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Abstract: Traditional information systems struggle with the requirement to provide flexibility
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1 Introduction

The notion of flexibility has emerged as a pivotal research
topic in Business Process Management (BPM) in the
last few years (Bider, 2005; Reichert and Dadam, 1998;
Soffer, 2005). The need for more flexibility, in general,
stems from the observation that organisations often face
continuous and unprecedented changes in their business
environment (Quinn, 1992; Strong and Miller, 1995).
To deal with such disturbances and perturbations of business
routines, corresponding business processes as well as their
supporting information systems need to be quickly adaptable
to environmental changes.

In this context, business process flexibility denotes the
capability to reflect externally triggered change by modifying
only those aspects of a process that need to be changed,
while keeping the other parts stable; that is, the ability to
change or evolve the process without completely replacing
it (Bider, 2005; Regev and Wegmann, 2005; Soffer, 2005).
In particular, we have to deal with the essential requirement
for maintaining a close ‘fit’ between the real-world business
processes and the workflows as supported by Process
Management Systems (PMSs), the current generation of
which is known under the label of Process-aware Information
Systems (PAISs) (Dumas et al., 2005).

1.1 Problem statement

Recently, many efforts have been undertaken to make
PAISs more flexible and several approaches for adaptive
process management, like ADEPT (Reichert and Dadam,
1998),CBRFlow (Weber et al., 2004) or WASA

(Weske, 2001), have emerged in this context (an overview is
provided by Rinderle et al. (2004)). The basic idea behind
these approaches is to enable users to dynamically evolve or
adapt process schemes such that they fit to changed real-
world situations. More precisely, adaptive PMSs support
dynamic changes of different process aspects (e.g. control
and data flow) at different levels (e.g. process instance and
process type level). In particular, ad hoc changes conducted
at the instance level (e.g. to add, delete or move process
steps during runtime) allow to adapt single process instances
to exceptional or changing situations (Reichert and Dadam,
1998). Usually, such ad hoc deviations are recorded in change
logs Rinderle et al. (2006), which results in more meaningful
log information when compared to traditional PAISs.

So far, adaptive process management technology has not
addressed the fundamental question what we can learn from
the additional change log information (e.g. how to derive
potential process schema optimisations from a collection of
individually adapted process instances (van der Aalst et al.,
2006)). In principle, process mining techniques (van der Aalst
et al., 2004) offer promising perspectives for this. However,
current mining algorithms have not been designed with
adaptive processes in mind, but have focused on the analysis
of pure execution logs instead (i.e. taking a behavioural and
operational perspective).

Obviously, mining ad hoc changes in adaptive
PMSs offers promising perspectives as well. By enhancing
adaptive processes with advanced mining techniques
we aim at a PMS framework, which enables full
process life cycle support. However, the practical
implementation of such a framework in a coherent
architecture, let alone the integration of process mining and
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adaptive processes is far from trivial. In particular,
we have to deal with the following three challenges.
Firstly, we have to determine which runtime information
about ad hoc deviations has to be logged and
how this information should be represented to achieve
optimal mining results. Secondly, we have to
develop advanced mining techniques that utilise change
logs in addition to execution logs. Finally, we have to
integrate the new mining techniques with existing
adaptive  process management technology. This
requires the provision of integrated tool support
allowing us to evaluate our framework and to
compare different mining variants.

1.2 Contribution

In our previous work, with ADEPT (Reichert and
Dadam, 1998) and ProM (van Dongen et al., 2005)
we have developed two separate frameworks for adaptive
processes and for process mining respectively. While
ADEPT has focused on the support of dynamic process
changes at different levels, ProM has offered a variety of
process mining techniques, for example, for discovering
a Petri Net model or an Event Process Chain (EPC)
describing the behaviour observed in an execution log. So
far, no specific ProM extension has been developed to mine
for process changes.

This paper contributes new techniques for mining
ad hoc process changes in adaptive PMSs and discusses
the challenges arising in this context. We first describe what
constitutes a process change, how respective information
can be represented in change logs and how these change
logs have to be mined to deliver insights into the scope and
context of changes. This enables us, for example, to better
understand how users deviate from predefined processes. We
import ADEPT change logs in ProM, and introduce mining
techniques for discovering change knowledge from these
logs. As a result, we obtain an abstract change process
represented as a Petri Net model. This abstract process
reflects all changes applied to the instances of a particular
process type. More precisely, a change process comprises
change operations (as meta process steps) and the causal
relations between them. We introduce two different mining
approaches based on different assumptions and techniques.
The first approach uses multiphase mining, but utilises
further information about the semantics of change
operations (i.e. commutativity). The second approach maps
change logs to a labelled state transition system, and then
constructs a compact Petri Net model from it.

The remainder of this paper is organised as follows:
Section 2 provides background information on process
mining and adaptive process management, which is needed
for the understanding of this paper. In Section 3, we present
a general framework for integrating these two technologies.
Section 4 deals with the representation of process changes
and corresponding change loge. Based on this, Section 5
introduces two different approaches for mining change logs.
Section 6 discusses related work and Section 7 concludes
with a summary and an outlook.

2 Background information

This paper is based on the integration of two existing
technologies:  process mining and adaptive process
management. This section gives background information
needed to understand the implications and leverages of their
combination.

2.1 Process mining

Although the focus of this paper is on analysing change
processes in the context of adaptive PMSs, process mining is
applicable to a much wider range of information systems.
There are different kinds of PAISs that produce event
logs recording events. Examples are classical workflow
management systems (e.g. Staffware), ERP systems
(e.g. SAP), case handling systems (e.g. FLOWer), PDM
systems (e.g. Windchill), CRM systems (e.g. Microsoft
Dynamics CRM), middleware (e.g. IBM’s WebSphere),
hospital information systems (e.g. Chipsoft), etc. These
systems all provide very detailed information about the
activities that have been executed. The goal of process mining
is to extract information (e.g. process models, or schemas)
from these logs.

Process mining addresses the problem that most
‘process owners’ have very limited information about
what is actually happening in their organisation. In practice,
there is often a significant gap between what is predefined
or supposed to happen, and what actually happens. Only
a concise assessment of the organisational reality, which
process mining strives to deliver, can help in verifying
process schemas, and ultimately be used in a process
redesign effort.

As indicated, process mining starts with the existence of
eventlogs. The events recorded in such logs should be ordered
(e.g. based on timestamps) and each event should refer to
a particular case (i.e. a process instance) and a particular
activity. This is the minimal information needed. However, in
most event logs, more information is present, for example, the
performer or originator of the event (i.e. the person/resource
executing or initiating the activity), the timestamp of the
event or data elements recorded with the event (e.g. the
size of an order). In this paper, we assume that event logs
are stored in the MXML format (van Dongen et al., 2005).
MXML is an XML-based format for representing and
storing event log data, which is supported by process
mining tools such as ProM. Using our ProMimport tool,
it is easy to convert data originating from a wide variety
of systems to MXML (Giinther and van der Aalst, 2006).
For more information about the MXML format we
refer to (van Dongen et al., 2005) and (Giinther and van der
Aalst, 2006).

