

business processes, business functions, and business objects is indispensable to en-

sure information integrity, privacy and availability. Access control has therefore

always been a key concern for information system engineers and researchers27,26,

and numerous approaches with specific pros and cons have been proposed in

the literature26. Especially, role-based access control (RBAC)25,7 and attribute-

based access control (ABAC) 13,10 as well as numerous variants of these two

approaches9,2,4,1,8,15,11,13,30 have been in the focus of both practitioners and re-

searchers for a long time.

1

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

2 Nicolas Mundbrod and Manfred Reichert

1.1. Problem Statement

As of today, RBAC is still the most widely used access control paradigm whose

ease of use and manageability are appreciated by information system engineers and

administrators5. In particular, the resources and application functions, which may

be accessed by users filling a specific role, can be easily determined at both design

and run time. As a drawback, contemporary RBAC approaches do not allow for fine-

grained, object-specific access control that considers, for example, the ownership of

existing data objects in an information system as well as the relationship between

these objects.

Example 1.1. (Patient Treatment Processes) In a hospital information

system, digital patient records with their various subordinated objects (e.g.,

medical findings, therapy plans) are managed digitally. A subject with role

physician should be only allowed to access those patient records (including

the connected objects) he or she is responsible for in order to prevent security

issues and to meet privacy requirements.

Based on traditional RBAC, role physician would be granted access to all pa-

tient records. To cope with scenarios as the one presented in Example 1.1, roles

are typically specialized (e.g., physician working in women hospital). On one hand,

this allows for a more fine-grained access control. On the other, the number of roles

rapidly grows, making role maintenance hardly manageable over time and, thus,

hampering scalability. Additionally, RBAC does not allow specifying that a role

owner may only access a specific object with all its subordinated objects (e.g., a

medical record with findings and therapy plans). Moreover, as the assignments of

users to specific roles are often integrated with the source code of an information

system, the introduction of new roles might require a new information system re-

lease. Finally, to properly support scenarios like the one from Example 1.1, a specific

role would have to be created for every single patient (e.g., physician of John Doe).

By contrast, ABAC does not rely on any specified roles with linked privileges13.

Instead, access privileges are dynamically acquired by virtue of attributes shared by

the subject, who wants to gain access, and the requested resource. To realize access

control, usually, ABAC-based information systems rely on a large set of policy rules,

which are jointly set up and maintained by domain experts and security engineers.

At run time, these rules are continuously evaluated to properly handle access re-

quests. In comparison to RBAC, however, ABAC suffers from its fine granularity.

The definition of policy rules constitutes a sophisticated task due to the complex

data structures comprising many attributes on one hand and the evolution of these

structures over time on the other. Due to the complex structure of the policies,

in addition, it is challenging to derive the actual set of privileges a certain user or

group of users (i.e., role) shall obtain15,5. Finally, with ABAC, it is by far not trivial

to define rules enabling a hierarchical access to interconnected objects as discussed

in the context of Example 1.1 (e.g., a medical record with findings).

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 3

Overall, both RBAC and ABAC do not always provide the necessary support

required to realize object-specific access control. In particular, there exists no fine-

grained, role-based access control approach that properly integrates the given data

structure and concurrently allows determining risk exposure adequately.

1.2. Contribution

This paper introduces object-specific role-based access control (ORAC),

which enables information system engineers and administrators to jointly establish

and manage fine-grained, role-based access control as required in many application

domains. In particular, subjects may only perform object-specific actions they are

allowed to access, based on object-specific roles and corresponding role assignments.

For example, a physician may only read and update the records of those patients

he is responsible for. In addition, ORAC allows expressing hierarchical access on

the child objects of an object. For example, if a physician has access to a patient

record, he may access all therapy plans linked to that patient record as well.

To evaluate the feasibility and applicability of ORAC, the approach was applied

in two case studies with specific application scenarios. Furthermore, an advanced

proof-of-concept prototype was developed. Using the latter, we were able to show

that the definition of privileges can be intuitively integrated into the information

system development process through (method) annotations, increasing the trans-

parency and explicitness of access privileges at design time.

The remainder of this paper is structured as follows: Section 2 introduces a real-

world scenario and defines key terms needed for understanding this work. Section 3

then discusses fundamental use cases and key requirements for ORAC. In Section 4,

an overview of the ORAC approach is given and its key components are presented.

Section 5 addresses the process of establishing and enforcing object-specific role-

based access control. In Section 6, the proof-of-concept prototype as well as two

case studies are presented to evaluate the applicability of ORAC. Related work is

discussed in Section 7. Finally, Section 8 concludes the paper and gives an outlook.

2. Backgrounds

This section introduces key terms required for understanding this work. To illustrate

issues that emerge when coping with access control on complex data structures, a

real-world scenario, which we elaborated in prior work17,18, is introduced first. To

ease the understanding of ORAC, the scenario is used as a running example.

Example 2.1. (Recruiting Processes) In a recruitment process, appli-

cants may apply for a job offer defined by a manager of a functional division.

Once an application has been submitted by an applicant, the responsible re-

cruiter in the human resource (HR) department is notified. The overall process

goal is to decide which applicant shall get the job. If an application is ineligi-

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

4 Nicolas Mundbrod and Manfred Reichert

ble (e.g., formal requirements are not met), the applicant will be immediately

rejected. By contrast, the recruiter may request one or more internal reviews

for each applicant. Based on the reviews, the recruiter decides on the applica-

tions and will initiate further steps, e.g., interviews with selected applicants. To

document the interviews, minutes are created and linked to the corresponding

applications. At the end of this process, the recruiter may create a contract

offer for an applicant. If the latter agrees with the offer, subsequent processes

will be triggered afterwards. Alternatively, a contract may be offered to other

applicants, or the entire recruitment process may have to be started once more.

2.1. Objects and Models

The scenario introduced in Example 2.1 confirms that subjects with specific roles

(e.g., recruiter) may deal with a variety of interconnected objects of different ob-

ject types28. In the scope of the recruitment process object, for example, dozens of

objects of type application may be submitted (and, thereby, created) by applicants

individually. Moreover, every application object may be linked to several objects of

type review. As a consequence, fine-grained access control needs to be integrated

with the given data model and be adopted to it. In particular, access control should

take into account that, at run time, the subjects interacting with the information

system dynamically create complex graphs of objects based on the given data model.

To properly design, enact and implement an object-specific role-based access

control in information systems, first of all, four relevant terms are sketched in the

following: object types, objects, object models, and object model instances. An object

type corresponds to a data structure that determines the structure of an object by

defining a set of attributes. The latter, in turn, are defined by a data type (e.g.,

String) and a name. Every object exactly references one object type and features

values for the attributes of the object type. Figure 1 illustrates a sample application

object type (a) with corresponding application objects (b).

Application
- Long ID
- String applicantName
- Date applicationDate

- ...

Application of Kevin Smith
- 6841
- Kevin Smith
- 06/01/2018 16:10:45

- ...

Application of Kevin Smith
- 6841
- Kevin Smith
- 06/01/2018 16:10:45

- ...

Application of Kevin Smith
- Long ID: 6841
- String applicantName: Kevin Smith
- Date applicationDate: 06/01/2018 16:10:45

- ...

a) Object Type OT b) Corresponding Objects Oi

references

Fig. 1: Sample Object Type with corresponding Objects

To consider the relationship between object types and objects, object models

and object model instances need to be discussed next: An object model consists of

finite sets of object types and corresponding relationship types. Each relationship

type connects a source object type with a target object type, and further specifies

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 5

a minimum and a maximum cardinality. At run time, an object model may be used

to create object model instances. An object model instance, in turn, consists of two

finite sets of objects and object relations, of which each either refers to an object

type or a relation type of the underlying object model. Fig. 2 illustrates an object

model with a corresponding object model instance related to Example 2.1 (for the

sake of readability, possible attributes of the object types are omitted).

1 : [0-∞)1 : [0-∞)

[0-1] : 1[0-1] : 1 1 : [0-∞)1 : [0-∞)

1 : [1-∞)1 : [1-∞) 1 : [0-∞)1 : [0-∞)

1 : [0-1]1 : [0-1]

1 : [0-∞)1 : [0-∞)

...

Job Offer

Recruitment Process

Application Contract Offer

Interview MinutesReview

a) Object Model b) Corresponding Object Model Instance

Job Offer "Sales Manager"

Recruitment Process #181

...

Application of Kevin Smith

Review of Kevin Smith's
application

Application of Kevin SmithApplication of Kevin Smith

Review of Kevin Smith's
application

Fig. 2: Sample Object Model with corresponding Object Model Instance

Example 2.1 and Fig. 2 highlight that objects may depend on other objects,

e.g., a recruitment process object type may be in a parental relationship to the

job offer, application, and contract offer object types. Consequently, application

objects should be automatically deleted when removing its parental object with

type recruitment process (i.e., cascading delete). Note that such knowledge about

parental relationships between object types is crucial for enabling an object-specific

access control.

