
Universität Ulm | 89069 Ulm | Germany Faculty of
Engineering, Computer
Science and Psychology
Databases and Information
Systems Department

Evaluating State-of-the-Art
Web Component Frameworks
Bachelor’s thesisat Universität Ulm

Submitted by:
Stefan Engelmayer
stefan.engelmayer@uni-ulm.de

Reviewer:
Prof. Dr. Manfred Reichert

Supervisor:
Dr. Johannes Schobel

2019

Version from May 29, 2019

c© 2019 Stefan Engelmayer

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Composition: PDF-LATEX 2ε

Abstract

Websites are getting more complex over the years because it is not just used to display

information, but to use some applications. One challenge is to maintain these services

and keep them up to date. To reuse existing code, Web Components are introduced to

outsource complex structures as an HTML element including its functionality. Therefore,

some frameworks available which help to create Web Components by providing some

useful tools and make the development process easier for developers. Because there

are numerous different frameworks available for the development, it is not easy to find

the right one for the own project. Because the standards are changing fast in computer

science, the development process should always be State-of-the-Art.

The aim of this thesis is to give a brief overview over Web Component frameworks and

find out which framework is a good choice for given use cases. First some frameworks

are introduced. Three selected frameworks are more detailed introduced. For the

evaluation of these frameworks, the used criteria are introduced. With the use of the

analytical hierarchy process, three scenarios are evaluated to get the best framework

for each scenario. This shows that when the requirements differ, also the choice of the

framework can change.

iii

Acknowledgment

Acknowledge everyone that helped during the creation of the thesis here.

At this point I want to thank everyone who helped me during the creation of the thesis.

First, I want to thank my reviewer Prof. Dr. Manfred Reichert.

Second, I want to thank Johannes Schobel who was a great supervisor.

Finally, special thanks go out to my family and my friends who supported me whenever

they could.

v

Contents

1 Introduction 1

2 Fundamentals 3

2.1 Web Components . 3

2.1.1 Concepts and Usage . 3

2.2 Languages . 10

2.3 NPM . 10

2.4 Testing . 11

3 Related Work 13

4 Web Component Frameworks 15

4.1 Polymer . 15

4.1.1 Features . 15

4.1.2 First Steps . 19

4.1.3 Export . 19

4.2 Stencil . 19

4.2.1 Features . 19

4.2.2 First Steps . 20

4.2.3 Export . 21

4.3 Vue.JS . 21

4.3.1 Features . 21

4.3.2 First Steps . 22

4.3.3 Export . 23

4.4 Additional Frameworks . 24

4.4.1 Hybrids . 24

4.4.2 SkateJS . 24

4.4.3 SlimJS . 24

4.4.4 Glimmer . 25

4.4.5 Dojo.io . 25

vii

Contents

5 Evaluation 27

5.1 Criteria . 27

5.1.1 Framework Selection . 27

5.1.2 Weak Criteria . 28

5.1.3 Ease of Setup . 28

5.1.4 Ease of Export . 28

5.1.5 Strong Criteria . 28

5.2 Evaluation of the Frameworks . 32

5.2.1 Inheritance . 32

5.2.2 Linter/Formatter . 33

5.2.3 Documentation Generation . 34

5.2.4 Testing Frameworks . 35

5.2.5 Induction . 35

5.2.6 Auto Recompile . 36

5.2.7 GUI/UI . 36

5.2.8 CSS . 37

5.2.9 CSS Preprocessing . 37

5.3 AHP . 38

5.3.1 Criteria Weights . 40

5.4 Use Cases . 41

5.4.1 Small Project . 41

5.4.2 Medium Project . 43

5.4.3 Large Project . 44

5.5 Conclusion . 45

6 Summary 47

A Sources 51

viii

1
Introduction

The Web is still growing and with its popularity the possibilities of developer and end

user are getting more. The internet is not just used to get information, it is commonly

used to communicate, buying products and much more. To reduce the complexity and

keep maintainability various frameworks are available to support developer for their

development. With frameworks it is easier to set up a project.

Web Components are another level of reducing the complexity of a website for example.

The idea is to reduce the needed code to a minimum by hiding all required information

into one or multiple external files which can be included and reused as a custom element,

defined by the developer. This reusable element should not interfere with the rest of

the website or vice versa, the styling information and functionality is separated from the

outside of the Web Component.

First it must be decided what could be possible criteria for selecting a good framework

and are important for a project. Then it should be considered if there are some other

restrictions because one framework needs to support a specific feature to limit the list of

possible frameworks. Time must be investigated to find out which features are included

in the frameworks. Otherwise it is not possible to compare the frameworks. After the

criteria are set, they can be structured to make the decision process easier.

For the use of the analytical hierarchy process, each framework which is considered as

an alternative has to be rated according to all criteria. When this is done, the criteria

get weighted depending on how important it is for a specific scenario. After all priorities

1

1 Introduction

are set, it can be seen how well each framework performs. To understand why the

frameworks perform so different, the AHP method is a good choice because it structures

the problem well and the process of the decision can be visually shown in a tree.

The thesis begins with the explanation of the most important fundamentals in Chapter 2.

Followed by the introduction of related work in Chapter 3. After that, the frameworks are

introduced in Chapter 4 by explaining how they can be used to create Web Components,

and which tools the frameworks include. After that, in Chapter 5 the used criteria are

explained and followed by this the frameworks are evaluated. To complete this, the

results are used to evaluate which framework is the best in three different use cases.

Finally, in Chapter 6 the thesis is summarized.

2

2
Fundamentals

This chapter conveys important knowledge which is used during the thesis. It starts

with some basic details about Web Components and its structure in Section 2.1 and

continues with a brief overview of the programming languages which could be used

to write these Web Components in Section 2.2. After the Node Packet Manager is

introduced in Section 2.3. Last but not least the testing is getting explained in Section 2.4

2.1 Web Components

Web Components are used to write a more maintainable code. A bunch of code can

be replaced with a simple tag so that there is less code on the main site. This makes it

easier to get an idea of what the code is about.

A developer wants to reuse as much code as possible. For websites it is not easy to

reuse written code because it is not isolated from the rest of the application, especially

its style. Web Components can isolate the HTML code, its style information and its

functionality so that this element does not change its behavior or design.

2.1.1 Concepts and Usage

Reusing code is a good idea and this is exactly why there are Web Components. They

are designed to be reused multiple times without any complications and collisions.

Therefore, it combines three technologies which are „Custom Elements“, „Shadow DOM“

and „HTML Templates“ [1]

3

2 Fundamentals

Custom Element

A Custom Element is a set of JavaScript APIs which allows you to define your own

custom element with self defined functionality and use it in your user interface. [2] A

custom element is created with JavaScript.

There are two different types of custom elements. One of them are autonomous custom

element and the other type is called customized built-in element. [3] The general struc-

ture of such custom elements is listed in the sources. The key difference between these

two elements is that with an autonomous custom element you create a new element like

in Listing 2.1 but with a built-in custom element you can extend an element based on an

existing element. For example you can extends from a Button element in the register

function and add some functionality to it as in this custom button example in Listing 2.2.

