Available online at www.sciencedirect.com

ScienceDirect PI"OCEdiG

Computer Science

&

o @y
ELSEVIER Procedia Computer Science 00 (2019) 000-000

www.elsevier.com/locate/procedia

The 16th International Conference on Mobile Systems and Pervasive Computing (MobiSPC)
August 19-21, 2019, Halifax, Canada

The AREA Algorithm Framework Enabling Location-based Mobile
Augmented Reality Applications
Marc Schickler®*, Manfred Reichert?®, Philip Geiger?, Micha Weilbach?, Riidiger Pryss*

“Ulm University, Institute of Databases and Information Systems, James-Franck-Ring 1, Ulm, 89081, Germany

Abstract

The dramatically increased computational capabilities of mobile devices have leveraged the opportunities for mobile application
engineers. Respective scenarios, in which these opportunities can be exploited, emerge almost per day. In this context, mobile
augmented reality applications play an important role in many business scenarios. In the automotive domain, they are mainly used
to provide car customers with new experiences. For example, customers can use their own mobile device to experience the interior
of a car by moving the mobile device around. The device’s camera then detects interior parts and shows additional information
to the customer within the camera view. Although the computational capabilities have been increased, the realization of such
mobile augmented reality applications is still a complex endeavor. In particular, the different mobile operating systems and their
peculiarities must be carefully considered. In the AREA (Augmented Reality Engine Application) project, a powerful kernel was
realized that enables location-based mobile augmented reality applications. This kernel, in turn, mainly focuses on robustness
and performance. In addition, it provides a flexible architecture that fosters the development of individual location-based mobile
augmented reality applications. As many aspects have to be considered to implement individual applications based on top of AREA,
this paper provides the first comprehensive overview of the entire algorithm framework. Moreover, a recently realized algorithm
and new features will be presented. To demonstrate the applicability of the kernel, its features are applied in the context of various
mobile applications. As the major lesson learned, powerful mobile augmented reality applications can be efficiently run on present
mobile operating systems and be effectively realized by engineers using AREA. We consider such mobile frameworks as being
crucial to provide more generic concepts that are able to abstract from the peculiarities of the underlying mobile operating system
and to support mobile application developers more properly.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Mobile Augmented Reality; Location-based Algorithms; Mobile Application Engineering; Mobile Augmented Reality Algorithms

* Corresponding author. Tel.: +49-731-50-24-230 ; fax: +49-731-50-24-134.
E-mail address: marc.schickler @uni-ulm.de

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Author name / Procedia Computer Science 00 (2019) 000-000

1. Introduction

Mobile augmented reality applications become more and more useful for many existing IT solutions used in every-
day life [29, 16]. However, the development of this application type in a robust and reliable manner is still challenging.
Most importantly, the peculiarities of the different mobile operating systems must be properly addressed, including
their frequent update cycles. In addition, mobile device vendors continuously enhance the technical capabilities of
their products (e.g., by adding new sensors). As these enhancements often enable new applications or ease the im-
plementation of existing applications, it is compelling for the mobile application developers to learn more about any
changes very quickly. Therefore, generic concepts are highly welcome to abstract from the peculiarities of the un-
derlying mobile operating system in the best possible way. In the AREA (Augmented Reality Engine Application)
project, a kernel was developed that enables location-based mobile augmented reality applications. AREA considers
the aforementioned aspects and is based on four fundamental pillars. First, the kernel shall provide the same features
on Android and iOS. Second, the kernel shall enable robust and powerful mobile applications. Third, it shall be easily
possible to integrate new features into the kernel. Fourth, mobile application developers shall be enabled to easily
create their own location-based mobile augmented reality applications on top of AREA. The latter aspect is enabled
through a modular design of the AREA kernel. Note that in-depth information to the modular design principles of
AREA can be found in [24, 25]. In addition, the latter works, as well as the works shown in [30, 7, 6, 26], discuss in
what way AREA deals with the peculiarities of the different mobile operating systems. This work, in turn, contributes
with respect to three other aspects. It is the first work that provides a comprehensive overview of all algorithms devel-
oped in AREA. As the second contribution, it discusses a new feature that was recently realized on top of the existing
algorithms. Third, AREA will be compared to ARKit. The latter was recently released by Apple and pursues the same
goal as AREA: Mobile application developers shall be enabled to easily create their own applications on top of ARKit.
Therefore, we compare the functions of ARKit with AREA.