2.2. Subjects, Actions and Privileges

Subjects, actions, and privileges are fundamental concepts of any access control

approach. Subjects are considered as users or technical agents (e.g., client appli-

cation) interacting with implemented business processes, business functions, and

data objects of an information system. In turn, users–as subjects–may belong to

organizational units (e.g., HR department) and obtain organizational roles (e.g.,

recruiter). Note that this organizational context becomes crucial as soon as access

shall be granted to a set of subjects (cf. Section 4).

When ensuring access control at run time, it needs to be checked whether sub-

jects may perform specific actions (cf. Fig. 3). For example, an action may create

a new object, change its attributes, or remove an object from its parental object.

Hence, actions are often performed with respect to specific objects. Note that in

object-oriented programming languages, actions are usually represented as class

methods, e.g., manipulating the attributes of an object or calculating a desired

result based on several objects.

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

6 Nicolas Mundbrod and Manfred Reichert

Finally, a privilege denotes the right to perform one or more specific actions.

Typically, a privilege is granted to a subject directly or indirectly through, for

example, an organizational role assigned to the subject. An action, in turn, may

require several privileges granted to the subject. The other way round, a certain

privilege may be connected to several actions (i.e., n:m relationship). To enforce ac-

cess control at run time, dedicated algorithms determine whether a subject obtains

one or more privileges required to perform an action.

Object Model Instance

Review of Ina Kent's applicationReview of Ina Kent's application

Recruitment Process #181Recruitment Process #181

ApplicationApplication
Job Offer "Sales Manager"Job Offer "Sales Manager"

...

ApplicationApplicationApplicationApplicationApplication of Kevin SmithApplication of Kevin Smith

Review of Kevin Smith's applicationReview of Kevin Smith's application

Action
 name: addApplicationToRecProcess
 context: recruitmentProcess #181
 target: new Application of John Doe

Privilege
 context: RecruitmentProcess OT
 target: Application OT
 type: ADDING

requiresrequires

applied onapplied on

Subject

wants to
perform
wants to
perform

obtains??obtains??

Fig. 3: Relationship between Subjects, Actions and Privileges

3. Requirements

To systematically develop object-specific role-based access control, we thor-

oughly analyzed access control scenarios in various application domains, including

healthcare21,24, human resource management19,16, and automotive engineering22,29.

In case studies conducted in these domains, we encountered various challenges that

had resulted from the lack of an object-specific role-based access control.

To elaborate the requirements, first of all, we analyzed the different types of

actions performed on objects in the considered scenarios. Based on this analysis,

we derived and defined action use cases (cf. Section 3.1), providing the necessary

basis for specifying the different privileges required for a fine-grained access control

(cf. Fig. 3). Furthermore, the action use cases foster the general understanding of

the dynamic interactions between subjects and the data model of the information

system. In this context, we further analyzed in which sequence the different user

groups had performed the actions on the objects, what results of the performed

actions had been generated, and what restrictions had been put in place (e.g., users

of group A may only access specific objects they own). Finally, these insights were

aggregated in a set of key requirements regarding the development of an object-

specific role-based access control.

3.1. Action Use Cases

The following action use cases (AUCs) highlight different action types that may be

performed on objects in an object model instance. The proper understanding of the

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 7

action types is important: The privileges required to perform actions shall reflect

the semantics of the actions in order to enable sound access control decisions. While

Table 1 depicts essential action use cases for objects (i.e., to create, read, update,

or delete objects), Table 2 introduces more sophisticated action use cases.

Table 1: Basic Action Use Cases

ID and Name Effects on the Information System Level

AUC01
Add object

A subject adds a new object to a parental object or to the root-
level of the object model instance. For example, an applicant may
create/submit an application, which is then added to a specific
recruitment process.

AUC02
Read object

A subject may read an entire object including its attributes. For
example, an applicant should be able to read his application.

AUC03
Read object
attribute(s)

A subject may read a subset of the object attributes. For example,
an employee of a functional division may only view a partial set of
the attributes of an application.

AUC04
Read objects

A subject may retrieve a set of child objects of a given parental ob-
ject. For example, a recruiter may want to retrieve all applications
of a specific recruitment process.

AUC05
Read objects with
subset of their
attributes

In addition to AUC04, a subject may retrieve a set of objects with
only a subset of attributes. For example, an employee of a func-
tional division may view the applications of a recruitment process,
but the applications must not be displayed in all (personal) details.

AUC06
Update object

A subject wants to update an object, i.e., its attributes. Thereby,
the access shall not be restricted to a subset of object attributes
(compare AUC07); instead, all attributes may be updated. For ex-
ample, a recruiter may want to update a contract offer over time.

AUC07
Update object
attributes

A subject may only update a specified subset of the object’s at-
tributes. For example, an applicant may only update certain parts
of his application after having submitted it initially.

AUC08
Remove object

A subject may remove an object from its parental object(s). For
example, a recruiter may delete a review (from the recruitment
process) not being accurate enough.

Regarding privilege-based access control, one of the key challenges is to deter-

mine the appropriate granularity for defining privileges as well as to establish a

meaningful privilege classification to ease the allocation of privileges in general. If

the classification is too fine-grained and privileges become too detailed, one can

hardly allocate privileges to roles and, consequently, to subjects. If privileges and

their classification are too coarse-grained, in turn, the expressiveness of the access

control approach will be limited in general.

We took the action use cases depicted in Tables 1 and 2 as basis for deriving a

handy set of 12 different types of privileges (cf. Section 4.2). Though the proposed

set of action types might be not complete for covering access control in all kind of

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

8 Nicolas Mundbrod and Manfred Reichert

information systems, they can be considered as an important foundation or even

be used as templates to derive action types and, finally, types of privileges for a

specific information system currently being under development.

Table 2: Advanced Action Use Cases

ID and Name Effects on the Information System Level

AUC09
Link object to
another object

A subject may create a non-parental relationship between two ob-
jects ox, oy ∈ Oall with ox 6= oy and oy not being a subordinated
object of ox. For example, a recruiter may link a contract offer to
a specific application.

AUC10
Unlink object from
another object

A subject may remove a non-parental relationship between an ob-
ject ox ∈ Oall and another object oy ∈ Oall, which was established
previously by applying AUC09. For example, a recruiter may re-
move a link between a contract offer and an application.

AUC11
Search objects

A subject may search for objects with object type otx ∈ OTall
matching the given search parameters. In this context, one needs
to consider AUC02 and AUC03, as subjects may only retrieve ob-
jects (and read corresponding attributes) for which access has been
granted to them. For example, an employee may look for an ap-
plication with certain properties. However, she may only retrieve
selected applications and, in addition, access only a subset of the
attributes of the selected applications.

AUC12
Perform
complex action

A subject may perform a complex action, which cannot be clas-
sified according to the action use cases AUC01-AUC11. The com-
plex action is performed in respect to a given object ox ∈ Oall

and its subordinated objects ox+1, ox+2, . . . , ox+n. For example, a
recruiter may execute an analysis function providing performance
indicators related to the recruitment process (e.g., process time).

3.2. Key Requirements

To establish a solid base for object-specific role-based access control, we elicited

key requirements based on the insights from prior case studies conducted in the

aforementioned application areas.

R01: User Sovereignty—The users of an information system, i.e. its subjects,

shall be enabled to manage the key aspects of the access control approach them-

selves. Amongst others, this includes the allocation of privileges related to object(s)

to other users. This allocation, in turn, needs to be accomplished in a safe and con-

trolled way (e.g., through predefined roles “bundling” privileges). Finally, to ensure

that a user may only grant those privileges to other users he or she obtains, an

approval process is required.

R02: Definition of Privileges—The definition, integration and management

of a large set of privileges in information systems constitutes a costly and error-

prone task. Hence, it is highly desirable to ease this process and to homogenize the

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 9

set of created privileges (cf. Section 3.1). In particular, the defined privileges should

correspond to the business functions of an information system (i.e., actions), and

be definable by developers in a controlled and intuitive manner.

R03: System-specific Roles—Organizations usually use roles to describe func-

tions performed by several individuals. For example, a subject sMichael heading the

HR department may obtain the organizational role of a director. As discussed,

however, organizational roles are often not fine-grained enough to grant access to

an information system. For example, subject sMichael may obtain several system-

specific roles in an information system: he may act as recruiter, as an applicant (as

he might internally apply for a job as well), and as a manager in the context of dif-

ferent recruitment processes or applications. Thus, system-specific roles are required

to additionally enhance and refine existing organizational roles (cf. Section 2.2).