1 class CustomElement extends HTMLElement {

2 constructor() {

3 super();

4 // code of the custom element

5 }

6 }

7

8 // register and assigns a tag to this element

9 customElements.define(’element-tag’, CustomElement);

Listing 2.1: Autonomous Custom Element

1 class ChangeColor extends HTMLButtonElement {

2 constructor() {

3

4 }

5 }

6 customElements.define("change-color", ChangeColor, {

7 extends: "button"

8 });

9

10 const changeColor = document.createElement("button", {

11 is: "change-color"

12 });

13 changeColor.textContent = "Click meScript!";

14 document.body.appendChild(changeColor);

Listing 2.2: Built-in Custom Element

4

2.1 Web Components

You can also extend the JavaScript class from an other component. It has the same

behavior as the parent one. This is useful if you want a similar element with only a few

changes. To override a method you just have to type the method head again and define

a different body.

There are some rules for creating a new custom element which are described in [4]:

1. The name of a custom element must contain a dash (-). So <x-tags>, <my-element>,

and <my-awesome-app> are all valid names, while <tabs> and <foo_bar> are

not. This requirement is so the HTML parser can distinguish custom elements

from regular elements. It also ensures forward compatibility when new tags are

added to HTML.

2. It is not possible to register the same tag multiple times. Attempting to do so will

throw a DOMException.

3. Custom elements cannot be self-closing because HTML only allows a few elements

to be self-closing. Always write a closing tag (<app-drawer></app-drawer>).

Shadow DOM

The Shadow DOM often finds its usage to hide complex structures behind a simple

element. This Shadow DOM is hidden in the element so that a developer gets less

code displayed. Because of the Shadow DOM hides a bunch of code, it also protects

for the hidden code from the application. For example a style guide which is set in an

application outside the Shadow DOM does not affect any element inside the Shadow

DOM. This protection is the reason why it is not possible to change the appearance of

an already built element. To Change the appearance the element has to be rewritten.

Each shadow DOM has the following structure: [2]

The Shadow Host is the only visible element for the user, e.g. the <video> tag. This is

the root node on which the actual shadow DOM is attached to.

The Shadow Root is the root node of the Shadow Tree and represents the connection

node between the Shadow Host and the Shadow Tree. It is not visible for the user but it

is rendered in the browser.

5

2 Fundamentals

Shadow Boundary: Every HTML- and CSS-Code inside the Shadow Root is protected

by a barrier to its parent document. Styles only have an effect on the component, other

styles of the rest of the site or other components do not affect the own style.

Shadow Tree: This is the Shadow Root and its content child nodes the shadow DOM

as shown in Figure 2.1.

Document
Tree

Shadow
Host

Document Tree

Shadow
Root

Flattened Tree (for rendering)

Document
Tree

Shadow
Host

Figure 2.1: Redawn Shadow Tree inside the DOM from [2]

The Figure 2.2 shows the code needed for the audio element. There are only a few

lines of code, which will show the user a simple UI to play, pause, jump to a specific

time or download the audio file. If one browser is not capable of playing this audio file, a

custom message is displayed to the user and he can access the audio file with a link.

The second picture in Figure 2.3 shows the hidden Shadow Tree which contains the

actual code of the audio element. This is all the code which a developer would have to

write if the element does not exist.

HTML Template

The HTML Template is a raw HTML skeleton that can be used multiple times. This

template is not rendered by default, but it is a client-side template to be filled with content,

6

2.1 Web Components

Figure 2.2: Clean <audio> Tag which has to be written by the developer

Figure 2.3: Audio element with a part of it’s Shadow DOM expanded

7

2 Fundamentals

and inserted into the DOM and to be rendered. It is not mandatory to use a HTML

template, but it helps to keep the code clearer.

For example if a userlist has to be displayed, the same structure is used every time.

To make the code better maintainable it is a good idea to use a HTML template. If, for

example, a field has to be added later, only the template and the JavaScript code has to

be added. In Figure 2.4 is an example for a simple HTML template. To fill the template

with some data and display it on a HTML page see the example code in Figure 2.5. The

resulting rendered site is shown in Figure 2.6

8

2.1 Web Components

Figure 2.4: HTML template for a list of users

Figure 2.5: Code to use the HTML template and fill it with data

Figure 2.6: The rendered page

9

2 Fundamentals

2.2 Languages

In this thesis are some programming languages mentioned which are quite the same.

They are introduced in short in this section.

JavaScript is a famous scripting language which is interpreted and executed directly.

There is no need to compile JavaScript code before it can be executed. The scripting

language has a formal standardization which is called ECMA Script and has multiple

released versions.

TypeScript is a programming language which is quite the same as JavaScript but it is an

object oriented programming language and errors are printed out during the compiling

process and not at runtime. Compiling a TypeScript file will output JavaScript so it is

compatible to standard JavaScript applications.

Babel is very close to TypeScript but in addition to the TypeScript features Babel also

adds and supports some features which are not yet supported by the browsers by default.

2.3 NPM

The Node.js Package Manager is a large JavaScript software registry. It is possible for

everyone to register as a free user and upload some snippets so that everyone can use

those open source snippets. The website can be used to search uploaded software

packages which can be included as a dependency into an existing project. This has

the advantage that there is no need to include a dependency manually into a project

and push it into its repository. To add an existing dependency into a project it is only

necessary to run the command ‘npm install package-name –save‘. After this command

is executed the dependency gets installed and added into the ’package.json’ file in

the project directory. Hence it is possible to easily reinstall all needed dependencies

which are required for this project to compile and run on another computer. Another big

advantage is that npm prints out a message when some dependencies can be updated

or if there are some known vulnerabilities in the used package of a project. [5]

10

2.4 Testing

2.4 Testing

Web Components are designed that they only have to be included within a project and

can be inserted into the DOM by adding its defined tag at the proper place. The used

Web Components should be tested especially if someone else writes a component and

another dev uses it. If there are already tests included, a developer has less effort to

test the component. There are some frameworks, which helps to test websites like the

JavaScript based Mocha framework or Jest. They also help to write automated tests

which can also run in the browser.

In addition to these powerful testing frameworks there is the Selenium framework.

Selenium runs the tests at various different browsers and browser version which can

be specified by the developer. So the developer does not have to manually install all

the different browser versions and run the test for each browser where the application

should run.

11

3
Related Work

In this section related work is listed. Because there is no close related work about Web

Components, also further work is considered as a kind of related work. The following

section contains some related work which compares and evaluates frameworks and

tools, but they are not about creating Web Components.

In [6] the author wants to find out, which machine tool is the best alternative in market.

Fuzzy AHP is based on the analytical hierarchy process for the decision making process.

This kind of extension of AHP provides a more accurate description of the decision

making process.

Strukturierter Vergleich aktueller Frameworks zur Entwicklung mobiler Anwendungen

[7] evaluates frameworks to develop mobile applications. In this thesis three selected

cross-platform frameworks for mobile applications are introduced and compared. For

the evaluation the analytical hierarchy process is used. The result is that there is no best

framework for everything, the framework has to be chosen by its specific use case.

