
On the Common Support of Workflow Type and
Instance Changes under Correctness Constraints

Manfred Reichert, Stefanie Rinderle, and Peter Dadam�

University of Ulm, Computer Science Faculty,
Dept. Databases and Information Systems

{reichert, rinderle, dadam}@informatik.uni-ulm.de

Abstract. The capability to rapidly adapt in-progress workflows (WF)
is an essential requirement for any workflow system. Adaptations may
concern single WF instances or a WF type as a whole. Especially for
long-running business processes it is indispensable to propagate WF
type changes to in-progress WF instances as well. Very challenging in
this context is to correctly adapt a (potentially large) collection of WF
instances, which may be in different states and to which various ad-hoc
changes may have been previously applied. This paper presents a generic
framework for the common support of both WF type and WF instance
changes. We establish fundamental correctness principles, position for-
mal theorems, and show how WF instances can be automatically and
efficiently migrated to a modified WF schema. The adequate treatment
of conflicting WF type and WF instance changes adds to the overall com-
pleteness of our approach. By offering more flexibility and adaptability
the so promising WF technology will finally deliver.

1 Introduction

In real-world environments people are expected to flexibly deal with exceptions.
Though they are trained to do so, this role is purely integrated with current
WF technology [1]. Either ad-hoc deviations from the modeled WF schema are
completely prohibited, thus requiring to bypass the WF system in exceptional
situations, or they may cause severe problems [2]. Ad-hoc adaptations of single
WF instances [2,3,4], however, represent only one kind of dynamic change. In
order to support evolutionary changes, adaptations may have to be applied at
the WF type level as well [3,5,6,7,8,9]. In principle, a WF type change can be
accomplished by modifying the respective WF schema accordingly. In doing so,
in-progress WF instances must not get into trouble due to the change. This
could be achieved by finishing them according to the old schema whereas future
instances are created from the new one. Obviously, this simple approach is only
sufficient for workflows with short duration, but raises problems in conjunction
with long-running processes. Therefore, very often it is desired to propagate a
� This work was done within the research project “Change management in adaptive

workflow systems”, which is funded by the German Research Community (DFG).

R. Meersman et al. (Eds.): CoopIS/DOA/ODBASE 2003, LNCS 2888, pp. 407–425, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

408 M. Reichert, S. Rinderle, and P. Dadam

type change ∆, which transforms the actual schema S into a new one, to in-
progress WF instances as well. Very challenging in this context is to correctly
adapt a (potentially large) collection of WF instances, which may be in different
states and to which various ad-hoc changes may have been previously applied. In
the latter case, we have to deal with the problem that ∆ shall be propagated to
WF instances whose current execution schema does not completely correspond
to the original schema S. Nevertheless, such “biased” WF instances must not be
needlessly excluded from change propagation.

In our previous work, we dealt with ad-hoc changes of single WF instances
and related WF graph transformations [2]. The main emphasis was put on im-
plementation and usability issues. The objective of this paper is to develop a for-
mal framework for both the propagation of WF type changes to already running
WF instances and ad-hoc changes of single WF instances. We present different
change scenarios and have a look at fundamental principles concerning the de-
sign of adaptive WF models. For this, we establish basic correctness principles
and position formal theorems. Taking a simple, but powerful WF meta model,
we exemplarily show how correctness can be efficiently checked and which in-
formation is needed for this. In addition, we introduce well-defined rules and
procedures for migrating WF instances to a modified schema.

Section 2 sketches the WF meta model, which we use in this paper to illus-
trate fundamental principles of our approach. However, the presented approach
is applicable in conjunction with comparable WF meta models as well. Section
3 develops our approach for dynamic WF changes, focusing on general correct-
ness principles as well as on implementable rules for ensuring correctness when
a change is applied. Section 4 deals with conflicting changes at the type and
instance level, and it shows under which conditions WF type changes may be
propagated to biased WF instances as well. We discuss related work in Section
5 and conclude with a summary in Section 6.

2 WF Modeling and Execution Basics

For each business process to be supported a WF type T has to be defined. It is
represented by a WF schema graph S of which different versions V1, ..., Vn may
exist (reflecting the evolution of T). To simplify matters, we assume that there
is only one version Vn from which new WF instances can be created. This is
not really required. However, in the present paper we put the focus on formal
considerations and do not deal with versioning issues in more detail.

2.1 Modeling and Execution of Workflows

A WF schema comprises a set of activities and defines the control and data flow
between them. Control flow is modeled by linking activities with control edges,
which may be optionally associated with transition conditions. The use of control
edges must not lead to cyclic order relationships since this may cause deadlocks
at runtime (see below). Depending on the defined control edges and the chosen

On the Common Support of Workflow Type and Instance Changes 409

 NS = ACTIVATED NS = RUNNING ES = TRUE_SIGNALED

 NS = SKIPPED NS = COMPLETED ES = FALSE_SIGNALED

lab test

prepare calc. dose give drug another cycle?

age dose weight

age > 40

continue = true

b) Execution History of I

START(admit),
END(admit; write(age,25)),
START(send notice),
END(send notice),
START(prepare,1st),
END(prepare; write(weight,75)),
START(calc.dose; read(weight,75)),
END(calc.dose; write(dose,100)),
START(give drug; read(dose,100)),
END(give drug), START(another cycle?),
END(another cycle?, true),

START(prepare,2nd),
END(prepare; write(weight,72)),
START(calc.dose; read(weight,72)),
END(calc.dose; write(dose,90))

a) Instance I with Schema Graph S(T,V) and Marking MS(T,V)

data
element

transition condition

read data
link

loop egde

continue

control edge

write data
link

send notice

admit

Fig. 1. WF Instance Example

transition conditions, sequences, parallel branchings, and conditional branchings
can be described. For the modeling of loop backs, an additional edge type (loop
backward edge) is provided, which allows us to distinguish between “undesired”
and “desired” cycles. To simplify matters, we assume that an activity must
not have more than one outgoing loop edge and that the activity nodes which
constitute the loop body are well-defined (cf. Def. 1). Finally, data flow between
activities is realized by connecting them with global data elements. For this, read
and write data edges are provided. An example is depicted in Fig. 1. Formally:

Definition 1 (WF Schema Graph). A tuple S with S = (N, D, CtrlEdges,
LoopEdges, DataEdges, EC) is called a WF schema graph, if the following holds:

– N is a set of activities and D a set of data elements
– CtrlEdges ⊂ N × N is a precedence relation

(notation: nsrc → ndst ≡ (nsrc, ndst) ∈ CtrlEdges)
– LoopEdges ⊂ N × N is a set of loop backward edges
– DataEdges ⊆ N × D × {read, write} is a set of read/write data links between

activities and data elements
– EC: CtrlEdges ∪ LoopEdges �→ Conds(D) where Conds(D) denotes the set

of all valid transition conditions on data elements from D.

such that

1. Sfwd = (N, CtrlEdges) is an acyclic graph
2. ∀ (n1, n2) ∈ LoopEdges: n2 ∈ pred(S, n1)
3. ∀ (n1, n2) ∈ LoopEdges: succ(S, n2) ⊆ Lbody(n1, n2) ∪ succ(S, n1) ∧

pred(S, n1) ⊆ Lbody(n1, n2) ∪ pred(S, n2)
4. ∀ (n1, n2),(m1, m2) ∈ LoopEdges: n1
= m1

The sets pred(S,n)/succ(S,n) comprise all direct and indirect predeces-
sors/successors of n via control edges and Lbody(n1, n2):= succ(S, n2) ∩ pred(S,
n1) ∪ {n1, n2}.

