
Evaluation of Correctness Criteria for Dynamic
Workflow Changes�

Stefanie Rinderle, Manfred Reichert, and Peter Dadam

University of Ulm, Faculty of Computer Science,
Dept. Databases and Information Systems

{rinderle, reichert, dadam}@informatik.uni-ulm.de

Abstract. The capability to dynamically adapt in-progress workflows
(WF) is an essential requirement for any workflow management system
(WfMS). This fact has been recognized by the WF community for a long
time and different approaches in the area of adaptive workflows have
been developed so far. They either enable WF type changes and their
propagation to in-progress WF instances or (ad-hoc) changes of single
WF instances. Thus, at first glance, many of the major problems related
to dynamic WF changes seem to be solved. However, this picture changes
when digging deeper into the approaches and considering implementation
and usability issues as well. This paper presents important criteria for
the correct adaptation of running workflows and analyzes how actual
approaches satisfy them. At this, we demonstrate the strengths of the
different approaches and provide additional solutions to overcome current
limitations. These solutions comprise comprehensive correctness criteria
as well as migration rules for change realization.

1 Introduction

A rapidly changing environment and a turbulent market force any company to
change their business processes ever more frequently [1]. Process changes become
necessary, for example, when new laws come into effect, optimized or restructured
business processes are to be implemented, exceptional situations occur, or rapid
reactions to a changed market are required. Therefore, a critical challenge for
the competitiveness of any enterprise is its ability to quickly react to business
process changes [2,3,4].

As pointed out in [2], basically, changes can take place at two levels – the
WF type and the WF instance level. Very often changes at the WF instance
level are applied in an ad-hoc manner, leading to WF instances with biased ex-
ecution schema when compared to their original WF schema – in the following,
we denote these WF instances as biased. Ad-hoc changes become necessary in
conjunction with real-world exceptions, e.g., a sudden circulatory collapse of a
� This work was done within the research project “Change management in adaptive
workflow systems”, which has been founded by the German Research Community
(DFG).

W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 41–57, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

42 S. Rinderle, M. Reichert, and P. Dadam

patient, and they usually affect only single WF instances. As opposed to this, in
conjunction with schema changes at the WF type level, a collection of related
instances may have to be adapted. The challenging question is how to propagate
WF type changes to running WF instances, but without violating correctness
and consistency properties set out by the used WF meta model. In other words,
how can we smoothly migrate WF instances to a changed WF schema? Addi-
tionally, in case of concurrent changes (e.g., concurrent changes at the type and
instance level), the exciting question arises how to synchronize them (e.g., how
to propagate WF type changes to biased WF instances).

There is a multitude of approaches dealing with flexibility in WfMS [1,2,4,5,
6,7,8]. All of them present very interesting, but partially strongly differing ideas
and solutions. Therefore, it is an important job to summarize central criteria for
adaptive workflows and to compare actual approaches by using these criteria.
Furthermore, we sketch suitable solutions for ”still dangling” issues, e.g., related
to the problem of checking compliance of WF instances with a modified schema.

At first, we summarize important criteria for different change scenarios, which
are necessary to achieve a correct and consistent ”post-change”-behavior.

1. Completeness: The WF designer must not be restricted, neither by the
used WF meta model nor the offered change operations. Therefore, a WF
meta model ought to provide a complete set of control and data flow con-
structs, e.g., allow the designer to model sequences, parallel/alternative
branchings, and loops [3]. For practical purposes, at minimum, change opera-
tions for inserting and deleting activities as well as control/data dependencies
between them are required. Furthermore, it must be able to combine change
primitives to define complex changes, e.g., to modify the order of activities.

2. Correctness: The ultimate ambition of all adaptive WF meta models must
be correctness of dynamic changes [1,2,4,5,6,7,8]; i.e., introducing changes to
the runtime system without causing inconsistencies or errors (like deadlocks
or improperly invoked activity programs). Therefore, adequate correctness
criteria are needed. These criteria must not be too restrictive, i.e., no WF
instance should be needlessly excluded from applying a dynamic change.
Furthermore, it must be clear how the imposed correctness criteria can be
easily and quickly checked by the WfMS. This is especially important for
large-scale environments with hundreds up to thousands of WF instances.

3. Change Realization: Assuming that a dynamic change can be correctly
propagated to a WF instance I (along the stated correctness criteria), it
should be possible to automatically migrate I to the new schema. In this
context, the WF instance state as well as dependent data structures (e.g.,
user worklists) must be correctly and efficiently adapted.

In the following, we provide a classification of actual approaches which is
based on the semantics of the underlying WF meta models and on the above cri-
teria. We point out where the strengths and weaknesses of these approaches lie.
To overcome current limitations we discuss solutions which can be easily trans-
ferred to other WF models (e.g., a comprehensive correctness criterion, efficient
compliance checks, and formal propositions regarding concurrent changes).

Evaluation of Correctness Criteria for Dynamic Workflow Changes 43

In Section 2 we give an overview of current approaches dealing with flexibility
in WfMS and classify them with respect to their semantics. Section 3 summarizes
and classifies correctness criteria for adaptive workflows. In Section 4 we show
how the different approaches realize dynamic WF changes. Section 5 presents a
critical discussion and Section 6 closes with a short summary.