R04: Object-specific Role Assignments—System-specific roles need to be

assignable to concrete objects of an object model instance. In particular, a system-

specific role is only valid if it references existing objects. Hence, a subject may obtain

a system-specific role in relation to a set of objects the role shall provide privileges

for. Consequently, a subject may obtain various system-specific roles, which are

object-specifically assigned in an information system employing object-specific role-

based access control.

R05: Hierarchical Privileges—In general, a particular object may always have

several child objects (cf. Section 2.1). For example, a recruitment process object

may have a set of dynamically added application objects, which shall be always

accessible by subjects owning the object-specific role recruiter. As a consequence,

subjects may require hierarchical privileges for all child objects of a specific object.

This way, it is ensured that newly created child objects may be properly accessed

(without additional need to reference them explicitly after their creation).

R06: Customizable Roles—In response to domain-specific requirements,

system-specific roles shall be customizable for privileged users at run time as well.

For example, an administrator of an HR system may want to remove a privilege

(e.g., update of the application) granted to applicants. Another use case concerns

the implementation of new features in an information system. In the latter context,

roles need to be created and adjusted in order to incorporate the privileges coming

along with the new features.

R07: Semi-Automatic Role Assignments—System-specific roles need to be

assignable as convenient as possible. As a characteristic use case consider the cre-

ation of an object. Often, the creator of an object should automatically perceive

a set of privileges (object-ware role) related to this object. For example, if a user

of an HR system creates a recruitment process object (and thereby starts the cor-

responding recruitment process), she should be automatically assigned to the role

of a recruiter in relation to this object in order to be able to manage the process

properly. Furthermore, in case a subject wants to assign a role to another one, she

shall only retrieve the roles assignable in this situation.

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

10 Nicolas Mundbrod and Manfred Reichert

4. Object-specific Role-based Access Control

To address the key requirements for a fine-grained, role-based access control (cf. Sec-

tion 3) and to overcome the drawbacks of existing approaches (cf. Sections 1 and 7),

we developed the approach of object-specific role-based access control (ORAC). In

particular, the latter enables the fine-grained integration of role-based access con-

trol with a given object model. To ease the understanding of the ORAC approach,

first of all, we provide an overview of the overall approach and, especially, discuss

the interplay of the key ORAC components (cf. Fig. 4). Based on these insights,

the ORAC components are presented in detail in the following in order to establish

a deep understanding of the approach and its benefits.

Object-aware
Role

Object-aware
Role

AgentsAgents

Organiza�onal Units

Organiza�onal Roles

Abili�es

Object-aware
Role Assignment

Object-specific
Role

Guarded
Object Instance

Abili�esAbility

Organiza�onal RolesOrganiza�onal Role

Organiza�onal UnitsOrganiza�onal Unit

Object-aware
Role Assignment
Object-specific

Role Assignment

keyScope addScopeaddScope

PermissionPermissionPrivilegePermissionPermissionPrivilege PermissionPermissionPrivilege

Guarded
Object Instance

Guarded
Object Instance

Guarded
Object Instance

Guarded Object
(of Type B)

Guarded
Object Instance

Guarded
Object Instance

Guarded Object
(of Type C)

...

... ...

keyScope
Guarded Object

(of Type A)

addScope

addScope

Regarding Guarded
Object Type A

Regarding Guarded
Object Type B

Regarding Guarded
Object Type C

Regarding Guarded
Object Type N

Agent

...

Fig. 4: Object-Specific Role-Based Access Control in a Nutshell

In a nutshell, the ORAC approach provides guarded objects, privileges, object-

specific roles (cf. Requirements R03 and R06), organizational entities, agents, and

object-specific role assignments (cf. Requirement R04) as key components.

Objects, whose access is controlled by ORAC, are denoted as guarded objects.

Thus, an action manipulating a guarded object is only accessible for agents who

have been granted access to this action before. Interacting with an ORAC-based in-

formation system, agents may either be humans (i.e., a user) or robots (e.g., another

system). In turn, organizational entities allow modeling the organizational context

of agents. More precisely, there exist organizational units (e.g., HR department),

organizational roles (e.g., director), and abilities (e.g., office skills).

In general, organizational units may be hierarchically organized to cover common

organizational structures as they can be found in enterprises. In addition, every

organizational unit (e.g., HR department) may further entail several organization

roles (e.g., head of department). Each organizational role, in turn, may be linked to

a set of agents acting in this organizational role. Finally, abilities (e.g., office skills)

allow grouping and selecting agents across different organizational units based on

their skills. In summary, organizational entities may be used to increase the number

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 11

of options for assigning agents to object-specific roles.

Object-specific role assignments, in turn, constitute the key component of ORAC,

tying together agents (directly or indirectly through organizational entities), object-

specific roles, and guarded objects. In particular, the purpose of an object-specific

role assignment is to specify that one or more agents obtain an object-specific role

in relation to one or multiple guarded objects. In this respect, every object-specific

role entails a key scope and, optionally, multiple additional scopes. These scopes

are used to specify that certain privileges are only granted in relation to guarded

objects of pre-defined guarded object types. Furthermore, the scopes determine the

way object-specific role assignments are created: at run time, an object-specific role

may be assigned to one or several guarded objects matching the pre-defined scopes

of the object-specific role. The privileges, which are linked to the respective scope,

are then evaluated only in relation to the selected guarded object and, if specified,

its child objects.

Example 4.1. (Object-specific Role Recruiter) An object-specific role

recruiter shall only be assigned to guarded objects of type recruitment process.

Hence, the key scope of role recruiter refers to guarded object type recruitment

process. For a particular agent, e.g. aLisa, who is supposed to obtain the role

of a recruiter with respect to a recruitment process object, an object-specific

role assignment is then created. This role assignment interconnects aLisa, the

object-specific role recruiter (via its key scope), and a specific guarded object

of type recruitment process.

Based on object-specific roles and role assignments, the set of actions an agent

may perform on a guarded object can be accurately granted and restricted, respec-

tively. To facilitate the assignment of privileges to object-specific roles as well as to

establish an effective object-specific access control, each privilege is classified by an

action type (cf. Section 3.1), which obtains a pre-specified scope as well. In addition,

to allow for the hierarchical application of privileges (cf. Section 3, Requirement

R05), an object-specific role may reference a set of object-related privileges as well

as a set of hierarchical privileges for every scope separately.

Example 4.2. (Privileges of the Object-specific Role Recruiter) The

object-specific role recruiter has a key scope targeting the guarded object type

recruitment process. In turn, the key scope is linked to privileges for updating

a recruitment process as well as to various hierarchical privileges for managing

child (guarded) objects of type application. Hence, an agent assigned to the

object-specific role recruiter and a recruitment process guarded object may

then manage all guarded child application objects of the recruitment process.

To finally enforce access control with respect to a certain action to be performed

on a guarded object, first of all, the object-specific role assignments referring to the

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

12 Nicolas Mundbrod and Manfred Reichert

guarded object are considered. It is checked whether the given role assignments are

linked to the respective agent and to an object-specific role the required privilege has

been assigned to. If this applies, access will be granted immediately. Alternatively,

the object-specific role assignments, referencing the parental guarded objects of

the initially considered one (cf. Section 4.1), and the current agent are considered

stepwise to check whether access can be granted anyhow.

To illustrate the following discussion, Fig. 5 depicts the scenario introduced

in Section 2 with corresponding ORAC components. Sections 4.1–4.4 present the

fundamental concepts of guarded objects, privileges, object-specific roles, and object-

specific role assignments in detail. Section 5 then discusses the algorithms necessary

to enforce ORAC at run time, highlighting the interplay of the ORAC components.

addScope

Object-aware
Role

Object-aware
Role

AgentsAgents

Organiza�onal Units

Organiza�onal Roles

Abili�es

Manager

Guarded
Object Instance

Abili�esOffice Skills

Organiza�onal RolesDirector

Organiza�onal UnitsSales Department

keyScope addScopeaddScope

PermissionPermissionPrivilege READPermissionPermissionPrivilege READ PermissionPermissionPrivilege READ

Guarded
Object Instance

Guarded
Object Instance

Guarded
Object InstanceJob Offer

Guarded
Object Instance

Guarded
Object Instance

KeyScope Recruitment Process

addScope

Regarding
Recruiting Process

Regarding
Job Offer

Regarding
Application

John Kane

...

Guarded
Object Instance

Guarded
Object Instance

Applica�on

Interview Minutes

Object-specific
Role Assignment

Fig. 5: Object-specific Role-based Access Control applied to Application Scenario

4.1. Guarded Objects

To establish object-specific role-based access control, it is essential to differentiate

between objects protected by access control and those that may be accessed without

any restrictions. Therefore, guarded objects shall denote objects whose access is

protected based on ORAC. Furthermore, to support the hierarchical application

of privileges (cf. Requirement R05), the relationship between guarded objects has

to be taken into account as well. To meet Requirement R05, it becomes crucial to

determine the parental guarded objects of a particular guarded object at run time

to properly enforce ORAC.