The remainder of this paper is organized as follows. Section 2 presents an overview of the algorithm framework,
while Section 3 discusses a feature that enables an optimization of tracks and areas. In Section 4, the comparison of
AREA with ARKit is presented, and in Section 5, the practical use of AREA and its features based on the presented
results is summarized. Section 6 discusses related work, whereas Section 7 concludes the paper with a summary and
an outlook.

2. AREA Algorithm Framework

First of all, we give a brief introduction into the concept of AREA [6, 25]. AREA relates users holding their
smartphone to the objects (i.e., Points of Interest (POIs), tracks, areas) detected in the camera view. Thereby, AREA
is based on five aspects. First, a virtual 3D world is used to relate the user’s position to the position of the objects.
Second, the user is located at the origin of this world. Third, instead of the physical camera, a virtual 3D camera
is used that operates with the created virtual 3D world. The virtual camera is therefore placed at the origin of this
world. Fourth, the different sensor characteristics of the supported mobile operating systems are covered to enable the
virtual 3D world. Fifth, the physical camera of the mobile device is adjusted to the virtual 3D camera, based on the
assessment of sensor data. To enable these five aspects, an overview of the algorithms that were developed for AREA
will be provided (see Fig. 1). In a first version of AREA [25], a Points of Interest (POI) algorithm was developed that
showed already considerable results (see Fig. 1, POI Algorithm vI). More detailed information on this algorithm can
be found in [30, 7, 6]. However, as the computational capabilities of smart mobile devices have been continuously
increased — and the practical requirements of the real-life projects as well —, a new POI algorithm became necessary
(see Fig. 1, POI Algorithm v2). All presentations in this work are based on this currently used POI algorithm. Note
that the technical aspects of the POI Algorithm v2 can be found in [24, 25]. Furthermore, in Fig. 1, all references are
shown, in which the respective information of the algorithms (e.g., their listings) and backgrounds can be found. As
this work provides the first comprehensive overview of all algorithms developed on top of the POI algorithms, the
following list summarizes the important aspects as well as new features shown in this work:

o The calculations to position POIs correctly are based on a multitude of other calculations (i.e., mainly the sensor
fusion) and design decisions (i.e., mainly whether or not using external libraries). In this context, the correct

Author name / Procedia Computer Science 00 (2019) 000-000 3

positioning of POIs constitutes a major challenge. On the other, the provision of a good performance is also
very important. When considering preciseness and performance on different mobile operating systems in the
same way, the overall technical endeavor is even more challenging. For example, on Android, for the sensor
fusion, an additional 3D rotation matrix algorithm [25] became necessary to enable the same user experience as
on i0S (see Fig. 1, only on Android).

e On top of the POI algorithms, two additional algorithms were implemented. The first algorithm is able to
handle clusters. Clusters, in turn, are overlapping POIs, which are difficult to interact with. How clusters are
handled is presented in [25]. The second algorithm is able to calculate tracks and areas. The demand for
this feature emerged while using AREA in practice. For the development of the algorithm that is able to handle
tracks and areas, note that OpenGL libraries were used in addition. The decision was made with respect to
the differences of the two mobile operating systems. In this context, we wanted to combine the (1) best of the
already proven AREA developments and the (2) existing features of OpenGL. More specifically, the proven
sensor fusion and POI algorithms of AREA should be further used as they revealed comparable results on
both mobile operating systems. In addition, as the OpenGL libraries are decoupled from the sensor fusion
with respect to general functions required for track and area handling, it was efficient to additionally use these
features of OpenGL for AREA. Therefore, we also used OpenGL libraries for track and area handling. In-depth
information to this algorithm can be found in [26].