[8] compares JavaScript frameworks with self defined criteria. The author programs

a To-Do application with each framework he evaluates to get an overview of what the

frameworks are capable of. For the evaluation itself the author first defines what he

explains what the meaning of each criteria is and after this explanation he describes

if the frameworks fulfill the criteria. Though he does not explain why he choose this

method for his evaluation. The conclusion of this thesis is that AngularJS and VueJS are

good frameworks for small projects and BackboneJS for bigger ones.

13

3 Related Work

In [9] three WebGL frameworks are evaluated by programming a demo application

with each framework. Therefore, he explained some criteria which are used for the

evaluation. After that he introduced the frameworks, analyzes them based on the criteria

and described how his implementation of a demo application worked. For his result of

the evaluation he showed what each framework supports and that they all have different

approaches how they are used.

There is no thesis which is about evaluation state-of-the-art Web Component frameworks.

The related work is about general decision making approaches which is related because

they use a multiple criteria decision technique. The further work is all about a comparison

of frameworks. [8, 9] do not specify on what their decision of which framework is better,

is based on.

14

4
Web Component Frameworks

To get a brief overview which functionality these three selected frameworks offer, In

the following sections Polymer, Stencil and Vue.js are introduced and it is explained

how to create Web Components with these frameworks. Each Web Component can

be published viva NPM besides the described method of exporting them on the local

computer.

4.1 Polymer

The Polymer framework version 3.x is mainly developed by Google devs and other

people on GitHub. The Polymer-CLI can be installed through NPM. Besides JavaScript it

is also possible to develop Web Components with TypeScript. The following subsection

is about some features which are listed on the official website 1.

4.1.1 Features

The Polymer framework has multiple frameworks included so it is not necessary to

search for other frameworks which can be used to improve the coding experience and

they are also tested that they work together. Some testing frameworks like Mocha, Chai,

Sinon, Selenium and Accessibility Developer Tools are already included. To make sure

that the Web Component is compatible with older browsers it is possible to include

Polyfills into a project.

Another feature allows to derive the documentation from existing code. This requires an
1https://polymer-library.polymer-project.org/3.0/docs/, last viewed 15 Mai 2019

15

https://polymer-library.polymer-project.org/3.0/docs/

4 Web Component Frameworks

additional dependency and manually add a line of code to a docs.html to let the CLI

generate the documentation. It is only required to write comments before some classes,

methods, properties and events.

Figure 4.1: Generated doc for the properties.

The Polymer framework also supports tracking gesture events, for example to get the

coordinates of the movement of a finger on the screen. To improve the user experience

the PRPL pattern is used in the framework. PRPL stands for: [10]

• Push critical resources for the initial route.

• Render initial Code.

16

4.1 Polymer

Figure 4.2: Generated doc for some methods.

17

4 Web Component Frameworks

• Pre-cache remaining routes.

• Lazy-load and create remaining routes on demand.

These are all methods to make the user experience better and the application more

stable. For Browser which doesn’t support HTTP2 Push it is possible to compile with the

--bundle flag to create multiple bundles (the shell and one for each fragment) so that

the data transfer is optimized.

To take advantage of such a caching it is possible to use a service worker. Such a

service worker can improve the performance by delivering some content of the cache

and event work when the client is offline.

The structure of such an initial Polymer app is shown in Figure 4.3

The index.html is the entry point which loads the web component located at

src/my-application-app/my-application-app.js. Tests for the web compo-

nent are located in the test directory. This simple directory structure is very familiar in

comparison with other project structures.

Figure 4.3: Structure of a simple Polymer-3 application

18

4.2 Stencil

4.1.2 First Steps

With the installed Polymer-CLI a new polymer-3-application can be initialized by using

the command polymer init. In its created directory the src/ directory is a folder of

the Web Component.

To get an additional component just add another folder in the src/ directory with another

.js file. The new Web Component can be included as a link in the index.html in the

root directory of the project.

4.1.3 Export

To export a finished Web Component the command polymer build has to be executed.

After the build process has finished, a build directory exists in the project directory.

There is a default folder with the build ready Web Component. The content can be

copied into the root of a web server and used.

4.2 Stencil

A quite young framework is Stencil, its first commit on GitHub is dated to the 15th

February of 2017. Stencil, which can be installed through NPM, builds reusable Web

Components. This Framework supports TypeScript to develop Web Components. The

following subsection is about features of Stencil which are mentioned on its website 2.

4.2.1 Features

It is possible to write a component using standard JavaScript, CSS and HTML. The Type-

Script support is optional. The framework also tries to auto adjust written components

when there are updates so that a developer does not have to make any adjustments

manually. If they have to make any changes stencil tries to tell the developers what

2https://stenciljs.com/docs/my-first-component/, last viewed 15 Mai 2019

19

https://stenciljs.com/docs/my-first-component/

4 Web Component Frameworks

exactly they have to change in the code. Another feature of Stencil is that the develop

server tries to recompile the project and serves this changes if a file gets changed . The

Web Browser automatically reloads the content so the changes take effect immediately.

Stencil can generate a Readme.md file, which contains a table of all the properties

including their attribute, property description, type and default value. To activate gener-

ating this Radme.md the stencil.config.ts has to be edited as described in [11]

or the build command can be executed with an additional --docs flag. A sample of an

generated property list (.tsx and .css file) is shown in Figure 4.4

Figure 4.4: Auto Generated Readme.md with a List of Used Properties.

The testing framework integrated into Stencil is Jest and supports both isolated unit-

testing and the more realistic end-to-end testing. The latter runs in an actual browser to

get mores realistic results.

4.2.2 First Steps

After stencil gets installed through npm, a new project can be initialized via the command

npm init stencil. The option component is enough for simple Web Components.

The component can then be edited under src/. Stencil can recompile the project if it

detects a file change and send the changes to the browser. Because of this changes

are visible immediately with a little delay because it needs to recompile.

To add a second component to the bundle another .tsx or .js file has to be created in

the src/ folder. If a CSS preprocessor support is needed a plugin has to be installed

via NPM. For example if sass should be used in the project it can be installed with npm

20

4.3 Vue.JS

install @stencil/sass -save-dev and additional the plugin has to added to the

plugins list in the file stencil.config.ts.

4.2.3 Export

For the build is no further configuration needed. Wait, Stencil may need a build command

with npm run build. This build process creates files in the dist/ folder. The only

required files are the component-name.js and its directory. All other files are optional

and may be used if you want to use the Web Component e.g. for older web browsers.

The required files can also be picked from the www/ directory which are minified after

the build process.

4.3 Vue.JS

Vue is one of the most popular frameworks, which has a lot of features included. It is

possible to write a simple website, a Web Component or a Progressive Web Application,

which is an alternative to a native application. All of the following information is based on

version 2.0. The following subsection is about some features which can be found on its

website 3.

4.3.1 Features

For the main app Babel, TypeScript or plain JavaScript is supported. To apply style,

native CSS files are supported and optionally CSS preprocessors like Sass/SCSS, Less

or Stylus available.

