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Abstract. With the increasing adoption of process-aware information
systems (PAIS), large process model repositories have emerged. Over
time respective models have to be re-aligned to the real-world business
processes through customization or adaptation. This bears the risk that
model redundancies are introduced and complexity is increased. If no
continuous investment is made in keeping models simple, changes are
becoming increasingly costly and error-prone. Though refactoring tech-
niques are widely used in software engineering to address related prob-
lems, this does not yet constitute state-of-the art in business process
management. Process designers either have to refactor process models
by hand or cannot apply respective techniques at all. This paper pro-
poses a set of behaviour-preserving techniques for refactoring large pro-
cess repositories. This enables process designers to effectively deal with
model complexity by making process models better understandable and
easier to maintain.

1 Introduction

Process-aware Information Systems (PAIS) offer promising perspectives for en-
terprise computing and are increasingly used to support business processes at
an operational level [1]. In contrast to data- or function-oriented information
systems (IS), PAIS strictly separate process logic from application code, rely-
ing on explicit process models which provide the schemes for process execution.
This allows for a separation of concerns, which is a well established principle in
computer science to increase maintainability and to reduce cost of change [2].

With the increasing adoption of PAIS large process repositories have emerged.
Over time corresponding process models have to be adapted at different levels
to meet new business, customer and regulatory needs, and to ensure that PAIS
remain aligned with the processes as executed in real world. Typical adapta-
tions include the customization of (reference) process models to specific needs
of a customer [3,4] or – at the operational level – the adaptation of running
process instances to cope with exceptional situations [5]. Like software programs
degenerate when adding more and more code or introducing changes by differ-
ent devlopers [6], process adaptations bear the risk that model repositories are
becoming increasingly complex and difficult to maintain over time.
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In software engineering (SE), refactoring techniques have been widely used
to address related problems and to ensure that code bases remain maintainable
over time [7,8]. Refactoring allows programmers to restructure a software sys-
tem without altering its behaviour. Refactoring is typically used to improve code
quality by removing duplication, improving readability, simplifying software de-
sign, or adding flexibility [9]. Examples of SE refactoring techniques include the
renaming of a class to foster understandability or the extraction of a method
from an existing code block to reduce redundant code fragments.

Process modeling is often referred to as programming in the large [10,11].
Thereby, a process schema is comparable to a software program specifying the
inputs and outputs of activities as well as the control and data flow between
them. Despite these similarities refactoring is not yet established in the field of
business process management (BPM) and existing process modeling tools only
provide limited refactoring support. Consequently, process designers either have
to refactor process models by hand or cannot apply respective techniques at all.

This paper adapts SE refactoring techniques to the needs of process modeling
and complements them with additional refactorings specific to BPM. In partic-
ular, we describe techniques suitable for refactoring large process repositories,
where we can find both collections of inter-related process models and process
variants derived from generic models (e.g., reference process models). The former
consist of a set of models, which may refer to each other (e.g., a parent process
refers to a child process) resulting in model trees. In contrast, process variants
are part of a process model family, and are derived from a generic process model
through a sequence of adaptations. This approach is often referred to as model
customization or configuration [3,4]. Like in SE, tool support is essential as a
refactoring applied to one model might require changes in other models as well.
To avoid the introduction of inconsistencies and errors through refactorings, their
application must be behaviour-preserving and should be accomplished automat-
ically. The final decision whether to apply a refactoring or not, however, is left
to the process designer.

In this paper we focus on refactoring techniques for the control flow aspect of
executable process models. For each proposed refactoring we describe its intent,
give examples for its applicability and use (similar to code smells in SE [8]), and
discuss its effects in respect to process model quality metrics (e.g., measuring
control flow complexity) [12,11].

Section 2 provides background information. Section 3 gives an introduction
into refactorings for process model trees. Section 4 suggests a refactoring to effec-
tively deal with process variants and Section 5 introduces advanced refactorings
for model evolution considering process history data. Related work is discussed
in Section 6. Finally, Section 7 concludes with a summary and an outlook.

2 Background Information

This section describes basic concepts, notions and metrics used in this paper.
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2.1 Basic Concepts and Notions

A PAIS is a specific type of information system which provides process support
functions and allows for the separation of process logic and application code. At
build-time process logic has to be explicitly defined in a process schema, while
at run-time the PAIS orchestrates processes according to their defined logic.