2 Approaches Dealing with Flexibility

Figure 1 summarizes adaptive WF meta models which enable a flexible pro-
cess support. According to [9], we classify those WF meta models according
to the evaluation strategies applied for executing WF instances during runtime.
The first strategy uses only one type of (control flow) token passing through each
WF instance (True-Tokens). The other strategy is based on two types of tokens –
True- and False-Tokens. True-Tokens represent activities that are to be executed
next and False-Tokens describe activities which have been skipped. Approaches
which solely use True-Tokens (cf. Fig. 2) have a True-Semantics and include, for
example, Petri-Net-based formalisms [2,5,10,1]. Approaches which, in addition,
use False-Tokens to represent skipped activities or skipped execution branches
can be found in the area of graph-based WF meta models [8,7]. They can be
further divided according to the way they represent the True- and False-Tokens.
One possibility is to gain these tokens (and therefore the state of running in-
stances) from execution histories [4], which log events like start and completion
of activity executions (cf. Fig. 3). Alternatively, special (model-inherent) mark-
ings of activities and/or control edges, which represent a consolidated view on
the history logs, can be used [6,7,8] (cf. Fig. 4).

2.1 Approaches with True-Semantics

In [2], a WF schema is represented by a WF Net which is a labeled
place/transition net N = (P, T, F, l) (cf. Fig. 2). Thereby, P denotes the set
of places, T the set of transitions, F ⊆ (T × P) ∪ (P × T) the set of directed
arcs, and l the labeling function, which assigns a label to each transition. The
dynamic behavior of a WF instance is described by a marked WF net (N, s)
with marking (function) s and associated marking rules. The authors abstract
from data flow issues, WF attributes and WF resources and consider only one
WF instance at a time.

The approach presented in [5,14,10] is based on Flow Nets, which are closely
related to WF nets. In Chautauqua [14], Flow Nets are generalized to Informa-
tion Control Networks (ICN). They allow the enactment of a new WF instance
by creating an instance specific token, which represents a data form of the en-
acted ICN. In doing so, data flow is carried out by passing the token through
the ICN. WF instances (with same WF type) are distinguished by the use of
coloured tokens and are controlled by the same ICN. A meta language to support
dynamic evolution of processes is presented in [10]. In the following, however,

44 S. Rinderle, M. Reichert, and P. Dadam

Adaptive WF meta models✘✘✘✾ �
Models with
True-Semantics (→ Sect. 2.1)

� WF Nets [2]
� Flow Nets [5,10]
� MWMS/WF Net Models [1]

Models with True/False-Semantics (→ Sect. 2.2)
✘✘✘✾ �

Case1: Using History Logs
� WIDE [4]

Case2: Model-Inherent Markings
� WASA2 [7]
� ADEPT/WSM-Nets [8]
� BREEZE [6]

Further: � ROK [3], � MOKASSIN [11], � UltraFlow [12], � TRAM [13]

Fig. 1. Selected Approaches Dealing With Flexibility Issues

we focus on the formalisms of Flow Nets as described above. An example for the
above approaches is depicted in Fig. 2a.

Another interesting approach is presented by MWMS [1]. The authors use
Net Models (NM), which are marked, acyclic Free-Choice Petri Nets. Data flow
issues are not taken into account. A NM Σ can be mapped to a Sequential Model
(SM) A which represents the global states and state transitions of Σ. Thus, A
is comparable to the reachability graph of Petri Net Σ.

2.2 Approaches with True/False-Semantics

Case 1: Approaches based on History Logs
The most famous example and also one of the first approaches dealing with dy-
namic WF changes was offered byWIDE [4], which uses a graph-based WF meta
model. The modeling of sequential, parallel, alternative, and iterative activity
executions is possible. Furthermore, there is a set of global process variables
associated with each WF schema S. A WF instance I on WF schema S can be
described by S and by its execution history H = (〈εSI,0, µ

S
I,0〉, . . . , 〈εSI,i, µ

S
I,i〉),

where εSI,k denotes the kth completion of a task execution in I and µS
I,i denotes

related write operations on WF variables performed by εSI,k.
In WIDE, WF schemata can be described either graphically or by using

predecessor and successor functions. Fig. 3 shows the latter variant.
Case 2: Approaches Using Model Inherent Markings
WASA2 [7] introduces an object-oriented WF meta model. It comprises one
generic class Workflow of which WF schema and WF instance are instances.
Workflows are modeled by using a graph-based WF language comparable to
activity nets applied in IBM MQ Series Workflow. In more detail, aWF schema
S = (VS , CS , DS) is a tuple with sets of activity nodes VS , control connectors CS ,
and data connectors DS . Similarly, a WF instance I can be described. The flow
of data is modeled by data connectors which map output and input parameters
of subsequent activities. A WF schema S is correct iff all input parameters are
correctly supplied by a type-conform output parameter and the graph structure

Evaluation of Correctness Criteria for Dynamic Workflow Changes 45

admit prepare

take blood lab test A lab test B validate

X-ray report

calc. dose &
give drug

examine aftercare

a)

admit prepare

take blood

lab test A

lab test B

validate

X-ray report

calc. dose &
give drug

examine aftercare

b)

ultrasonic

old change region

lab test A lab test B SCOC for parallelization of labTestA
and labTestB (upsizing)

(with flow jumpers j1, j2, j3 and silent
transition λ)

Projection-inheritance-preserving
transformation rule

inform

inform

O

j1 j2 j3

new change
region

flow jumpers

insertion of activity ultrasonic

N1 change1

N2

change2

Fig. 2. A Petri-Net-Based Workflow With Changes ([2,5,10])

is acyclic (i.e., no deadlocks will occur). The state of a WF instance is denoted
by the marking of the instance nodes (model-inherent).

