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Abstract—Smart devices and low-powered sensors are be-
coming increasingly ubiquitous and nowadays almost all of
these devices are connected, which is a promising foundation
for crowdsensing of data related to various environmental
phenomena. Resulting data is especially meaningful when it
is related to time and location. Interestingly, many existing
approaches built their solution on monolithic backends that
process data on a per-request basis. However, for many
scenarios, such technical setting is not suitable for managing
data requests of a large crowd. For example, when dealing with
millions of data points, still many challenges arise for modern
smartphones if calculations or advanced visualization features
must be accomplished directly on the smartphone. Therefore,
the work at hand proposes an architectural design for manag-
ing geospatial data of tinnitus patients, which combines a cloud-
native approach with Big Data concepts used in the Internet
of Things. The presented architectural design shall serve as
a generic foundation to implement (1) a scalable backend
for a platform that covers the aforementioned crowdsensing
requirements as well as to provide (2) a sophisticated stream
processing concept to calculate and pre-aggregate incoming
measurement data of tinnitus patients. Following this, this
paper presents a visualization feature to provide users with a
comprehensive overview of noise levels in their environment
based on noise measurements. This shall help tinnitus or
hearing-impaired patients to avoid locations with a burdensome
sound level.

Keywords-mHealth; crowdsensing; tinnitus; geospatial data;
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I. INTRODUCTION

When utilizing mobile crowdsensing for environmental
phenomena like (urban) noise pollution, beneficial insights
for health-conscious people can be revealed. This is espe-
cially true for humans with chronic diseases like tinnitus [5],
[6]. Noise exposure is one example that affects tinnitus
patients in their daily life. Being able to tell which places are
above a certain threshold in terms of the average loudness,
would make it possible to avoid these places and therefore

unhealthy noise exposure. Smartphones as well as station-
ary sensors in public places can be used to collect noise
measurements and store them to a central backend, which
calculates averages and delivers the aggregated data back to
the smartphones of the users. Then, for example, the received
data can be used to highlight places with an unhealthy noise
exposure by proper visualization features. However, in order
to provide high scalability and the ability to store, aggregate,
and deliver geospatial data in an efficient way, conven-
tional approaches using monolithic backends and classical
relational databases are not suitable. Taking such scenarios
into account, we conceived an architectural design for a
crowdsensing platform that utilizes a cloud-native approach,
combined with Big Data and stream processing concepts.
The architectural design and the implemented prototype
show that still mHealth crowdsensing scenarios exist for
which no proper technical settings can be found. On the
other, the work at hand shows that geospatial crowdsensing
data can be valuable for tinnitus patients in their daily life.
Note that a general treatment does not exist for tinnitus
patients and they crave for any valuable method to better
cope with their symptoms. Therefore, the work at hand aims
to utilize the power of the crowd to create helpful noise level
maps of a region. To conclude, the contributions of this work
are:

• By using geospatial mobile crowdsensing data of tinni-
tus patients, a visualization feature can be established
that shows noise exposure regions on a map. Patients
can use this map to avoid burdensome places.

• An architectural design is proposed that enables the
addressed scenario in an efficient manner. In particu-
lar, the proposed mobile context enables efficient data
calculations for the visualization feature.

• The architectural design shall serve as a foundation for



other related mHealth scenarios.
The remainder of this paper is organized as follows.

In Section II, relevant related work is presented, while
Section III discusses required background information. The
architectural design is presented in Section IV. Its peculiar-
ity, the measurement context, is then discussed in Section
V. Insights and impressions into the implementation are
presented in Section VI, whereas Section VII concludes the
paper with a summary and an outlook.