The idea of process mining is to discover, monitor
and improve real processes (i.e. not assumed processes)
by extracting knowledge from event logs (e.g. in MXML
format). Clearly process mining is relevant in a setting where
much flexibility is allowed and/or needed and therefore, this
is an important topic in this paper. The more ways in which
people and organisations can deviate, the more variability and
the more interesting, it is to observe and analyse processes as
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they are executed. We consider three basic types of process
mining (cf. Figure 1):

e Discovery: There is no a-priori process schema, that is,
based on an event log some schema is constructed. For
example, using the alpha algorithm, a process schema
can be discovered based on low-level events (van der
Aalst et al., 2004).

o Conformance: There is an a-priori process schema.
This schema is used to check if reality conforms to the
schema. For example, there may be a process schema
indicating that purchase orders of more than one
million Euro require two checks. Another example is
the checking of the four-eyes principle. Conformance
checking may be used to detect deviations, to locate
and explain these deviations, and to measure the severity
of these deviations (Rozinat and van der Aalst, 2006a).

e Extension: There is an a-priori process schema. This
schema is extended with a new aspect or perspective,
that is, the goal is not to check conformance but to
enrich the schema. An example is the extension of a
process schema with performance data, that is, some
a-priori process schema is used to project the bottlenecks
on. Another example is the detection of data
dependencies that affect the routing of a case and
adding this information to the model in the form of
decision rules (Rozinat and van der Aalst, 2006b).

Figure 1 Overview showing three types of process mining:
(1) Discovery, (2) Conformance and (3) Extension
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At this point in time, there are mature tools such as the
ProM framework, featuring an extensive set of analysis
techniques which can be applied to real process enactments
while covering the whole spectrum depicted in Figure 1 (van
Dongen et al., 2005). Any of the analysis techniques of ProM
can be applied to change logs (i.e. event logs in the context
of adaptive PMSs). Moreover, this paper also presents two
new process mining techniques exploiting the particularities
of change logs.

2.2 Adaptive process management

In recent years, several approaches for realising adaptive
processes have been proposed and powerful proof-of-concept
prototypes have emerged (Casati et al., 1998; Ellis et al.,
1995; Reichert and Dadam, 1998; Rinderle et al., 2004;

Weske, 2001). Adaptive PMSs like ADEPT?2 (Reichert et al.,
2005) or WASA (Weske, 2001), for example, provide
comprehensive runtime information about process changes
not explicitly captured in current execution logs. Basically,
process changes can take place at the type as well as the
instance level: Changes of single process instances may
have to be carried out in an ad hoc manner to deal with an
unforeseen or exceptional situation. Process type changes,
in turn, refer to the change of a process schema at the
type level in order to adapt the PAIS to evolving business
processes. Especially for long-running processes, such type
changes often require the migration of a collection of running
process instances to the new process schema.

PMS frameworks like ADEPT2 (Reichert and Dadam,
1998; Reichert et al., 2005) support both ad hoc changes
of single process instances and the propagation of
process type changes to running instances. Examples of
ad hoc changes are the insertion, deletion, movement
or replacement of activities. In ADEPT, such ad hoc
changes do not lead to an unstable system behaviour, that
is, none of the guarantees achieved by formal checks at
build-time are violated due to the dynamic change. ADEPT
offers a complete set of operations for defining instance
changes at a high semantic level and ensures correctness
by introducing pre/postconditions for these operations.
Finally, all complexity associated with the adaptation of
instance states, the remapping of activity parameters or the
problem of missing data is hidden from users. To deal with
business process changes, ADEPT also enables schema
adaptations at the process type level. In particular, it is
possible to efficiently and correctly propagate type changes
to running instances.

3 A framework for integration

Both process mining and adaptive processes address
fundamental issues prevalent in the current practice of BPM
implementations. These problems stem from the fact that
the design, enactment and analysis of a business process
are commonly interpreted, and implemented, as detached
phases.

Although both techniques are valuable on their own, we
argue that their full potential can only be harnessed by
tight integration. While process mining can deliver reliable
information about how process schemas need to be changed,
adaptive PMSs provide the tools to safely and conveniently
implement these changes. Thus, we propose the development
of process mining techniques, integrated into adaptive PMSs
as a feedback cycle. On the other side, adaptive PMSs need
to be equipped with functionality to exploit this feedback
information.

The framework depicted in Figure 2 illustrates, how such
an integration could be realised. Adaptive PMSs, visualised
in the upper part of this model, operate on predefined
process schemas. The evolution of these schemas over time
spawns a set of process changes, that is, results in multiple
process variants. Like in every PAIS, enactment logs
are created, which record the sequence of activities executed
for each case. On top of that, adaptive PMSs can additionally
log the sequence of change operations imposed on a process
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Integration of process mining and adaptive process management
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schema for every executed case, producing a set of change
logs. Process mining techniques that integrate into such
system in the form of a feedback cycle may be positioned
in one of three major categories:

o Change analysis: Process mining techniques from this
category make use of change log information, besides
the original process schemas and their variants. One goal
is to determine common and popular variants for each
process schema, which may be promoted to replace the
original schema. Possible ways to pursue this goal are
through statistical analysis of changes or their abstraction
to higher-level schemas. From the initially used process
schema and a sequence of changes, it is possible to trace
the evolution of a process schema for each case. Based
on this information, change analysis techniques can
derive abstract and aggregate representations of changes
in a system. These are valuable input for analysis and
monitoring, and they can serve as starting point for more
involved analysis (e.g. determining the circumstances in
which particular classes of change occur, and thus
reasoning about the driving forces for change).

o Integrated analysis: This analysis uses both change and
enactment logs in a combined fashion. Possible
applications in this category could perform a
context-aware categorisation of changes as follows.
Change process instances, as found in the change logs,
are first clustered into coherent groups, for example,
based on the similarity of changes performed, or their
environment. Subsequently, change analysis techniques
may be used to derive aggregate representations of each
cluster. Each choice in an aggregate change
representation can then be analysed by comparing it with
the state of each clustered case, that is, the values of case
data objects at the time of change, as known from the

original process schema and the enactment logs.

A decision-tree analysis of these change clusters
provides an excellent basis for guiding users in
future process adaptations, based on the peculiarities
of their specific case.

o Enactment analysis: Based solely on the inspection of
enactment logs, techniques in this category can pinpoint
parts of a process schema which need to be changed, for
example, paths having become obsolete. Traditional
process mining techniques like control flow mining and
conformance checking can be adapted with relative ease
to provide valuable information in this context. For
example, conformance checking, that is, determining the
“fit’ of the originally defined process schema and the
recorded enactment log, can show when a specific
alternative of a process schema has never been executed.
Consequently, the original process schema may be
simplified by removing that part. Statistical analysis of
process enactment can also highlight process definitions,
or variants thereof, which have been rarely used in
practice. These often clutter the user interface, by
providing too many options, and they can become a
maintenance burden over time. Removing (or hiding)
them after a human review can significantly improve the
efficiency of a process management system.

These examples give only directions in which the
development of suitable process mining techniques may
proceed. Of course, their concrete realisation depends on
the nature of the system at hand. For example, it may
be preferable to present highlighted process schemas to a
specialist before their deletion or change, rather than having
the system perform these tasks autonomously. Also, some
users may find it useful to have the system provide active
assistance in adapting a process definition, while others
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would prefer the system not to intervene without their explicit
request.

In every case, the change feedback cycle should provide
and store extensive history information, that is, an explicit
log of actions performed in the feedback cycle, and their
intermediate results. This enables users and administrators
to trace the motivation for a change, and thereby to
understand the system. The progress of autonomous
adaptation can thereby be monitored both by administrative
staff, and ultimately by the system itself.

When such feedback cycle is designed and implemented
consistently, the resulting system is able to provide
user guidance and autonomous administration to an
unprecedented degree. Moreover, the tight integration of
adaptive PMSs and process mining technologies provides
a powerful foundation, on which a new generation of truly
intelligent and increasingly autonomous PAISs can be built.