Another approach with model-inherent markings is based onWell-Structured
Marking-Nets (WSM-Nets) as applied in our ADEPT WfMS [8], for example.
WSM-Nets are serial-parallel graphs with distinguishable node and edge types,
where loops and branchings are modeled in a block-oriented fashion (block struc-
ture). This structure is relaxed by offering sync edges, which allow to define
precedence relations between activities of parallel branches. We first provide two
self-explanatory definitions for WSM-Nets (cf. Def. 1) and for WF instances (cf.
Def. 2) based on them.

Definition 1 (Well-Structured Marking-Net, WSM-Nets). A tuple
S = (N, D, NT, CtrlE, SyncE, LoopE, DataE, EC) is called a Well-Structured
Marking-Net if the following holds:

– N is a set of activities and D a set of process data elements
– NT: N �→ {StartFlow, EndFlow, Activity, AndSplit, AndJoin,

XOrSplit, XOrJoin, StartLoop, EndLoop}
– CtrlE ⊂ N × N is a precedence relation
– SyncE ⊂ N × N is a precedence relation between activities of parallel executed
branches

– LoopE ⊂ N × N is a set of loop backward edges
– DataE ⊆ N × D × {read, write} is a set of read/write data links between
activities and data elements

– EC: CtrlE ∪ SyncE ∪ LoopE �→ Predicates(D) where Predicates(D) de-
notes the set of all valid transition conditions on data elements from D.

46 S. Rinderle, M. Reichert, and P. Dadam

Fig. 3. WF Instance Including History Logs in WIDE

A WSM-Net is correct iff
• Sfwd = (N, CtrlE, SyncE) is an acyclic graph, i.e., the use of sync edges must
not cause undesired cycles leading to deadlocks (for details see [8]),
• for each split (loop start) node there is a unique join (loop end) node, and
• S is structured following a block concept, for which control blocks (sequences,
branchings, loops) can be nested but must not overlap.

Definition 2 (WF Instance Based On WSM-Nets). A WF instance I is
defined by a tuple (S, MS , V alS, H) where
– S = (N, D, NT, CtrlE, SyncE, ...) denotes the WSM-Net the execution of I
is based on.

– MS = (NSS, ESS) describes node and edge markings of I:
NSS: N �→ {NotActivated, Activated, Running, Completed, Skipped}
ESS: (CtrlE ∪ SyncE ∪ LoopE) �→ {TrueSignaled, FalseSignaled}

– ValS is a function on D. It reflects for each data element d ∈ D either its
current value or the value UNDEFINED (if d has not been written yet).

– H = < e0, . . . , ek > is the execution history of I. e0, . . . , ek denote the start
and end events of activity executions. For each started activity X the values
of data elements read by X and for each completed activity Y the values of
data elements written by Y are logged.

Activities marked as Activated are ready to fire and can then be worked on,
i.e., their status changes to Running. Activities with marking Skipped cannot
longer be selected for execution. An example of a WF instance based on a WSM-
Net is shown in Fig. 4. Another approach using WF graphs similar to WSM-Nets
but without loops is offered by BREEZE [6].

3 Correctness Criteria for Dynamic WF Changes

We first focus on WF schema changes at the type level and their propagation
to running WF instances. Regarding correctness, however, it is not important

Evaluation of Correctness Criteria for Dynamic Workflow Changes 47

admit

prepare

takeblood

StartLoop Activity AndSplit
labTestA labTestB validate

xRay report

calc. dose&
give drug

examine

EndLoop

aftercare

AndJoin

bloodVal XRay patientData

LoopE

CtrlEdge

DataE:
d=(examine, patientData, write)

DataElement

 NS = Activated NS = Running ES = TrueSignaled

 NS = Completed ES = FalseSignaled

a) WF Instance On WSMN

b) Changes
'= (insertActivity(ultraSonic, xRay, report), insertDataElement(ultrasonic),
 insertDataEdge(ultrasonic, ultrasonic, write),

insertDataEdge(ultrasonic, report, read))

c) Reduced Execution History
Start(admit), End(admit), Start(StartLoop, it=2), End(StartLoop), Start(prepare), End(prepare), Start(takeblood), End(takeblood),
Start(labTestA), Start(xRay), End(labTestA^bloodVal.resultA=4.3), Start(labTestB), End(xRay^xRay=xRay256(2).jpg

2nd iteration:

Fig. 4. A (Clinical) WF Instance Based On WSM-Nets

whether a WF type (and therefore a collection of running instances) or a single
WF instance is affected by a change. At the end of this section we provide a
correctness criterion to handle concurrent changes at the type and the instance
level (i.e., to correctly propagate WF type changes to biased WF instances).

In the following, we assume that a WF schema S is always correctly trans-
formed into another schema S’ by applying change ∆. What this exactly means
depends on the structural and dynamic correctness properties set out by the used
WF meta model. We focus on the discussion how the approaches from Section
2 decide whether an instance I can be correctly migrated to a changed schema
S’ or not. It is remarkable that all discussed solutions are based on formal cor-
rectness criteria. While some of these approaches precisely state how to ensure
correctness in conjunction with dynamic WF changes, others do not address this
point in detail.