In this context, a peculiarity of object relationships in object model instances

need to be discussed: an object of a specific object type may have multiple parental

objects. Example 4.3 and Fig. 6 illustrate this issue.

Example 4.3. (Multiple Parental Objects) Objects of object type doc-

ument are subordinated to objects of types application and job offer. Addi-

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 13

tionally, a particular object of type document, e.g., a document containing

regulations, may be child of different contract offer objects. Hence, document

objects may have two or more parental objects.

ApplicationApplication

ApplicationApplicationCV John (Document) Regulations (Document)Amendment (Document)

Contract Offer Lisa HoeContract Offer John Smith

Recruitment Process #15

Application John Smith

Fig. 6: Example of an Object with two Parents

In general, each guarded object may have an arbitrary number of child and

parental guarded objects. Accordingly, Definition 4.1 formally introduces guarded

objects types and guarded objects including the notion of parental guarded objects.

Definition 4.1. (Guarded Object Type and Guarded Object) Let OTall

be the set of all object types and Oall be the set of all objects.

(a) A guarded object type got is an object type protected by ORAC. With

GOTall denoting the set of all guarded object types, a guarded object type

is defined as a tuple got = (ot, parentGOT) ∈ GOTall, where

• ot ∈ OTall is a object type,

• parentGOT : GOTall → P(GOTall) is a function returning the parental

guarded object types of got.

(b) A guarded object go is an object protected by ORAC. With GOall denoting

the set of all guarded objects, a guarded object is defined as a tuple go =

(got, o, parentGO) ∈ GOall, where

• got = (ot, parentGOT) is the guarded object type of go,

• o ∈ Oall is a object of type ot embedded in go,

• parentGO : GOall → P(GOall) is a function returning the parental

guarded objects of go.

Note that ORAC excludes the creation of cycles when defining the parental

relationships in a object modela. Furthermore, agents and all kinds of organizational

entities may be represented as guarded object types as well. In this context, use

cases like updating personal user data or establishing an organizational model can

be supported as well.

aA cycle of parental relationships would rule out the hierarchical application of privileges

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

14 Nicolas Mundbrod and Manfred Reichert

4.2. Privileges

Privileges denote the right to perform one or multiple actions on a guarded ob-

ject, and are required to safely check access at run time. When a subject obtains

a privilege in relation to a guarded object based on an object-specific role (cf. Sec-

tion 4.3) and a corresponding object-specific role assignment (cf. Section 4.4), access

is granted and the action may be performed. To make privileges as accurate and

meaningful as required and to properly allocate them to the scope of an object-

specific role, every privilege has an action name, an action type (cf. Section 3.1)

denoting the purpose of the privilege, and a scope. Shaped together by a target

and context guarded object type, the privilege scope specifies the objects the re-

spective privilege may be applied to. Thereby, the context guarded object type is a

possible parental guarded object type of the target object type (see parentGOT of

Definition 4.1). Definition 4.2 formally introduces privileges.

Definition 4.2. (Privilege) A privilege p ∈ Pall is defined as a tuple

p = (actionName, actionType, targetGOT, contextGOT), where

• actionName is the name of the action, p is granting,

• actionType ∈ {READ,READ ATTRIBUTE,ADD,ADD LINK

UPDATE,UPDATE ATTRIBUTE,REMOV E,REMOV E LINK,

LISTING, SEARCH,ADV ANCED} is the action type of p,

• targetGOT ∈ GOTall is the target guarded object type of p,

• contextGOT ∈ GOTall is the context guarded object type of p,

Pall denotes the set of all privileges.

To illustrate Definition 4.2, Table 3b provides examples of privileges whose defini-

tions refer to the action use cases (presented in Section 3.1) as well as the application

scenario introduced in Section 2.

Table 3: Exemplary Privileges

ActionName ActionType TargetGOT ContextGOT

addRecruitmentProcess ADD RecProcess HR System

.

getJobOffer READ Job Offer Job Offer

getTitle READ ATTRIBUTE Job Offer Job Offer

setTitle UPDATE ATTRIBUTE Job Offer Job Offer

removeJobOffer REMOVE Job Offer RecProcess

.

addApplication ADD Application RecProcess

LinkApplication-
ToContractOffer

ADD LINK Application ContractOffer

.

bDue to space limitations, RecProcess abbreviates the recruitment process guarded object type

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 15

4.3. Object-specific Roles

To ensure the proper assignment of privileges to agents and guarded objects as well

as to provide system-specific roles (cf. Requirement R03), we propose the use of

object-specific roles bundling privileges in relation to specified scopes. As object-

specific roles can be safely specified, the assignment of privileges to meaningful

object-specific roles is well conductible by eligible subjects (e.g., administrators;

cf. Requirement R06). By using scopes in object-specific roles, ORAC enables the

hierarchical access of child guarded objects (cf. Requirement R05) as well as the

coverage of more sophisticated access control use cases (cf. Example 4.4).

Definition 4.3 introduces object-specific roles formally.

Definition 4.3. (Object-specific Role) Let gotList = (GOTtrace, order) be a

tuple denoting a list of guarded object types, where

• GOTtrace ⊆ P(GOTall) is a set of guarded object types,

• order : GOTtrace → N is an ordering function assigning a unique number to

every got ∈ GOTtrace.

Let further GOTList be the set of all possible lists of guarded object types.

Then: An object-specific role osr ∈ OSRall is defined as a tuple

osr = (P, SC, keySC,AddSC, scpsc, scphi, scpParams,OSRreq), where

• P ⊆ Pall is the set of privileges referenced by osr,

• SC ⊂ GOTall×GOTList is the set of scopes comprised by osr. Every sc ∈ SC

corresponds to a tuple sc = (targetGOT, contextGOTList), where

– targetGOT ∈ GOTall is the target guarded object type,

– contextGOTList ∈ GOTList is a list of contextual, parental guarded object

types.

• keySC ∈ SC is the key scope of osr,

• AddSC ⊂ SC,∀addSC ∈ AddSC : addSC 6= keySC is the set of additional

scopes; the target guarded object type of keySC must be part of every list

of contextual, parental guarded object types of the additional scopes,

• scpsc : SC → P(P) assigns a set of scope-specific privileges Psc ⊆ Posr to

each scope sc ∈ SC,

• scphi : SC → P(P) assigns a set of hierarchical privileges Phi ⊆ Posr to each

scope sc ∈ SC,

• scpParams : SC → P(Params) is a function assigning a set of parameters

Params ⊆ {OnCreationDefault, OnGrantDefault, ScopeManager} to

every scope sc ∈ SC,

• OSRreq ⊂ OSRall with ∀osry ∈ OSRreq : osry 6= osr is a set of required

context roles.

Finally, OSRall denotes the set of all object-specific roles.

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

16 Nicolas Mundbrod and Manfred Reichert

Definition 4.3 shows that an object-specific role may have different sets of priv-

ileges associated with different scopes—the key scope and the additional ones. The

key scope is crucial. In order to create an object-specific role assignment (cf. Sec-

tion 4.4), the key scope must be set up properly and, therefore, a guarded object

has to be chosen matching this scope (with its guarded object type).

Example 4.4. (Key Scope) The object-specific role manager (cf. Fig. 5)

features a key scope referencing the guarded object type recruitment process. In

order to assign the object-specific role manager, therefore, a concrete guarded

object of type recruitment process has to be chosen as reference for the key

scope. Moreover, appropriate guarded objects of type application may be se-

lected for the additional scope of the given object-specific role.

To enable agents to access actions on referenced guarded objects, every scope is

linked to two sets of privileges: the first one contains privileges directly related to

the referenced guarded object (realized by scpsc) in Definition 4.3; e.g., this set may

contain privileges to read or update the guarded object. By contrast, the second set

contains privileges that are hierarchically applicable to the child guarded objects of

the referenced one (realized by scphi).

Example 4.5. (Hierarchical Privileges and Additional Scope) Agents

with object-specific role manager shall be able to access the guarded objects of

types recruitment process and job offer (cf. Fig. 5), but may only access selected

application guarded objects shared by a recruiter (cf. Section 2) on purpose.

Hence, the object-specific role manager features the key scope recruitment pro-

cess with privileges regarding guarded objects of types recruitment process and

job offer. Moreover, manager has an additional scope with privileges pertaining

guarded objects of type application.