II. RELATED WORK

Mobile crowdsensing platforms for urban sensing and
crowdsensing-based noise maps have been already con-
sidered. The authors of [1] apply a participatory sensing
approach using an Android application and an urban sensing
platform to enhance the spatial and temporal data resolution
of noise pollution in cities. The mobile application leverages
the smartphones’ microphones and GPS-sensors to perform
location-related noise measurements and sends this data to
an open urban sensing platform. Users can then access this
data and generate real-time noise maps and data graphs.
[2], in turn, uses crowdsensing with Android devices for
a noise monitoring platform and acoustic urban planning in
smart cities. A web-based visualization application is able to
suggest certain noise reduction interventions to city planners
and helps them to meet European laws and regulations. Both
platforms, however, offer no visualization of the measured
noise data directly on the mobile application and focus
on web-based approaches, where scalability, data quota,
and energy consumption are not a priority. Crowdsensing
architectures that deal with efficiency and context-awareness
have been also proposed in the past [3]. The aggregation of
sound measurements in the mHealth context, in turn, was not
addressed by these approaches. Crowdsensing platforms that
leverage their opportunities for chronic disorders, especially
for the tinnitus disease, have already been proven their fea-
sibility [4], [5], [6]. However, to the best of our knowledge,
none of the existing tinnitus approaches consider geospatial
data in combination with crowdsensing as we do in the work
at hand.

III. BACKGROUND INFORMATION

Mobile crowdsensing is a paradigm that becomes more
and more prevalent in the mHealth context [4], [7]. In combi-
nation with Ecological Momentary Assessments (EMA) [8],
it has shown to be able to reveal new medical insights [5],
[6]. As an example, we developed TrackYourTinnitus (TYT),
a mobile crowdsensing platform for the tinnitus disease [4].
Tinnitus can be described as the phantom perception of a
sound. The symptoms, in turn, are subjective and vary over
time. Hence, TYT was realized to monitor and evaluate the
variability of symptoms over time based on EMA and mobile
crowdsensing. Importantly, tinnitus is a chronic disorder
with a high economic burden; 10 − 15% of the population

worldwide suffer from tinnitus. As a general treatment does
not exist, patients crave for any valuable experiences and
methods to better cope with their symptoms in daily life.
One counter measurement constitutes the avoidance of loud
locations as it is reported that often after a concert, patients
suddenly get a tinnitus or their already existing symptoms
get worse. Therefore, this projects aims to exploit the power
of the crowd to create noise level maps of a region. Users
shall be enabled to measure the current sound level using
their smartphones and mobile crowdsensing techniques. If
such noise levels maps can be established with a high
reliability, then tinnitus patients may use the map to avoid
loud locations.

Designing a crowdsensing platform that is able to collect,
process, store, and deliver data for these types of applications
comes with several challenges. First, the platform should be
able to handle many concurrent requests for both incoming
and outgoing measurement data without a loss of perfor-
mance. Therefore, it should be scalable and, in the best
case, also elastic. Second, the platform should be able to
efficiently process geospatial data, with potentially millions
of data points. In general, computations on geospatial data
are a complex endeavour due to costly operations on fine-
grained coordinates in order to aggregate geographically and
hierarchically related data. As a consequence, it is important
to choose an efficient concept for indexing and aggregation
of geospatial data. Third, the platform should be conceived
in a generic way so that it is able to handle different kinds
of geospatial crowdsensing data (e.g.; noise pollution, air
pollution, or traffic information).

IV. TECHNICAL APPROACH

First of all, Table I shows the core functions that were
identified for the mobile crowdsensing platform enabling a
noise level map for tinnitus patients. During the requirements
analysis, we identified that each function should be bounded
to a context. Following this, we can develop respective
microservices that can be flexibly changed if new context
requirements occur. Therefore, each function in Table I is
mapped to one of the five identified bounded contexts User
Identity, Social, Measurements, Incentives, Communication,
and Sensors. Although a bounded context is technically
represented through a microservice, it can become necessary
to use more than one microservice for a bounded context.
Therefore, the platform supports different patterns to tech-
nically represent a bounded context through microservices.