We further distinguish between approaches founding their correctness cri-
teria on graph equivalence – WF Nets [2], MWMS [1], and WASA2 [7] – and
approaches with correctness criteria based on execution equivalence – Flow Nets
[5,10], WIDE Nets [4],

and ADEPT WSM-Nets [8]. The core idea of graph equivalence is to map
the WF instance graph of I to the changed WF schema S’. Depending on the
”degree of coverage” it can be decided whether ∆ is applicable to I as well.
Execution equivalence focuses on the work done by I so far. If this work could
have been achieved on S’ as well, I can be smoothly migrated to S’. Note that
both approaches are closely related to each other.

3.1 Approaches Based on Graph Equivalence

WF Nets: A first representative based on graph equivalence (see above) is de-
scribed in [2]. The authors use branching bisimilarity as an equivalence relation
on marked, labeled P/T-Nets (cf. Section 2). It specifies under which conditions
two different marked, labeled P/T-Nets S and S’ have the same (observable)
behavior (notation: S ∼b S

′ ⇐⇒ ∃ branching bisimulation R such that SRS′).

48 S. Rinderle, M. Reichert, and P. Dadam

Informally, a marked, labeled P/T-Net must be able to simulate each action of
an equivalent marked net.

Correctness-Criterion 1 (Branching Bisimilarity) Let S be a marked, la-
beled WF Net and ∆ be a change which transforms S into another marked, labeled
WF Net S’. Then: ∆ can be carried out correctly iff S ∼b S

′.

Generally, it is difficult to ensure Criterion 1 for arbitrary changes. Therefore
the authors restrict the set of possible change operations to those which preserve
special inheritance relations between the old and the new net (e.g., insertion of
activity ultrasonic in Fig. 2b). If these inheritance relations hold after applying
a change, branching bisimilarity between both nets can be ensured. Inheritance-
ensuring change operations are:
• adding sequences as well as parallel, alternative and iterative branches

(direction of inheritance from class to subclass) and
• removing sequences as well as parallel, alternative and iterative branches

(direction of inheritance from class to superclass).
Unfortunately, branching bisimilarity cannot be automatically ensured for

other change operations [2]. The reason for this is a phenomenon called dynamic
change bug. Examples for non-supported operations are order-changing opera-
tions like parallelizing transitions labTestA and labTestB in Fig. 2a. Excluding
those change operations, however, leads to serious problems since related forward
and backward jumps have to be frequently applied in practice.

In MWMS [1] a set of change operations (parallelization, sequentialization
and swapping of activities) is proposed obeying special constraints (summarized
by the Minimal Critical Specification (MCS) for the underlying SM). Intuitively,
only such change operations can be carried out which maintain the given set of
activities and which only change their order relations. For these changes the
following correctness criterion is provided:

Correctness-Criterion 2 (Safe States) Let A = (S,E, T, sin) be a SM and
∆ be a change operation (within the respective MCS). ∆ transforms A into
another SM A′ = (S′, E′, T ′, s′in). Then an instance I on A can be migrated
to A′ iff I is not in an unsafe state. A state of A is unsafe iff there is no
corresponding state in S’

Another approach using graph equivalence is offered by WASA2 [7]. The
author does not explicitly state which changes can be applied. Exemplarily,
operations like adding and deleting activities or changing activity orders are
provided. The decision whether a change ∆ can be applied to an in-progress WF
instance or not is based on a valid mapping of the purged WF instance graph
to the WF schema graph. Thereby, the purged WF instance graph is gained
by deleting all activities which have not been started yet, and by removing all
associated control and data connectors (cf. Fig. 5b). A mapping m : VI �→ VS

between a WF instance I = (VI , CI , DI) and a WF schema S′ = (VS′ , CS′ , DS′)
is defined as follows:

Evaluation of Correctness Criteria for Dynamic Workflow Changes 49

A1S A2S A3S A4S

c1S c2S c3S

d1S d2S

A1S

A2S

A3S A4S

c1S’

c2S’ c3S’

c4S d1S’
d2S’

a) WF schema S: WF schema S’:

parallelization of
activities A2S and A3S

A1I A2I

c1I

d1I

b) purged WF instance
graph I (on S):

c) valid mapping m*: I � S’ with

m*(A1I) = A1S’, m*(A2I) = A2S’
m*(c1I) = c1S’, m*(d1I) = d1S’

Fig. 5. Valid mapping in WASA2

∀j′ ∈ VI : ∃j ∈ VS with [m(j’) = j ⇒ SchemaOf(j’) = j (i.e., j’ is based on j)]
∧ [m(j’) = m(k’) ⇒ j′ = k′∀j′, k′ ∈ VI]

With this, the following correctness criterion based on valid mappings be-
tween WF instance graph and WF schema graph can be stated:

Correctness-Criterion 3 (Valid Mapping) Let I = (VI , CI , DI) be a purged
WF instance graph derived from WF schema S. Then: Change ∆ can be correctly
applied to I as well iff ∃ a valid mapping m*: VI �→ V ′

S. A mapping m* is valid
if all control connectors between two instance objects i, j ∈ VI have counterparts
i’, j’ ∈ VS′ with SchemaOf(i) = i’ and SchemaOf(j) = j’ and ∀d ∈ DI∃ d’ ∈ DS′

(and vice versa).