Every object-specific role osrx ∈ OSRall may feature a set of required contextual

object-specific roles (OSRreq ⊂ OSRall) to ensure that it can be correctly assigned

at run time. During the latter, an object-specific role will only be assigned to an

agent and a guarded object gox ∈ GOall, if the agent is already part of an object-

specific role assignment referring to an object-specific role osrreq ∈ OSRreq and a

parental guarded object of gox (cf. Section 4.4 for details).

Parameters OnCreationDefault, OnGrantDefault, and ScopeManager are

used to allow for automated creations, controlled recommendations, and proper as-

signments of object-specific roles to agents and guarded objects during run time.

The details of how to use parameter scpParams are explained in Section 4.4. Fi-

nally, creating, updating and removing object-specific roles can be controlled by

considering object-specific roles as guarded objects as well. In this way, ORAC

additionally supports the controlled and secured adaptations of its own entities.

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 17

4.4. Object-specific Role Assignments

Tying together agents, organizational entities, object-specific roles, and guarded

objects, object-specific role assignments play the key role in enabling ORAC (cf.

Requirement R01 and R04). To establish a sound understanding, Definition 4.4

formally introduces object-specific role assignments.

Definition 4.4. (Object-specific Role Assignment) An object-specific role

assignment is defined as a tuple osra = (A,OE, osr,GO, scgo) where

• A ⊆ Aall is a set of agents,

• OE ⊆ OEall is a set of organizational entities,

• osr = (P, SC, keySC,AddSC, scpsc, scphi, scpParams,OSRreq) ∈ OSRall

is a object-specific role,

• GO ⊆ GOall is a set of guarded objects,

• scgo : SC → P(GOall) is a function that assigns a set of guarded objects

GOsc ⊂ GO to every role scope sc ∈ SC; while keySC may only be assigned

to exactly one go ∈ GOall, every additional scope sc ∈ SC, sc 6= keySC may

be assigned to an arbitrary number of guarded objects go1, ..., gon ∈ GOall,

OSRAall denotes the set of all object-specific role assignments.

By incorporating organizational entities, a set of agents can be assigned to an

object-specific role assignment instead of being referenced directly. For example, an

organization role (e.g., a director) may be used to assign agents being directors in

an organization. Furthermore, new agents may be added to the organizational role

of a director without need to adjust the current object-specific role assignments.

Before creating an object-specific role assignment, it needs to be determined

which object-specific roles may be assigned to an agent or to organizational entities.

As discussed, only an object-specific role with a corresponding key scope or a valid

additional scope may be assigned to a given guarded object. By using different

scopes (cf. Definitions 4.3 and 4.4), an agent may obtain a range of object-specific

roles in relation to the guarded objects in an information system (cf. Fig. 7).

Review of Ina Kent's applicationReview of Ina Kent's application

Recruitment Process #181Recruitment Process #181

ApplicationApplication
Job Offer "Sales Manager"Job Offer "Sales Manager"

...

ApplicationApplicationApplicationApplicationApplication of Kevin SmithApplication of Kevin Smith

Review of Kevin Smith's applicationReview of Kevin Smith's application

Agent

Recruiter
(Object-aware Role)

Object-aware
Role Assignment #15

Reviewer
(Object-aware Role)

Object-aware
Role Assignment #23

Fig. 7: Example of an Agent obtaining overlapping Object-Specific Roles

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

18 Nicolas Mundbrod and Manfred Reichert

For any guarded object, an agent may want to dynamically switch his role to

perform a desired action based on another object-specific role. Note that this aspect

is interwoven with the semantics of deliberately performing actions in different

roles. As a consequence, the user interface of the information system should allow

switching roles during run time (cf. Section 5).

In addition, the scope-related parameters (scpParams) of the referenced object-

specific role are crucial for creating object-specific role assignments. Accordingly,

they need to be carefully set to ensure the desired ORAC functionality at run time.

If parameter OnCreationDefault is set for the key scope of an object-specific role,

an object-specific role assignment will be automatically created for the agent who

intends to create a guarded object (cf. Requirement R07). In this context, the given

object-specific role and the guarded object are taken into account. Consequently,

if parameter OnGrantDefault is set for any scope, the role will be recommended

to the agent who wants to assign it to another agent (and organizational entity

respectively).

Finally, parameter ScopeManager indicates that an object-specific role has

the maximum number of privileges regarding the defined key scope. Obviously,

for every defined scope, there is exactly one object-specific role with parameter

ScopeManager. To support controlled ORAC, object-specific roles with parameter

ScopeManager may be utilized to support a review process regarding the cre-

ation or the update of an object-specific role assignment. For example, an agent

may want to assign a different object-specific role to another agent. Then, one or

several agents, who obtain an object-specific role with parameter ScopeManager

being assigned to a parental guarded object, take the decision whether or not the

object-specific role assignment can be created.

Besides the parameters of an object-specific role, the manual assignment of an

object-specific role to other agents can be controlled as well. First, the creation of

an object-specific role assignment in relation to a specific guarded object may be

limited by a dedicated privilege. In consequence, only those agents with an object-

specific role covering such a privilege may create an object-specific role assignment

linking an agent to an object-specific role in relation to a given guarded object.

Furthermore, an agent cannot assign any object-specific role with privileges other

than the ones the agent obtains with its current object-specific role assignment.

Once an object-specific role assignment is created, it is not supposed to be

adjusted at run time. However, if an organizational entity shall be changed, the

assignment may be adjusted without causing any problem. Hence, a review process

is needed. If an agent shall be added to an object-specific role assignment, the latter

may either be adjusted or an entirely new assignment be created. Note that such

a decision should follow a consistent policy. As the object-specific role assignment

would change its semantics , its referenced guarded object or linked object-specific

role must not be updated or replaced. Hence, if an agent wants to perform such

a change, a new object-specific role assignment has to be created, whereas the old

one needs to be deleted.

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 19

5. Realizing Object-specific Role-based Access Control

To underline the benefits provided by ORAC, this section deals with the funda-

mental aspects of realizing object-specific role-based access control. In particular,

we address the necessary steps for setting up ORAC at design time and consider

its actual enforcement during run time.

As a prerequisite for ORAC, the object model including the guarded object

types and their relationship types need to be defined. Moreover, privileges need to

be specified in accordance with Definition 4.2. Based on these preparatory steps,

an object-specific role administrator to whom all privileges in relation to the in-

formation system are assigned needs to be defined. In this context, ORAC benefits

from a root guarded object type acting as the top of the emerging object model

instance. Considering the HR scenario, for example, an HR System guarded object

type may be introduced (cf. Fig. 8). Consequently, the key scope of object-specific

role administrator refers to the guarded object type HR System (as targetGOT).

Recruitment ProcessRecruitment Process

ApplicationApplicationJob OfferJob Offer Contract OfferContract Offer

 - -

[0-1] : 1[0-1] : 1 - -

 - - - -

1 : [0-1]1 : [0-1]

 - -

... ...

HR SystemHR System

Fig. 8: Use of a Root Guarded Object (HR System)

After booting up an information system with integrated ORAC, an agent with

object-specific role administrator may first define other object-specific roles. For

example, an agent obtaining the object-specific role administrator in relation to the

guarded object HR System, may define the object-specific roles of a manager, re-

cruiter, and applicant. The ORAC-based system may thereby assist the administra-

tor to optimally cover all required privileges, e.g., through the proper visualization

of sets of privileges.

Once the object-specific roles have been set up and the information system is

running, the access to guarded objects needs to be properly checked. Note that

this constitutes a key feature of ORAC, integrating and interpreting all specified

components as well as the given object model instance in order to decide whether

an agent may access a specific action. For this purpose, the current object-specific

role assignment of the agent is determined. Two options exist to accomplish this:

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

20 Nicolas Mundbrod and Manfred Reichert

(1) The most specific role assignment is taken automatically. ORAC considers

the object-specific role assignments of the guarded object an action may

be performed on. If the current agent is referenced by one of these object-

specific role assignments, the latter will be further considered. If no object-

specific role assignment can be found, the procedure will be repeated for

the parental guarded objects of the given one until an object-specific role

assignment is found. If no object-specific role assignment can be found at

all, an error will be returned indicating that the action cannot be performed.

(2) The agent itself determines the current object-specific role assignment it

uses when interacting with the information system (e.g., via user interface).

This approach can be further improved as the most specific role assignment

is automatically determined and shown to the agent before invoking the

action. If there exist several possible object-specific role assignments, the

agent may still change the object-specific role assignment depending on

preferences.

After determining an object-specific role assignment, the actual access control

enabled through ORAC can be enforced based on the identified entities. The latter

encompass the given agent, object-specific role assignment, and required privilege

(to perform the desired action) as well as the guarded object the action shall be

performed on. To facilitate the understanding of realizing ORAC, the algorithm for

enforcing ORAC is shown in Listing 1 in pseudo code.