e In practice, even when considering the existing powerful mobile device capabilities, the handling of tracks
and areas is challenging with respect to the resource perspective. When handling a huge number of tracks or
areas, or a combination of both, present mobile devices reveal their limits. Therefore, we implemented a new
algorithm, which deals with performance issues while displaying many tracks and areas at the same time. How
this algorithm works will be presented in Section 3).

e Except for the new algorithm that deals with the performance while displaying many tracks and areas, all other
algorithms were evaluated in experiments (i.e., compared to other mobile augmented reality applications). As
can be found in [25, 26], AREA competes well with other smart mobile applications providing the same features.
However, in future experiments, this will be evaluated again and again. Moreover, the new algorithm for track
and area handling must be evaluated in a separate experiment.

o Since Apple recently released its ARKit [2], a comparison of AREA with ARKit is a must in future experiments.

3. Track and Area Reduction Algorithm

In real-life projects' for which AREA is used for, the displaying of many tracks and areas with the algorithm shown
in [26] revealed performance issues. Therefore, we implemented a feature on top of this algorithm in order to cope
with the demanding scenarios. Here, due to the lack of space, we only show the optimization for Android and tracks;
i.e., areas and the implementation on iOS are performed in the same way. First of all, we explain necessary background
information on the performance indicators. In general, a track is displayed by the use of bars. Between each bar, a
distance of 1m (m=meter) is used. Having this in mind, a track of 1km (km=kilometer) requires roughly 501 bars.
Each bar, in turn, is represented by two triangles. Each vertex of a triangle has 3 coordinates (x, y, and z) and a RGBA
value (i.e., r, g, b, and a components). The three coordinates as well as the 4 RGBA components require 4 bytes.
Having these values in mind, reconsider the track of 1km. This track would require 501-2-3-(3+4)-4 = 84168 bytes
to store it. If many tracks or areas shall be displayed, this affects the performance based on the required data to be
stored and calculated. To increase the performance in the case that many tracks have to be displayed (or/and areas),
the general idea is to manage a detail level for tracks (and areas). Based on this detail level, tracks and areas can be
displayed in different resolutions. The notion of the resolution and how it is calculated are shown in the following.

First of all, we present required preliminary calculations. As a first step, consider a list checkpoints containing n
vectors (X, y, and z). Each vector n in check points represents on point on the track that shall be displayed. Furthermore,
the checkpoints list stores the values in an ordered manner according to a track. In addition, three further lists are

! see http://www.liveguide.de for all mobile applications that use AREA

4 Author name / Procedia Computer Science 00 (2019) 000-000

1T
(| Using \
Own Developments A
P 1 QpenGL OpenGL Libraries |
77777777777777777777777777 S
Android i0S Android i0OS
[6,7,30] [6,7,30]
POI Algorithm va POI Algorithm va [26] [26]
e e
S 2 Track & Area Track & Area
Sensor Fusion vi deprpcated| Sensor Fusion vi Algorithm ‘ Algorithm ‘
[24,25] [24,25]
. [according to Listing 1]
Cluster Algorithm Cluster Algorithm [Listing 1] > >
Track&Area Track&Area
Reduction Algorithm ‘ Reduction Algorithm ‘

Track Algorithm ‘ Track Algorithm

[24,25] . [24,25] -

NS v

POI Algorithm v2 J POI Algorithm v2 ‘

Sensor Fusionv2 . Sensor Fusionva .

[24] | Coordinates Transformation va [24] | Coordinates Transformation va

[24]| Coordinates Transformation v2 ‘ [24]| Coordinates Transformation v2 ‘

[24] Coordinates Transformation v3 [24] Coordinates Transformation v3
| 3D-Rotation-Matrix
[25] Algorithm ‘

Fig. 1. AREA Algorithm Framework

managed: degreesY, degreesXZ, and pairs. Each of these lists stores n — 2 values. More specifically, the values of the
three lists store the following:

e degreeY: stores the angle of a track point B that lies between points A and C. More precisely, it stores the height difference
between A and C, based on point B.

o degreeXZ: stores the angle of a track point B that lies between points A and C. More precisely, it stores the cardinal points
between A and C, based on point B.

e pairs: stores the indexes of points A, B, and C.