For each business process to be supported, a process type represented by a pro-
cess schema S has to be defined. In the following, a process schema corresponds
to a directed graph, which comprises a set of nodes – representing activities
or control connectors (i.e., XOR/AND-Split, XOR/AND-Join) – and a set of
control edges between them. The latter specify precedence relations. Further,
activities can be atomic or complex. While an atomic activity is associated with
an invokable application service, a complex activity contains a sub process or,
more precisely, a reference to a (sub) process schema S′. This allows for the hier-
archical decomposition of schemes resulting in a process model tree (cf. Fig. 1a).
Generally, different schemes S1 . . . Sn may refer to a (sub) process schema S′.
Fig. 1a shows a schema S modeled in BPMN notation consisting of seven nodes.
Thereby, A, B and D are atomic activities, C and E are complex activities referring
to (sub) process schemes S1 and S2 respectively, and XOR-split and XOR-Join
are control connectors. S2 itself refers to schema S3 resulting in a process model
tree with depth three.

Process schemes can either be created from scratch or through configuration,
i.e., customization of a generic process model (e.g., a reference model). From

b) Process Family

a) Model Tree

AND-Split/Join

XOR-Split/Join

Atomic Activity

Complex Activity

Delete G

Insert Y after C
Delete G

Insert Y after C
Delete G

Delete F

G

Fig. 1. Core Concepts
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such a generic model several process variants (each with own schema) can be
derived based on a restricted set of change operations [5,13]. Thereby, for a
given variant we denote the set of change operations needed to transform the
generic model into the variant as bias. Usually, the aim is to minimize the number
of operations required in this context. The total set of all variants derived from
a generic process model is called process model family. Fig. 1b shows a generic
process schema SG and four variants V1, . . . , V4 derived from it. For example,
the transformation of SG to V1 requires deletion of Activity G.

Most refactoring techniques are not only applicable to activities, but also to
sub process graphs with single entry and exit nodes (also denoted as hammocks).
We use the term process fragment as generalizing concept for all these granular-
ities; e.g., in Fig. 1a the sub-graph of schema S containing Activities B, C, and
D and the two control connectors constitutes a hammock. Based on schema S,
at run-time new process instances can be created and executed. The latter is
reflected by the execution traces of these instances.

Definition 1 (Execution Trace). Let PS be the set of all process schemes
and let A be the total set of activities (or more precisely activity labels) based on
which schemes S ∈ PS are specified (without loss of generality we assume unique
labelling of activities). Let further QS denote the set of all possible execution
traces producible on schema S ∈ PS. A trace σ ∈ QS is then given by σ =
< a1, . . . , ak > (with ai ∈ A) where the temporal order of ai in σ reflects the
order in which activities ai were completed over S.

For example, σ1 = < A, B, D, C, E, F > and σ2 = < A, B, C, D, E, F > both
constitute traces producible by process variant V1 in Fig. 1b.

Schemes S and S′ are called trace equivalent if and only if the same set of
execution traces can be produced based on S as well as on S′.

Definition 2 (Trace Equivalence). Two process schemes S and S′ are trace
equivalent iff QS = QS′ .

To determine whether two (hierarchically) composed process schemes S and S′

are trace equivalent, the respective process model trees need to be expanded. For
this, each complex activity needs to be replaced by the (sub) process schema it
refers to. Consequently, the trace of an activity does not contain the complex
activity directly, but the trace of the associated sub process. A possible execution
trace for schema S in Fig. 1a is σ1 = < A, B, J, K, M, N >.

Finally, to decide whether a process instance I can be executed according to
a process schema S we use the notion of compliance.

Definition 3 (Compliance). Let I be a process instance with execution trace
σ. Let further S be a process schema. Then: I is compliant with S iff σ is
producible on S.

2.2 Quality Metrics for Business Process Models

In SE, metrics have been used since the 60s to measure software quality. Main
purpose is to improve software design, resulting in better understandable and
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maintainable code [14,15]. BPM research has recently started to adopt quality
metrics to specific needs of process modeling [10,11,16,17] and to empirically
validate these metrics [10,12]. Similar to SE our goal is to use refactoring tech-
niques to obtain more comprehensive and better maintainable process models.
In the following we apply popular metrics for measuring process model quality
with the design goal of comprehensive and maintainable models in mind. We use
these metrics to illustrate the effects of the proposed refactorings (cf. Fig. 2).
Note that the latter have effects on many other metrics, which cannot be all
discussed in this paper due to lack of space.