Listing 1: Enforce Object-specific Role-based Access Control

1 boolean enforceORAC (Agent a , OSRA osra , P r i v i l e g e p , GO go){
2 // go through a l l the scopes o f the r o l e ass ignment
3 f o r (scgo : os ra . getSCGO ()){
4 // cur rent scope r e f e r e n c e s the g iven guarded ob j e c t ?
5 i f (scgo . getGO () . equa l s (go)){
6 // I s g iven p r i v i l e g e in s e t o f scope−s p e c i f i c p r i v i l e g e s ?

7 i f (scgo . getScope () . g e t S c o p e P r i v i l e g e s () . conta in (p))
8 re turn t rue ;

9 }
10 e l s e {
11 // i s the go o f scgo a (t r a n s i t i v e) parent o f go?
12 boolean i sParent = isParentOf (scgo . getGO () , go) ;

13 i f (i sParent)
14 // I s g iven p r i v i l e g e in s e t o f h i e r a r c h i c a l p r i v i l e g e s ?

15 i f (scgo . getScope () . g e t H i e r a r c h P r i v i l e g e s () . conta in (p))
16 re turn true ;

17 }
18 }
19 re turn f a l s e ;

20 }

The algorithm underlines that it has to be first examined whether the object-

specific role assignment directly references the given guarded object. Note that this

check has to be performed separately for every defined scope. If such a check is

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 21

positive, the set of scope-related privileges is evaluated to check whether it contains

the required privilege. If the object-specific role assignment does not reference the

given guarded object, it has to be evaluated whether the object-specific role assign-

ment references any parental guarded object (isParentOf()). In this case, the set of

hierarchical privileges will be evaluated with respect to the required privilege.

To cope with changes at run time, ORAC have to feature a high degree of flexibil-

ity. For example, new object-specific roles may be added, existing ones be adjusted,

or object-specific role assignments be created, changed or removed (cf. Section 4.4).

As a major benefit of ORAC, the object-specific role assignments are indirectly

updated automatically as soon as privileges are added to or removed from a corre-

sponding object-specific role. This way, privileges can be quickly granted or removed

to any number of agents obtaining a particular object-specific role.

Due to the continuous updates of an information system, additional or changed

features typically result in new or updated privileges. Therefore, after booting up

the information system, the set of privileges and their relationship to object-specific

roles have to be re-evaluated to allow for an ORAC evolution (cf. Section 6).

6. Evaluation

To enable the use of the ORAC approach in various application domains as well as

to demonstrate its feasibility, we developed a proof-of-concept prototype. The latter

is based on state-of-the-art technologies that utilize the human resource application

scenario presented in Section 2. To underline the general applicability of ORAC,

we further conducted two case studies (cf. Section 6.2) in which we evaluate ORAC

with scenarios different from the one presented in Section 2.

6.1. Proof-of-Concept Prototype

To demonstrate the feasibility of the ORAC approach and to emphasize the integra-

bility with state-of-the-art concepts and technologies, a proof-of-concept prototype

was built based on a service-oriented architecture and the Java EE 7 platform. Its

architecture is shown in Fig. 9.

The prototype includes all entities of the ORAC approach as well as the algo-

rithm presented in Section 5. To demonstrate the ORAC functionality, we captured

the human resource application scenario presented in Section 2. Accordingly, the

ORAC prototype represents a lean human resource recruitment system, which is

protected by ORAC, featuring services to, for example, start recruitment processes,

add job offers, or update applications. To ease the demonstration of the prototype’s

capabilities, a specific use case service was implemented allowing for the quick cre-

ation of an exemplary recruitment process with many associated objects (e.g., a job

offer, applications). The executable source code of the proof-of-concept prototype as

well as detailed instructions regarding its usage can be found in a publicly available

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

22 Nicolas Mundbrod and Manfred Reichert

REST API

System Services

 H2 Database Management Systems

Java Persistence API

Bootstrapping Service

Use Case Service Authorization Service

P
er

si
st

en
ce

Process Service

Authentication Service

A
p

pl
ic

at
io

n

Fig. 9: Architecture of the ORAC Proof-of-Concept Prototype

repositoryc that is free to use.

To properly incorporate guarded object types (cf. Section 2.1) in the domain-

specific object model, we made use of the abstract base class GuardedObject, which

features an abstract method getParentGuardedObjects. Based on this approach, it

can be ensured that the parental guarded objects of a considered guarded object

can be always retrieved and checked for ORAC in a sound way (cf. Section 5). In

turn, privileges are specified in accordance with Definition 4.2. To exploit the tight

integration of privilege definitions and information system development, we relied

on Java annotations. In particular, all services in the application layer were enriched

with the annotation RequiresAccessControl as shown in Listing 2.

As advantage, Java reflections may be employed to gather all defined privi-

leges while starting the information system (cf. Requirement R02). Afterwards, the

persistence layer is queried to evaluate whether the privileges have been persisted

before. If not, all gathered privileges are persisted the first time. Alternatively, ex-

isting privileges, which were persisted before, are compared with the gathered ones

to derive necessary adaptations (i.e, adding new ones or removing existing ones).

Listing 2: Privilege Definition using Java Annotations

1 @RequiresAccessControl (targetGuardedObjectType=Process . c l a s s ,

2 contextGuardedObjectType=Workspace . c l a s s , actionType=’ADD’)
3 pub l i c Process addProcess (Long agentId , Long osraId ,

4 Long workspaceId , Process newProcess) {
5 . . .
6 }

The second benefit of annotations comes into play when enforcing access control

at run time. Assume that object-specific roles have been created and privileges

have already been allocated to them. Then, an agent obtaining an object-specific

role through a corresponding role assignment may perform an action. For example,

chttps://bitbucket.org/dbis/orac-prototype/overview

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 23

the agent may want to add a new (recruitment) process (cf. Listing 2). As soon

as the call of the client is approaching the application service annotated with the

RequiresAccessControl annotation, the call is interrupted with a Java interceptor

enforcing access control. Figure 10 shows the procedure of enforcing ORAC with

the help of an interceptor.

Client
(Agent with OARA)

Client
(Agent with OARA)

ORAC
Interceptor

ORAC
Interceptor

Application
Services

Application
Services

ORAC
Services

ORAC
Services

call addProcess(...)

enforceORAC(...)

If access check ok: call addProcess()

method result

If process created: check whether new role assignment required

method result

if access check failed: access denied

access control response

Fig. 10: Enforcing ORAC with an Interceptor

For enforcing ORAC, the interceptor may use the parameters passed to the appli-

cation service. Regarding the addProcess service (cf. Listing 2), the interceptor takes

the identifier of the current agent (agentId), the identifier of the given object-specific

role assignment (osraId), and the identifier of the workspace (workspaceId) into ac-

count to retrieve the agent, the object-specific role assignment and the guarded object

of interest (workspace with id workspaceId). Using these entities, the algorithm from

Listing 1 is executed to decide whether the desired action may be performed. If ac-

cess is granted and the addProcess service is successfully executed afterwards, the

interceptor may asynchronously trigger an ORAC service checking whether a new

object-specific role assignment needs to be created for the considered agent and the

recently created recruitment process (cf. Section 4.4). In consequence, Requirement

R07 is properly addressed by the ORAC implementation at run time.

Overall, the developed proof-of-concept prototype demonstrates that the ORAC

approach can be well integrated into the design and run time of an information

system relying on state-of-the-art technologies. Notably, the presented implemen-

tation relies on convention over configuration principle: the RequiresAccessControl

annotations as well as the signature of the specific services need to be coherently

defined by developers. The presented interceptor may then easily enforce object-

specific role-based access control, which is independent from the specific imple-

mentations of the application services. Thereby, an aspect-oriented integration of

ORAC can be achieved to prevent developers from mixing functional source code

with authorization-related one.

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

24 Nicolas Mundbrod and Manfred Reichert

6.2. Case Studies

We conducted two case studies to demonstrate the applicability of ORAC. For both

case studies, we analyzed the application scenarios at hand as well as an existing

information system in order to take the current support into account. Thereupon,

we investigate the applicability of ORAC regarding the encountered scenarios. In

the scope of the first case study, we analyzed auctioning processes14 and a web-based

auctioning systemd. In the second case study, we analyzed the general particularities

of project management23 and a common open source project management systeme.

Case Study 6.1. (Auctioning) If someone wants to auction off an article

in an auctioning system, she typically signs into an auctioning system as a user

and then creates an offer in certain category of the auction system (cf. Fig. 11).

When creating the offer, the user is linked to the offer as a vendor. Usually, an

offer (object) contains various attributes, e.g., starting price or payment terms.