Intuitively, an instance I can be migrated to a changed WF schema S’ if
each completed activity of I is also contained in S’ and all control and data
dependencies existing in I have counterparts in S’ (cf. Fig. 5c).

To our knowledge no statements have been published so far, how Criterion 3
can be (efficiently) checked. However, an implementation of WASA2 exists [7].

3.2 Approaches Based on Execution Equivalence

Flow Nets: A first approach based on execution equivalence has been presented
in [5,10] (details of the used Flow Nets have been given in Section 2.1). In [5],
changes of a Flow Net S (with True-Semantics) are carried out by substituting
the marked sub-net N1 of S, which is affected by ∆, by another marked sub-net
N2, which reflects the modifications set out by ∆. Thereby, N1 is referred to as
the old change region and N2 as new change region. As the authors point out, the
selection of the change regions cannot be fixed. Roughly, the old change region
is defined as the smallest marked sub-net containing all activities affected by ∆.
Assume, for example, that in Fig. 2a) change operation ∆ is to parallelize the
so far sequentially ordered activities LabTestA and LabTestB. Then N1 is the
sub-net containing the affected activities LabTestA and LabTestB. To be able to
decide whether ∆ can be correctly propagated to an instance or not the authors
introduce the pre-change (firing) sequence ω to conceptualize the work done by
the WF instance so far. Thereby, ω denotes all transition firings previous to
the introduction of ∆. Based on this, the following correctness criterion can be
formulated:

50 S. Rinderle, M. Reichert, and P. Dadam

Correctness-Criterion 4 (Pre-Change sequence ω) Let ∆ be a change,
which transforms Flow Net S into Flow Net S′. Let further be I an instance
on S with pre-change sequence ω. Then I can be migrated to S’ iff ω can be
continued on S’ as well.

In order to check whether Criterion 4 is met, the authors present two kinds of
change operations and a special change class, the so called Synthetic Cut-Over
Change (SCOC). Applying SCOC, the old change region N1 is maintained in S′

together with N2 (for an example see Fig. 2b); i.e., S’ contains two versions of
the modified subnet. How this ”fusion” of old and new change region is carried
out depends on the applied change. In [5] two change scenarios – Upsizing and
Downsizing – are introduced. Upsizing means that N2 can ”do more” than N1,
i.e., the set of all valid firing sequences on N1 is a subset of all valid firing
sequences on N2. Downsizing is the dual counterpart of upsizing, i.e., N2 can
”do less” than N1. For example, Fig. 2b shows an upsizing. In this case, the
SCOC can be constructed by sticking N1 and N2 together over flow-jumpers
(cf. Fig. 2b). Flow-jumpers are transitions, which map each marking of N1 to a
marking of N2. This way of constructing the SCOC in conjunction with upsizing
operations is correct regarding Criterion 4. In the other case – downsizing – the
SCOC is constructed by merging N1 and N2 over one output place, i.e., instances
with tokens in N1 are further executed according to the old net. Trivially, this
restrictive approach is also correct regarding Criterion 4. Other important change
operations, like the insertion of new activities, are not discussed. Very interesting
is that upsizing and downsizing are excluded by [2] since these changes lead to
the dynamic change bug (cf. Section 3.1).

A widely-used correctness property is the compliance criterion introduced by
WIDE [4]. Intuitively, change ∆ of WF schema S can be correctly propagated
to a WF instance I iff the execution of I, taken place so far, can be ”simulated”
on the modified WF schema S’ as well. Note that Criterion 5 is similar to Cri-
terion 4 at first glance. But Criterion 4 is only based on a snapshot of the WF
execution whereas Criterion 5 takes the whole WF execution into account. Since
the authors work with a history-based execution model, compliance is based on
replaying the execution history H of WF instance I on the changed WF schema
S’. Formally:

Correctness-Criterion 5 (Intuitive Compliance Criterion) Let S be a
WF schema and I be a WF instance on S with execution history H. Let fur-
ther S be transformed into another schema S’ by change operation ∆. Then:
I is compliant with S’ iff H can be produced on S’ as well.

Assume that in WF schema S in Fig. 3 task aftercare is to be deleted. Re-
ferring to execution history H of WF instance I (cf. Fig. 3) the intended deletion
is possible since H contains no entry related to aftercare and can therefore be
(re-)produced on the changed WF schema as well. As opposed to this, the inser-
tion of a new task ultrasonic between tasks xRay and report is not possible
regarding Criterion 5. The reason is that activity ultrasonic has not written

Evaluation of Correctness Criteria for Dynamic Workflow Changes 51

any entries into H during the first loop iteration (note that the loop is actually
in its 2nd iteration). Inserting ultrasonic in the actual loop iteration, how-
ever, would cause no inconsistencies or errors at runtime (irrespective of (rare)
roll-back operations into former loop iterations which become more expensive).
Consequently, Criterion 5 is too restrictive, especially in conjunction with iter-
ative, long-running workflows. Since in [4] no further information about how to
check Criterion 5 is given, we assume that compliance is ensured by trying to
replay the whole execution history on the changed WF schema. Doing so causes
a big overhead due to the possibly extensive volume of the history (caused by
information like user assignments or time stamps).
WSM-Nets: In ADEPT [8], we focus on finding a correctness criterion which

works in conjunction with loops as well as other orthogonal aspects (e.g., data
flow). The key to solution with respect to loops is to be able to differentiate
between completed and future executions of loop iterations. From a formal point
of view there are two possible approaches. One approach is to logically treat
loop structures as being equivalent to respective linear sequences. The other
approach is to maintain the loop construct but to restrict the evaluation to
the relevant parts of the execution history (cf. Def. 3). We adope the second
approach since it facilitates the treatment of nested loops, provides a good basis
for implementation, and leads to ”smart” proofs.