Quality Metrics for Business Processes 

Let S = (N, E) be a process model with N denoting the set of nodes and E the set of edges. 

Metric Description
Metrics calculated 
for Fig. 1 

Size  
[11, 18]

||)( NSSize  measures the number of nodes in process schema S Size(S) = 7 

Process Depth [18] )(SLevels  = number of process levels of the model tree with S as root Levels(S) = 3 
Control-Flow
Complexity
[10]

Let ANDSplits, XORSplits and ORSplits denote the node sets of S 
comprising respective split nodes.  Let further (n) denote the number of 
direct successors of node n (number of control edges outgoing from n). Then: 

)(SCFC | ANDSplits | )12()( )(

ORSplitsc

c

XORSplitsc

c is the sum over all 

connectors weighted by their potential combinations of states after  the split 

CFC(S) = 2 

Change Distance 
[20]

)2,1( SSDist : Minimal number of high-level change operations (e.g., MOVE 
activity) needed to transform schema S1 to schema S2 

Dist(SG,V1) = 1 

Fig. 2. Selected Quality Metrics for Process Models

Quality metrics can help process designers to identify quality problems and
potential refactoring options, and to measure effects on model quality. However,
what a high or low value for a particular quality metric is cannot be answered
in general, but highly depends on the concrete process model(s). Therefore, like
in SE it is up to the process designer to decide whether applying a particular
refactoring is worthwhile. As the application of a particular refactoring may
affect several schemes it is not sufficient to look only at the quality metrics of a
single schema in isolation, but to apply metrics to the entire collection of schemes
as well. For this purpose we introduce functions sum and avg, which we use later
on for comparing process models before and after refactorings.

sum : 2PS × Metrics × Params �→ N0 with sum(mset, m, p) :=
∑

S∈mset

m(S, p)

avg : 2PS ×Metrics×Params �→ R
+
0 with avg(mset, m, p) :=

sum(mset, m, p)
|mset|

For example, the total change distance for the process family depicted in Fig. 1b
is sum({V1, . . . , V4}, Dist, SG) = 6, while the average change distance is 1.5.
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3 Refactorings for Process Model Trees
This paper describes 11 refactoring techniques which allow process designers to
improve the quality of process models (cf. Fig. 3). In our context refactorings
constitute model transformations which are behaviour-preserving if certain pre-
and postconditions are met. Implementation of these refactorings can be based
on the restricted use of change patterns as presented in [13,18]. We use trace
equivalence (cf. Def. 2) as formal notion for most refactorings to ensure that
process model behaviour is not changed due to their application. If for a model
tree with root Si the same trace sets can be produced before and after the
respective refactoring, process behaviour will be preserved.

We divide our refactorings into basic ones, which can be applied to a single
schema, and composed refactorings applicable to a collection of inter-related
process schemes. Basic refactorings transform a schema S into a new schema S′

by applying a refactoring operation op. This transformation might also imply
changes of a model tree, e.g., when a fragment is extracted from a process model
and replaced by a reference to a sub process. Composed refactorings, in turn,
will refer to a collection of process schemes S1 . . . Sn and apply basic refactorings
to them if they meet the respective pre-conditions.

For each of the proposed refactorings we describe its intent, give examples,
provide a description of the refactoring operation (with pre- and postconditions)
and its implementation, and describe their effects on selected quality metrics.
We organize our refactorings into three groups. The first one is introduced in
this section and contains refactorings for process model trees. The second one
suggests a refactoring for process model variants (cf. Section 4). The third group
describes model refactorings, which support model evolution considering process
history data (cf. Section 5).

First, we describe 8 refactorings for process model trees. Refactoring
RF1 (Rename Activity) can be applied when the name of an activity is not in-
tention revealing and RF2 (Rename Process Schema) allows altering the name of
a schema. Using RF3 (Substitute Process Fragment) process designers can sub-
stitute a fragment within a schema by another one which is simpler in structure,
but has the same behaviour. RF4 (Extract Process Fragment) allows extracting
a process fragment into a sub process to remove model redundancies, to fos-
ter reuse, and to reduce the size of a schema. Applying RF5 (Replace Process
Fragment by Reference) a process fragment can be replaced by a complex activ-
ity referring to a (sub) process schema containing the respective fragment. RF6
(Inline Process Fragment) can be applied to collapse the hierarchy by inlining a
fragment. RF7 (Re-Label Collection) is a composed refactoring, which supports
re-labelling of certain activities within an entire process collection. Finally, RF8
(Remove Redundancies) allows for combined use of RF4 and RF5 to remove
redundant fragments from multiple schemes in a model collection at once.