410 M. Reichert, S. Rinderle, and P. Dadam

The status of a single WF activity is initially set to NOT ACTIVATED. When all pre-
conditions for activity execution are met (see below), it changes to ACTIVATED.
The activity is then either started automatically or corresponding work items
are inserted into user worklists. When starting execution, activity status changes
to RUNNING and the associated application component is invoked. Finally, at
successful termination, status passes to COMPLETED.

Execution of a newly created WF instance starts with those activities that
have no incoming control edge. When completing an activity, its outgoing edges
are either evaluated to TRUE SIGNALED or FALSE SIGNALED, depending on their
transition conditions. This, in turn, leads to re-evaluation of target activities.
Generally, an activity may be activated as soon as all incoming edges have been
signaled and at least of them is marked with TRUE SIGNALED. Consequently,
if all incoming edges are marked as FALSE SIGNALED, the activity cannot be
executed anymore. Its status is then set to SKIPPED, which may lead to cascaded
skipping of subsequent activities. A loop edge is evaluated whenever its source
activity terminates. If the associated loop condition evaluates to true, outgoing
control edges will not be evaluated, the loop edge will be signalled, and all
nodes contained within the loop body will be reset to their initial state. Finally,
execution of a WF instance will terminate if all activities are in one of the states
COMPLETED or SKIPPED.

Each WF instance I is associated with a schema S = S(T,V), where T denotes
the WF type of I and V the version of the WF schema graph to be taken for ex-
ecution. (Note that other WF instances may be based on S as well). The control
state of I is captured by a marking function MS =(NS, ES). It assigns to each
activity n its current status NS(n) and to each control and loop edge its mark-
ing ES(e) (cf. Fig. 1). These markings are determined according to the rules de-
scribed above, whereas markings of already passed regions and skipped branches
are preserved (except loop backs). Concerning data elements, different versions
of a data object may be stored, which is important for the context-dependent
reading of data elements and the handling of (partial) rollback operations.

Definition 2 (WF Instance). A WF instance I is defined by a tuple (T, V,
MS(T,V), ValS(T,V), H) where

– T denotes the WF type of I and V the version of the schema graph S :=
S(T,V) = (N, D, CtrlEdges, LoopEdges, ...) according to which I is executed.

– MS=(NSS, ESS) reflects the current marking of nodes NSS: N �→ NodeStates
and edges ESS: CtrlEdges ∪ LoopEdges �→ EdgeStates

– ValS is a function on D. V alS(d) reflects for each data element d ∈ D either
its current value or the value UNDEFINED (if d has not been written yet).

– H = < e0, . . . , ek > is the execution history of I. It logs information about
start / completion of activities. For each started activity X the values of the
data elements read by X and for each completed activity Y the values of the
data elements written by Y are logged (logical view).

As described above, WF instances preserve their markings when proceeding in
the flow of control. Thus MS always reflects a consolidated view of the previous

On the Common Support of Workflow Type and Instance Changes 411

execution of I. As we will see later, this property is very useful in connection
with dynamic WF instance changes. Formally:

Lemma 1 (Preserving Instance Markings). Let I be a WF instance with
schema graph S = (N, D, ...) and marking MS = (NS, ES). Further, let x ∈ N
be an arbitrary activity node with NS(x) ∈ {COMPLETED, SKIPPED}. Then:
∀ n ∈ pred(S, x): NS(n) ∈ {COMPLETED, SKIPPED}.

2.2 Defining and Changing Schema Graphs

Table 1 contains some primitives that can be used to define and modify schema
graphs. Each primitive has a well-defined semantics and is associated with for-
mal pre-/post-conditions, necessary to preserve (structural) correctness of the
respective schema (cf. Def. 1). In this paper, we exemplarily restrict our consid-
erations to the avoidance of deadlocks that may be caused due to cyclic order
relationships (via control edges). Generally, additional constraints exist. Con-
cerning data flow, for example, no lost updates must occur during runtime and
all data elements read by an activity must always have been written by preceding
activities, independently of chosen execution branches. There are other primi-
tives (e.g., to update edge conditions), which we do not consider in the following.
Finally, change primitives serve as basis for defining high-level operations (e.g.,
to shift an activity from its current to another position) and for deriving formal
conditions for them. However, this is outside the scope of this paper.

Table 1. Examples of Basic Change Primitives

addCtrlEdge(S, nsrc, ndst) Pre: (nsrc �∈ succ(S, ndst) ∪ {ndst}) ∧ (∀ (n1,n2) ∈ LoopEdges:
[nsrc ∈ Lbody(n1,n2) ⇔ nsrc ∈ Lbody(n1,n2)])

Post: CtrlEdges’ = CtrlEdges ∪ {nsrc → ndst}

addActivity(S, nins, Preds, Succs) Pre: (∀ p ∈ Preds, ∀ s ∈ Succs: s �∈ pred(S, p)) ∧
(∀ (n1,n2) ∈ LoopEdges:

(Preds ∪ Succs) ⊆ Lbody(n1,n2) ∨
(Preds ∪ Succs) ∩ Lbody(n1,n2) = ∅

Post: N’ = N ∪ {nins}
CtrlEdges’ = CtrlEdges ∪ {p → nins | p ∈ Preds}

∪ {nins → s | s ∈ Succs}

deleteCtrlEdge(S, nsrc, ndst) Post: CtrlEdges’ = CtrlEdges ¬ {nsrc → ndst}

deleteActivity(S, ndel) Post: N’ = N ¬ {ndel}
CtrlEdges’ = CtrlEdges ¬ {a → b | ndel ∈ {a, b}} ∪
{ p → s with EC(p → s) = ec |

p → ndel, ndel → s ∈ CtrlEdges ∧ EC(ndel → s) = ec}

3 Dynamic Change Basics

In this section, we present issues related to dynamic change correctness in a
formal and rigorous style. Due to lack of space, we restrict our considerations to
changes definable by the primitives from Table 1. First of all, we do not make a

412 M. Reichert, S. Rinderle, and P. Dadam

difference between changes of single instances and adaptations of a collection of
instances (e.g., due to a type change). Instead we focus on fundamental issues
related to dynamic instance changes. In the following, let I be an instance with
schema graph S and marking MS . Assume that S is transformed into a correct
schema graph S’ by applying change ∆. Two challenging issues arise:

1. Can ∆ be correctly propagated to I, i.e., without causing errors or inconsis-
tencies? For this case, I is said to be compliant with S’.