4 Anatomy of change

In this section, we provide basic definitions for process
schema, schema change and change log. We assume that
a process change will be accomplished by applying a
sequence of change operations to the respective process
schema over time (Reichert and Dadam, 1998). Respective
change operations modify a process schema, either by
altering the set of activities or by changing their ordering
relations. Thus, each application of a change operation to a
process schema results in another schema. The challenging
question is how to represent this change information within
change logs. Independent from the applied (high-level)
change operations (e.g. adding, deleting or moving activities)
we could translate the change into a sequence of basic
change primitives (i.e. basic graph primitives like addNode
or deleteEdge). This still would enable us to restore
process structures, but also result in a loss of information
about change semantics and therefore, limit change analysis
significantly. Therefore, change logs should explicitly
maintain information about high-level change operations,
which combine basic primitives in a certain way.

A process schema can be described formally without
selecting a particular notation, that is, we abstract from the
concrete operators of the process modelling language and use
transition systems to define the possible behaviour.

Definition 1 (Transition System): A (labelled) transition
system is a tuple TS = (S, E, T, s;) where S is the set of
states, E is the set of events, T C S x E x § is the transition
relation, and s; € S is the initial state.

An example of a simple transition system is
TS = (S,E,T,s;) with § = {a,b,c} (three states),
E = {x,y,z} (three events), T = {(a,x,a), (a,y,b),
(b, z,a), (b,y,c), (c,z,b), (c,y,c)} (six transitions), and
s; = a. Figure 3 shows this transition system graphically. The
semantics of a transition system are simple, that is, starting
from the initial state, any path through the transition system
is possible. For example, (x, x, x, y, z, x), (¥, ¥, ¥, 2, 2, X),
and () (the empty sequence) are possible behaviours of the
transition system depicted in Figure 3.

Figure 3 Example transition system
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A process schema is defined in terms of a transition system
with a designated final state.

Definition 2 (Process Schema): A process schema is a tuple
PS = (A, Sstarts Send> T'S) where

o A is a set of activities
o Sgiart IS the initial state of the process
® Scud IS the final state of the process

o TS=(S,E,T,s;) is labelled transition system where S
is the set of states, E = A U {1} is the set of events (i.e.
all activities extended with the so-called ‘silent step’ T),
T C S x E x S is the transition relation, Sg;qrs = S; is the
initial state, and S.,q € S is the final state of the process.

‘P is the set of all process schemas.

The behaviour of a process is described in terms of a
transition system 7S with some initial state sy, and
some final state s.,s. The transition system does not only
define the set of possible traces (i.e. execution orders); it
also captures the moment of choice. Moreover, it allows
for ‘silent steps’. A silent step, denoted by t, is an
activity within the system which changes the state of the
process, but is not observable in execution logs. This
way we can distinguish between different types of choices
(internal/external or controllable/uncontrollable). Note that
sena denotes the correct, and thus desirable, final state of
a process. If the process schema is incorrectly specified or
executed, there may be further possible final states. However,
we take the correctness of process schemas as precondition,
and therefore, the assumption of a single final state is valid.
A simple example of a process schema, consisting of a
sequence of five activities, is shown in Figure 4.

Note that Figure 4 uses some ad hoc notation inspired by
the ADEPT system. This does not mean that we advocate
a particular modelling language. Any process modelling
language having operational semantics can be mapped onto
a labelled transition system. We only assume that such a
mapping exists. The choice of a suitable language is a topic by
itself. For example, some authors advocate a more goal driven
approach (Bider et al., 2002; Soffer and Wand, 2004) while
others stress concurrency aspects (Glabbeek and Weijland,
1996; Kiepuszewski, 2002). However, in this paper, we
abstract from these issues and focus on process changes
independent of the language chosen.

Based on Definition 4, change logs can be defined as
follows:

Definition 3 (Change log): Let P be the set of possible
process schemas and C the set of possible process changes,
that is, any process change A is an element of C. A change
log instance o is a sequence of process changes performed on
some initial process schema PS € P, that is, 0 € C* (where
C* is the set of all possible sequences over C). A change log
L is a set of change log instances, that is, L C C*.



Using process mining to learn from process changes in evolutionary systems 67

Note that, achange log is defined as a set of instances. It would
be more natural to think of a log as a multiset (i.e. bag) of
instances because the same sequence of changes may appear
multiple times in a log. We abstract from the number of times
the same sequence occurs in the change log for the sake of
simplicity. In this paper, we only consider the presence of
changes and not their frequency, to simplify matters. Note
that in tools like ProM, the frequency definitely plays a role
and is used to deal with noise and to calculate probabilities.

Figure 4 shows an example of a change log in column b).
This log is composed of nine change log instances
cljy — cljo. The first change log instance cl;;, for example,
consists of two consecutive change operations op1 and op2.

Changes can be characterised as operations, which

Definition 4 (Change in process schemas): Let PS,
PS’ € P be two process schemas, let A € C be a process
change, and 0 = (A, Ay, ... A,) € C* be a change log
instance.

o PS[A) ifand only if A is applicable to PS, that is, A is
possible in PS.

o PS[A)PS' ifand only if A is applicable to PS
(ie. PS[A)) and PS' is the process schema resulting
from the application of A to PS.

e PS[o)PS' if and only if there are process schemas
PSy, PSZ,...PSn+1 € Pwith PS=PS,,
PS = PS, 1, andforalll <i <n: PS;[oc)PS;;.

are transforming one process schema into another one.
The same holds for sequences of change operations, that is, e PSlo)ifand only if thereis a PS' € P such that
change log instances. This can be formalised as follows: PS[o)PS'.

Figure 4 Modified process instances and associated change log instances (a) Process instances and (b) Change log instances
(see online version for colours)

a) Process Instances b) Change Log Instances
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. E'_’D_D__’D op8:= insert(PS, xRay, Examine Patient, Deliver report))

Instance I;:
cLis=(
op1 =insert(PS, Lab test, Examine Patient, Deliver report,
op7:=delete(PS, Deliver report))

Instance I, :

el =(

Instance I, :

Enter Inform Prepare Examine Deliver
order Patient Patient patient report
Instance I,: xRay Lab test

clLig=(
op2 =move(PS, Inform Patient, Prepare Patient, Examine Patient),

’A. 4
g’ . . . op8 =insert(PS, xRay, Examine patient, Deliver report),

Enter  Inform Prepare Examine  Deliver =i i
order  Patient Patient patient report op9:=insert(PS, Lab test, xRay, Deliver report))

xRay |:| Lab test
Ly B clig=(

E’_,D_D_,D op1 =insert(PS, Lab test, Examine Patient, Deliver report),

op10:=insert(PS, xRay, Examine patient, Lab test))
Enter Inform Prepare Examine Deliver

order  Patient Patient patient report

Instance I,:
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The applicability of a change operation to a specific process
schema is defined in Table 1, and is largely dictated by
common sense. For example, an activity X can only be
inserted into a schema P.S, between the node sets A and B,
if these node sets are indeed contained in P S and the activity
X is not already contained in P S. Note that we do not allow
duplicate tasks, that is, an activity can be contained only once
in a process schema.

For an example, consider the first process instance I,
and its associated change log instance cL;;, in Figure 4.
The first change performed, opl, is inserting a new
activity ‘Lab test’ between activities ‘Examine patient’ and
‘Deliver report’. Obviously, this change is applicable to
the original process schema (the horizontal sequence of
five activities), the resulting process schema being a
sequence of six activities including ‘Lab test’. The second
change operation, op2, moves the second activity ‘Inform
patient’ one position to the right, between activities ‘Prepare
patient’ and ‘Examine patient’. This change is applicable to
the process schema resulting from change operation opl,
which in turn makes the sequence cL;; applicable to the
original process schema.