To determine degreesY and degreesXZ, the following calculations are applied:

o degreesY: To calculate the angle for a point B, the two points B’ and B” are calculated. Thereby, B’ contains (xb, ya, zb) and
B contains (xb, yc, zb). Following this, B’ holds the y-value of the point A and B” the y-value of the point C. Based on this,
the two rectangular triangles A — B’ — B and B — B” — C can be created. Finally, the sum of triangles between A — B’ — B and
B — B” — C results in one entry degreesY.

o degreesXZ: To calculate all values for degreesXZ, the vectors AB and AC are calculated.

Based on these shown lists, the size of a track can be decreased with respect to so-called detail levels. A detail level
reduces tracks (and areas) to x track points. Reduction means that the originally defined amount of track points n is
reduced to x. The reduction, in turn, is calculated as follows:

e The lists degreesY, degreesXZ, and pairs are calculated for a track that shall be minimized.

e Then, within a loop, all values in degreesY and degreesXZ are evaluated whether they will be in the list for x. If x points
have been identified, the loop will be quit. The next steps show how the evaluation is performed.

o First, a variable steps is initialized with 1 (meaning 1 degree). Thereby, steps is a threshold that must be exceeded when
calculating [180 — degreesY[i]| + |180 — degreesXZ[i]| for each entry in the lists degreesY and degreesXZ. If the calculation
exceeds the value of steps, the entry will be used for x.

Author name / Procedia Computer Science 00 (2019) 000-000 5

o Visually speaking: The more the triangle between two points approaches 180 degrees, the more it approaches a straight line.
Consequently, the elimination of such a point can be visually accepted.
If no value can be found for within a loop run that can be eliminated, then steps is increased to 2 (and so on).
If a value can be found at index i of the lists degreesY and degreesXZ, then they are recalculated as follows: degreesY[i—1],
degreesY[i+ 1], degreesXZ[i — 1], degreesXZ[i + 1], pairs[i — 1], and pairs[i + 1] are newly calculated and the entries for
the index i are removed.
If the initial lists degreesY, degreesXZ, and pairs are decreased to x points, the algorithm is finished.

o The list of x points is then displayed using the algorithm shown in [26]. All other relevant calculations for a further under-
standing can be found in [6, 25].

The implementation of the algorithm to reduce the number of track points is shown in Listing 1. Note that the
listing only shows the Android version (the iOS version works accordingly).

Listing 1. Track Reduction Algorithm (Android version)

2 int[] complexitySteps = {50, 40, 30, 20, 10, 5};
3 int[] distanceSteps = {100, 200, 300, 400, 500}
4 int[J[] complexityLvl = new int[7]([];
5

6 abstractTrail(O{
complexityLvl[0] = new int[totalPath.size()];

8 for(int i = 0; i < totalPath.size()-1; i++){

9 complexityLvl[0] [i] = i;

10 ¥

11

12 float[] orientationDegree = new float[totalPath.size()-2];
13 float[] horizontalDegree = new float[totalPath.size()-2];
14 int[J[] pairs = new int[totalPath.size()-2][2];

* fill orientationDegree, horizontalDegree, pairs

* orientationDegree[i] and horizontalDegree stores the degree
* between points (i-1),(i) and (i+1)

* pairs[i][] stores point (i-1) and (i+1)

21 int actualCount = orientationDegree.length;
int lastAbstraction = 0;
23 float actualAbstraction = 1;

24

25 for(int i = 0; i < orientationDegree.length; i++){

26 for(int j = 0; j < complexitySteps.length; j++){

27 if (actualCount <= complexitySteps[j] && complexityLvl[j+1] == null)
28 * £ill complexityLvl[j+1]