In addition, the offer comprises a child object product description with various

attributes such as the product description or pictures of the product. If a user

of the auctioning system is interested in purchasing the offered product, he will

make a tender and, consequently, a bid object is created in relation to the offer

object. Furthermore, the user who has given a tender now acts as a bidder in

relation to the offer (object). As soon as auctioning has come to an end, the

user who has issued the highest bid will act as a buyer in relation to the offer.

1 : 11 : 11 : [0-∞)1 : [0-∞)

1 : [0-∞)1 : [0-∞)

1 : [0-∞)1 : [0-∞)

1 : [1-∞)1 : [1-∞)Auc�oning Service User

Category

Offer

Product Descrip�onBid

1 : 11 : 1

Payment Terms

1 : [0-∞)1 : [0-∞) ...

Fig. 11: Case Study Auctioning Service

Studying the auctioning case and its properties in detail shows that ORAC

is able to support the application scenario well. Regarding the auctioning system

(key scope), at least two object-specific roles are required: user and administrator.

Further, there are three object-specific roles for guarded objects of type offer (key

scope): vendor, bidder, and buyer. In the role of a vendor, users may update their

dwww.phpprobid.com
ewww.openproject.com

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 25

offer and see the details of every issued bid (hierarchical privileges). In turn, a user

assigned as a bidder may see some more details of the offer and the details of his

bids. Thus, the object-specific role bidder requires an additional scope regarding

the guarded object type bid. Finally, a user assigned as a vendor to an object of

type offer, may see further details of the offer, e.g, payment terms as well as the

bids he issued for the offer (additional scope).

Case Study 6.2. (Project Management) In a project management sys-

tem (cf. Fig. 12), a project is created and used to increase the awareness and

transparency for project stakeholders, to support project managers in coordi-

nating the involved persons more effectively, and to keep track of the project

progress in order to ensure the quality of work results. Therefore, a user of a

project management system may create a project in order to act as a project

admin afterwards. Using the created project, various subordinated project-

related entities (e.g., milestones, phases, or tasks) are added or updated to

document and manage the progress of the project. To enable collaboration

among project participants, the latter are added by the project admin to the

project. Then, they may act as project members in relation to the (virtual)

project. As a result, the project admin may assign tasks to project members

on demand in order to coordinate work, to document the assignments, and to

eventually achieve the objectives together.

1 : [0-∞)1 : [0-∞)

1 : [0-∞)1 : [0-∞)

1 : [0-∞)1 : [0-∞)

1 : [0-∞)1 : [0-∞)

1 : [1-∞)1 : [1-∞)Project Mgmt System User

Project

Milestone

FileFile

Task

1 : [0-∞)1 : [0-∞)

1 : [0-∞)1 : [0-∞)

...

File

1 : [0-∞)1 : [0-∞)

1 : [0-∞)1 : [0-∞)

Fig. 12: Case Study Project Management

Analyzing the project management case show that the project management

system also employs different roles that can be well supported by ORAC. In par-

ticular, the system provides—similar to the auctioning service—the two roles user

and administrator on “system level”. Hence, ORAC can easily match these roles

with object-specific ones targeting the project management system. Furthermore,

project management employs the project-specific roles project admin, project mem-

ber, and project reader. Interestingly, the project management system also enables

administrators to create roles specific to work packages. Note that these roles fea-

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

26 Nicolas Mundbrod and Manfred Reichert

ture a scope as well (e.g., objects of type project). However, the roles cannot support

the hierarchical application of privileges or an overlapping of roles. In ORAC, an

agent may concurrently obtain both the roles of a system user and a project mem-

ber. Finally, the definition and use of roles are customized and wired in the project

management system, i.e., it does not rely on a generic approach like ORAC.

ORAC is capable of widely supporting both auctioning processes and project

management scenarios with their access control requirements. Through object-

specific roles and role assignments, users may be accurately given access to the

objects they own as well as to the corresponding actions they may execute. More-

over, the typical roles, which are required in both case studies, can be well supported

by object-specific roles. However, there exist specific requirements which may re-

quire system-specific adjustments to the generic ORAC approach. In the auctioning

case, for example, an object-specific role assignment (to object-specific role buyer)

must be created automatically for the user who has issued the highest bid.

7. Related Work

RBAC25,7 is the most commonly known access control approach. In RBAC, roles are

allocated to users and every role is connected with a set of privileges (often called

permissions). However, the privileges of traditional RBAC are not made explicit. In-

stead, for every action there is a list of roles that may execute it. Consequently, in the

source code of an information system, it is frequently checked whether the subject,

who intends to perform an action, has roles granting the action. As common bene-

fits, RBAC is appreciated for its simplicity and ease of manageability. Furthermore,

one can audit which resources and functions are accessible by which roles. As major

drawbacks, RBAC lacks a fine-grained access control (cf. Section 1) and, as a result,

scalability becomes an issue due to the tremendous number of roles that may have

to be managed. In particular, RBAC neither allows for object-/instance-specific ac-

cess control nor can it deal with dynamically changing environment attributes (e.g.,

time of day and current location of a subject).

Numerous adaptations of RBAC have been proposed to address these shortcom-

ings. First, an approach providing parameterized privileges and role templates was

proposed9; a role is limited to only access a subset of objects based on the instanti-

ated parameters. Expanding this basic concept of configuration through parameters,

parameterized role-based access control approaches1,8 aim to overcome the explo-

sion of dedicated roles and to enable a more fine-grained access control. However, the

approach suffers from the complex assignment of subjects to the parameterized roles

at run time. Furthermore, with increasing number of parameters, the management

of parameterized role instances becomes challenging. An approach to use attributes

for the automated assignment of users to roles was proposed in literature2. Note

that in combination with parameterized roles, the integrated management of roles,

parameters, attributes, and rules constitutes an even bigger challenge for managing

and realizing proper access control policies.

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

Object-specific Role-based Access Control 27

Integrating RBAC with the object-oriented paradigm, the approach of object-

oriented role-based access control4 was proposed to control information flows within

object-oriented systems. The key idea is to control information flows among objects,

which may be dynamically created or removed. Objects obtain roles that equip them

with privileges enabling and limiting the access to other objects. Finally, another

approach17,3 addresses the integration of RBAC in a distributed object-aware pro-

cess management system to enable fine-grained access control. The approach is

limited to five key privileges and focuses on the integration of the objects’ attribute

values and states with access control decisions.

Overall, the above-mentioned approaches address parts of an object-specific role-

based access control, but lack an integrated view on subjects, privileges, object-

specific roles, assignments, and objects. ORAC exclusively provides the integration

of hierarchical privileges (cf. Requirement R05) and the support of different role

scopes (cf. Section 4.3) to optimally support dynamic object model instances.

To address the limitations of RBAC-based approaches, several approaches pro-

pose attribute-based access control (ABAC) 20,6,13,10. With ABAC, no roles have

to be defined up-front—at least as long as role names are not used as attributes. In-

stead, policies are defined based on the attributes of the subjects and the resources

to be accessed13. Consequently, ABAC enables an expressive, fine-grained access

control based on rules evaluating attributes. Listing 3 shows an example of a policy

expressed in the terms of the Abbreviated Language for Authorization (ALFA)f to

specify the access of recruiters to the recruitment process.

Listing 3: Simplified Declaration of an ABAC Policy

1 p o l i c y a c c e s s R e c r u i t e r {
2 t a r g e t c l a u s e user . department == HR and user . type == employee
3 . . .
4 r u l e al lowReadUpdateAccessToRecruitmentProcess{
5 t a r g e t c l a u s e objectType == ” RecruitmentProcess ”
6 cond i t i on rec ru i tmentProce s s . a s s i g n e d R e c r u i t e r == user . id
7 permit
8 }
9 r u l e al lowReadUpdateAccessToApplication {

10 t a r g e t c l a u s e (ac t i on == ” read ” or ac t i on == ”update ”)
11 and objectType == ” Appl i ca t ion ”
12 cond i t i on a p p l i c a t i o n . r ec ru i tmentProce s s . a s s i g n e d R e c r u i t e r

13 == user . id
14 permit

15 }
16 . . .
17 }

As illustrated in Listing 3, for every object type corresponding policy rules need

to be defined in ABAC. In a more complex scenario, each of the potentially large set

of policies might comprise a high number of rules to accommodate the attributes in

fhttps://en.wikipedia.org/wiki/ALFA_(XACML)

February 2, 2019 21:22 Object-specific Role-based Access Control docu-
ment

28 Nicolas Mundbrod and Manfred Reichert

the access control decisions. Furthermore, if a user fills several roles in a information

system (e.g., manager and recruiter), the possible roles and their privileges are

encoded across rules and with attributes of object types (e.g., assignedRecruiter).