Any change log refers to a specific process schema, which
has been the subject of change. Thus, whether a specific
change log is valid can only be determined by also taking
into account the original process schema:

Definition 5 (Valid change log): Let PS € P be a process
schema and L C C* a change log for PS. L is valid with
respectto PS ifforallc € L: PS[o).

Figure 4 shows an example for a valid change log in
column b), consisting of nine change log instances
cL;y — c¢Lj9, which are all applicable to the original process
schema.

As mentioned, in this paper we represent change log
entries by means of high-level change operations since we
want to exploit their semantical content (see Figure 4 for
an example). However, basically, the mining approaches
introduced later can be adapted to change primitives

as well. Table 1 presents examples of high-level change
operations on process schemas which can be used at
the process type as well as at the process instance level
to create or modify process schemas. Although the change
operations are exemplarily defined on the ADEPT meta
model (see (Reichert and Dadam, 1998) for details) they are
generic in the sense that they can be easily transferred to other
meta models as well (e.g. Reichert et al., 2003).

5 Change mining

In this section, we describe novel approaches for analysing
change log information, as found in adaptive PMSs.
First, we describe how change logs can be mapped
onto the MXML format used for process mining. This
makes it possible to evaluate the application of traditional
process mining algorithms to change logs. Subsequently, we
explore the nature of change logs in more detail. This is
followed by an introduction to the concept of commutativity
between change operations in Section 5.4. This commutativity
relation provides the foundation for our first mining
algorithm for change processes, as introduced in Section 5.5.
A second algorithm for mining change processes based
on the theory of regions is presented in Section 5.6,
and Section 5.7 compares both approaches. Finally,
Section 5.8 sketches how context information may be used
to investigate the drivers for change (i.e. why changes occur)
in future work.

5.1 Mapping change logs to MXML

Change log information can be structured on a number of
different levels. Most of all, change events can be grouped
by the process definition they address. As we are focusing
on changes applied to cases, that is, executed instances of a
process definition, the change events referring to one process
can be further subdivided with respect to the specific case in
which they were applied (i.e. into change process instances).

Table1 Examples of high-level change operations on process schemas
Change operation A applied to S OpType Subject ParamList
Insert(PS, X, A, B, [sc]) Insert X PS, A, B, [sc]
Effects on PS: inserts activity X between node sets A and B (it is a conditional insert if sc is specified)
Preconditions: node sets A and B must exist in P.S, and X must not be contained in P S yet
(i.e. no duplicate activities!)
Delete(PS, X) Delete X PS
Effects on PS: deletes activity X from PS
Preconditions: activity X must be contained exactly once in PS
Move(PS, X, A, B, [sc]) Move X PS, A, B, [sc]
Effects on P S: moves activity X from its original position between node sets A and B
(it is a conditional insert if sc is specified)
Preconditions: activity X and node sets A and B must be contained exactly once in P S
Replace(PS, X, Y) Replace X Y

Effects on PS: replaces activity X by activity ¥

Preconditions: activity X must be contained exactly once in P S, and activities X and Y

must be of the same type (e.g. have the same input / output parameters)
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Finally, groups of change events on a case level are naturally
sorted by the order of their occurrence.

The described structure of change logs fits well into the
common organisation of enactment logs, with instance traces
then corresponding to consecutive changes of a process
schema, in contrast to its execution. Thus, change logs can
be mapped to the MXML format with minor modifications.
Listing 1 shows an MXML audit trail entry describing the
insertion of a task ‘Lab Test’ into a process schema, as for
example, seen for Instance /; in Figure 4.

Listing 1 Example of a change event in MXML

<AuditTrailEntry>

<Data>
<Attribute name="CHANGE.postset">Deliver_report
</Attribute>
<Attribute name="CHANGE.type">INSERT
</Attribute>
<Attribute name="CHANGE.subject">Lab_test
</Attribute>
<Attribute name="CHANGE.rationale">Ensure that

blood values are within specs.

</Attribute>
<Attribute name="CHANGE.preset">Examine_patient
</Attribute>

</Data>

<WorkflowModelElement>INSERT.Lab_test

</WorkflowModelElement>

<EventType>complete

</EventType>

<Originator>N.E.Body

</Originator>

</AuditTrailEntry>

Change operations are characterised by the rype (e.g.
‘INSERT") of change, the subject which has been primarily
affected (e.g. the inserted task), and the syntactical context
of the change. This syntactical context contains the change
operation’s pre and postset, that is, adjacent process schema
elements that are either directly preceding or following the
change subject in the process definition. As these specific
properties are not covered by the MXML format, they are
stored as attributes in the ‘Data’ field. The set of attributes
for a change event is completed by an optional rationale
field, storing a human-readable reason, or incentive, for this
particular change.

The originator field is used for the person having
applied the respective change, while the timestamp field
describes the concise date and time of occurrence. Change
events have the event type ‘complete’ by default, because
they can be interpreted as atomic operations. In order to
retain backward compatibility of MXML change logs with
traditional process mining algorithms, the workflow model
element needs to be specified for each change event. As the
change process does not follow a predefined process schema,
this information is not available. Thus, a concatenation of
change type and subject, uniquely identifying the class of
change, is used.

Once the change log information is mapped and converted
to MXML, it can be mined by any process mining algorithm,
for example, in the ProM framework. The next section
investigates the appropriateness of traditional process mining
algorithms in the context of change logs.

5.2 Evaluation of existing mining techniques

As discussed in the previous subsection, mapping process
change logs to the existing MXML format for execution
logs enables the use of existing mining algorithms
(e.g. as implemented within the ProM framework) for mining
change logs as well. In the following, we discuss how ‘well’
these algorithms perform when being applied to change logs.
The underlying evaluation has been carried out using an
extension of the ADEPT demonstrator (Waimer, 2006).

For evaluation purposes, the change processes generated
by the different mining algorithms are compared along
selected quality criteria. The most important criterion is
how ‘well’ a change process reflects the actual dependencies
between the operations contained within the input change log.
As for process instance I, for example, change operation opy
depends on previous change operation op; (cf. Figure 4). This
dependency should be reflected as a sequence ops —> opa
within the resulting change process. Contrary, independent
change operations should be ordered in parallel within the
resulting change process.

In our evaluation, we analysed the o Algorithm, the
MultiPhase Miner and the Heuristics Miner (Waimer, 2006).
All of these algorithms reflect the actual dependencies
between the change operations quite ‘well’ for simple
processes and a restricted set of change operations. The
quality of the mined change processes decreases rapidly
(i.e. dependencies are generated by the mining algorithms,
which are actually not existing and the change processes
become less and less meaningful) if different change
operations are applied and the underlying processes become
more complex. The fundamental problem is that process
changes tend to be rather infrequent, that is, compared to
regular logs, there are relatively few cases to learn from.
Therefore, the completeness of change logs, that is, their
property to record independent (i.e. parallel) activities in
any possible order, cannot be taken for granted due to their
limited availability. This has been simulated by using an
incomplete subset of change logs, as can be expected in a
real-life situation.

Our experiments with applying existing process mining
algorithms to change logs have shown that their suitability in
this context is limited. In the following section, we explore
the nature of change in an adaptive system and the associated
logs in more detail to find a more suitable means for detecting
whether an observed ordering relation is actually necessary.