One useful feature of this framework is that Vue comes with a user interface which can

be started through the Command Line and is accessible through a web browser. With

the Vue UI multiple projects can be added and managed and all operations to start an

3https://vuejs.org/v2/guide/, last viewed 15 Mai 2019

21

https://vuejs.org/v2/guide/

4 Web Component Frameworks

app, test or stop an application are implemented. It is also possible to search and add

some needed plugins with the UI.

Figure 4.5: UI Shows Serving a Project

To help to write high quality code Vue has some linter and formatter included. Linter

helps to detect some errors in the code before running the app. Prettier helps to format

the code to make it easier to read. Vue supports TSLint or ESLint with four different

configs: Only error prevention, Airbnb, Standard or Prettier.

Some testing frameworks for E2E and Unit testing are also included. For the E2E testing

Cypress and Nightwatch is already included in Vue. Shipped Unit Testing frameworks

are Mocha, Chai and Jest.

During the initialization of a new Vue application everything is created in a local git

repository.

4.3.2 First Steps

To initialize a new project the Vue CLI has to be installed. After that the project can be

initialized with vue create appname. The supported features can be manually selected

22

4.3 Vue.JS

in the command line as shown in Figure 4.6

Figure 4.6: Feature selection with the Vue CLI.

The used formatter or testing framework are selected later in the initialization process.

After the initialization is finished the project can be started and the development of the

Web Component can begin. The Web Component is located under src/components/.

To create a new Component only a new component.vue file has to be created in this

directory. To display the component, the App.vue file has to be edited that the content

of this component gets loaded.

4.3.3 Export

To export a single Web Component on the command line, it is possible to execute a

command like vue build --target wc --name <wc-name> <path-to-file>.

This creates one readable and a minified version in the dist/ folder. The Web Compo-

nent is already included in the demo.html file to provide a working example. To use this

Web Component in a project, Vue has to be included first via the script include <script

src="https://unpkg.com/vue"></script>.

23

4 Web Component Frameworks

4.4 Additional Frameworks

The following frameworks can also be used to create Web Components. For each of

the following frameworks a short overview is provided based on the information of its

website or GitHub repository and why these frameworks are not considered for further

evaluation.

4.4.1 Hybrids

The Hybrids framework 4 looks promising, it is easy to get into it because they provide

some live examples on their GitHub page. The used language to create Web Compo-

nents in Hybrids is JavaScript, TypeScript support is missing. Because it has only 1k

stars on GitHub so this framework is not being evaluated in this thesis.

4.4.2 SkateJS

SkateJS 5 is a light framework which helps to write Web Components. But it needs more

preparation to get started with SkateJS because some libraries, like the render library

LitHTML has to be installed manually. This framework is good if a developer only wants

libraries installed which are really needed. The standard documentation could be more

detailed so it takes longer to get familiar with this framework. SkateJS has only 3k stars

on GitHub and does not meet the criteria listed in Section 5.1.1

4.4.3 SlimJS

The SlimJS framework 6 is a small framework which adds some functionality to reduce

boiler plate code if of a Web Component. The setup is easy because only to import a

.js file has to be imported into your project and then the framework can be used to

create JavaScript based Web components. A disadvantage would be that this framework
4https://hybrids.js.org/, last viewed 15 Mai 2019
5https://skatejs.netlify.com/, last viewed 15 Mai 2019
6http://slimjs.com/, last viewed 15 Mai 2019

24

https://hybrids.js.org/
https://skatejs.netlify.com/
http://slimjs.com/

4.4 Additional Frameworks

is only useful for a small project to test what Web Components are. There is no way to

add more functionality without switching to another framework. SlimJS is not evaluated

in this thesis because it has only 519 stars on GitHub.

4.4.4 Glimmer

Glimmer 7 is a young framework which supports Typescript. This framework has also

a rendering testing suite included. It has only 483 stars on GitHub, which is why this

framework is not evaluated in this thesis.

4.4.5 Dojo.io

Dojo.io 8 supports TypeScript but has only 139 stars on GitHub. The documentation

of this framework contains many live examples which helps to get into it. Dojo.io has

a strong focus on its user interface so if the main topic is a good design maybe this

framework may be a good choice.

7https://glimmerjs.com/, last viewed 15 Mai 2019
8https://dojo.io/, las viewed 15 Mai 2019

25

https://glimmerjs.com/
https://dojo.io/

5
Evaluation

In this Section the three frameworks Polymer, Stencil and Vue are evaluated using the

analytical hierarchy process (AHP) [12] which is an enhanced Multiple Criteria Decision

Analysis method. With AHP it is possible to set priorities to the criteria in comparison.

This helps to decide which of the three frameworks is the best for a project.

5.1 Criteria

To evaluate frameworks, it is needed to define criteria. These criteria used in the

evaluation are split up in two groups: Weak criteria are introduced in Section 5.1.2 and

strong criteria as in Section 5.1.5. In each Subsection is explained why these criteria are

used and what exactly the meaning of each criterion is.

5.1.1 Framework Selection

These Criteria are used to sort out which framework should not be evaluated, and which

are evaluated. The frameworks which do not meet the following requirements are listed

in Section 4.4.

Target Platforms

To cover most use cases the produces Web Components should be able to run on quite

every Soft- and Hardware. Therefore, one requirement is that the framework can export

the Web Component that it can be imported in a project as a .js file. So, it is guaranteed

27

5 Evaluation

that these Web Components can be reused in large projects as in small projects, which

may not have a big hardware setup.

GitHub Stars

Another criterion to sort out some frameworks is the amount of GitHub Stars in the

Git repositories. They are a good indicator to see if a framework is good or not. The

minimum to 5.000 stars is set to make sure that the framework is either not a newcomer

or an older framework which is not used or supported anymore.

5.1.2 Weak Criteria

Here are criteria listed which have no impact on the decision itself, but their aspect is

important for selecting a good framework.

5.1.3 Ease of Setup

With all three frameworks it takes only a few steps to get them installed and running.

Every framework can be installed via NPM, they are all equal in this category.

5.1.4 Ease of Export

With all three frameworks it is quite easy to export the finished project as a Web

Component, which can be imported into another project. There are some differences in

how this has to be done which are explained in Chapter 4 at Section 4.1.3, 4.2.3 and

4.3.3.

5.1.5 Strong Criteria

In this section are the strong criteria listed and described. Those are used to compare

the three frameworks which meets the requirements of the selection criteria mentioned

in Section 5.1.1.

28

5.1 Criteria

Features

Each framework contains multiple other tools. This section lists some features which are

later compared by their importance.

1. Inheritance: Web Components are easy to reuse but if some logic has to be

changed the Web Component has to be modified. Some frameworks support

the inheritance of another component. This makes it easy if only methods or

functionality has to be changed.

2. Linter/Formatter: Writing code can be difficult. This can be supported by tools,

which helps to format the written code so that it is more readable. Linter also helps

to prevent errors by inspecting the code. This has the advantage that errors can

be detected before it gets executed. It is compared how much of these features

are available in the framework.

3. Docs generation: A programmed Web Component needs to be documented.

Each framework has its own documentation framework to generate a documen-

tation which is up to date and does not need to be updated manually. The rating

with this framework displays how easy it is to generate the docs and how good the

generated documentation is structured.