29 }

1 float check0 = min(abs(180 - orientationDegree[i]), abs(180 + orientationDegree[il));
2 float checkl = min(abs(180 - horizontalDegree[i]), abs(180 + horizontalDegree[il));
3 if (checkO and checkl < actualAbstraction){
34 orientationDegree[i] = 999;
5 horizontalDegree[i] = 999;
* recalculate pairs[i-1], pair[i+1]
38 * recalculate orientationDegree[i-1] and [i+1]

39 * recalculate horizontalDegree[i-1] and [i+1]

lastAbstraction = i;

1

2 actualCount--;

43 if(i == orientationDegree.length){ i = 0; }
44 }
45 3}
46
47 //complexity[7] [J-array is managed as follows:
48 //complexityLvl[0] contains the indexes to all points [i.e., -> 0, 1, 2, ..., totalPath.size()-1]
49 //complexityLvl[1] contains indexes from maximally 50 points,

50 //complexityLvl[2] contains indexes from maximally 40 points,

51 //complexityLvl[3] contains indexes from maximally 30 points,

52 /..

53 //complexityLv1[6} contains indexes from maximally 5 points.

54

55 //which complexityLvl then is actually used depends on the distance from the user to

56 //the nearest point of the bounding box of the track

57 //the bounding box must be calcuted beforehand while creating the list totalPath

58 //the array distanceSteps stores the distances to decide which complexityLvl is actually used.
59 ¥

3.1. Track Reduction in Practice

AREA manages seven different detail levels. To be more specific, the tracks (and areas) are displayed using these
levels depending on the distance a user has to them. The detail levels are distinguished by the number of track points
to which the track is reduced to by Algorithm 1. The levels, in turn, are managed as follows:

e Level 0: No reduction
e Level 1: Tracks within 50m of a user’s position (i.e., using 50 track points)

6 Author name / Procedia Computer Science 00 (2019) 000-000

Level 2: Tracks within 100m of a user’s position (i.e., using 40 track points)
Level 3: Tracks within 200m of a user’s position (i.e., using 30 track points)
Level 4: Tracks within 300m of a user’s position (i.e., using 20 track points)
Level 5: Tracks within 400m of a user’s position (i.e., using 10 track points)
Level 6: Tracks beyond 400m of a user’s position (i.e., using 5 track points)

Which level is actually used is determined during run time based on the position changes of a user. The algorithm
is used in practice in real-life applications that can be found at [5]). Currently, we conduct experiments (as shown in
[25]) to obtain quantitative results on the actual performance increase.

4. AREA and ARKit

Since Apple recently released its ARKkit [2], this section shall enable researchers to directly compare the features
and function of the iOS version of AREA with ARKit. In general, ARkit was developed by Apple with the goal to
provide a multitude of mobile augmented reality applications. Currently, all features developed in AREA pursue the
goal to enable location-based mobile augmented reality applications. To be more precise, the location is based on GPS
coordinates and therefore AREA mainly aims at outdoor location-based augmented reality applications. In ARKit, also
many other features like face tracking are provided. Consequently, ARkit aims at a broader perspective on mobile
augmented reality applications. However, from the technical perspective, it might be of interest to directly compare
the functions of the iOS version of AREA with ARKkit. In ARKkit, the following chain of classes must be used to
enable a location-based mobile augmented reality experience: ARS ession— > ARFrame— > ARCamera. Thereby,
ARS ession must be used to handle the sensor fusion, while ARFrame and ARCamera must be used to handle the
positioning of POIs. Regarding ARS ession, compared to AREA, a developer must manually add GPS data to the
sensor fusion. With ARKkit, compared to AREA, a developer is relieved from directly reading data from the device’s
motion sensing hardware. Another interesting comparison is related to ARCamera of ARKit. By using ARCamera,
the correct positioning of POIs can be realized. Therefore, the relevant components of ARCamera [1] can be compared
to the i0S version of AREA as follows:

o ARKIT func transform with AREA func normalizedRotationMatrix
o ARKIT func projectionMatrix with AREA func redrawAreaView
o ARKIT func projectPoint with AREA func positioningPOI

Currently, we conduct performance experiments to compare ARKit with AREA. In general, the provisioning of
ARKit emphasizes that mobile augmented reality has become an important mobile application type. In line with
ARKit, the application of AREA in practice revealed that features enabling mobile augmented applications beyond
location-based outdoor scenarios are promising. Therefore, we work on new features like, for example, the recognition
of objects in AREA. Furthermore, we currently compare AREA with the AR SDK from Google for Android, which is
called ARCore [9].