Definition 3 (Reduced Execution History Hred). Let I be a WF instance
with execution history H. The reduced execution history Hred is obtained as
follows: In the absence of loops Hred is identical to H. Otherwise, it is derived
from H by discarding all history entries related to other loop iterations than the
last one (completed loop) or the actual iteration (running loop). (Note that Hred

can be easily produced in conjunction with nested loops as well.)

As an example take Fig. 4c, which shows the reduced execution history for
the instance from Fig. 4a. Taking Def. 3 we now present a comprehensive compli-
ance criterion for WF schema evolution. According to this property, an instance
is compliant with a changed schema iff the reduced execution history can be
produced on the modified schema as well.

Correctness-Criterion 6 (Comprehensive Compliance Criterion) Let I
be a WF instance on WF schema S with execution history H and reduced execu-
tion history Hred. Assume further that a change ∆ transforms S into the correct
WF schema S’. Then I is said to be compliant with S’ iff Hred can be produced
on S’ as well.

Again, the challenging question is how to efficiently check the comprehensive
compliance criterion. We present easily and quickly checkable marking conditions
for each kind of change on WSM-Nets [8] (additive, subtractive, order-changing,
and complex operations). Due to lack of space, we exemplarily summarize these
conditions for additive change operations in Theorem 1.

Theorem 1 (Additive Change Operations On WSM-Nets). Let S = (N,
D, ...) be a correct WSM-Net and I be a WF instance on S with execution history

52 S. Rinderle, M. Reichert, and P. Dadam

Hred. Assume further that change ∆ transforms S into correct WSM-Net S’ =
(N’, D’, ...).
(a) ∆ inserts an activity ninsert (with associated control and sync edges) into S.
Then:

I is compliant with S’ ⇔
∀ n ∈ {x ∈ N | ninsert → x ∈ E’}: NS(n) ∈ {NotActivated, Activated,

Skipped} ∨
ninsert is inserted into an already skipped branch of an XOr-branching

(b) ∆ inserts a control edge nsrc → ndest into S. Then:
I is compliant with S’ ⇔ NS(ndest) ∈ {NotActivated, Activated,

Skipped}
(c) ∆ inserts a sync edge nsrc → ndest into S (nsrc and ndest ordered parallel so
far). Then:

I is compliant with S’ ⇔
[NS(ndest) ∈ {NotActivated, Activated, Skipped}] ∨
[NS(nsrc) = Completed ∧ NS(ndest) ∈ {Running, Completed} with

∃ei = END(nsrc), ej = START(ndest) ∈ Hred ∧ i < j))] ∨
[NS(nsrc) = Skipped ∧ NS(ndest) ∈

{Running, Completed}) with
∀ n ∈ Ncritical with NS(n) �= Skipped:

∃ei = START(ndest), ej = END(n) ∈ Hred with j < i),
where Ncritical = (c pred∗(S, nsrc) ¬ c pred∗(S, ndest))
and c pred∗(S, n)) denotes all direct/indirect predecessors of n in S con-

cerning
edges ∈ CtrlE]

For additive change operations, Theorem 1 presents precise conditions for
efficient compliance checks with an estimated complexity of O(n). These condi-
tions base on a consolidated view of the reduced execution history Hred. As an
example take the insertion of activity ultrasonic as defined by change ∆ in Fig.
4b. According to Theorem 1(a) it is only necessary to determine the marking of
the successors of ultrasonic in S’. In our example, activity report is marked
as Activated such that ∆ can be applied to the WF instance depicted in Fig.
4a. To show their efficiency we have implemented several simulations checking
our compliance conditions.

Besides, we explicitly deal with compliance issues in conjunction with data
flow changes. We shortly summarize the basic ideas: Data elements can be always
inserted, but must not be deleted if there was a read or write access on them.
Read data edges eread = (n, d, read) on data element d can only be inserted
or deleted iff activity n is marked as NotActivated, Activated or Skipped.
Write data edges ewrite = (n, d, write) on data element d can only be inserted
or deleted iff activity n has not been completed yet.

3.3 Concurrent Type and Instance Changes

Finally, we want to give an idea how the propagation of WF schema changes to
biased WF instances can be managed correctly in the context of WSM-Nets [8].

Evaluation of Correctness Criteria for Dynamic Workflow Changes 53

But it should be clear that the following conclusions are applicable to other WF
meta models as well. To meet a formal point of view, we first give a definition
of a biased WF instance (compare Def. 1 and 2).

Definition 4 (Biased WF Instance). A biased instance I is described by a
tuple (S, ∆I , MS+∆I , ValS+∆I , H), where S denotes the WSM-Net from which
I was created and ∆I comprises ad-hoc changes op1I , . . ., op

n
I that have been

applied to I so far. WSM-Net SI := S + ∆I , which results from the application
of ∆I to S, is called execution schema of I.