RF1 (Rename Activity). RF1 allows altering the name of an activity x to y if
x is not intention revealing. RF1 is comparable to the Rename Method refactoring
in SE [8]. Renaming an activity does not alter the behaviour of the schema
S as only labels are changed. However, the notion of trace equivalence is not
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Refactoring Catalogue 

Name Refactoring Operation Short description of refactoring 

Refactorings for Process Model Trees 

RF1: Rename Activity renameActivity(S,x,y)
Changes the name of an activity from x to y in schema S 
Pre-Condition: No activity from S is labelled with y 

RF2: Rename Process 
Schema 

renameSchema(S,S’)
Renames schema from  S to S’ and updates all references to S  
Pre-condition: There exists no schema with label S’ in the repository 

RF3: Substitute Process 
Fragment  

substituteFragment(S,G,G’)
Substitutes sub-graph G in S by sub-graph G’ 
Pre-condition: G and G’ constitute hammocks and are trace equivalent 

RF4: Extract Process 
Fragment 

extractFragment(S,G,x,S’)
Extracts sub-graph G in S and substitutes it with complex activity x referring 
to S’ 
Pre-condition: There is no activity with label x in S; G is a hammock 

RF5: Replace Process 
Fragment by Reference 

replaceFragment(S,G,x,S’)
Substitutes sub-graph G in S by complex activity x referring to schema S’ 
Pre-condition: No activity from S is labelled with x; G is a hammock, and G 
and S’ are trace equivalent 

RF6: Inline Process 
Fragment 

inlineFragment(S,x)
Inlines the sub process schema activity x refers to in S and deletes the 
respective sub process schema, if it is unused after the refactoring 
Pre-condition: Activity x is a complex activity 

RF7: Re-label Collection relabelCollection(C,x,y) Applies RF1 to every schema S1,…, Sn in model collection C where x  Si

RF8: Remove 
Redundancies

removeRedundancies(C,G,x,S’)
Applies RF4 to the first schema Si in model collection C meeting the pre-
conditions and RF5 to all other schemes  

Refactoring for Process Variants 

RF9: Generalize Variant 
Changes 

generalizeVariantChanges(S_G,
VariantSet,ChangeSet)

Generalizes variant changes by applying changes from ChangeSet to generic 
model S_G and by re-linking all variants from VariantSet to the new generic 
model S_G’ (i.e., their biases are re-calculated with respect to S_G’)

Refactorings for Model Evolution 

RF10: Remove Unused 
Branches 

removeUnusedBranch(S,G)
Removes an unused branch G from schema S.  
Pre-condition: G constitutes a branch within a conditional branching, which 
was not entered when executing instances of S. 

RF11: Pull Up Instance 
Change 

pullUpInstChange(S,InstSet,
ChangeSet)

Pulls frequent changes that happened at the process instance level up to the 
type level schema S. Change are described in terms of a set of applied change 
operations.

Fig. 3. Refactoring Catalogue

suitable in this context. Instead, we use a correctness notion based on the Replace
Process Fragment change patterns [13,18]. For each trace σ produced on schema
S with an entry of x there exists a respective trace μ on S′ which is identical
to σ, except that for every x in σ a y in μ can be found at the same position.
Applying RF1 does not have effects on the quality metrics described in Fig.
2. However, names which reveal the intention of process designers more clearly
improve understandability of the model and consequently result in decreased
costs of change and reduced errors [19].

RF2 (Rename Process Schema). RF2 allows designers to rename a schema
S to S′. A similar refactoring in SE is Rename Class [20]. To guarantee that RF2
does not alter process behaviour, all references to S are updated. Obviously, trace
equivalence can be used as formal notion for RF2 ensuring that the behaviour
of the model collection remains unchanged. Like RF1 this refactoring does not
affect quality metrics, but improves model clarity.