5. Discussion

Currently, AREA is used in various scenarios in everyday life [5]. Three aspects are particularly important for this
frequent usage. First, the algorithm framework shown in this work (see Fig. 1) was bundled into the AREA kernel,
including its modular architecture [25, 26]. Based on this, the development of business applications on top of AREA
becomes easily possible. Second, AREA reveals a good user experience with respect to robustness and performance.
Experiments conducted with AREA [25, 26] confirm that it is competitive to mobile applications that provide the same
or a similar feature set at the time of conducting the experiment. Third, AREA provides the same feature set on Android
and 10S. The ability to cope with the peculiarities of the different mobile operating systems, while providing the same
features on all of these mobile systems, is highly welcome in practice. However, to keep pace with the frequent updates
of the underlying mobile operating systems on one hand and to continuously implement new features that emerge in
practice on the other, is still a very challenging endeavor. Therefore, insights into frameworks and operating principles

Author name / Procedia Computer Science 00 (2019) 000-000 7

as shown in this work are of utmost importance. Finally, in a future experiment, AREA must show its performance
compared to ARkit and ARCore.

6. Related Work

Previous research related to the development of a location-based augmented reality application in non-mobile en-
vironments is described in [15]. In turn, [13] uses smart mobile devices for developing an augmented reality system.
The augmented reality application described in [17] allows sharing media data and other information in a real-world
environment and enables users to interact with this data through augmented reality. However, none of these approaches
share insights regarding the development of location-based augmented reality on smart mobile devices as AREA does.
Regarding tracks in mobile augmented reality, only little work can be found. For example, the approaches [32, 18, 11]
present tracks as key feature of (mobile) augmented reality applications. However, algorithms for implementing track
handling are not presented. In addition, no performance issues related to track algorithms are discussed. Moreover,
only little work exists, which deals with the engineering of mobile augmented reality systems in general. As an ex-
ception, [10] validates existing augmented reality browsers. Moreover, [14] discusses various types of location-based
augmented reality scenarios. More precisely, issues that have to be particularly considered for a specific scenario are
discussed in more detail. However, engineering issues of mobile applications are not considered. In [33], an author-
ing tool for mobile augmented reality applications, which is based on marker detection, is proposed. In turn, [23]
presents an approach for indoor location-based mobile augmented reality. Furthermore, [28] gives an overview of
various aspects of mobile augmented reality for indoor scenarios. Another scenario for mobile augmented reality is
presented in [19]. The authors use mobile augmented reality for image retrieval. However, [33, 23, 28, 19] do not
address engineering aspects of location-based mobile applications. In [4], an approach supporting pedestrians with
location-based mobile augmented reality is presented. Finally, [3] deals with a client and server framework enabling
location-based applications. Presently, new scenarios emerge, in which mobile augmented reality is investigated. Re-
cent related works can be found that provide overviews (e.g., [29]). Other related works deal with particular scenarios.
In [22, 20, 31], many examples related to education are discussed and evaluated. Other scenarios constitute tourism
[12], crime management [21], or gaming [27]. Finally, also in medicine, mobile augmented reality becomes increas-
ingly important [8]. Many more recent works could be mentioned. However, how to realize these applications from
scratch is not covered by these works. Altogether, neither software vendors nor research projects provide many in-
depth insights into the engineering of a location-based mobile augmented reality kernel and the development of a
feature set as provided in this work.