To define the required policies and rules, a detailed understanding of the objects,

the attributes and the business processes are needed. As a result, users themselves

cannot easily allocate privileges to roles (cf. Requirements R01 and R02).

To properly determine the privileges a specific group of users (i.e., a role) shall

obtain, the relevant rules need to be first identified. Moreover, considerable domain

knowledge is necessary to correctly analyze the identified rules. However, to deter-

mine a subject’s set of privileges in respect to a running information system, the

full set of access rules needs to be instantiated with subject and object attributes5.

In comparison, in ORAC, the set of object-specific role assignments may be used

to derive the roles an agent obtains in relation to given objects.

To enhance the comparison, the hierarchy of objects in an object model instance

cannot be easily incorporated in ABAC. Instead, it must be statically described with

the help of object attributes (cf. condition of rule allowReadUpdateAccessToAppli-

cation). For an unlimited hierarchy of objects (e.g., a growing tree structure), it is

not possible to adequately specify a rule comparable to the one presented in Listing

3. In ORAC, corresponding privileges are linked to the set of hierarchical privileges

of an object-specific role (cf. Requirement R05), and the given object hierarchy is

dynamically resolved at run time. ORAC significantly differs from ABAC through

the availability and provision of roles (which are important in many information

systems), the rather simple assignment of pre-specified privileges to object-specific

roles (instead of powerful rules using any kind of attributes), and the integration of

the hierarchy of objects into the access control approach.

Finally, there exist various approaches that combine role- with attribute-based

access control, e.g., by constraining the set of privileges allocated to a role by

the usage of attributes at run time15. In particular, constraint rules incorporating

current attribute values determine the privileges to be excluded. A formal model

constraining role privileges via rules that evaluate attributes was proposed12. This

role-centric attribute-based access control (RABAC) extends RBAC with privilege

filtering policies.

8. Conclusion

We presented an approach for realizing an object-specific role-based access con-

trol (ORAC), which enables the support of sophisticated scenarios with complex

object models. The approach was established by gathering the key use cases and re-

quirements in relation to object-specific access control in contemporary information

systems. Based on a solid formal foundation, ORAC allows for the rich modeling

of object-specific roles by allocating object-related as well as hierarchical privileges

at both design and run time. Especially, this privilege allocation enables users to

dynamically access created objects without any changes to be applied to ORAC

February 2, 2019 21:22 Object-specific Role-based Access Control
document

Object-specific Role-based Access Control 29

itself. To enforce access control at run time, the creation of object-specific role as-

signments can be controlled by configuration parameters and safety checks (is an

agent allowed to assign a role). The proof-of-concept implementation demonstrated

the feasibility of ORAC and emphasized the benefits of integrating ORAC based

on state-of-the-art technologies (annotations, interceptors). Finally, to evaluate the

practical applicability of ORAC, it was applied in two application scenarios in the

shape of case studies.

In future research, we will perform experiments using the prototype to evaluate

the scalability of ORAC in larger scenarios. In this context, we will examine the

impact of caching and indexing guarded object instances in order to optimize the

process of retrieving parental object instances at run time.

References

1. A. E. Abdallah and E. J. Khayat. A Formal Model for Parameterized Role-Based
Access Control. In Formal Aspects in Security and Trust, pages 233–246. Springer,
2005.

2. M. A. Al-Kahtani and R. Sandhu. A Model for Attribute-Based User-Role Assignment.
In 18th Annual Computer Security Applications Conference, pages 353–362, 2002.

3. K. Andrews, S. Steinau, and M. Reichert. Enabling Fine-grained Access Control
in Flexible Distributed Object-aware Process Management Systems. In 21st IEEE
International Enterprise Distributed Object Computing Conference (EDOC 2017).
Quebec City, Canada, 2017.

4. S.-C. Chou. Embedding role-based access control model in object-oriented systems to
protect privacy. Journal of Systems and Software, 71(1-2):143–161, 2004.

5. E. Coyne and T. R. Weil. ABAC and RBAC: Scalable, Flexible, and Auditable Access
Management. IT Professional, 15(3):14–16, 2013.

6. N. Dan, S. Hua-Ji, C. Yuan, and G. Jia-Hu. Attribute Based Access Control (ABAC)-
Based Cross-Domain Access Control in Service-Oriented Architecture (SOA). In 2012
International Conference on Computer Science and Service System (CSSS), pages
1405–1408, 2012.

7. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed
NIST Standard for Role-based Access Control. ACM Transactions on Information
and System Security (TISSEC), 4(3):224–274, 2001.

8. J. Fischer, D. Marino, R. Majumdar, and T. Millstein. Fine-Grained Access
Control with Object-Sensitive Roles. In European Conference on Object-Oriented
Programming, pages 173–194, 2009.

9. L. Giuri and P. Iglio. Role templates for content-based access control. In Proceedings
of the second ACM workshop on Role-based access control, pages 153–159, 1997.

10. V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo. Attribute-Based Access Control. Computer,
48(2):85–88, 2015.

11. J. Huang, D. M. Nicol, R. Bobba, and J. H. Huh. A Framework Integrating Attribute-
based Policies into Role-based Access Control. In Proceedings of the 17th ACM
Symposium on Access Control Models and Technologies, SACMAT ’12, pages 187–
196, New York, NY, USA, 2012. ACM.

12. X. Jin, R. Krishnan, and R. Sandhu. A Unified Attribute-Based Access Control
Model Covering DAC, MAC and RBAC. In IFIP Annual Conference on Data and
Applications Security and Privacy, pages 41–55, 2012.

13. X. Jin, R. Sandhu, and R. Krishnan. RABAC: Role-Centric Attribute-based

February 2, 2019 21:22 Object-specific Role-based Access Control
document

30 Nicolas Mundbrod and Manfred Reichert

Access Control. In International Conference on Mathematical Methods, Models, and
Architectures for Computer Network Security, pages 84–96, 2012.

14. V. Krishna. Auction Theory. Academic Press/Elsevier, Burlington, MA, 2nd edition,
2010.

15. D. R. Kuhn, E. J. Coyne, and T. R. Weil. Adding Attributes to Role-Based Access
Control. IEEE Computer, 43(6):79–81, 2010.

16. V. Künzle. Object-Aware Process Management. Dissertation, Ulm University, Ulm,
2013.

17. V. Künzle and M. Reichert. Integrating Users in Object-aware Process Management
Systems: Issues and Challenges. In Proceedings BPM’09 Workshops, 5th Int.
Workshop on Business Process Design (BPD’09), pages 29–41, 2009.

18. V. Künzle and M. Reichert. Striving for Object-aware Process Support: How Existing
Approaches Fit Together. In 1st Int’l Symposium on Data-driven Process Discovery
and Analysis (SIMPDA’11), 2011.

19. V. Künzle, B. Weber, and M. Reichert. Object-aware Business Processes: Fundamental
Requirements and their Support in Existing Approaches. International Journal of
Information System Modeling and Design (IJISMD), 2(2):19–46, 2011.

20. B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman. A Flexible
Attribute Based Access Control Method for Grid Computing. Journal of Grid
Computing, 7(2):169–180, 2009.

21. R. Lenz and M. Reichert. IT support for healthcare processes – premises, challenges,
perspectives. Data & Knowledge Engineering, 61(1):39–58, 2007.

22. D. Müller, M. Reichert, and J. Herbst. Data-Driven Modeling and Coordination of
Large Process Structures. In On the Move to Meaningful Internet Systems 2007:
CoopIS, DOA, ODBASE, GADA, and IS, volume 4803, pages 131–149. 2007.

23. PMI. A Guide to the Project Management Body of Knowledge. PMI Project
Management Institute, Newtown Square, Penn, 2000.

24. R. Pryss, N. Mundbrod, D. Langer, and M. Reichert. Supporting Medical Ward
Rounds through Mobile Task and Process Management. Information Systems and
e-Business Management, 13(1):107–146, 2015.

25. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based Access
Control Models. Computer, 29(2):38–47, 1996.

26. R. S. Sandhu and P. Samarati. Access Control: Principle and Practice. IEEE
Communications Magazine, 32(9):40–48, 1994.

27. H. Shen and P. Dewan. Access Control for Collaborative Environments. In Proceedings
of the 1992 ACM conference on Computer-supported cooperative work, pages 51–58,
1992.

28. S. Steinau, K. Andrews, and M. Reichert. The Relational Process Structure. In
Advanced Information Systems Engineering, pages 53–67, 2018.

29. J. Tiedeken, M. Reichert, and J. Herbst. On the Integration of Electrical/Electronic
Product Data in the Automotive Domain. Datenbank Spektrum, 13(3):189–199, 2013.

30. J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC—A Workflow Security
Model Incorporating Controlled Overriding of Constraints. International Journal of
Cooperative Information Systems, 12(04):455–485, 2003.