5.3 Motivation: characterisation of change logs

Change logs, in contrast to regular enactment logs, do
not describe the execution of a defined process. This
is obvious from the fact that, if the set of potential
changes would have been known in advance, then these
changes could have already been incorporated in the process
schema (making dynamic change obsolete). Thus, change
logs must be interpreted as emerging sequences of activities
which are taken from a set of change operations.

In Section 5.1 it has been defined that each change
operation refers to the original process schema through
three associations, namely the subject, preset, and postset of
the change. As all these three associations can theoretically
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be bound to any subset from the original process schema’s
set of activities,' the set of possible change operations grows
exponentially with the number of activities in the original
process schema. This situation is fairly different from mining
a regular process schema, where the number of activities
is usually rather limited (e.g. up to 50-100 activities).
Hence, the mining of change processes poses an interesting
challenge. Summarising the above characteristics, we can
describe the meta-process of changing a process schema as
a highly unstructured process, potentially involving a large
number of distinct activities. These properties, when faced by
a process mining algorithm, typically lead to overly precise
and confusing ‘spaghetti-like’ models. In order to come
to a more compact representation of change processes, it is
helpful to abstract from a certain subset of ordering relations
between change operations.

When performing process mining on enactment logs (i.e.
the classical application domain of process mining), the state
of the mined process is treated like a ‘black box’. This is
necessary because enactment logs only indicate transitions
in the process, thatis, the execution of activities. However, the
information contained in change logs allows to trace the state
of the change process, which is in fact defined by the process
schema that is subject to change. Moreover, one can compare
the effects of different (sequences of) change operations.
From that, it becomes possible to explicitly detect whether
two consecutive change operations can also be executed in
the reverse order without changing the resulting state.

The next section introduces the concept of commutativity
between change operations, which is used to reduce the
number of ordering relations by taking into account the
semantic implications of change events.

5.4 Commutative and dependent change
operations

When traditional process mining algorithms are applied
to change logs, they often return very unstructured,

‘spaghetti-like’ models of the change process (cf. Section 5.3).

This problem is due to a large number of ordering relations
which do not reflect actual dependencies between change
operations. The concept of commutativity is an effective tool
for determining, whether there indeed exists a causal relation
between two consecutive change operations.

As discussed in Section 4 (cf. Definition 4), change
operations (and sequences thereof) can be characterised as
transforming one process schema into another one. Thus, in
order to compare sequences of change operations, and to
derive ordering relations between these changes, it is helpful
to define an equivalence relation for process schemas.

Definition 6 (Equivalent process schemas): Let = be some
equivalence relation. For PS;, PS, € P : PS; = PS,
if and only if PS| and P S, are considered to be equivalent.

There exists many notions of process equivalence. The
weakest notion of equivalence is trace equivalence
(Kiepuszewski, 2002; Rinderle et al., 2004), which regards
two process schemas as equivalent if the sets of observable
traces they can execute are identical. Since the number
of traces a process schema can generate may be infinite,
such comparison may be complicated. Moreover, since trace

equivalence is limited to comparing traces, it fails to correctly
capture the moment at which choice occurs in a process.
For example, two process schemas may generate the same
set of two traces {ABC, ABD}. However, the process may
be very different with respect to the moment of choice, that
is, the first process may already have a choice after A to
execute either BC or BD, while the second process has a
choice between C and D just after B. Branching bisimilarity
is one example of an equivalence, which can correctly capture
this moment of choice. For a comparison of branching
bisimilarity and further equivalences the reader is referred
to (Glabbeek and Weijland, 1996). In the context of this paper,
we abstract from a concrete notion of equivalence, as the
approach described can be combined with different process
modelling notations and different notions of equivalence.

Based on the notion of process equivalence, we can
now define the concept of commutativity between change
operations.

Definition 7 (Commutativity of changes): Let PS € P be a
process schema, and let Ay and A, be two process changes.
Ay and A, are commutative in P S if and only if:

e there exists PSy, PS, € P such that PS[A,)P S| and
PSi[A2)PS,

e there exists PSs, PSy € P such that PS[A;) PS3 and
PS3[A1)P Sy

[J PS2EPS4.

Two change operations are commutative if they have exactly
the same effect on a process schema, regardless of the order
in which they are applied. If two change operations are not
commutative, we regard them as dependent, that is, the effect
of the second change depends on the first one. The concept
of commutativity effectively captures the ordering relation
between two consecutive change operations. If two change
operations are commutative according to Definition 5.4, they
can be applied in any given order, therefore, there exists no
ordering relation between them.

In the next subsection, we demonstrate that existing
process mining algorithms can be enhanced with the concept
of commutativity, thereby abstracting from ordering relations
that are irrelevant from a semantical point of view (i.e. their
order does not influence the resulting process schema).

5.5 Approach 1: enhancing multiphase mining
with commutativity

Mining change processes is to a large degree identical to
mining regular processes from enactment logs. Therefore,
we have chosen not to develop an entirely new algorithm, but
rather to base our first approach on an existing process mining
technique. Among the available algorithms, the multiphase
algorithm (van Dongen and van der Aalst, 2004) has been
selected, which is very robust in handling ambiguous
branching situations (i.e. it can employ the ‘OR’ semantics
to split and join nodes, in cases where neither ‘AND’ nor
‘XOR’ are suitable). Although we illustrate our approach
using a particular algorithm, it is important to note that
any process mining algorithm based on explicitly detecting
causalities can be extended in this way (e.g. also the different
variants of the «-algorithm).
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The multiphase mining algorithm is able to construct
basic workflow graphs, Petri nets and EPC models from
the causality relations derived from the log. For an
in-depth description of this algorithm, the reader is referred
to (van Dongen and van der Aalst, 2004). The basic idea of
the multiphase mining algorithm is to discover the process
schema in two steps. First, a model is generated for each
individual process instance. Since there are no choices
in a single instance, the model only needs to capture
causal dependencies. Using causality relations derived from
observed execution orders and the commutativity of specific
change operations, it is relatively easy to construct such
instance models. In the second step, these instance models
are aggregated to obtain an overall model for the entire set of
change logs.

The causal relations for the multiphase algorithm (van
Dongen and van der Aalst, 2004) are derived from the change
log as follows. If a change operation A is followed by
another change B in at least one process instance, and no
instance contains B followed by A, the algorithm assumes a
possible causal relation from A to B (i.e. ‘A may cause B’).
In the example log introduced in Figure 4, instance I, features
a change operation deleting ‘Inform patient’ followed by
another change, inserting the same activity again. As no other
instance contains these changes in reverse order, a causal
relation is established between them.

Figure 5 shows a Petri net model (Desel et al., 2004)
of the change process mined from the example change
log instances in Figure 4. The detected causal relation
between deleting and inserting ‘Inform patient’ is shown as
a directed link between these activities. Note that in order
to give the change process explicit start and end points,
respective artificial activities have been added. Although the
model contains only seven activities, up to three of them can
be executed concurrently. Note further that the process is very
flexible, that is, all activities can potentially be skipped. From
the very small data basis given in Figure 4, where change
log instances hardly have common subsequences, this model
delivers a high degree of abstraction.

Figure 5 Mined example process (Petri net notation)

start

When two change operations are found to appear in
both orders in the log, it is assumed that they can be
executed in any order. An example for this is inserting
‘xRay’ and inserting ‘Lab Test’, which appear in this
order in instance Ig, and in reverse order in instance Iy.
As a result, there is no causal relation, and thus no direct
link between these change operations in the model shown in
Figure 5.