4. Testing Frameworks: Most Web Component frameworks also includes some

tools to test their components. To rate these frameworks is not easy because every

of the evaluated frameworks includes testing frameworks. To rate this criterion how

much tools the frameworks offer.

User Experience

Another important topic is the user experience. If a framework has a good user experi-

ence and the induction time is very low, the framework gets a better acceptance from

the developers. This is a very subjective criteria so the rating can be different depending

on who is asked how good or bad the user experience in his opinion is.

29

5 Evaluation

1. Easy Setup: The first initialization of a project and get a starter project running.

It depends on what it takes to get started, how many software has to be installed

and if the framework requires any special configuration.

2. Induction: Every framework is a bit different so to get into a new framework it

takes some time depending on what knowledge a dev already has and how well

the documentation of the framework is. A well-structured and documentation and

of course a easy to use concept get a better ranking.

3. Auto Recompile: This criterion represents the ability to check whenever a file

has been changed that the developer server recompiles the project and serves the

changes to the browser. Such a features saves a lot of time because there is no

need to manually recompile the project or restart the server to see the changes.

4. GUI/UI: Some developer strongly prefers a GUI in comparison to a simple user

interface on the command line. If there is a GUI like a web interface or similar

available, the framework may get accepted by more developers.

5. Ease of Export: After a Web Component is finished it needs to be exported that

it can be used in other projects. This criterion represents how easy or hard this

task is compared to the other frameworks.

Styling

This category is needed because the question, if a framework only supports plain CSS

or if the advantage of CSS Preprocessing frameworks can be used, would not fit to any

other category.

1. CSS: Does the framework support standard CSS. All Web Component frameworks

should support plain CSS, this criterion is needed because we have to compare it

with the following CSS Preprocessing criterion.

2. CSS Preprocessing: Gets a higher score depending on how many preprocessing

frameworks the framework includes. Possible frameworks would be Sass/SCSS or

Less.

30

5.1 Criteria

All criteria are sorted into categories as shown in 5.1. In the first level of the Criteria
are Features, Styling and User Experience as categories. The White criteria are on the
second level and the gray criteria are not considered for the evaluation.

Features User ExperienceStyling

Inheritance

Testing
Framework

Doc generation

Formatter Ease of setup

Induction

Auto Recompile

GUI/UI

Ease of Export

CSS

CSS
Preprocessing

Criteria

Figure 5.1: Criteria with their categories. The gray soft criteria are not evaluated

31

5 Evaluation

For the selection process specific criteria are set to decide which frameworks are

evaluated in Chapter 4.

The Framework should be able to build the Web Component as stand-alone JavaScript

Web Components so that it can be used on all platforms. The second criteria is that

the framework should have a minimum of 5k stars on GitHub because this is a good

identifier that the framework is used by many developers.

5.2 Evaluation of the Frameworks

In this section the three frameworks Polymer, Stencil and Vue are compared based on

each criterion. The results of the evaluation could differ based on of which aspect the

frameworks are evaluated. At the end of each criterion, Polymer, Stencil and Vue get

ranked based on how well they meet the criterion. This rank is later used during the

evaluation of the alternatives with AHP in Section 5.3

5.2.1 Inheritance

With Polymer the inheritance is quite easy. To inherit from a custom element, the .js

file must be included and the class extended by this element name as in Listing 5.1.
Extending from a built-in element such as the standard <button> element is not
supported now because not all browsers support this standard.
In Vue the use of an inheritance could be recreated with Mixins. It is not possible to
extend another Web Component, but some code can be included from a Mixin into
multiple Web Components.
Stencil is a bit behind because it currently does not support the inheritance. There is an
open issue on GitHub 1. Polymer fulfills the criterion the most, Vue is a bit behind but
supports an alternative and Stencil does not meet the criterion at all.

1 import {MyElment} from ’./my-element.js’;

2

3 export class ExtendedElement extends MyElement {

4 static get is() { return ’extended-element’; }

5

6 static get properties() {

1https://github.com/ionic-team/stencil/issues/1060, last viewed 15 Mai 2019

32

https://github.com/ionic-team/stencil/issues/1060

5.2 Evaluation of the Frameworks

7 return {

8 thingCount: {

9 value: 0,

10 observer: ’_thingCountChanged’

11 }

12 }

13 }

14 _thingCountChanged() {

15 console.log(‘thing count is ${this.thingCount}‘);

16 }

17 };

18

19 customElements.define(ExtendedElement.is,ExtendedElement);

Listing 5.1: Inheritance example of the Polymer documentation [13]

Rank 1 Polymer
Rank 2 Vue
Rank 2 Stencil

Table 5.1: Ranking of Inheritance

5.2.2 Linter/Formatter

Stencil does not want to support a third-party application for linting referring to a GitHub

issue 2.

Vue supports Linter/Formatter as described in 4.3.1.

Polymer has a linter included for Polymer 1, 2 and 3.x. The linting process has to

be executed through the Polymer-CLI. It uses its own rule set which focuses on Web

Components and Polymer.

The rules (polymer-1, polymer-2 or polymer-3) has to be passed to the CLI either with

the --rules flag or it can be set in the polymer.json like in Listing 5.2

2https://github.com/ionic-team/stencil/issues/163, last viewed 15 Mai 2019

33

https://github.com/ionic-team/stencil/issues/163

5 Evaluation

1 {

2 "lint":

3 {

4 "rules": ["polymer-3"],

5 "ignoreWarnings": []

6 }

7 }

Listing 5.2: Lint Rules of Polymer 3

Rank 1 Vue
Rank 2 Polymer
Rank 3 Stencil

Table 5.2: Ranking of Linter/Formatter

5.2.3 Documentation Generation

The documentation generation for Vue is currently a Work in Progress. The not finished

tool is called VuePress 3. Polymer has a good-looking HTML documentation which can

be generated as in 4.1 described. This documentation is very detailed without the need

that the developers write much comments.

Stencil can generate a documentation of methods, props in ASCII style which can be

used for e.g. a README.md as shown in 4.4. Depending on which kind of docs should

be generated, the choice is either Stencil or Polymer. The ASCII documentation seems

to fit a bit better because a short documentations often can give a better overview as

very detailed documentations.

Rank 1 Stencil
Rank 2 Polymer
Rank 3 Vue

Table 5.3: Ranking of Documentation Generation

3https://vuepress.vuejs.org/guide/#todo, last viewed 15 Mai 2019

34

https://vuepress.vuejs.org/guide/#todo

5.2 Evaluation of the Frameworks

5.2.4 Testing Frameworks

Polymer has a lot of testing frameworks. Included are Mocha, Chai, Sinon, Selenium

and Accessibility Developer Tools. Because of this wide integration of testing frameworks

Polymer has a good support of testing frameworks.

In Vue are Jest and Mocha integrated which both aim at unit testing. This is enough

for testing the frameworks, but the choice is a bit restricted due to only two integrated

frameworks.

Stencil has Jest and Puppeteer integrated. Jest is used for unit testing while Puppeteer

can be used if a browser environment end-to-end test is needed.