In order to enable a scalable and efficient processing
of concurrent noise measurement requests, we focus on a
cloud-native approach. A cloud-native application (CNA) is
intentionally designed to be operated in the cloud. There-
fore, such application is by design distributed, elastic, and
horizontally scalable. Furthermore, it is composed of mi-
croservices with a minimum of isolated states [9]. In our
prototypical implementation, we use different microservices



# Function Bounded Context
1.1 Let users register and authenticate

with the backend.
User Identity

1.2 Let users change their password
and provide lost-password recov-
ery.

User Identity

1.3 Let users deactivate and delete their
user account.

User Identity

2.1 Let users maintain a User Profile
with personal information.

Social

2.2 Let users join groups and start, fol-
low and contribute to discussions.

Social

2.3 Provide geospatial relations of
groups and discussions.

Social

2.4 Trigger a notification to the user
on new contributions in subscribed
discussions or subscribed areas of
interest.

Social

3.1 Collect measurements provided by
smartphones and other IoT-devices
and streamline them as a common
input stream.

Measurements

3.2 Aggregate the measurements to
provide min-, max-, and average
values within certain geospatial ar-
eas and time-based windows.

Measurements

3.3 Allow geospatial request filtering
by specifying the area of interest
and time windows.

Measurements

3.4 Allow access to single stored mea-
surements with a pagination like
limitation for the number of results.

Measurements

3.5 Provide an API that returns the
results in a common geospatial for-
mat to allow straightforward visu-
alization features with commonly
used frontend technologies.

Measurements

4.1 Track user contributions for autho-
rization of additional functionality
and to provide a feature that users
can evaluate their progress.

Incentives

4.2 Maintain awards and streaks for
certain achievements that motivate
users to continue in contributing
measurements.

Incentives

5.1 Inform users about certain events
via email.

Communication

5.2 Inform users about certain events
via push-notifications.

Communication

5.3 Let the user define preferences for
the type of events he or she likes
to be informed.

Communication

6.1 Manage meta-information about
statically deployed sensors.

Sensors

Table I: Core business capabilities of the platform mapped
to bounded contexts

with Docker1 as container technology and Kubernetes2 as
orchestration system. We combine the cloud-native approach
with a stream processing in order to enable decoupled pro-
cessing of incoming geospatial data. Stream processing is a
programming paradigm, for which data is continuously read
from an unbounded dataset (stream) in an asynchronous,

1https://www.docker.com/
2https://kubernetes.io/

non-blocking manner [10]. We use the Kafka Streams library
as stream processing implementation due to its compatibility
to Apache Kafka3. Apache Kafka is a publish and subscribe
messaging system that allows for publishing generic types of
(stream) data. Thereby, services can publish certain events
to Kafka Topics and every interested service can act as a
consumer that polls messages from such topics [10]. In order
to tackle the challenges of an efficient storage, processing,
and hierarchical aggregation of geospatial data, we make use
of the Discrete Global Grid Systems (DGGS). ”A DGGS is a
spatial reference system that uses a hierarchical tessellation
of cells to partition and address the globe”, as defined by
the Open Geospatial Consortium (OGC) [11]. The system
represents a series of discrete global grids, where each grid
encompasses an increasing number of cells with respect to
its predecessor grid and therefore having a finer resolution.
DGGSs come with the advantage that they cover the whole
spherical surface of the earth and can therefore be used to
partition data collected anywhere on the planet. We further
use Uber’s Hexagonal Hierarchical Spatial Index (H3)4 as a
DGGS implementation, which allows to represent the same
data efficiently in differently sized buckets, which, in turn,
is important in order to aggregate (and visualize) data on
different scales. Note that H3 allows us to determine in
which bucket a specific geospatial location has to be placed
and, inversely, to calculate the boundary of each bucket if
we know its index.