Comparable to the already discussed correctness criteria we introduce a gen-
eral criterion that allows us to argue about both – propagation of WF schema
changes on ”normal” (unbiased) and on biased WF instances. Obviously, when
propagating a WF schema change ∆S to a biased WF instance I we must not
only consider its current state (i.e., marking MS+∆I) but we also have to cope
with structural and semantic conflicts that may exist between the concurrent
changes ∆I and ∆S . (Note that both, ∆I and ∆S have been based on S.) Due
to lack of space we only consider structural conflicts in the following.

Correctness-Criterion 7 (Concurrent Changes) Let S be a correct WSM-
Net and I = (S, ∆I , MS+∆I , ...) be a biased WF instance that was created from
S. Let further ∆S be a change operation, which transforms S into another correct
WSM-Net S’. Then: ∆S may be propagated to biased WF instance I :⇔
1. S* = (S + ∆I) + ∆S is a correct WSM-Net, i.e., ∆S can be correctly applied
to the execution schema SI = (S + ∆I).

2. I is compliant with S*; i.e., the reduced execution history Hred can be pro-
duced on S* as well. The marking MS∗

resulting from this is considered as
a correct marking.

Again, the challenging question is how to efficiently verify the conditions set
out by Criterion 7. A naive solution would be to first generate the WSM-Net
SI + ∆S and then to check whether it satisfies the required structural and dy-
namic properties. Generally, this would be too expensive, in particular if different
WF aspects (control flow, data flow, work assignments, etc.) are concerned or
∆S is to be propagated to a large collection of instances. Instead we must define
appropriate and efficient rules for excluding potential conflicts (e.g., undesired
cycles and deadlocks) between instance and type changes for as many instances
as possible. Due to lack of space we abstain from further details.

4 Change Realization

We have now reached the stage of checking compliance of WF instances with
a changed WF schema. This analysis leads to two instance categories – com-
pliant and non-compliant WF instances [4,6]. We first discuss how the differ-
ent approaches concretely carry out the migration of compliant WF instances

54 S. Rinderle, M. Reichert, and P. Dadam

(instance adaptations). Then a short overview about approaches dealing with
non-compliant WF instances is presented.
Approaches With True-Semantics: For Petri-Net based approaches, in-
stance migration means to find a suitable marking on the changed net.
WF Nets: In [2], for each imposed change operation transfer rules are defined,

which automatically adapt net markings. Concerning the insertion of sequences
and alternative branches, the respective transfer rule maps marking s of the old
net S to the identical marking on the new net S’ (transfer rule is identity function
id : (S, s) �→ (S′, s)). As an example take the markings of the net in Fig. 2 before
and after insertion of transition ultrasonic. For other change operations the
insertion of additional tokens becomes necessary. Examples are changes like the
insertion of new parallel branches or the deletion of alternative branches and
sequences which contain tokens. Due to lack of space we abstain from discussing
further transfer rules.
Flow Nets: For the change operations provided by [5,10], trivially, markings

are adapted by constructing the SCOC (cf. Section 3.2). Note that the schema
resulting from a SCOC always contains the marking of the old net.
Approaches With True/False-Semantics: To our knowledge neither
WASA2 [7] nor WIDE [4] provide detailed information about marking adap-
tations. In WIDE, however, follow-up markings may result from the replay of
the execution history. As mentioned in Section 3.2, doing so is very expensive
since execution histories often contain extensive data.
WSM-Nets: Our ADEPT approach is somewhat different regarding mark-

ing adaptations of compliant instances. To keep these adaptations efficient, we
restrict them to those nodes and edges of the respective execution schema SI ,
which constitute the context of the change region. Therefore, for each change
operation op initial sets of nodes end edges to be re-evaluated are determined.
Depending on the result of the evaluation the inspection of additional nodes and
edges may become necessary. In addition, we benefit from well-defined mark-
ing rules as well as the way markings are represented (preserving markings of
passed regions, True/False semantics). As an example take change ∆ in Fig.
4. In the course of the following adaptation, ultrasonic has to be marked as
Activated and marking of report is re-evaluated to NotActivated. Finally,
an algorithm has been formulated, which evaluates instance markings with an
estimated complexity of O(n).
Dealing With Non-Compliant WF Instances: There are several approaches
dealing with (temporarily) non-compliant instances [5,6]. BREEZE [6] provides
a special graph construct which consists of compensation activities. With this,
non-compliant instances are partially rolled back into a compliant state. The
first approach which gives an idea of delayed migration is presented in the area
of Flow Nets [5]. As an example consider Fig. 2. Even if the given instance
passes through the old change region, a delayed migration to the new change
region is possible when another loop iteration takes place. We have adopted this
concept and suggest to keep such (temporary) non compliant instances pending
to migrate.

Evaluation of Correctness Criteria for Dynamic Workflow Changes 55

5 Discussion

WF Nets: In [2], a wide range of change operations is covered and provided with
correctness criteria and (automatic) transfer rules for adapting markings. In case
of selected change operations (e.g., adding new parallel branches) new tokens
can be automatically created when migrating instances. Though the authors
completely abstract from data flow, for practical purposes it is necessary that
tokens carry data flow information as well. Therefore, the semantics of newly
inserted tokens at runtime is not always clear.
Flow Nets: [5,10] introduce a special class of changes, the described SCOC

(cf. Section 3.2). Trivially, applying SCOC changes, marking adaptations are
always correctly performed since the old change region is completely contained
in the new net. For a special kind of changes – upsizing – the states of the old
change region are mapped to states of the new change region by flow-jumpers (cf.
Fig. 2b). [10] suggest to determine these flow jumpers manually which implies a
very experienced WF designer. A very nice idea is offered by delayed migrations,
i.e., the possibility of (temporarily) non-compliant instances to later migrate to
the changes schema, e.g., when a loop back takes place. This approach gets even
more complex when data flow issues are to be taken into account as well.