RF3 (Substitute Process Fragment). RF3 allows substituting a fragment
by another one with simpler structure, but same behaviour. Applying RF3 re-
quires both fragments to contain activities with same labelling. The Substitute
Algorithm refactoring [8] known from SE is comparable to RF3. Scenarios in
which RF3 is useful include unnecessarily complex parallel branchings (cf. Fig.
4a) or unneeded control edges due to transitive relations. RF3 can be imple-
mented based on change pattern Replace Process Fragment [13,18]. As formal
criterion trace equivalence can be used (cf. Def. 2). Substituting a fragment by a
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simpler one allows designers to improve model quality along several dimensions:
by removing unnecessary parallel branchings and edges not only model clarity
is increased, but also size and control-flow complexity (CFC) are decreased.

RF4 (Extract Process Fragment). RF4 can be used to extract a process
fragment from schema S, e.g., to eliminate redundant fragments or to reduce
size of S. The fragment to be extracted must constitute a hammock. The in-
tent of RF4 is similar to Extract Method as known from SE [8]. It results in the
creation of a new (sub) process schema S1 containing the respective fragment.
In addition, the fragment is replaced by a complex activity referring to S1. As
formal notion for reasoning about behaviour preservation, trace equivalence is
used. RF4 can be implemented based on change pattern Extract Process Frag-
ment [13,18]. Extracting parts of a schema often results in a reduced CFC (cf.
Fig. 5). Similarly, in SE the Extract Method refactoring is suggested as remedy
for high cyclomatic complexity [21]. RF4 can also be used to reduce size of large
schemes and the overall number of nodes in the process repository by remov-
ing redundancies. Further, removing redundancies reduces cost of future process
changes as same changes do not have to be performed at multiple places.

RF5 (Replace Process Fragment by Reference). RF5 is used to replace a
process fragment by a complex activity referring to a trace equivalent (sub) pro-
cess schema. RF5 is often used in combination with RF4. It can be implemented
based on change pattern Replace Process Fragment [13,18]. Regarding qualitiy
metrics similar considerations hold than for RF4.

RF6 (Inline Process Fragment). RF6 can be used to collapse the hierarchy
of a model by inlining the process fragment, e.g., if it is not justifying its in-
duced overhead. Similarly, in SE Inline Method [8] allows programmers to inline
the body of a method. By inlining a fragment S1 into S the complex activity
referring to S1 is substituted by the fragment corresponding to S1. Again trace
equivalence can be used as formal notion. RF6 can be implemented based on
the Inline Process Fragment change pattern [13,18]. In particular, RF6 allows
designers to collapse the hierarchy of a process model tree resulting in a decrease
of levels. Note that metrics Size and CFC might increase when applying RF6.

RF7 (Re-Label Collection). RF7 is a composed refactoring for re-labelling a
particular activity in all schemes of a model collection. For this, RF1 is applied
to all schemes containing the activities to be re-labelled.

RF8 (Remove Redundancies). RF8 is a composed refactoring based on RF4
and RF5. It can be applied to a collection of schemes S1 . . . Sn to remove redun-
dancies. For this, RF4 is applied to one of these schemes to extract the redundant
fragment. To all other schemes, RF5 is applied for replacing the respective frag-
ment by a reference to the (sub) process schema created before.

Example. Fig. 4 shows the combined usage of the basic refactorings described so
far. For schema S Activity A is renamed to A’ using RF1. RF2 is used to rename
schema S3 to S3′. As process schemes S and S1 contain complex Activity M
referring to S3 the references in M need to be updated to S3′. A further refactoring
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option is given by schemes S, S1 and S2, all containing a process fragment with
same behaviour. However, fragment G in schema S has a more complex structure
than G1 in schemes S1 and S2. First, RF3 is used to replace the fragment in
S with the one of S1 or S2. Next, RF4 is applied to either S, S1 or S2 to
extract the redundant process fragment to a (sub) process schema S5. Finally,
RF5 is applied to the two other schemes to replace the respective fragment by a
reference to S5. Instead of RF4 and RF5 the composed refactoring RF8 could be
used alternatively. Schema S4 only consists of a single activity and is therefore
inlined in schema S2 using RF6.

a) Model Repository before Refactoring 

b) Model Repository after Refactoring the Model Collection from a)

RF1: RenameActivity(S,A,A‘)

RF2: RenameSchema(S3,S3‘)

RF3: SubstituteFragment(S,G,G1)