The overall architecture of the platform is shown in Fig. 1.
The central Measurement API Services handle incoming
measurements from mobile devices and forward them to the
stream processing with Apache Kafka. Internet of Things
(IoT) sensors can contribute their data directly to Kafka
via the Message Queuing Telemetry Transport (MQTT)
protocol. The other services consume raw or transformed
measurement data through these services. This process is
described in detail in Section V. The Authentication Services
handle user authentication and user authorization for all
other services that are access-restricted. Sensor as well as
social, incentive, and communication data are stored inde-
pendently and managed through their respective services.

V. MEASUREMENT CONTEXT

This section discusses the measurement context. The
latter is of utmost important and key factor to create a
noise level map. To be more precise, mainly the question
emerges in what way noise measurements should be repre-
sented and aggregated in an efficient manner. First of all,
Fig. 2 shows the elaborated document-based (NoSQL) data
model for noise measurements used for the Measurement
Context. Measurements and aggregations are modeled as
GeoJSON [12] Simple Features using Type, Geometry, and

3https://kafka.apache.org/
4https://eng.uber.com/h3/
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Figure 1: Architecture of the crowdsensing platform. The
components depicted in orange are part of the proof-of-
concept implementation

Property attributes for better compatibility with different
geo-libraries and data-storage in MongoDB5. Note that the
latter inherently supports indexing of GeoJSON structures.
Each noise measurement is assigned with an unique id, and
additionally geo-indexed using the H3 library. Measurement
payload is stored in Properties, containing – amongst other
attributes – the type sensor and trigger of the measurement
and one or multiple Measurement Types (e.g., different noise
measurements like LAeq, LCPeak and TWA [13]). One such
type can be either related to a single measurement, in which
case only type and value are of relevance, or it can be related
to an AverageFeature, for which minimum, maximum, mean,
and count values are stored. AverageFeature is used to
store aggregations for a specific geographical area (i.e.,
a hexagon), and over a specific time span. For privacy
reasons, any user-related data is stored separately from the
measurement data.

The realized data flow of measurements in the Measure-
ment Context is shown in Fig. 3.

Steps 1–4 represent the Data Ingress Phase, which are
briefly introduced: In Step 1, the mobile application sends its
measurement records to an endpoint of the Ingress Service,
whereas in Step 2, the records are checked for validity and
the endpoint handler attaches timestamps as well as a userid
(if the user is authenticated). In Step 3, the measurement is

5https://www.mongodb.com/
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Figure 2: Data Model for Noise Measurements

published to the Kafka topic noise-raw-measurements, while
in Step 4, a confirmation message is sent to the mobile appli-
cation if the measurement is valid. Following this, the Stream
Processing Phase is accomplished in Apache Kafka in Steps
5–12, which are discussed in the following: In Steps 5–7,
the Preparator is processing all messages from the noise-
raw-measurements topic, validates the measurements, and
anonymizes them for privacy reasons. Additionally, a H3-
index with the resolutions 10 (smallest) and 5 (intermediate)
is calculated for the coordinates of the measurements. The
indexed and anonymized data is then published to new Kafka
topics. In Steps 8–10, the Aggregator is taking the data from
the previous steps as input and calculates averages for the
different resolutions and different time-windows. A time-
window is defined by a window-length (e.g., 15 minutes)
and a retention-time (i.e., how long the window is refreshed
if measurements arrive late). Averages are calculated with
respect to the logarithmic scale of decibels and, once again,
published to different Kafka topics. In Steps 11–12, in order
to allow for an efficient querying of the produced results in
partitioned topics in the Kafka Cluster, their data is persisted
to a MongoDB with Kafka Connect. Finally, data is accessed
and prepared for visualization in the Data Access Phase in
Steps 13–17, which do the following: In Step 13, the mobile
applications sends a request to the RESTful API of the
Access Service for a specified H3 resolution, time-window,
and geo-boundary; In Step 14, optionally, authorization is
performed for access-restricted routes, while in Step 15,
data is loaded from the corresponding databases, making
use of MongoDB’s geospatial indexes. In Step 16, final
aggregations are performed if the requested data is not
already pre-aggregated and privacy filters are applied (e.g.,
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Figure 3: Data Flow of Noise Measurements

to specify that only the user itself can see his or her own
raw measurements). Finally, in Step 17, data is sent back to
the mobile application for visualization purposes.