7. Summary and Outlook

This paper provided insights into the development of the AREA framework. To be more precise, a comprehensive
overview of the algorithms to enable location-based mobile augmented reality applications were presented. Regarding
the entire AREA project, this is the first work that provides a comprehensive overview of all implemented AREA
algorithms. In general, the development of mobile applications is demanding when considering the peculiarities of
the different mobile operating systems. To cope with this heterogeneity, AREA provides the same functionality for
business applications that are developed based on top of it. This is enabled by enclosing all features in the AREA
kernel. Application developers can use it like the ARKit from Apple or the SDK ARCore from Google to easily create
their own location-based mobile augmented reality applications. This paper also presented a new algorithm that was
realized on top of the track and area algorithm, which provides a better performance if a huge number of tracks or areas
shall be displayed at the same time. It was also presented that AREA has been evaluated in experiments [25, 26]. These
experiments have shown that ARFA reveals considerable performance results compared to other mobile augmented
reality applications providing a similar feature set. Further, it was reported that currently conducted experiments
investigate how AREA competes with ARKit and ARCore. Another experiment investigates the new feature that was
developed on top of the track and area algorithm. Altogether, mobile augmented reality applications support many
new scenarios. However, powerful solutions that can be easily used across the different mobile operating systems in
the same way are still rare.

8

Author name / Procedia Computer Science 00 (2019) 000-000

References

(1]
[2]
(3]
(4]

(5]
(6]

(7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

22]

(23]

[24]

[25]

[26]

27]

(28]

[29]

[30]

311

32]

[33]

Apple, 2019a. Arcamera. https://developer.apple.com/documentation/arkit/arcamera. [Online; accessed 30-April-2019].
Apple, 2019b. Arkit. https://developer.apple.com/arkit/. [Online; accessed 30-April-2019].

Capece, N., Agatiello, R., Erra, U., 2016. A client-server framework for the design of geo-location based augmented reality applications, in:
20th Int’l Conf on Information Visualisation, IEEE. pp. 130-135.

Chung, J., Pagnini, F., Langer, E., 2016. Mindful navigation for pedestrians: Improving engagement with augmented reality. Technology in
Society 45, 29-33.

CMCityMedia, 2019. Liveguide. http://www.stadtsindwir.de/data/referenzen.php. [Online; accessed 30-April-2019].

Geiger, P., Pryss, R., Schickler, M., Reichert, M., 2013. Engineering an Advanced Location-Based Augmented Reality Engine for Smart
Mobile Devices. Technical Report UIB-2013-09. University of Ulm.

Geiger, P., Schickler, M., Pryss, R., Schobel, J., Reichert, M., 2014. Location-based mobile augmented reality applications: Challenges,
examples, lessons learned, in: 10th Int’l Conf on Web Information Systems and Technologies, pp. 383-394.

Ghandorh, H., Mackenzie, J., Eagleson, R., de Ribaupierre, S., 2017. Development of augmented reality training simulator systems for
neurosurgery using model-driven software engineering, in: 30th Canadian Conference on Electrical and Computer Engineering, IEEE. pp. 1-6.
Google, 2019. Arcore. https://developers.google.com/ar/. [Online; accessed 30-April-2019].

Grubert, J., Langlotz, T., Grasset, R., 2011. Augmented reality browser survey. Technical Report. Graz University of Technology.

Hollerer, T., 2004. User interfaces for mobile augmented reality systems. Ph.D. thesis. Columbia University.

Jung, T., Lee, H., Chung, N, et al., 2018. Cross-Cultural Differences in Adopting Mobile Augmented Reality at Cultural Heritage Tourism
Sites. International Journal of Contemporary Hospitality Management 30.

Kihiri, M., Murphy, D., 2006. Mara: Sensor based augmented reality system for mobile imaging device, in: 5th IEEE and ACM Int’l Symp
on Mixed and Augmented Reality.

Kim, W., Kerle, N., Gerke, M., 2016. Mobile augmented reality in support of building damage and safety assessment. Natural Hazards and
Earth System Sciences 16, 287.

Kooper, R., Maclntyre, B., 2003. Browsing the real-world wide web: Maintaining awareness of virtual information in an ar information space.
Int’l Journal of Human-Computer Interaction 16, 425-446.