Rank 1 Polymer
Rank 2 Stencil
Rank 3 Vue

Table 5.4: Ranking of integrated Testing Frameworks

5.2.5 Induction

The Polymer framework has a good tutorial which inducts into its capabilities. The rest

of the documentation is well structured and does not need any extra explanation which it

is why it is easy to get started with Stencil.

At the Vue documentation on the website it is sometimes a bit hard to extract the wanted

information which maybe is because Vue is a big framework. It is not easy to present a

huge amount of information and structure it that users can find it fast. For this framework

definitively more time needs to be investigated to get into it.

The Stencil documentation is well structured. A developer gets guided through the

creation of a sample Web Component which makes it easy to get familiar with the capa-

bilities and features Stencil has. The navigation through the documentation is intuitive

and makes the induction easy.

35

5 Evaluation

Rank 1 Stencil
Rank 2 Polymer
Rank 3 Vue

Table 5.5: Ranking of Induction difficulty

5.2.6 Auto Recompile

Auto recompile is supported by all three frameworks in its core but there are some

differences in detail which can be compared.

Vue and Stencil both supports hot reload which serves the changes after saving (or

eventually recompiling) a file. The changes are visible immediately without having to

reload the whole application. This makes it easier especially for some work on the design

because there is no need to reload the page to see the effect after each change.

In Polymer this does not work because they have no hot reload included and don’t plan

to include such a feature soon as a contributor replied to a GitHub issue 4.

Rank 1
Vue
Stencil

Rank 2 Polymer

Table 5.6: Ranking of Auto Recompile

5.2.7 GUI/UI

Through the command line, all three frameworks can be controlled, which includes a

user interface e.g. to select what kind of project should be initialized.

In addition, Vue has a graphical user interface which can be accessed through the web

browser. This GUI can display some additional information in a structures way as seen

on Figure 4.5 which is a big advantage.

4https://github.com/Polymer/polymer/issues/5425,last viewed at 15 Mai 2019

36

https://github.com/Polymer/polymer/issues/5425

5.2 Evaluation of the Frameworks

Rank 1 Vue

Rank 2
Stencil
Polymer

Table 5.7: Ranking of GUI/UI

5.2.8 CSS

All three frameworks do support CSS either as an external file or only included in the

Web Component file. The need for CSS support is that a custom style can be added to

a Web Component.

All three frameworks spare Rank 1 because they support the CSS standard.

Rank 1
Stencil
Polymer
Vue

Table 5.8: Ranking of CSS

5.2.9 CSS Preprocessing

In Vue Some preprocessors like Sass/Less or Stylus can be selected during the initial-

ization of a project, they are already included. For Stencil is an official plugin available

which can be included as on their website described. The only available preprocessing

language which is supported is limited to SASS in this case. The Polymer framework

only allows nested CSS styling and does not support any preprocessing CSS frameworks

by default. Although it is possible to build a setup with it could work, Polymer gets the

latest rank because of the lack of its integration.

Rank 1 Vue
Rank 2 Stencil
Rank 3 Polymer

Table 5.9: Ranking of CSS Preprocessor support

37

5 Evaluation

5.3 AHP

The analytical hierarchy process is an advanced multi criteria decision process which

was developed by Thomas Thomas L. Saaty. Saaty tries to reduce the complexity of

the problem by setting up a hierarchical structure. This proceed can be divided into four

steps according to Saaty’s paper [12]:

1. Defining the problem.

2. Structure the problem from the top (goal) over the criteria of different levels to the

alternatives at the bottom.

3. Pairwise comparison between the elements of the same level.

4. Use the priorities obtained from the comparison to weigh the priorities below.

The problem gets well-structured because the tree hierarchy can have multiple levels.

Each criterion of the same category and level are evaluated by choosing which criterion

is more important to reach the goal. To do so the criteria are compared against each

other and one has to decide how much more he likes criterion a compared to criterion b

or if they are equal. That the results are better comparable the scale is between 1 and 9.

The exact meaning of each value is shown in Table 5.10.

38

5.3 AHP

Intensity of
Importance

Definition Explanation

1 Equal Importance Two activities contribute equally
to the objective

2 Weak or slight

3 Moderate Importance Experience and judgment
slightly favour one activity over
another.

4 Moderate plus

5 Strong importance Experience and judgment strong
favour one activity over another.

6 Strong plus

7 Very strong or demonstrated im-
portance

An activity is favoured very
strongly over another; its dom-
inance demonstrated in practice

8 Very, very strong

9 Extreme importance The evidence favouring ne activ-
ity over another is of the highest
possible order of affirmation

Reciprocals
of above

If activity i has one of the above
non-zero numbers assigned to
it when compared with activity j,
then j has the reciprocal value
when compared with i

Table 5.10: Fundamental scale of absolute numbers [12]

39

5 Evaluation

5.3.1 Criteria Weights

The goal of this decision is the Framework Selection. To get a better structure, the

criteria for the evaluation are divided into the categories Features, Styling and User

Experience.

The hierarchy tree for the weight of the strong criteria of Section 5.1.5 is shown in

Figure 5.1. To reduce the complexity of this figure, the strong criteria are included in the

categories.

Framework Selection

Features Styling
User

Experience

Polymer Stencil Vue.JS

Goal

Categories

Alternatives

Figure 5.2: Tree Hierarchy of the Framework Selection without criteria

After the criteria of the evaluation are chosen, they must be associated with some

weights. This step is mandatory because each criterion should only have an impact

based on its importance and not an equal impact as all the other criteria. The weight of

the criteria represents a specific scenario and can be different if this changes. This can

be seen in the evaluation of use cases in section 5.4.

40

5.4 Use Cases

5.4 Use Cases

In this Section are some use cases which are evaluated and as a result the one which

fits best of the three alternatives (Stencil, Polymer, Vue) is proposed.

To get started with AHP the categories and criteria needs priorities. This can be

done with the online tool BPMSG5. This online tool checks if the choices of which

criteria or alternative is better or equal than another, are consistent and displays the CR

(consistency ratio) in % and only accepts accurate votes.

Depending on the project size the requirements can be different. In the following sections

are some sample projects with different priorities on their criteria for the decision making.

5.4.1 Small Project

An example for a small project could be a static telephone book such as in Figure 5.3.

Because a telephone book can be reused several times, it is a good idea to write it as

a Web Component with a framework. In this case three frameworks are used for this

telephone book. To find the best one, one has to decide which criteria are important.

The importance of the different criteria is a bit subjective so it could be that this vary

from person to person. One possible resulting decision hierarchy and its priorities are

shown in Figure A.4. In each Level are the local priorities respective to its level in the

hierarchy listed with a green background color. On the right side are the global priorities

for each criterion. The darker the green background of a priority is, the more important

is this criterion.

The next step is to combine the Decision History with the already discussed ranking of

the frameworks for each criterion (subsection 5.1.5). The result is close, but Stencil is on

rank 1 with 35.4%, Polymer on Rank 2 with 32.9% and Vue ends on rank 3 with 31.6%

as on Figure 5.4.