2. Assuming I is compliant with S’, how can we smoothly migrate it to S’
such that its further execution can be based on S’? Which state (marking)
adaptations become necessary in this context?

We will show that these two issues are fundamental for the design of any adap-
tive WF model. While the first one concerns pre-conditions on the state of I, the
second issue is related to post-conditions that must be satisfied after the change
has been applied. In any case, we have to find an efficient solution, which en-
ables automatic and correct compliance checks as well as instance migrations. In
Section 3.1 we introduce general correctness principles which address the above
issues. Based on them, for the presented WF meta model (cf. Section 2) we de-
velop formal pre-conditions for ensuring compliance of instances with a modified
schema (cf. Section 3.2). Section 3.3 shows how to efficiently determine follow-up
markings of compliant WF instances when migrating them to the new schema.
Section 3.4 concludes with a discussion of different change scenarios.

3.1 Dynamic Change Correctness

To illustrate potential problems that may result from the uncontrolled migration
of WF instances consider schema graph S from Fig. 2a. Let us assume that S is
correctly transformed into S’ by inserting two activities and a data dependency
between them (cf. Fig. 2a, 2b). Assume that this change shall be applied to
the instances from Fig. 2c) (currently based on S) but without performing any
compliance check. Concerning I1 no problem would occur, since its execution has
not yet entered the change region. Uncontrolled migration of I2, however, would
cause malfunctions: Firstly, an inconsistent marking would result (cf. Lemma 1),
thus leading to an undefined execution state. Secondly, activity give drug may
be invoked though the data element allergyData read by this activity may
not have been written. Concerning I3 migration would be possible. However,
when migrating I3 to S’, activation of activity prepare has to be undone and
corresponding work items must be removed from worklists. Additionally, the
newly inserted activity test must be activated. This example demonstrates that
applicability of a dynamic change depends on current instance state as well as
on applied change primitives. Furthermore, when migrating compliant instances,
markings and worklist structures must be correctly adapted.

Comparable with serializability in DBMS, we need general principles which
allow us to argue about the correctness of dynamic changes. In more detail,
we require a formal criterion for deciding whether a given WF instance can be
smoothly migrated to the modified schema or not. In addition, we must be able

On the Common Support of Workflow Type and Instance Changes 413

to determine correct new markings resulting from such a migration. One of our
design goals is to define these correctness criteria independently of the opera-
tional semantics of the used WF meta model and the offered change operations.
This allows us to apply them in different scope and to different WF meta mod-
els, thus providing a good basis for reasoning about the correctness of rules and
methods for checking compliance and for migrating compliant instances.

Intuitively, instance I is compliant with the modified schema S’ if I could have
been executed according to S’ as well and would have produced the same effects
on data elements [3,10]. Trivially, this will be always the case if I has not yet
entered the region affected by the change. Generally, we need information about
previous execution to decide this property and to determine correct follow-up
markings for compliant instances. To derive such a general compliance principle,
at the logical level we make use of the execution history usually kept for each
WF instance (cf. Fig. 1 and 2). We assume that this history logs events related
to the start and termination of activity executions (cf. Def. 2).

 WF schema S

inform prepare examine

a) WF type level

c) WF instance level (instances on S)

addActivity(S,test,{inform},{prepare}), addActivity(S,give drug,{prepare},{examine}),
addDataElement(S,allergyData), addDataLink(S,test,allergyData,write), addDataLink(S,give drug,allergyData, read)

inform examine prepare

I1:

examine

I3:

prepare inform

execution history of I1: START(inform)
execution history of I2: START(inform), END(inform), START(prepare)
execution history of I3: START(inform), END(inform)

inform prepare test

examine

I2:

prepare inform

examine give drug

allergyData

b) Schema Change

WF schema S’

Fig. 2. Schema Graph and Related Instances

Obviously, instance I with history H is compliant with S’ and can migrate
to S’ if H could have been produced on S’ as well. We then obtain a correct new
marking by “replaying” all events from H on S’ in sequential order. Taking our
example from Fig. 2 this property holds for I1 and I3 but does not apply to I2.
When replaying H3 on S’ we obtain node markings as sketched above.

The described criterion is still too restrictive to serve as general correct-
ness principle. Concerning loop changes it may needlessly exclude instances
from migrations. As an example take instance I from Fig. 1 where the de-
picted loop is in its 2nd iteration. Assume that schema S is modified by apply-
ing change addActivity(S, perform test, {prepare}, {give drug}). Tak-
ing the above criterion this change would not be allowed since previous loop
iteration of I is not compliant with the new schema; i.e., H cannot be pro-
duced based on the modified schema. However, excluding such instances from
migrations very often is not in accordance with practice. To overcome this re-
strictiveness we relax the above criterion by (logically) discarding those history

414 M. Reichert, S. Rinderle, and P. Dadam

entries produced within another loop iteration than the last (completed loops) or
the current one (running loops). We denote this reduced view H as redH. Based
on this we now define a general correctness principle for dynamic WF changes:

Axiom 1 (Dynamic Change Correctness) Let I = (T, V, MS, ValS, H) be
a WF instance with correct schema graph S = S(T,V) and marking MS. Assume
that S is transformed into a correct schema graph S’ by applying change ∆. Then:

1. ∆ can be correctly propagated to I iff redH can be produced on S’ as well
(For this case, I is said to be compliant with S’).

2. Assume I is compliant with S’. When propagating ∆ to I the correct marking
MS′

of I on S’ can be obtained by replaying redH on S’.

These two basic properties satisfy our design goals since they do not de-
pend on the operational semantics of the used WF meta model and the changes
applied. Axiom 1 can therefore serve as fundamental correctness principle for
adaptive workflow. Furthermore, it does not needlessly exclude instances from
migrations on condition their execution will not get into trouble due to the
change. Altogether Axiom 1 provides a good basis for arguing about dynamic
change correctness. However, it would certainly be no good idea to guarantee
compliance and to determine new markings of compliant instances by accessing
the whole execution history and trying to replay it on the modified schema since
this may cause a performance penalty. Note that histories comprise voluminous
data and are usually not kept in primary storage. In the following we present
optimized rules and procedures for ensuring correctness according to Axiom 1.