RF4: ExtractFragment(S1,G1,L,S5)

RF5: ReplaceFragment(S,G1,L,S5)

RF5: ReplaceFragment(S2,G1,L,S5)

RF6: InlineFragment(S2,K)

Used Refactoring Operations

G G1

G1

XOR-Split

Fig. 4. Refactorings for Process Model Trees (Toy Example)

Effects on Quality Metrics. In the following we show for the refactorings in
Fig. 4 how metrics can be used to measure their effects. Note that Fig. 4 consti-
tutes a toy example, whose purpose is to show the application of the proposed
patterns and its effects on quality metrics. Usually, refactorings are not applied
in isolation, but in combination with other refactorings and to a collection of
models. Consequently, refactoring has an impact on the collection of process
models. In Fig. 4 the combined use of refactorings RF3, RF4, RF5 and RF6
reduces the total number of nodes in the given model collection from 34 to 20
and decreases average CFC of the schemes by factor 1:4 (cf. Fig. 5). In all cases
no changes of model behaviour have been performed. In particular, application
of RF3 allows for the removal of two unnecessary connector nodes, reducing size
by two and CFC by one; RF4 and RF5 remove existing redundancies leading to
an additional saving of 11 nodes. Finally, RF6 reduces size by one.
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Before Refactoring (Fig. 4a) After Refactoring (Fig. 4b) 

Size CFC Levels Size CFC Levels
S 11 2 2 S 3 0 2 
S1 10 1 2 S1 4 0 2 
S2 9 1 2 S2 3 0 2 
S3 3 0 - S3 3 0 - 
S4 1 0 - S4 
S5  S5 7 1 - 
Sum 34 4  Sum 20 1  
Avg. 6.8 0.8  Avg. 4 0.2  

Fig. 5. Effects on Quality Metrics (with respect to Fig. 4)

As illustrated in Fig. 5 the proposed refactorings do not only result in smaller
and less complex models, but also decreases costs of future changes by remov-
ing redundancies. For example, assume that Activity D in Fig. 4 shall be re-
placed by a sequence consisting of Activities D1 and D2. Without the described
refactoring this change would require to modify schemes S, S1 and S2 by ap-
plying three change operations to each of these schemes resulting in a total
change distance of 9. In contrast, considering the refactoring only schema S5
needs to be modified (Delete(S5,G), SerialInsert(S5,D1,XOR-Split) and
SerialInsert(S5,D2,D1)) reducing the total change distance by 66,67 % to
3. Removing redundancies does not only result in smaller change distance, but
also reduces the risk of introducing inconsistencies or errors. Finally, the exact
change distance depends on the intended change and the used meta-model.

Due to the very simple nature of Fig. 4a it can be discussed whether much is
gained from applying refactorings. However, for more realistic models refactor-
ings can significantly improve understandability and maintainability as our case
studies in the healthcare and automotive domains revealed. When elaborating
30 process models of a Women’s hospital, for example, we detected redundan-
cies in more than 60% of them [22]. Particularly, larger models with more than
20 activities often contained redundant process fragments (e.g., for making ap-
pointments with medical units or for exchanging medical reports). As we learned,
these redundancies can be abolished using the proposed refactorings.

4 Refactoring for Process Variants

Another challenge is to manage the process variants belonging to a process family
(cf. Fig. 1b). Usually, respective variants are derived from a generic schema SG

by applying a set of change operations to it. In general, configuration of new
variants and adaptation of existing variants can be done most effectively when
the average change distance (cf. Section 2) between generic schema SG and its
variants V1, . . . , Vn is minimal (i.e., the average number of change operations
needed to transform SG to Vi is minimal). However, to keep the average change
distance small, continuous efforts have to be made to evolve the generic model
over time. Otherwise, more and more redundant changes have to be performed
to different variants to keep them aligned with the real-world processes. Though
respective variants are often similar, slight differences make refactorings RF4
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and RF5 inapplicable in many situations. Therefore, an additional refactoring
technique is needed, which supports designers in maintaining generic models.