5https://bpmsg.com/academic/, last viewed 15 Mai 2019

41

https://bpmsg.com/academic/

5 Evaluation

Figure 5.3: An Example Project of a Telephone Book using Web Components.

Figure 5.4: Rank of the Alternatives for this small project

42

5.4 Use Cases

5.4.2 Medium Project

A further use case could be a calendar which allows to add, modify and delete some

events. Therefore, more functionality has to be implemented into the Web Component.

The requirements change a little bit different and the priorities changes.

The estimated priorities for such an project are shown in Figure A.5. As seen in this

figure, not only the priorities of the criteria itself has changed but also the priorities of the

categories (Features, Styling, User Experience).

Compared to the small project the priorities do not significantly change. As a result, the

Stencil Framework in the first choice with 34.7%, Polymer with 24.8% on rank 2 and Vue

is on rank 3 with 32.4% as shown in Figure 5.5.

Figure 5.5: Possible Decision Hierarchy for a large project

43

5 Evaluation

5.4.3 Large Project

For the large project the priorities must been calculated again because the importance of

the criteria changes. As an example, the large project is about writing a Web Component

which is an editor for Java code with syntax highlighting and the ability to load and

exchange the code between the editor and a backend for further processing. Because

the size is increasing the importance of a formatter, CSS Preprocessing and Auto

Recompile are increasing. Other criteria are noticeable lower in importance such as the

Doc generation, Induction and GUI/UI.

As shown in Figure A.6 the Formatter, CSS Preprocessing and Auto Recompile criteria

have a higher priority and as a result the importance of the Doc generation, Induction

and GUI/UI is lower.

The next step is to combine the Decision History with the already discussed ranking of

the frameworks for each criterion (subsection 5.1.5). The result is not as close as the

small project. For this large project the decision is quite clear. Vue is on rank 1 with

40.7%, Polymer on Rank 2 with 30.3% and Stencil ends on rank 3 with 31.6% as shown

in Figure 5.6. Vue offers the most desired functionality and is with a minimum of 10%

ahead of the other frameworks.

Figure 5.6: Rank of the Alternatives for the sample large project

44

5.5 Conclusion

5.5 Conclusion

After this evaluation it is possible to say that there is no overall framework which the best

for all use cases is. For the small and medium project Stencil ranked first with Polymer

and Vue only close behind, Vue dominated the ranking for the large project.

Although for small and medium projects Stencil is on the first rank, all three frameworks

are a good choice because they cover the required functionality. As a result, if the

priorities only get changed a bit, the result changes that another framework is on the

first rank. Referring to the result of the large project, the decision is quite clear. Vue has

the most features which makes it a good choice. Especially if some criteria are changed,

the decision should be Vue because it is far ahead of Stencil and Polymer.

45

6
Summary

Web Component frameworks are a good tool to help developers with the creation of Web

Components. There are many various frameworks available and if a developer wants to

start a project, he first needs to check which framework should be chosen for his project.

With the result of this paper the decision should be easier. The introduced frameworks

are all good candidates for the development if the project size is small or medium. Only

for bigger projects is a significant difference in the selection of the framework notable.

As in the field of computer science everything changes fast, these decisions are not

final. To make further evaluations easier, it is also possible to take the used criteria as

a pattern for another evaluation of Web Component frameworks. Not all frameworks

are introduced in this thesis because only selected frameworks are introduced and

considered for the evaluation. It is possible to do the research again under different

criteria for the framework selection or further use cases.

In this thesis are the importance of the criteria estimated. So it is also possible to make

these decisions more accurate and evaluate the medium and large sized projects again

with projects as a reference. Based on this thesis, the accuracy of the estimated weights

of the criteria can be increased if multiple people submit their choice on the online

calculator BPMSG 1. Then the average of the weights can be used for the evaluation.

Another approach of the evaluation can be considered. Although the analytical hierarchy

process is a well-structured evaluation method, it is possible that other approaches can

lead to a different result.

1https://bpmsg.com/academic/, last viewed 15 Mai 2019

47

https://bpmsg.com/academic/

Bibliography

[1] chrisdavidmills, bminard, b.o.M.s.s.j.a.E.B.s.e.d.S.T.S.a.n.d.j.z.i.S.J.c.B.D.f.O.w.j.m.r.t.t.S.m.k.:

Web components | mdn. https://developer.mozilla.org/en-US/docs/

Web/Web_Components (2019) last viewed 15 Mai 2019.

[2] mdnwebdocs bot, bminard, m.s.v.n.a.c.E.B.b.S.D.a.j.u.s.: Using shadow dom - web

components | mdn. https://developer.mozilla.org/en-US/docs/Web/

Web_Components/Using_shadow_DOM (2019) last viewed 15 Mai 2019.

[3] Hixie, I.H.G.U.: Html standard - custom elements. https://html.spec.whatwg.

org/multipage/custom-elements.html#custom-elements (2019) last

viewed 15 Mai 2019.

[4] Bidelman, E.: Custom elements - rules by developers.google.com. https:

//developers.google.com/web/fundamentals/web-components/

customelements (2019) last viewed 15 Mai 2019.

[5] Schlueter, I.Z.: Npm docs. https://docs.npmjs.com/about-npm/ (2019)

last viewed 15 Mai 2019.

[6] Ayağ, Z., Özdemir, R.G.: A fuzzy ahp approach to evaluating machine tool alterna-

tives. Journal of Intelligent Manufacturing 17 (2006) 179–190

[7] Schwer, D.: Strukturierter vergleich aktueller frameworks zur entwicklung mo-

biler anwendungen. Bachelor’s thesis, Universität Ulm, http://dbis.eprints.

uni-ulm.de/1586/ (2019) last viewed 15 Mai 2019.

[8] Keller, R.: Vergleich von MV* Frameworks der Skriptsprache JavaScript.

Bachelor’s thesis, Hochschule Mittweida, https://monami.hs-mittweida.

de/frontdoor/deliver/index/docId/8480/file/Bachelorarbeit_

Normal_Farbe_RobertKeller_M31567.pdf (2016) last viewed 15 Mai 2019.

49

https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://developers.google.com/web/fundamentals/web-components/customelements
https://developers.google.com/web/fundamentals/web-components/customelements
https://developers.google.com/web/fundamentals/web-components/customelements
https://docs.npmjs.com/about-npm/
http://dbis.eprints.uni-ulm.de/1586/
http://dbis.eprints.uni-ulm.de/1586/
https://monami.hs-mittweida.de/frontdoor/deliver/index/docId/8480/file/Bachelorarbeit_Normal_Farbe_RobertKeller_M31567.pdf
https://monami.hs-mittweida.de/frontdoor/deliver/index/docId/8480/file/Bachelorarbeit_Normal_Farbe_RobertKeller_M31567.pdf
https://monami.hs-mittweida.de/frontdoor/deliver/index/docId/8480/file/Bachelorarbeit_Normal_Farbe_RobertKeller_M31567.pdf

Bibliography

[9] Kornher, M.: Analyse und Vergleich von WebGLFrameworks. Bachelor’s thesis,

Eberhard Karls Universität Tübingen, https://moritzkornher.de/files/

kornher_analyse_und_vergleich_von_webgl-frameworks.pdf (2013)

last viewed 15 Mai 2019.