3.2 Rules for Checking Compliance

For the WF meta model from Section 2 and related change primitives we exem-
plarily show under which conditions compliance (cf. Axiom 1,1) can be guaran-
teed. Our basic design principles have been as follows:

1. We consider change semantics and context in order to derive precise compli-
ance rules and to state which information is needed for checking them.

2. We make use of dynamic properties of the WF model. Particularly, the
derivation of compliance rules benefits from activity markings which already
provide a consolidated view on the (reduced) history of a WF instance.

We omit unnecessary details and focus on compliance rules for selected primitives
from Table 1. Based on them, one can easily develop high-level change opera-
tions and related compliance rules. Since the latter can be derived by merging
compliance conditions of the change primitives applied and by discarding unnec-
essary expressions (e.g., conditions on nodes not present in the original schema
graph), we do not further consider complex change operations in this paper.

Let I be an instance with schema S, marking MS , and history H. Assume
that S is transformed into correct schema S’ by applying one of the primitives
from Table 1. The challenge is to find conditions under which we can ensure
compliance of I with S’ (cf. Axiom 1,1). Table 2 summarizes some well-founded
compliance conditions. Based on them we can state the following theorem:

On the Common Support of Workflow Type and Instance Changes 415

Table 2. Examples of Compliance Rules

Change Operation ∆ and Related Compliance Condition Compliant(S, ∆, NS, ES, ValS , H)
addActivity((∀ n ∈ Preds: NS(n) = SKIPPED) ∨

S,nins,Preds,Succs) (∀ n ∈ Succs: NS(n) ∈ {NOT ACTIVATED, ACTIVATED} ∨ (NS(n) = SKIPPED ∧
∀ m ∈ succ(S,n): NS(m) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED})

addCtrlEdge(NS(ndst) ∈ {NOT ACTIVATED, ACTIVATED}
S, nsrc, ndst) ∨

(NS(ndst) ∈ {RUNNING, COMPLETED} ∧ NS(nsrc) ∈ {COMPLETED} ∧
(with EC(nsrc → ndst) = (ei = END(nsrc), ej = START(ndst) ∈ H, ⇒ i < j)) ∨
=True) (NS(ndst) ∈ {RUNNING, COMPLETED} ∧ NS(nsrc) = SKIPPED ∧

(∀ n ∈ N1 with NS(n) = COMPLETED, ej = END(n), ei = START(ndst) ∈ H, ⇒ j < i))
∨
(NS(ndst) = SKIPPED ∧ NS(nsrc) ∈ {NOT ACTIVATED, ACTIVATED, RUNNING, COMPLETED} ∧
(∀ n ∈ N2: NS(n) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}))

∨
(NS(ndst) = SKIPPED ∧ NS(nsrc) = COMPLETED ∧ (∀ n ∈ N2 with NS(n) ∈ {RUNNING, COMPLETED}:
(ej = START(n), ei = END(nsrc) ∈ H, ⇒ j > i) }))

∨
(NS(ndst) = NS(nsrc) = SKIPPED ∧
(∀ s ∈ N2 with NS(s) ∈ {RUNNING, COMPLETED}, ∀ p ∈ N1 with NS(p) = COMPLETED:
ei = END(p), ej = START(s) ∈ H, ⇒ j > i))

where N1:= pred(S, nsrc)¬ pred(S, ndst) ∪ {nsrc},
N2:= succ(S, ndst)¬ succ(S, nsrc) ∪ {ndst}

deleteActivity(S,ndel) NS(ndel)) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}
deleteCtrlEdge((NS(ndst) ∈ NOT ACTIVATED, ACTIVATED) ∨

S,nsrc,ndst) (ES(nsrc → ndst) = FALSE SIGNALED ∧ ((∃ n → ndst ∈ CtrlEdges, n
= nsrc) ∨
(∀ n ∈ succ(S, ndst): NS(n)
∈ {RUNNING, COMPLETED})) ∨

(ES(nsrc → ndst) = TRUE SIGNALED ∧ ((
 ∃ n → ndst ∈ CtrlEdges, n
= nsrc) ∨
(∃ e = n → ndst ∈ CtrlEdges, n
= nsrc with ES(e)
= FALSE SIGNALED))

addDataElement(S,d) no condition
deleteDataElement(S,d) val(d) = UNDEFINED
addDataLink(S,n,d,read) NS(n) ∈ {NOT ACTIVATED, ACTIVATED, SKIPPED}
addDataLink(S,n,d,write) NS(n)
= COMPLETED

Theorem 1 (Compliance Rules). Let I be a WF instance with schema graph
S, marking MS = (NS, ES), data values ValS, and execution history H. Assume
that S is transformed into a correct schema graph S’ by applying change operation
∆ to it. Then: I is compliant with S’ (according to Axiom 1,1) ⇔

Compliant(S, ∆, NS, ES, ValS, H) = TRUE (cf. Table 2).

Due to lack of space we omit formal proofs. Instead we exemplarily describe
compliance conditions for the primitives addActivity and addCtrlEdge. Re-
garding insertion of an activity nins between two node sets Preds and Succs
compliance can be guaranteed if all nodes from Succs actually possess one of the
markings ACTIVATED or NOT ACTIVATED. In this case, none of the successors of
nins has yet written any entry into H. Furthermore, compliance can be ensured
if all nodes from Preds are marked as SKIPPED. Then nins is skipped as well,
i.e., its insertion has no effect on compliance. Finally, nins may be inserted as
predecessor of a skipped node provided that none of the successors of this node
has a marking other than ACTIVATED, NOT ACTIVATED, or SKIPPED (see Fig. 3).

admit

prepare X - ray report

take blood

lab test A

lab test B

validate

aftercare

age >= 50

age < 50

The addition of a control edge nsrc →
ndst will always be possible if NS(ndst)
∈ {ACTIVATED, NOT ACTIVATED} applies.
In case ndst is marked as SKIPPED com-
pliance can be guaranteed if all succes-
sors of ndst (less the successors of nsrc)
possess one of the markings ACTIVATED,
NOT ACTIVATED, or SKIPPED.