Apart from observed concurrency, as described above,
we can introduce the concept of commutativity-induced
concurrency, using the notion of commutativity introduced
in the previous subsection (cf. Definition 5.4). From the
set of observed causal relations, we can exclude causal
relations between change operations that are commutative.
For example, instance I, features deleting activity ‘xRay’
directly followed by deleting ‘Inform patient’. As no other
process instance contains these change operations in reverse
order, a regular process mining algorithm would establish a
causal relation between them.

Howeyver, it is obvious that it makes no difference in which
order two activities are removed from a process schema. As
the resulting process schemas are identical, these two changes
are commutative. Thus, we can safely discard a causal relation
between deleting ‘xRay’ and deleting ‘Inform patient’, which
is why there is no link in the resulting change process shown
in Figure 5.

Commutativity-induced concurrency removes unnecessary
causal relations, that is, those causal relations that do
not reflect actual dependencies between change operations.
Extending the multiphase mining algorithm with this
concept significantly improves the clarity and quality
of the mined change process. If it were not for
commutativity-induced concurrency, every two change
operations would need to be observed in both orders
to find them concurrent. This is especially significant
in the context of change logs, since one can expect
changes to a process schema to happen far less frequently
than the actual execution of the schema, resulting in less
log data.

— ——
INSERT LabTest DELETE Inform patient|
INSERT xRay (op1) (op5)
(op3)

~ 3

mmmemm | DELETE xRay
(op4)

DELETE Deliver report (op6)

INSERT Inform patient

(op7) : \

MOVE Inform patient
(op2)
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5.6 Approach 2: mining change processes
with regions

The second approach towards mining change logs uses an
approach based on the theory of regions (Cortadella et al.,
1998) and exploits the fact that a sequence of changes
defines a state, that is, the application of a sequence of
changes to some initial process schema results in another
process schema. The observation that a sequence of changes
uniquely defines a state and the assumption that changes
are ‘memoryless’ (i.e. the process schema resulting after the
change is assumed to capture all relevant information) are
used to build a transition system. Using the theory or regions,
this transition system can be mapped onto a process model
(e.g. a Petri net) describing the change process.

In Definition 4, we already used the concept of a
transition system to describe the behavioural aspect of a
process schema. However, now we use it as an intermediate
format for representing change processes. As indicated in
Section 4, we do not advocate transition systems as an
end-user language. Any modelling language having formal
semantics can be mapped onto a transition system. The
reverse is less obvious, but quite essential for our approach.
Therefore, we first explain the ‘theory of regions’ (Cortadella
etal., 1998; Ehrenfeucht and Rozenberg, 1999) which allows
us to translate a transition system into a graphical process
model.

As indicated at the start of this section, transition systems
can be mapped onto Petri nets using synthesis techniques
based on the so-called regions (Cortadella et al., 1998;
Ehrenfeucht and Rozenberg, 1999). An example of a tool
that can create a Petri net for any transition system using
regions is Petrify (Cortadella et al., 1997).

The theory of regions takes a transition system and
converts it into an equivalent Petri net. In this paper, we do
not elaborate on the theory and only present the basic idea.
Given a Transition System 7S = (S, E, T, s;), a subset of
states S’ C S is a region, if for all events e € E, one of the
following properties holds:

e all transitions with event e enter the region, that is, for
all 5,5, € Sand (sy,e,5) € T:s1 € S"and s, € §’

o all transitions with event e exit the region, that is, for all
51,5 € Sand (s1,e,5) € T:s; € Sand s, ¢ S

Figure 6 A transition system with more parallelism

e all transitions with event e do not ‘cross’ the region,
that is, for all s1, 5o € S and (s1, e, s2) € T: 51,5 € S
or sy, 52 ¢ S’

The basic idea of using regions is that each region S’
corresponds to a place in the corresponding Petri net and that
each event corresponds to a transition in the corresponding
Petri net. All the events that enter a particular region
are the transitions producing tokens for the corresponding
place and all the events that leave the region are the
transitions consuming tokens from this place. In the original
theory of regions (Ehrenfeucht and Rozenberg, 1999) many
simplifying assumptions are made and it was impossible
to have multiple Petri net transitions with the same label
and silent steps could no be handled. However, tools such
as Petrify (Cortadella et al., 1997) based on the approach
described in (Cortadella et al., 1997, 1998) can deal with any
transition system.

To illustrate the idea, consider the transition system shown
in Figure 6. Using regions, we obtain the Petri net shown in
Figure 7. This Petri net was obtained automatically using
a combination of ProM and Petrify. Clearly, this Petri net
reveals the behaviour implied by Figure 6 in a compact
and readable manner. This example shows the potential of
applying logs to transition systems with more parallelism.
Note that although the process in Figure 7 is represented in
terms of a Petri net, the idea is not limited to Petri nets. Using
ProM we can easily map the model onto another notation for
example, EPCs, BPMN, YAWL, BPEL, etc. Note that all of
this functionality has been realised in ProM.

Figures 6 and 7 illustrate the idea of folding a transition
system into a process model like for example, a Petri
net. Therefore, the challenge of mining changes process is
reduced to the construction of a transition system based on
a change log. To do this, we first introduce some useful
notations.

Definition 8 (Useful notations): Let PS € P be a process
schema and let 0 = (A1, Aa, ... A,) € L be a change log
instance from some valid log L.

o o(k) = Ay isthe k' element of o (1 <k <n)

o hd(o,k) = (A1, Ay, ... Ay) is the sequence of the first
k elements (0 < k < n) of o (with hd(c,0) = ())
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Figure 7 Screenshot of ProM showing the Petri net obtained for the transition system depicted in Figure 6

(see online version for colours)
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o state(PS,o,k) = PS' where PS[hd(o,k))PS’, that is,
PS’ is the process schema after the first k changes have
been applied.

Definition 5.6 shows that given an initial process schema
PS and a change log instance o, it is possible to construct
the process schema resulting after executing the first k
changes in o. state(PS, o,k) is the state after applying
A1, Ay, ..., Ar. Note that state(PS,o0,0) = PS is the
initial process and state(P S, o, n) is the state after applying
all changes listed in o.

Using the notations given in Definition 5.6, it is fairly
straightforward to construct a transition system based on
an initial process schema and a log. The basic idea is as
follows. The states in the transition system correspond to all
process schemas visited in the log, that is, the initial process
schema is a possible state, all intermediate process schemas
(after applying some but not all of the changes) are possible
states and all final process schemas are possible states of the
resulting transition system. There is a transition possible from
a state PS; in the transition system to another state PS, if
in at least one of the change log instances PS; is changed
into PS,.

Definition 9 (Transition system of a change log): Let
PS € P be a process schema and L a valid change log for
PS.TSps.y = (S, E, T,s;) is the corresponding transition
system, where S = {state(PS,o0,k) |oc € L N 0 <
k < |o|} is the state space, E = {o(k) |c ¢ L AN 1 <
k < |ol} is the set of events, T = {(state(PS,0,k),o
(k + 1), state(PS,0,k+ 1)) |lo e L AN 0 <k < |o|}
is the transition relation, and s; = P S is the initial state (i.e.
the original process schema).

Note that this approach assumes that changes are memoryless,
that is, the set of possible changes depends on the current
process schema and not on the path leading to the current
process schema. This means that if there are multiple
‘change paths’ leading to a state PS’, then the next change
in any of these paths is possible when one is in state PS’.
In other words: only the current process schema for the
change process matters, and not the way, it was obtained.
Note that this assumption is similar, but also different, from
the assumption in the first approach: their commutative
changes are assumed to occur in any order even when this
has not been observed.

For technical reasons, it is useful to add a unique start event
start and state so and a unique end event end and state s,.