[10] katejeffreys, G.U.: Polymer docs. https://polymer-library.

polymer-project.org/3.0/docs/ (2019) last viewed 15 Mai 2019.

[11] Josh Thomas, Jakub Mikulas, K.P.A.B.: Stencil website - getting started. https:

//stenciljs.com/docs/my-first-component/ (2019) last viewed 15 Mai

2019.

[12] Saaty, T.L.: Decision making with the analytic hierarchy process. International

journal of services sciences 1 (2008) 83–98

[13] katejeffreys, A.E.: Polymer devguide custom elements. https:

//polymer-library.polymer-project.org/3.0/docs/devguide/

custom-elements (2019) last viewed 15 Mai 2019.

50

https://moritzkornher.de/files/kornher_analyse_und_vergleich_von_webgl-frameworks.pdf
https://moritzkornher.de/files/kornher_analyse_und_vergleich_von_webgl-frameworks.pdf
https://polymer-library.polymer-project.org/3.0/docs/
https://polymer-library.polymer-project.org/3.0/docs/
https://stenciljs.com/docs/my-first-component/
https://stenciljs.com/docs/my-first-component/
https://polymer-library.polymer-project.org/3.0/docs/devguide/custom-elements
https://polymer-library.polymer-project.org/3.0/docs/devguide/custom-elements
https://polymer-library.polymer-project.org/3.0/docs/devguide/custom-elements

A
Sources

In this chapter are the inputs of the online AHP application.

After the decision tree without weights, for each framework are two screenshots included.

The first has the Weights for each criteria included, the second has the local weights for

each alternative.

1 Framework Selection: Features, Styling, User Experience;

2 Features: Formatter, Inheritance, Testing Framework, Doc generation;

3 Styling: CSS, CSS Preprocessing;

4 User Experience: Induction, Auto Recompile, GUI/UI;

Listing A.1: Decision Tree without Weights

1 Framework Selection: Features=0.45454545, Styling=0.09090909,

2 User Experience=0.45454545;

3 Features: Formatter=0.10960877, Inheritance=0.38365255,

4 Testing Framework=0.07715541, Doc generation=0.42958326;

5 Styling: CSS=0.5, CSS Preprocessing=0.5;

6 User Experience: Induction=0.41260224, Auto Recompile=0.32747652,

7 GUI/UI=0.25992124;

Listing A.2: Decision Tree with Weights for the Small Project

51

A Sources

Figure A.1: Snippet of the .csv of the Small Project with its Weights and Priorities

1 Framework Selection: Features=0.44444444, Styling=0.11111111,

2 User Experience=0.44444444;

3 Features: Formatter=0.17515158, Inheritance=0.30677294,

4 Testing Framework=0.13458121, Doc generation=0.38349427;

5 Styling: CSS=0.5, CSS Preprocessing=0.5;

6 User Experience: Induction=0.41260224, Auto Recompile=0.32747652,

7 GUI/UI=0.25992124;

Listing A.3: Decision Tree with Weights for the Medium Project

Figure A.2: Snippet of the .csv of the Medium Project with its Weights and Priorities

52

1 Framework Selection: Features=0.42857143, Styling=0.14285714,

2 User Experience=0.42857143;

3 Features: Formatter=0.34751743, Inheritance=0.38284545,

4 Testing Framework=0.14202197, Doc generation=0.12761515;

5 Styling: CSS=0.2, CSS Preprocessing=0.8;

6 User Experience: Induction=0.1743726, Auto Recompile=0.63370595,

7 GUI/UI=0.19192145;

Listing A.4: Decision Tree with Weights for the Large Project

Figure A.3: Snippet of the .csv of the Large Project with its Weights and Priorities

53

A Sources

Figure A.4: Decision Hierarchy for the sample project ’Telephone Book’

Figure A.5: Possible Decision Hierarchy for a large project54

Figure A.6: Possible Decision Hierarchy for a large project

55

List of Figures

2.1 Redawn Shadow Tree inside the DOM from [2] 6

2.2 Clean <audio> Tag which has to be written by the developer 7

2.3 Audio element with a part of it’s Shadow DOM expanded 7

2.4 HTML template for a list of users . 9

2.5 Code to use the HTML template and fill it with data 9

2.6 The rendered page . 9

4.1 Generated doc for the properties. 16

4.2 Generated doc for some methods. 17

4.3 Structure of a simple Polymer-3 application 18

4.4 Auto Generated Readme.md with a List of Used Properties. 20

4.5 UI Shows Serving a Project . 22

4.6 Feature selection with the Vue CLI. 23

5.1 Criteria with their categories. The gray soft criteria are not evaluated . . . 31

5.2 Tree Hierarchy of the Framework Selection without criteria 40

5.3 An Example Project of a Telephone Book using Web Components. 42

5.4 Rank of the Alternatives for this small project 42

5.5 Possible Decision Hierarchy for a large project 43

5.6 Rank of the Alternatives for the sample large project 44

A.1 Snippet of the .csv of the Small Project with its Weights and Priorities . . 52

A.2 Snippet of the .csv of the Medium Project with its Weights and Priorities . 52

A.3 Snippet of the .csv of the Large Project with its Weights and Priorities . . 53

A.4 Decision Hierarchy for the sample project ’Telephone Book’ 54

A.5 Possible Decision Hierarchy for a large project 54

A.6 Possible Decision Hierarchy for a large project 55

57

List of Tables

5.1 Ranking of Inheritance . 33

5.2 Ranking of Linter/Formatter . 34

5.3 Ranking of Documentation Generation . 34

5.4 Ranking of integrated Testing Frameworks 35

5.5 Ranking of Induction difficulty . 36

5.6 Ranking of Auto Recompile . 36

5.7 Ranking of GUI/UI . 37

5.8 Ranking of CSS . 37

5.9 Ranking of CSS Preprocessor support . 37

5.10 Fundamental scale of absolute numbers [12] 39

59

Name: Stefan Engelmayer Matriculation number: 869566

Honesty disclaimer

I hereby affirm that I wrote this thesis independently and that I did not use any other

sources or tools than the ones specified.

Ulm, .

Stefan Engelmayer

	Introduction
	Fundamentals
	Web Components
	Concepts and Usage

	Languages
	NPM
	Testing

	Related Work
	Web Component Frameworks
	Polymer
	Features
	First Steps
	Export

	Stencil
	Features
	First Steps
	Export

	Vue.JS
	Features
	First Steps
	Export

	Additional Frameworks
	Hybrids
	SkateJS
	SlimJS
	Glimmer
	Dojo.io

	Evaluation
	Criteria
	Framework Selection
	Weak Criteria
	Ease of Setup
	Ease of Export
	Strong Criteria

	Evaluation of the Frameworks
	Inheritance
	Linter/Formatter
	Documentation Generation
	Testing Frameworks
	Induction
	Auto Recompile
	GUI/UI
	CSS
	CSS Preprocessing

	AHP
	Criteria Weights

	Use Cases
	Small Project
	Medium Project
	Large Project

	Conclusion

	Summary
	Sources