Under certain conditions dynamic insertion of a control edge nsrc → ndst

is even allowed if ndst has been already started or completed. As an example

416 M. Reichert, S. Rinderle, and P. Dadam

(S, MS):

A

B

C

E

D

p(x)=
false

A

B

C

E

D

p(x)
(S’, MS’):

X

addActivity(S, X, {A}, {C})

CalculateMarking

 NS = ACTIVATED NS = RUNNING

 NS = SKIPPED NS = COMPLETED

 ES = TRUE_SIGNALED ES = FALSE_SIGNALED

Re-evaluated
Markings

Fig. 3. Insertion before a Skipped Node

take the process schema (medical workflow) from the previous figure. Assume
that an additional control edge is inserted between activities test B and X-ray.
Concerning instances for which both activities are completed insertion is (only)
allowed if test B had written its end entry into H before the start entry of
X-ray was logged. As a second example, consider an instance I where test B is
marked as SKIPPED and X-ray as COMPLETED. Taking this marking I would be
only compliant with S’ if take blood had been completed before X-ray started
(N1 = {take blood}).

Compliance conditions for the deletion of activities and control edges as well
as for data flow changes are summarized in Table 2. In a similar way we can derive
compliance rules for other primitives, e.g., insertion or deletion of loop edges or
update of transition conditions. Altogether we can state that compliance – as
postulated by Axiom 1,1 – can be checked on basis of current activity markings;
i.e., we usually must not explicitly check the producibility of whole execution
histories on the modified schema.

3.3 How to Correctly Adapt Workflow Instance Markings?

We have described how compliance can be ensured and which information is
needed. Our main goal was to prevent access to the whole execution history. By
holding this maxim we now show how compliant instances can be migrated to
the changed schema. One problem to be solved is the efficient and correct adap-
tation of activity markings. According to Axiom 1,2 the marking of a migrated
instance must be the same as it could be obtained when replaying the respective
(reduced) history on the new schema. How extensive marking adaptations turn
out for instance I depends on the kind and scope of the change. Except for initial-
ization of newly inserted nodes and edges, no adaptations will become necessary
if execution of I has not yet entered the change region. In other cases extensive
marking adaptations may be required. An activity X, for example, may have to
be deactivated if control edges are inserted with X as target activity. Conversely,
a newly added activity will have to be immediately activated or skipped if all
predecessors possess a final marking. As shown in Fig. 3 it may even become
necessary to undo the skipping of nodes when inserting an activity.

We now describe how markings can be automatically and efficiently adapted
when migrating compliant instances. Initially, we can restrict marking evalua-
tions to those nodes and edges, which constitute the context of a change region.
We sketch how these sets can be determined for selected change primitives as well

On the Common Support of Workflow Type and Instance Changes 417

as for complex changes. Based on this, we present an algorithm which correctly
calculates new markings for compliant instances.

Table 3. Node and Edge Sets to be Evaluated

op = addActivity(S, nins, Preds, Succs) Ncheck(op):= Succs (∪ {nins} if Preds = ∅)
Echeck(op) := {p → nins ∈ CtrlEdges’ | p ∈ Preds}

op = deleteActivity(S, ndel) Ncheck(op) := {n ∈ N | ndel → n ∈ CtrlEdges }
Echeck(op) := ∅

op = addCtrlEdge(S, nsrc, ndst) Ncheck(op) := {ndst}, Echeck(op) := {nsrc → ndst}

op = deleteCtrlEdge(S, nsrc, ndst) Ncheck(op) = {ndst}

Table 3 shows node and edge sets whose markings must be initially evalu-
ated when the respective change operation op is applied – we denote these sets as
Ncheck(op) and Echeck(op) respectively. Depending on the evaluation result, in-
spection of additional nodes and edges may become necessary. As a first example,
take the dynamic insertion of an activity nins. Firstly, all incoming control edges
of nins must be evaluated. Depending on this, nins either has to be activated,
skipped, or left in its initial state. (Note that an initial evaluation of nins only
becomes necessary if Preds = ∅ holds.) Secondly, all successors of nins must be
re-evaluated as well. Due to the insertion of nins, activation or skipping of these
activities may have to be undone. Regarding the insertion of a control edge, the
marking of both, the newly added edge and its target node ndst have to be re-
evaluated, i.e., we obtain Ncheck(op) = {ndst} and Echeck(op) := {nsrc → ndst}.
The latter will be also required if the evaluation of the edge marking results in
NOT SIGNALED (for this case ndst may have to be deactivated).

Concerning a complex change ∆ = op1, . . . , opn the total node and edge sets
Ncheck(∆) and Echeck(∆) to be (initially) evaluated can be determined with
Algorithm 1. In principle, we obtain them by unifying the corresponding sets of
the applied change operations. However, since these operations can be based on
each other, there may be temporarily generated nodes or edges not present in
the resulting schema graph anymore. This is considered by Algorithm 1.

Algorithm 1: CalcEvalSet(S, S’, ∆ = op1, . . . , opn) −→ Ncheck(∆), Echeck(∆)

Echeck(∆) := ∅; Ncheck(∆) := ∅;
for i:=1 to n do

Echeck(∆):= Echeck (∆) ∪ Echeck(opi); Ncheck(∆):= Ncheck (∆) ∪ Ncheck(opi);
done
Echeck(∆):= Echeck(∆) ∩ E’; Ncheck(∆):= Ncheck(∆) ∩ N’;

Let I be an instance with schema S and marking MS . Assume S is trans-
formed into a correct schema S’ by applying change ∆ = op1, . . . , opn. Assume

418 M. Reichert, S. Rinderle, and P. Dadam

Algorithm 2: CalcMarking(S, S’, (NS, ES),Ncheck(∆), Echeck(∆)) −→ (NS’, ES’)

Ncheck:= Ncheck(∆); Echeck:= Echeck(∆);
forall e ∈ E’ ∩ E do ES’(e) = ES(e) done;
forall e ∈ E’ ¬ E do ES’(e) = NOT SIGNALED done
forall n ∈ N’ ∩ N do NS’(n) = NS(n) done;
forall n ∈ N’ ¬ N do NS’(n) = NOT ACTIVATED done

repeat
while Echeck �= ∅ do

fetch an edge e = nsrc → ndst from Echeck;
determine marking newES of e according to marking of nsrc and transition cond. EC’(e)
if ES’(e) �= newES then

ES’(e) := newES , Ncheck := Ncheck ∪ {ndst}
endif

done
while Ncheck �= ∅ do

fetch a node n from Ncheck;
determine marking newNS of n according to markings of incoming control edges of n.

if NS’(n) �= newNS then
if newNS = SKIPPED or NS’(n) = SKIPPED then

Echeck:= Echeck ∪ {e = nsrc → ndst ∈ E’ | nsrc = n }
endif
NS’(n) := newNS

endif
done

until Echeck = ∅ and Ncheck = ∅;

further that I is compliant with S’. Algorithm 2 then correctly determines new
marking MS′

of I on S’. Basic to this are the marking and execution rules of
our WF meta model. Algorithm 2 starts with sets Ncheck(∆) and Echeck(∆) as
input. If the markings of respective nodes or edges are adapted during execution
of Algorithm 2, context nodes and edges will be re-evaluated as well, etc. By
means of Algorithms 1 and 2, total expenditure for marking adaptations can be
significantly reduced when compared to the re-evaluation of all node and edge
markings or the complete replay of all history events on the new schema. Never-
theless, our approach guarantees correctness according to Axiom 1,2. Formally:

Theorem 2 (Optimized Marking Adaptations). Let I = (T, V, MS, ValS,
H) be an instance with schema S = S(T,V) and marking MS. Assume that
change ∆ transforms S into a correct schema S’ and I is compliant with S’.
Then: With CalculateMarking(S, S’, MS, Ncheck(∆), Echeck(∆)) (cf. Alg. 2) we
obtain the correct marking MS′

of I (cf. Axiom 1,2) when migrating it to S’;
i.e., we obtain the same marking as it would result when replaying H on S’.