RF9 (Generalize Variant Changes). RF 9 allows designers to pull changes,
which are common to several variants, up to the generic model (similar to Pull
Up Method and Push Down Method in SE [8]). This allows removing redundan-
cies and decreasings costs of future changes. As example consider Fig. 1b, which
shows a generic model SG and variants V1, . . . , V4 derived from it. Analysis of
SG and its variants shows that Activity G has been deleted for 3 of the 4 vari-
ants. Refactoring GeneralizeVariantChanges(SG,{V1, . . . , V4},{Delete(G)})
can be applied to generalize the respective change by pulling the deletion of G
up to the generic model SG (not shown in Fig. 1b). As Activity G is deleted from
the generic model, G needs to be inserted in variant V4 to keep the behaviour of
variant V4 unchanged. This results in a reduction of the total change distance
from 6 to 4 and a decrease of the average change distance from 1.5 to 1.0.

In a case study we did in the healthcare domain we identified 10 variants for
medical order handling with similar behaviour [22]. Though respective variants
were similar, slight differences existed and redundant fragments could not be
extracted to (sub) processes. However, by applying RF9 we are able to reduce
redundancies resulting in easier to configure and better maintainable variants.

Implementing RF9 necessitates a framework for coping with generic schemes
and variants derived from them. First, advanced techniques for analyzing process
variants and for identifying variant changes to be pulled up to the generic model
are needed. In MinADEPT [23], for example, a generic model S′

G can be derived
from a set of variants VariantSet such that the change distance between S′

G and
the variants becomes minimal. Second, when applying RF9 the change operations
in ChangeSet (cf. RF9 in Fig. 1b) are applied to SG resulting in a new versionS′

G of
the generic model. All variants in VariantSet need to be re-linked from SG to S′

G

and for each variant Vi ∈ VariantSet its bias is re-calculated in respect to S′
G [24].

Third, effective techniques are needed for internally representing generic models,
its variants and related biases. Note that RF9 does not alter variant behaviour.
Applying the updated bias of a variant Vi to S′

G results in the same variant-specific
schema as applying the old bias to SG. Thus trace equivalence can be used as for-
mal notion. RF9 bears a high potential for full automation.

5 Refactorings for Model Evolution

This section describes refactoring techniques, which become applicable when pro-
cess models are executed by PAIS and historic data on process instances is avail-
able in execution or change logs [25,26]. These logs can be analyzed and mined
to discover potential refactoring options. In this context RF10 (Remove Unused
Branches) allows process designers to remove unused paths from a process model
and RF11 (Pull Up Instance Change) enables generalization of frequent instance
changes by pulling them up to the process type level. Several mining methods for
discovering such situations already exist [25,23]. We therefore do not look at min-
ing techniques, but use them for realizing refactorings based on historical data.
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RF10 (Remove Unused Branches). RF10 allows designers to remove un-
executed process fragments from a schema S. It can be implemented based on
change pattern Delete Process Fragment [13,18] and on standard process min-
ing techniques. Note that trace equivalence is not suitable as formal basis since
the behaviour producible on the respective process schema is altered by RF10.
Therefore we use the notion of compliance (cf. Def. 3). RF10 can be applied to
schema S if the traces of all instances on S are re-producible on the new schema;
i.e., observed behaviour remains unchanged. Obviously, compliance can be guar-
anteed when removing unused execution paths. While unused branches can be
automatically deteced, RF10 is not automatically applied, but the designer has
to ensure that the misalignment between model and log was not caused by de-
sign errors or an execution log not covering all relevant traces. Depending on
the concrete application scenario the time window for which events from the log
are considered can be narrowed. Applying RF10 decreases both model size and
control flow complexity. Fig. 6a shows a schema S with its execution log com-
prising the traces of completed instances. Mining this log reveals that the path
with activities E and F was never executed. RF10 could be applied to remove
the unused fragment. This reduces size of S from 9 to 7 and CFC from 3 to 2.
After removing E and F all instances in the log are compliant with schema S′.

RF11 (Pull Up Instance Change). RF11 can be used to generalize frequently
occurring instance changes by pulling them up to the process type level (similar
to RF9 where variant changes are generalized). Like for RF9 the overall goal is
to reduce average and total change distance between type schema and instance-
specific schemes; e.g., to learn from instance changes and to reduce the need for
adapting future instances [24]. The implementation of RF11 is similar to RF9.