Korinth, M., et al., 2020. Design and Evaluation of a Virtual Reality-Based Car Configuration Concept, in: Advances in Computer Vision,
Springer. pp. 169-189.

Lee, R., Kitayama, D., Kwon, Y., Sumiya, K., 2009. Interoperable augmented web browsing for exploring virtual media in real space, in: Proc
of the 2nd Int’l Workshop on Location and the Web, ACM. p. 7.

Lee, T., Hollerer, T., 2008. Hybrid feature tracking and user interaction for markerless augmented reality, in: Virtual Reality Conference, IEEE.
pp. 145-152.

Lee, Y., Rhee, S., 2015. Efficient photo image retrieval system based on combination of smart sensing and visual descriptor. Intelligent
Automation & Soft Computing 21, 39-50.

Leighton, L., Crompton, H., 2017. Augmented Reality in K-12 Education, in: Mobile Technologies and Augmented Reality in Open Education.
IGI Global, pp. 281-290.

Liao, T., Yang, H., Lee, S., Xu, K., Feng, P, Bennett, S., 2017. Augmented Criminality—~How Mobile Augmented Reality Crime Overlays
Affect People’s Sense of Place. AoIR Selected Papers of Internet Research 6.

Liou, H., Yang, S., Chen, S., Tarng, W., 2017. The influences of the 2D image-based augmented reality and virtual reality on student learning.
Journal of Educational Technology & Society 20, 110-121.

Paucher, R., Turk, M., 2010. Location-based augmented reality on mobile phones, in: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, IEEE. pp. 9-16.

Pryss, R., Geiger, P., Schickler, M., Schobel, J., Reichert, M., 2016. Advanced algorithms for location-based smart mobile augmented reality
applications. Procedia Computer Science 94, 97-104.

Pryss, R., Geiger, P., Schickler, M., Schobel, J., Reichert, M., 2017a. The AREA Framework for Location-Based Smart Mobile Augmented
Reality Applications. International Journal of Ubiquitous Systems and Pervasive Networks 9, 13-21.

Pryss, R., Schickler, M., Schobel, J., Weilbach, M., Geiger, P., Reichert, M., 2017b. Enabling Tracks in Location-Based Smart Mobile Aug-
mented Reality Applications. Procedia Computer Science 110, 207-214.

Rauschnabel, P., Rossmann, A., tom Dieck, M., 2017. An adoption framework for mobile augmented reality games: The case of Pokémon Go.
Computers in Human Behavior 76, 276-286.

Reitmayr, G., Schmalstieg, D., 2003. Location based applications for mobile augmented reality, in: Proc of the Fourth Australasian user
interface conference on User interfaces, Australian Computer Society, Inc.. pp. 65-73.

Sanchez-Acevedo, M., Sabino-Moxo, B., Mdrquez-Dominguez, J., 2017. Mobile Augmented Reality. Mobile Platforms, Design, and Apps
for Social Commerce , 153.

Schickler, M., Pryss, R., Schobel, J., Reichert, M., 2015. An engine enabling location-based mobile augmented reality applications, in: 10th
Int’l Conf on Web Information Systems and Technologies (Revised Selected Papers). Springer. number 226 in LNBIP, pp. 363-378.

Tosun, N., 2017. Augmented Reality Implementations, Requirements, and Limitations in the Flipped-Learning Approach, in: Mobile Tech-
nologies and Augmented Reality in Open Education. IGI Global, pp. 262-280.

Vlahakis, V., Karigiannis, J., Tsotros, M., Ioannidis, N., Stricker, D., 2002. Personalized augmented reality touring of archaeological sites with
wearable and mobile computers, in: Sixth International Symposium on Wearable Computers, IEEE. pp. 15-22.

Yang, Y., et al., 2016. Mobile augmented reality authoring tool, in: 10th Int’l Conf on Semantic Computing, IEEE. pp. 358-361.

https://developer.apple.com/documentation/arkit/arcamera
https://developer.apple.com/arkit/
http://www.stadtsindwir.de/data/referenzen.php
https://developers.google.com/ar/