While Algorithm 1 has to be carried out only once at change definition time,
Algorithm 2 must be applied for each instance to be migrated. The complexity
of Algorithm 2 can be estimated by O(n) (where n corresponds to the number
of activities of schema S’). Additionally, for each WF instance complexity O(n)
arises from the described compliance checks.

As a first example, take the activity insertion from Fig. 3. As already shown,
the depicted instance is compliant with the modified schema. With Algorithm 1
we obtain Ncheck = {C} and Echeck = {A → X}. Furthermore, when running Al-

On the Common Support of Workflow Type and Instance Changes 419

gorithm 2 with these sets as input, the newly inserted activity X will be activated
whereas skipping of C and activation of E will be undone. A second example,
which shows a change at the type level (parallel ordering of activities that have
been executed serially so far) and its propagation to compliant instances is de-
picted in Fig. 4. Note that both, necessary checks and marking adaptations can
be completely automated in our approach. Thus the “dynamic change bug” as
discussed in WF literature (e.g. [9,11]) is not present in our approach.

A B C D A

B

C

D

A B C D

A

B

C

D

A

B

C

D

Type Level

S:

Instance Level

I1:

S’

deleteCtrlEdge(S,B,C)
addCtrlEdge(S,A,C)
addCtrlEdge(S.B.D)

Ncheck = {C,D}
Echeck = {A � C, B � D}

 (Alg. 1)

 CalculateMarking
(Alg. 2)

A B C D

I2:

 NS = ACTIVATED NS = RUNNING

NS = COMPLETED ES = TRUE_SIGNALED

X

Fig. 4. Instance Migrations Due To Type Change

3.4 Realizing Workflow Type and Workflow Instance Changes

The presented correctness principles, compliance rules, and migration proce-
dures are applicable for both WF schema evolution (incl. change propagation to
running instances) and ad-hoc changes of single instances.

WF schema evolution: First of all, we allow designers to restrict the set
of migratable instances by specifying appropriate selection predicates (based on
WF attributes). For each selected instance I the WfMS checks whether it is
compliant with the modified schema or not. In the former case I is re-linked to
the new schema S’ and its further execution is based on S’ (cf. Fig. 5 b). Among
other things this includes adaptation of markings and related data structures as
described. Non-compliant instances may be finished according to the old schema
version or be rolled back to a compliant state to enable their migration. In
connection with loops such a compliant state may be reachable when a loop
enters its next iteration. A discussion of this special case and the support of
delayed instance migrations, however, is outside the scope of this paper.

(Ad-hoc) changes: An ad-hoc change of instance I may become necessary,
for example, to deal with exceptional situations. For change definition, high-
level operations are offered to users (e.g., to jump forward in the flow or to shift
activities) which are based on the described primitives. All runtime deviations are

420 M. Reichert, S. Rinderle, and P. Dadam

S(T, V1)

M1
S(T,V) M2

S(T,V)+

instance level

worklist structures

 adapt

 I1 I2
execution schema
graph S(T,V) + I
I

a)

applying
ad-hoc change

 to I2 I

Scenario 1

T type level

T type level

S(T, V1)

I1 I2 I3 …

M1
S(T,V1) M2

S(T,V1) M3
S(T,V1)

instance level

worklist structures

work items

T type level

S(T, V1)

 I2 …

M2
S(T,V1) M1

S(T,V2) M3
S(T,V2)

instance level

worklist structures

insert/delete
work items

S(T, V2)
+

 I1 I3 …

b)

T

migrating compliant
instances I1 + I3

schema change T

Scenario 2

Fig. 5. Managing Type and Instance Changes

properly integrated with respect to authorization and are logged in the change
history of I. Obviously, this results in an instance-specific execution schema SI

= S + ∆I which differs from the original schema S (cf. Def. 3) – ∆I is called the
bias of I (with respect to S) and describes the set of instance-specific changes
op1

I , . . ., opn
I that have been applied to I so far. Execution of I as well as future

change definitions are logically based on SI (cf. Fig. 5 a).

Definition 3 (Biased Instance). A biased instance I is described by a tuple
(T, V, ∆I , MS+∆I , ValS+∆I , H), where S = S(T,V) corresponds to the schema
version from which I was created and ∆I comprises instance-specific changes
op1

I , . . ., opn
I that have been applied to I so far. Schema SI := S + ∆I , which

results from the application of ∆I to S, is called the execution schema of I.

Trivially, the execution schema SI of an unbiased instance I (with ∆I = ∅)
corresponds to its original schema S. A biased instance always keeps the reference
to its original schema. As we will see in the next section, under certain conditions
this allows us to propagate type changes to biased instances as well. How biased
instances are “physically” represented, whether SI is materialized or only ∆I is
stored and other implementation issues are outside the scope of this paper.

4 Conflicting Type and Instance Changes

Biased WF instances must not be needlessly excluded from adapting to a WF
type change. As an example take a patient treatment process. Even though
physicians may have deviated from the original WF schema S at the instance level
(e.g., by inserting or skipping activities) this must not prohibit the propagation
of future WF type changes to these instances on condition that they are not
conflicting with current instance state and previously applied ad-hoc changes.
In this section, we sketch what is needed and which issues arise in this context.

Let I = (T, Vn, ∆I , ...) be a biased WF instance (cf. Def. 3) which was created
from schema version S = S(T, Vn) and to which instance-specific changes op1

I ,
. . ., opn

I – described by bias ∆I – have been applied so far. Assume that a new
schema version S’ = S(T, Vn+1) is derived from S by applying WF type change
∆T (= op1

T , . . ., opm
T) to it (S’ = S + ∆T). Then the following issues arise:

On the Common Support of Workflow Type and Instance Changes 421

1. May ∆T be propagated to I as well though the current execution schema
SI= S + ∆I of I differs from the original schema S?

2. If change propagation is possible how can it be efficiently and correctly ac-
complished? Which execution schema SI ’ (and marking MS′

I) must result?