In MWMS [1] a special class of change operations is offered which provides
correct migration of instances in safe states. Both the imposed WF model and
the offered change operations are strongly restricted. To our knowledge, there
is no detailed discussion about how to check the provided correctness criterion
and how to adapt markings after instance migrations.
WASA2 [7] suggests valid mappings between the purged WF instance graph

and the changed WF schema in order to preserve correctness. Though [7] presents
an implementation there is no detailed conceptualization of the mentioned valid
mappings. In WASA2 the loop problem is not present since only acyclic WF
graphs are allowed. However, WASA2 is one of the few approaches, which benefits
from a concrete implementation of a powerful WF engine.
WIDE [4] has offered a cornerstone for many other approaches – the intuitive

compliance criterion. Unfortunately, this criterion suffers from its restrictions
concerning loops (cf. Section 3). Furthermore, it is not clear how the given cri-
terion can be checked and implemented. If we had assumed that replaying the
whole execution history is necessary this could not be efficiently realized. Gen-
erally, execution history logs are not captured in primary storage and contain
extensive information like work assignments, time stamps, etc.

All discussed approaches – except our ADEPT approach – do not explicitly
deal with data flow aspects. Furthermore, one of the few approaches to care
about orthogonal aspects in conjunction with dynamic WF changes is offered by
BREEZE [6]. Here, WF schema evolution in conjunction with time management
is discussed. As already mentioned concurrent changes have been adressed only
in the area of our ADEPT WSM-Nets so far.

Table 1 compares the discussed approaches along the stated criteria.

56 S. Rinderle, M. Reichert, and P. Dadam

Table 1. A Comparison Of The Discussed Approaches

WF Nets Flow Nets MWMS WASA2 WIDE ADEPT
Completeness of
• WF Model – ◦ – – + +
• Changes – + – + + +
• Correctness Criteria + + + + – +
Checking Compliance + – – – – +
Change Realization + – ? ? + +
Available Implementation ? + ? + ? +

6 Summary and Outlook

In this paper we have compared actual approaches dealing with adaptive work-
flows along fundamental criteria. Thereby the main focus lies on providing cor-
rectness criteria to decide whether a WF instance can be smoothly migrated to a
changed WF schema or not. In many applications, the question how to efficiently
check these criteria, how to accomplish instance migrations, how to implement
the presented concepts, and how to offer change facilities to users remains unan-
swered. Therefore, we have presented simple state conditions for compliance
checks and a nice solution to adapt instance markings after change propaga-
tion. Furthermore, we have discussed issues regarding concurrent changes. We
strictly encourage other research groups to deal with this exciting problem as
well and to provide implementations of their concepts within a powerful WF
engine. There are many other interesting questions mainly concerning imple-
mentation of the presented concepts. Within this, questions related to change
authorization, change analyses, and usability have to be carefully answered.

References

1. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sys-
tems. In: Proc. BPM ’2000. LNCS 1806, Springer (2000) 218–234

2. van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoretical Computer Science 270 (2002) 125–203

3. Edmond, D., ter Hofstede, A.: A reflective infrastructure for workflow adaptability.
Data and Knowledge Engineering 34 (2000) 271–304

4. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

5. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proc. Int’l Conf. on Org. Comp. Sys. (COOCS ’95), Milpitas, CA (1995) 10–21

6. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic
workflow processes. Int’l J Coop IS 9 (2000)

7. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: Proc. 34th Hawaii Int’l Conf. on System Sciences
(HICSS-34). (2001)

Evaluation of Correctness Criteria for Dynamic Workflow Changes 57

8. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. Journal of Intelligent Inf. Systems 10 (1998) 93–129

9. Kiepuszewski, B., ter Hofstede, A., Bussler, C.: On structured workflow modelling.
In: Proc. CAiSE ’00. LNCS 1789, Springer (2000) 431–445

10. Ellis, C., Keddara, K.: A workflow change is a workflow. In: Proc. BPM 2000.
Volume 1806 of LNCS., Springer (2000) 516–534

11. Joeris, G., Herzog, O.: Managing evolving workflow specifications. In: Proc. Int’l
Conf. on Coop. Inf. Systems (CoopIS ’98), New York City (1998) 310–321

12. Fent, A., Reiter, H., Freitag, B.: Design for change: Evolving workflow specifications
in ULTRAflow. In: Proc. CAiSE ’02. (2002) 516–534

13. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In: Proc. CoopIS ’99, Edinburgh (1999)
104–114

14. Ellis, C., Maltzahn, C.: The Chautauqua workflow system. In: Proc. 30th Int’l
Conf. on System Science, Maui (1997)

	Introduction
	Approaches Dealing with Flexibility
	Approaches with True-Semantics
	Approaches with True/False-Semantics

	Correctness Criteria for Dynamic WF Changes
	Approaches Based on Graph Equivalence
	Approaches Based on Execution Equivalence
	Concurrent Type and Instance Changes

	Change Realization
	Discussion
	Summary and Outlook