This can be achieved by adding start and end to respectively
the start and end of any change log instance. It can also be
added directly to the transition system.

Definition 10 (Extended transitionsystem of a change log):
Let PS € P be aprocess schema and L avalid change log for
PS. TSpps.1y = (S, E, T, s;) is as defined in Definition 5.6.
Let s, s, start, and end be fresh identifiers. TSE“PS’L) =
(S*, E*, T*,s¥) is the extended transition system, where
S* = S U {s,s.}, E¥ = E U {start,end}, T* = T U
(User {(s0,start, state(PS,o,0)), (state(PS,o,|o]),
end, s.)}), and s} = so.

Figure 8 shows the transition system obtained by applying
Definition 5.6 to the running example, that is, the change
log depicted in Figure 4 (consisting of nine change log
instances and 10 different change operations) is used to
compute T'S¢p g ;. For convenience we use shorthands for
activity names: EO = Enter Order, IP = Inform Patient,
PP = Prepare Patient, EP = Examine Patient, DR = Deliver
Report, LT = Lab Test, and XR = X-Ray. Figure 4 defines ten
different change operations, these correspond to the events
in the transition system. Moreover, the artificial start and end
are added. Hence E = {start,opl,op2,...,0pl0, end}
is the set of events. The application of a change operation
to some process schema, that is, a state in Figure 8,
results in a new state. Since in this particular example all
process schemas happen to be sequential, we can denote
them by a simple sequence as shown in Figure 8. For
example, s1 = (EO,IP, PP, EP, DR) is the original
process schema before applying any changes. When in the
first change log instance opl is applied to s;, the resulting
stateis s2 = (EO,IP, PP, EP, LT, DR) (i.e. the process
schema with the lab test added). When in the same change
log instance op2 is applied to s, the resulting state is
s3=(EO,PP,IP,EP,LT, DR) (i.e. the process schema
where Inform Patient is moved). This can be repeated for all
nine instances, resulting in 15 states plus the two artificial
states, that is, S = {so, 51, ..., 15, S¢}. Using the approach
defined in definitions 5.6 and 5.6, the transition system shown
in Figure 8 is obtained.

After constructing the transition system, the theory of
regions can be used to construct a process model. Figure 9
shows the Petri net constructed using this approach. Note that
using a combination of ProM and Petrify the log is coverted
to the transition system of Figure 8 which is then folded into
the Petri net depicted in Figure 9. In this case, the Petri net
is more or less identical to the transition system. One can
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Figure 8 Transition system based on the change log shown in Figure 4

Activity Names:

«EQO = Enter Order

«|P = Inform Patient
«PP= Prepare Patient
«EP = Examine Patient
«DR = Deliver Report
oLT = Lab Test

«XR = X-Ray

use Petrify with different settings. This way, it is possible
to construct a more compact Petri net, however, this process
model is less readable. At first sight, it may be disappointing
to see the Petri net shown in Figure 9. However, one should
note that the change log depicted in Figure 4 only has nine
change log instances, that is, compared to the number of
change operations, the number of instances is rather low.
It seems that only a few of the possible interleavings are
present in Figure 4. As a result, the transition system in
Figure 9 seems to be the result of a number of particular

States:

«s0 = initial state

ese = final state

es1 = <EO,IP,PP,EP,DR>

es2 = <EO,IP,PPEPLT,DR>

53 = <EO,PP,IPEP,LT,DR>

es4 = <EQ,IPXR,PP,EP,DR>

e 55 = <EO,PPEP,DR>

*56 = <EO,PP,ER,IP,DR>

es7 = <EO,PP,IP,EP,DR>

es8 = <EO,PP,IPEP,LT,DR>

es9 = <EO,PP,|IP,EP,DR>

510 = <EO,IPPPEPLT>

e511 = <EO,PPIPEPLT>

512 = <EO,IPPREPXR,DR>
e513 = <EO,PPRIPEPXR,DR>
es14 = <EO,PPIPEPXR,LT,DR>
es15 = <EO,IPPPEPXR,LT,DR>

examples rather than a description of the full behaviour.
Figures 6 and 7 show that using the theory of regions, it
is possible to dramatically reduce the size of the model, if
more interleavings are present.

5.7 Comparing both approaches

We have introduced two new process mining approaches
based on the characteristics of change logs. The first approach

Figure 9 Screenshot of ProM showing the Petri net obtained for the change log depicted in Figure 4 (see online version for colours)

# The ProM framework4.0-BETA-1 18] x|

File Mining Analysis Conversion Exports Window Help

a @

[ Imported - output.pn - Petrify file

q
E

I

[T+ | Zoom: 177 %




Using process mining to learn from process changes in evolutionary systems 75

is based on the multiphase algorithm (van Dongen and van
der Aalst, 2004). However, the original algorithm has been
enhanced to exploit information about commutativity of
change operations. If there are independent changes (i.e.
changes that operate on different parts of the schema), it
is not necessary to see all permutations to conclude that
they are in parallel. The second approach is based on the
observation that given an original schema and a sequence of
change operations, it is possible to reconstruct the resulting
process schema. This can be used to derive a transition system
where the states are represented by possible (intermediate)
process schemas. Using regions, such a transition model
can be translated into an equivalent Petri net describing the
change process.

In this section, we applied the two approaches to an
example log. This allows us to compare both. The Petri
net in Figure 9 is very different from the one in Figure 5.
This illustrates that both approaches produce different results,
that is, they provide two fundamentally different ways of
looking at change processes. It seems that in this particular
example, the first approach performs better than the second.
This seems to be a direct consequence of the small amount
of change log instances (just nine) in comparison with the
possible number of change operations. When there is an
abundance of change log instances, the second approach
performs better because it more precisely captures the
observed sequences of changes. Moreover, the second
step could be enhanced by generalisation operations at the
transition system level, for example, using commutativity.

5.8 Towards learning about the context of change

Understanding how process change information can be
represented in logs and how these logs can be mined to
deliver valuable insights into the scope of change delivers
insights of how processes deviate from predefined routines.
This is a significant move towards understanding why such
changes occur, viz., the drivers for change). These drivers
can be found in the confext of a process (Rosemann et al.,
2006).

In general terms, the context of a business process is made
up by all the relevant information that is available at some
stage during the execution of a business process, and that
could potentially have influenced decisions in this process.
It can be seen as the set of process data and information
that is relevant to the process execution but typically not
defined in the process definition itself, which, following
existing classification schemes (Jablonski and Bussler, 1996),
would at least include the control flow logic, involved
informational data and organisational resources. Context
information can be retrieved from a wide range of potential
data sources. Enactment logs, for instance, often include
information about time and value of a data modification.
As context information is obviously most useful when timed,
a promising means of storage would be to enhance change
logs with context data. This would allow to structure the
context history in suitable chunks, that is, the structural states
of a process between change operations. Technically, this can
be accomplished by examining each change event, acquiring
timed context information for the time of its occurrence, and
then enriching it with elicited context information.

Assuming access to context information, changes in a
process could be investigated together with the reasons for
the change decisions taken along the execution of a process.
This can be achieved by looking at change process models
and the decision points contained within. However, while
these change process models themselves are already helpful
in developing an understanding of the drivers for change,
they cannot be used to actually learn from the change.
Learning can be interpreting as deriving information from
an adaptive PMS. The fundamental premise is that cases
in which a certain change has been applied will exhibit
distinct patterns in their context information. As the set of
potential context information can be very large, identifying
the pivotal data elements, or patterns thereof, which are
unique for a specific change, somehow resembles looking
for a needle in a haystack. Fortunately, existing Machine
Learning (ML) (Mitchell, 1997) techniques can solve this
problem. Classification algorithms, for instance, take for
input a classified set of examples, the so-called training set.
Once this set has been analysed, the algorithm is capable
of classifying previously unknown examples. Training a
decision tree algorithm (Rozinat and van der Aalst, 2006b)
with such a classified set may then provide decision trees
that visualise how decisions about process change were being
made. Other classification algorithms from ML can generate
a set of classification rules (Mitchell, 1997).