4.1 Correctness Issues

Comparable to the migration of unbiased instances (cf. Section 3) we introduce
a general criterion that allows us to argue about the two issues described above.
Obviously, when propagating a WF type change ∆T to a biased WF instance
I we do not only have to consider its current marking MSI but must also deal
with structural and semantical conflicts that may exist between the “concurrent”
changes ∆I and ∆T (Note that ∆I as well as ∆T have been based on S). In this
paper we restrict our considerations to structural conflicts. A comprehensive
treatment of semantically conflicting changes is given in [12].

Axiom 2 (Propagating Type Changes To Biased Instances) Let T be a
WF type with actual schema version S = S(T,Vn). Assume that a new schema
version S’= S(T,Vn+1) is derived by applying type change ∆T to S. Then:
∆T may be propagated to WF instance I = (T, Vn, ∆I , ...) :⇔
1. S* = (S + ∆I) + ∆T is a correct schema graph, i.e., ∆T can be correctly

applied to the execution schema SI = (S + ∆I).
2. I is compliant with S*; i.e., the reduced execution history redH (cf. Section

3.1) can be produced on S* as well. The marking MS∗
resulting from this is

considered as a correct state.

According to Axiom 2 type change ∆T may be propagated to a biased in-
stance I if ∆T can be correctly applied to the execution schema of I and does
not conflict with its current marking. The resulting schema S* = SI + ∆T

must therefore satisfy the correctness properties of the used WF meta model
(cf. Section 2). In addition, I must be compliant with S* according to Ax-
iom 1. As an example take schema S = S(T,V) from Fig. 6. Assume that
type change ∆1

T = [addCtrlEdge(S,E,D)] is applied to S. Then condition 1
of Axiom 2 is not satisfied since the resulting schema SI + ∆1

T contains a
deadlock-causing cycle. ∆1

T must therefore be not propagated to I. As opposed
to this, type change ∆2

T = [addActivity(S,Y,{D},{E})] may be propagated to
I since the conditions defined by Axiom 2 are met. As a last example take ∆3

T

= [deleteDataLink(S,C,d,write), deleteActivity(S,C)]. It is quite evident
that propagation of ∆3

T to I would result in an incorrect data flow schema since
X (which was inserted by a previous instance change) would read data element
d with undefined value.

4.2 Checking Correctness

The challenge is to efficiently verify the conditions from Axiom 2. A naive so-
lution would be to first generate schema SI + ∆T and then to check whether

422 M. Reichert, S. Rinderle, and P. Dadam

S: I:

 �I = [addCtrlEdge(SI, D, B),
addActivity(SI, X, {E}, �),
addDataLink(SI, X, d, read)]

A

B

C

E

D

A

B

C

E

D

d d

X

Fig. 6. Original Schema and Biased Instance

it satisfies the required structural and dynamic properties. Generally this would
be too expensive, in particular if different WF aspects (control flow, data flow,
etc.) are concerned or ∆T shall be propagated to a large number of instances.
Instead we must define appropriate rules for excluding conflicts between type
and instance changes for as many cases as possible. Concerning the absence of
deadlock-causing cycles, for example, the following conflict rule can be used:

Lemma 2 (Deadlock Prevention). Let T be a WF type with actual schema
version S = S(T, Vn) and I = (T, Vn, ∆I , ...) be a biased instance with execution
schema SI = S + ∆I . Assume that type change ∆T transforms S into a correct
schema S’ = S(T,Vn+1). Then: S* = (S + ∆I) + ∆T does not contain deadlock-
causing cycles if the following condition holds:

∀ s1 → d1 ∈ AddedCtrlEdges∆T
, ∀ s2 → d2 ∈ AddedCtrlEdges∆I

:
d1
∈ pred(S, s2) ∨ d2
∈ pred(S, s1)

(AddedCtrlEdges∆ denotes the set of control edges inserted by change primitives
addActivity and addCtrlEdge from ∆.)

Taking change ∆1
T from Section 4.1 the condition of this lemma is not satis-

fied. Concerning ∆2
T , however, deadlocks can be excluded. Though the condition

set out by Lemma 2 will not always be necessary, it is sufficient to exclude po-
tential deadlocks. In particular, the related checks can be based on the original
schema graph S and be accomplished by simple graph algorithms (with complex-
ity O(n)). Generally, for each change operation we have to define corresponding
conflict rules. Concerning data flow changes, for example, we can exclude poten-
tial conflicts by ensuring that the data element sets for which ∆I and ∆T have
inserted or deleted data edges are disjoint. In our example from Section 4.1, ∆I

has inserted a read data link with source d and ∆3
T removed a write data link

with target d. Thus a potential conflict exists, which requires additional checks.

4.3 Propagating Type Changes to Biased Instances

Assume that schema S is correctly transformed into a new schema S’ by applying
type change ∆T to it. Assume further that I = (T, Vn, ∆I , ...) is an instance to
which ∆T can be correctly propagated according to Axiom 2. Then the question
arises how we can migrate this biased instance to the new schema version of type
T. Due to lack of space we only consider changes based on the primitives from
Table 1. For them the following theorem applies:

On the Common Support of Workflow Type and Instance Changes 423

Theorem 3 (Commutativity of Type and Instance Changes). Let T be
a WF type with actual schema graph version S = S(T, Vn) and I = (T, Vn, ∆I ,
...) be a biased instance (with type T). Assume that type change ∆T transforms
S into S’ = S(T,Vn+1) and ∆T can be correctly propagated to I (according to
Axiom 2). Then: ∆T and ∆I are commutative, i.e., ∆I can be correctly applied
to S’ as well and (S + ∆I) + ∆T ≡ (S + ∆T) + ∆I (= S’ + ∆I).

According to this theorem, type and instance changes are commutative pro-
vided that the specified conditions are met. In particular, this property allows
us to treat type changes and related change propagation similar to the unbiased
case (cf. Section 3.4). More precisely, a type change can be propagated to a bi-
ased instance I by re-linking this instance to the new schema S’ (cf. Fig. 7) and
by re-calculating marking MS′

I for the resulting execution schema SI ’. Note that
SI ’ can be simply derived by applying bias ∆I to S’. Though at first glance it
seems to make no significant difference whether we apply ∆T to SI or ∆I to S’
the latter variant offers several advantages with respect to the management of
schema versions and propagation of future type changes. Due to lack of space
we abstain from further details.