VI. PROOF-OF-CONCEPT PROTOTYPE

We implemented a proof-of-concept prototype, which is
briefly discussed in the following. Selected screenshots of
the prototype are shown in Fig. 4. The mobile application
(see Fig. 4a) shows the current sound level in A-weighted
decibels (i.e., dB(A)). Noise measurements can be performed
by pressing the Measure button. The Equivalent continuous
A-weighted sound level (LAeq) and the C-weighted peak
sound level (LCpeak) are (1) then calculated over a time
period of 30 seconds, (2) displayed to the user, and (3)
finally sent to the backend (either directly or delayed if
there is currently no connection to the server). The backend
handles these measurements as described in Section V. Both
the mobile application and a website (see Fig. 4b) are then
able to access aggregations for different zoom levels (i.e.,
different H3 resolutions). Following this, the mobile app or
the website can provide a proper visualization to the user,
indicating the noise exposure for a certain area by the use
of a color gradient between harmless (green) and harmful
(red).

Currently, the proof-of-concept prototype is tested with
users in the region of Ulm, Germany. First results indicate
that users like the application and see its benefits. However,
for the mobile application side, at present, we solely imple-
mented an iOS mobile application. Therefore, an Android
application must be developed as well. The reason why
we opted only for iOS for the first release is related to
the fact that noise measurements are more reliable on iOS

with respect to the analysis and interpretation phases. As
Android implies several hardware vendors compared to iOS,
the evaluation of collected microphone results might differ
among different Android vendors and therefore becomes
more complex. However, the integration of Android smart-
phones will be a crucial future step to represent the majority
of smartphone users. Moreover, the iOS app will be revised
based on the feedback of the users as well as new features
will be added. Regarding the latter, for the first version of the
app, features like incentives were not realized. Additionally,
large-scale performance tests are needed in order to evaluate
the scalability results of the platform.

VII. SUMMARY AND OUTLOOK

This work presented an approach for a mobile crowd-
sensing platform that is able to process noise measurements
of crowd users and their smartphones with the goal to
establish a noise level map. The calculated map indicates
noise exposure for a certain area by the use of a color system
and zoom levels. The latter become possible through our
conceived measurement context that stores and aggregates
noise measurements by the use of a sophisticated stream
processing pipeline. Based on a proof-of-concept prototype,
first study results indicate that users welcome the overall
procedure and usability of the platform. However, we also
discussed technical improvements that must be addressed to
finally provide a technical solution that can be reliably used
in different practical scenarios. Additionally, in order to eval-
uate the scalability of the system, large-scale performance
tests in comparison to state-of-the-art architectures should
be performed. In the context of the tinnitus disease, the
discussed solution may help patients to avoid burdensome



(a) Mobile application (b) Website

Figure 4: Screenshots of the mobile application and the website showing the noise level map

places based on the noise level map. While using the proof-
of-concept prototype in practice, many more useful features
could be revealed for tinnitus patients. For example, users
want to fill out a tinnitus-related questionnaire when accom-
plishing a noise measurement. Based on these information,
users want to retrospectively relate their recorded noise lev-
els with data of the tinnitus questionnaire to learn more about
their daily tinnitus fluctuations. From a technical perspective,
the realization of the discussed features show that a complex
technical architecture and infrastructure are needed. The
resulting solution, in turn, can be utilized in other mHealth
context as well. For example, in the context of migraine,
weather-related factors could be measured. Altogether, we
see mobile crowdsensing still in its infancy for scenarios in
the mHealth context. On the other, approaches like shown
in this work indicate that mobile crowdsensing can be a
promising technology for mHealth scenarios.
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