These classification algorithms by definition focus on
specific decisions, that is, one branching point in the process,
and are thus dependent on the mining of a change process
model in the first place. An alternative to this approach is
the mining of association rules (Agrawal et al., 1993). Here,
every case is regarded as a set of facts, where a fact can
both be the occurrence of a change operation as well as a
context attribute having a specific value. After identifying
frequent item sets, the algorithm can derive association rules.
These rules describe, for instance, that for a large fraction of
cases where an additional X-ray was inserted, the patient
was older than 65 years and the doctor was female, an
additional blood screening was inserted. Association rules
are derived in a global manner, viz., the order in which
change operations occur is not taken into account. This can
be beneficial especially when there are hardly any causal
relations between change operations. Association rules may
discover tacit relationships between change operations and
context data that could not be captured by classification.

In summation, the application of ML techniques appears
promising for the identification of the drivers for change from
the context of a process, and for relating them to one another.
We believe that this structured approach can deliver precise
results while still remaining feasible in practical settings, and
can thus a be foundation for the future design of self-adapting
PMSs.

5.9 Implementation and tool support

We have implemented a complete toolkit which allows
for creating and experimenting with change logs. Process
schemas can be designed, executed and changed in
the ADEPT demonstrator prototype (Reichert et al.,
2005). The resulting change and enactment logs can
then be extracted with a custom plug-in for ProMimport
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(Giinther and van der Aalst, 2006). ProMimport is an open
source framework greatly facilitating the implementation
of log conversions to MXML for various systems, and
can be downloaded from http://promimport.sf.net/. Change
logs extracted from ADEPT, or any other adaptive system
for that matter, can then be loaded into ProM, an open
source framework for process mining techniques, which is
available at http://prom.sourceforge.net/. Our change mining
approaches, described in Sections 5.5 and 5.6, have both
been implemented as plug-ins for ProM. Figure 10 shows the
plug-in implementing the approach based on commutativity,
introduced in Section 5.5. It displays the example process
introduced in Figure 4 in terms of a process graph.

Process mining algorithms have shown to scale well with
the amount of input data. The majority of these algorithms,
including the two approaches presented in this paper, work
in two distinct phases. The first phase scales linearly with the
number of events contained in the log. The second phase is
of polynomial complexity, where the number of activities
in the process corresponds to the problem size. These
scalability characteristics make process mining applicable to
most real-life problems.

6 Related work

Although process mining techniques have been intensively
studied in recent years (Agrawal et al., 1998; Cook and Wolf,
1998; vander Aalst et al., 2004; van Dongen and van der Aalst,
2004), no systematic research on analysing process change
logs has been conducted so far. Existing approaches mainly
deal with the discovery of process schemas from execution
logs, conformance testing and log-based verification
(cf. Section 2.1). The theory of regions (Cortadella et al.,
1997, 1998) has also been exploited to mine process schemas
from execution logs (Kindler et al., 2006), for example, from
logs describing software development processes. However,
execution logs in traditional PMSs only reflect what has
been modelled before, but do not capture information about
process changes. While earlier work on process mining has
mainly focused on issues related to control flow mining,
recent work additionally uses event-based data for mining
model perspectives other than control flow (e.g. social
networks (van der Aalst et al., 2005), actor assignments, and
decision mining (Rozinat and van der Aalst, 2006b)).

In recent years, several approaches for adaptive process
management have emerged (Rinderle et al., 2004), most
of them supporting changes of certain process aspects and
changes at different levels. Examples of adaptive PMSs
include ADEPT (Reichert et al., 2005), CBRflow (Weber
etal., 2004), and WASA (Weske, 2001). Though these PMSs
provide more meaningful process logs when compared to
traditional workflow systems, so far, only little work has been
done on fundamental questions like what we can learn from
this additional log information, how we can utilise change
logs, and how we can derive optimised process schemas
from them.

CBRFlow (Weber et al., 2004) has focused on the question
how to facilitate exception handling in adaptive PMSs. More
precisely, it applies Conversational Case-Based Reasoning
(CCBR) in order to assist users in defining ad hoc changes

and in capturing contextual knowledge about them. This, in
turn, increases the quality of change logs and change case
bases, respectively, and therefore, provides new perspectives.
CBRFlow, for example, supports the reuse of previous
ad hoc changes when defining new ones (Weber et al.,
2004). The retrieval of similar changes is based on CCBR
techniques. CCBR itself is an extension of the original
Case-Based Reasoning (CBR) paradigm, which actively
involves users in the inference process (Aha and
Munoz-Avila, 2001). A CCBR system can be characterised
as an interactive system that, via a mixed-initiative dialogue,
guides users through a question-answering sequence in a case
retrieval context. Later, Weber et al. (2006) further improved
the support for change reuse by additionally discovering
dependencies between different ad hoc changes. In (Rinderle
et al., 2005; Weber et al., 2005) the CBRFlow approach has
been extended to a framework for integrated process life cycle
support. In particular, knowledge from the change case base
is applied to continuously derive improved process schemas.
This is similar to our goal for discovering optimised process
schemas from change log. However, we have provided more
advanced and more general mining techniques in this context,
whereas (Rinderle et al., 2005) particularly makes use of
semantically enriched log-files (e.g. information about the
frequency of a particular change, user ratings, etc.). We will
consider respective semantical and statistical information in
our future work as well.

7 Summary and outlook

This paper gave an overview of how comprehensive support
for true process flexibility can be provided by combining
adaptive PMSs with advanced process mining techniques.
The integration of process mining with adaptive PMS enables
the exploitation of knowledge about process changes from
change logs.

We have developed two mining techniques and
implemented them as plug-ins for the ProM framework,
taking ADEPT change logs in the mapped MXML format
as input. Based on this, we have sketched how to discover a
(minimal) change process which captures all modifications
applied to a particular process. This discovery is based on
the analysis of (temporal) dependencies between change
operations that have been applied to a process instance.
Meaningful, compact representations of the change process
can be derived by either making use of the concept of
commutativity, or by application of the theory of regions,
as has been shown. Altogether, the presented approaches can
be very helpful for process engineers to get an overview about
which instance changes have been applied at the system level
and what we can learn from them. Corresponding knowledge
is indispensable to make the right decisions with respect to
the introduction of changes at the process type level (e.g. to
reduce the need for ad hoc changes at the instance level in
future).

In our future work, we want to further improve user
support by augmenting change processes with additional
contextual information (e.g. about the reason why changes
have been applied or the originator of the change).
From this, we expect better comprehensibility of change
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Figure 10 Change mining plug-in within ProM (see online version for colours)
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decisions and higher reusability of change knowledge (in
similar situations). The detection of this more context-based
information will be accomplished by applying advanced
mining techniques (e.g. decision mining Rozinat and van der
Aalst, 2006b) to change log information. In a related stream
of work, we continue our research on the identification and
description of contextual information. We envision that based
on an appropriate way of conceptualising and identifying
context, support can be developed to monitor, mine and
control contextual variables in the environment of a process,
which would in effect allow for true process agility, decreased
reaction-time and overall more flexible support in process
design and execution.
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