Type level

S = S(T, Vn)

I1 I2 I3

M1
S M2

S M3
S + �I

instance level

Type level

S = S(T, Vn)

 I1

M1
S M2

S’ M3
S’+ �

I

instance level

S’ = S(T, Vn+1)
+

 I2 I3

T

migrating compliant
instances I2 and I3

type change unbiased
biased

X X X bias �I

S’ + �I

Fig. 7. WF Type Change and Propagation To Biased and Unbiased WF Instances

5 Related Work

One of the first approaches which has used a generic correctness criterion for dy-
namic WF changes was developed within the WIDE project [10]. WIDE applies
a history-based compliance criterion to guarantee correctness when migrating
instances to a modified schema. Concerning loops, however, this criterion is too
restrictive. Furthermore, issues related to data flow changes, marking adapta-
tions and conflicting changes are not considered. Similar correctness criteria have
been applied in TRAMs and BREEZE. TRAMs [7] focuses on schema versioning
concepts. To efficiently manage instance migrations the definition of migration
conditions is proposed for every change operation. Based on them, it can be
decided whether an instance can migrate to the new version or not. BREEZE [3]
also uses formal compliance criteria but focuses on the handling of non-compliant
WF instances. Furthermore it deals with the correct treatment of temporal con-
straints at the presence of dynamic changes.

424 M. Reichert, S. Rinderle, and P. Dadam

Petri-Net based approaches for adaptive WF [9,11,13] must deal with the
problem that actual state tokens of a net instance do not represent a view on
previous instance execution as in our work. This, in turn, complicates compliance
checking and marking adaptations in order to avoid the “dynamic change bug”
[9]. [11] suggests the construction of a hybrid WF schema which reflects parts of
both the old and the new WF schema. Additionally, the designer must explicitly
specify rules for mapping tokens between old and new net versions. Actual results
from the Petri Net field come from [9,14]. As correctness criterion branching
bisimularity is proposed: An instance I can migrate to a modified schema if each
action of I can be simulated on this schema as well. Unfortunately, branching
bisimularity can be only ensured for special change operations and excludes, for
example, order-changing operations. Apart from this, other issues addressed by
our work (e.g., efficient compliance checks, treatment of loops, conflicting type
and instance changes) have not been discussed in these papers.

In MOKASSIN [8] change primitives are encapsulated within WF instances.
The compliance criterion is considered as being too restrictive. Instead, a more
granular version concept is proposed. However, correctness issues are completely
factored out by the authors. Another versioning approach has been offered by
WASA2 [4], which uses a correctness criterion based on the mapping of WF
instances against WF schemes. In WASA2, biased instances cannot be adapted
to type changes anymore as opposed to our approach. Furthermore, changes
in conjunction with loops have not been dealt with. Finally, ULTRAFlow [15]
presents a rule-based approach. Changes are realized by modifying the implemen-
tation and meta data of activities. Special synchronization methods guaranteeing
consistent access of instances on modified specifications are provided. However,
ULTRAFlow totally factors out important change operations (e.g., deletion of
activities) and does not consider data flow issues.

A formal treatment and comparison of correctness criteria of some of the
above approaches has been given in [16].

6 Summary and Outlook

In many domains, like hospitals, engineering environments, or offices, process-
centered applications will not be accepted whenever rigidity comes with them.
Creating WF-based applications without a vision for adaptive WF is therefore
shortsighted and expensive. Indeed, insufficient flexibility and adaptability have
been primary reasons why WF technology failed in many process automation
projects in the past. Both, the capability to quickly and correctly propagate WF
type changes to in-progress WF instances and the support of ad-hoc adaptations
will be key ingredients in the next generation of WfMS, ultimately resulting in
highly adaptive process-oriented applications.

In this paper we have focused on the common support of WF type and WF
instance changes and have discussed limitations of current approaches. The very
important aspect of our work is its formal foundation. We have given general
axioms and theorems which are fundamental for the correct handling of dynamic

On the Common Support of Workflow Type and Instance Changes 425

WF changes. The treatment of conflicting type and instance changes adds to
the completeness of our approach. Finally, there is already a powerful proof-of-
concept prototype which demonstrates the feasibility of the presented concepts.

There are many other challenging issues related to adaptive workflow which
must be better understood before we obtain a complete solution. First of all,
we believe that usability issues constitute a field that would benefit by more
intense study of the research community. Additionally, dynamic changes may
also concern other components of the process-centered information system, like
the organizational database, security constraints, temporal constraints [3], actor
and resource assignments, or activity programs. Finally, we consider it as very
important to incorporate more semantics into the dynamic change process [12].

References

1. van der Aalst, W., van Hee, K.: Workflow Management. MIT Press (2002)
2. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows

without losing control. Int’l J Intelligent Information Systems 10 (1998) 93–129
3. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic

workflow processes. Int’l J Cooperative Information Systems 9 (2000)
4. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a

workflow management system. In: Proc. HICSS-34, Maui, Hawaii (2001)
5. Edmond, D., ter Hofstede, A.: A reflective infrastructure for workflow adaptability.

Data and Knowlege Engineering 34 (2000) 271–304
6. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,

J.: Intelligen: A distributed workflow system for discovering protein-protein inter-
actions. Distributed and Parallel Databases 13 (2003) 43–72

7. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In: Proc. CoopIS’99, Edinburgh (1999)

8. Joeris, G., Herzog, O.: Managing evolving workflow specifications. In: Proc. CoopIS
’98, New York (1998) 310–321

9. van der Aalst, W.: Exterminating the dynamic change bug: A concrete approach
to support worfklow change. Information Systems Frontiers 3 (2001) 297–317

10. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

11. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proc. Int’l Conf. on Org. Comp. Sys., Milpitas, CA (1995) 10–21

12. Rinderle, S., Reichert, M., Dadam, P.: On dealing with semantically conflicting
business process changes. Technical Report UIB-2003-04, University of Ulm (2003)

13. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sys-
tems. In: Proc. Int’l Conf. BPM’00, LNCS 1806. (2000) 218–234

14. van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoretical Computer Science 270 (2002) 125–203

15. Fent, A., Reiter, H., Freitag, B.: Design for change: Evolving workflow specifications
in ULTRAflow. In: Proc. CAISE ’02. (2002) 516–534

16. Rinderle, S., Reichert, M., Dadam, P.: Evaluation of correctness criteria for dy-
namic workflow changes. In: Proc. Int’l Conf. BPM’03. (2003) 41–57

	Introduction
	WF Modeling and Execution Basics
	Modeling and Execution of Workflows
	Defining and Changing Schema Graphs

	Dynamic Change Basics
	Dynamic Change Correctness
	Rules for Checking Compliance
	How to Correctly Adapt Workflow Instance Markings?
	Realizing Workflow Type and Workflow Instance Changes

	Conflicting Type and Instance Changes
	Correctness Issues
	Checking Correctness
	Propagating Type Changes to Biased Instances

	Related Work
	Summary and Outlook