Instance 1: ParallelInsert(X,B), Delete(E)
Instance 2: ParallelInsert(X,B)
Instance 3: ParallelInsert(X,B)
Instance 4: ParallelInsert(X,B), Delete(D)
Instance 5: ParallelInsert(X,B)

RF11: RemoveUnusedBranch(S,{E,F})

Instance 1: A, D, G
Instance 2: A, B, C, G
Instance 3: A, D, G
Instance 4: A, D, G
Instance 5: A, B, C, G

…

Execution Log

unused branch

a) Remove Unused Branch

b) Pull Up Instance Change

Bias before Refactoring (total change distance = 7)

RF12: PullUpInstChange(op1)
op1:= ParallelInsert(X,B)

Instance 1: Delete(E)
Instance 2: -
Instance 3: -
Instance 4: Delete(D)
Instance 5: -

Bias after Refactoring (total change distance = 2)

Fig. 6. Remove Unused Branch and Pull Up Instance Change Refactorings
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In contrast to RF9, however, trace equivalence cannot be used to ensure that no
errors are introduced when applying RF11. By pulling changes from the instance
level to the type level behaviour producible on the respective schema is always
altered. Therefore, compliance is used as formal notion like in RF10. Like RF9,
RF11 has the potential for full automation.

Fig. 6b shows a process schema S1 and for each process instance I1, . . . I5
its deviation from S1. Activity X was inserted parallel to B for each of these
instances. For I1, Activity E was additionally deleted and for I4 Activity D
was deleted. To pull up the insertion of Activity X (which is common to all
instances) to the type level and to reduce the need for future instance adap-
tations, RF11 could be applied. Using RF11 reduces the total change distance
from sum({I1, . . . , I5}, Dist, S1) = 7 to sum({I1, . . . , I5}, Dist, S1′) = 2.

6 Related Work

Refactoring techniques for improving software design were first proposed by
Opdyke [7]. He suggested a set of refactorings for C++ which are semantic pre-
serving when certain preconditions are met. The first notable refactoring tool
has been the Refactoring Browser [20] for Smalltalk, which automatically per-
forms the refactorings proposed by Opdyke plus some additionally techniques
[27]. As all refactorings provided by this tool constitute behaviour-preserving
transformations it is ensured that no errors or information losses are introduced.
Tool support for languages like C++ and Java recently emerged. The provided
refactorings are usually not provably behaviour-preserving. Therefore, refactor-
ings need to be backed up by automated regression tests to detect behavioural
changes in the software and to avoid errors [8].

Similar to program refactorings, model refactorings constitute transforma-
tions, which are behaviour-preserving if certain pre-/post-conditions are met.
Existing approaches focus on UML model transformations [28], while refactoring
has not been elaborated in detail for business process models. There exist a few
approaches which provide specific refactorings in a narrow context (e.g., a partic-
ular process modeling formalism). In [29] refactoring techniques for event-driven
process chains (EPCs) are described. Refactoring techniques have been also dis-
cussed in connection with model merging [30]. The proposed transformations aim
at improved process design, but are not necessarily behaviour-preserving. A spe-
cific refactoring technique is described in [31] where algorithms for transforming
unstructured processs models into block-structured models are proposed. Syn-
thesis of Petri Nets, in turn, offers techniques which take a transition system and
generate a Petri net from it [32]. This approach can be used to transform a Petri
Net via a transition system into another behaviour-equivalent Petri net. Respec-
tive techniques allow to elimate unnecessary net elements (e.g., silent activities,
unnecessary places) [32] or to discard OR-joins from process models [33].

This paper complements existing work dealing with process redesign [34] or
process adaptation [5]. Both refactoring and process redesign [34] may require
model transformations. However, scope of process redesign is much broader and
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goes beyond structural adaptations. Redesign is primarily business driven and
aims to improve one or more performance dimensions of a process (e.g., time,
quality, costs or flexibility) [34]. Therefore, process redesign often affects exter-
nal quality of a PAIS and its results are visible to the customer. In contrast,
refactoring techniques primarily impact the internal quality of the PAIS, ensure
conceptual integrity, and foster maintainability. Similar to refactorings, process
adaptations [5] refer to structural changes of a process schema (e.g., using change
patterns) [13,18,5]. In contrast to refactorings, process adaptations are usually
affecting the behaviour of a process model. We build upon existing research in
this area and extend it to be applicable for process model refactorings.

Existing BPM tools only provide limited refactoring support. Renaming of
activities and process schemes is supported by most tools (e.g., ARIS). However,
more advanced refactoring support is missing.

7 Summary and Outlook

We proposed 11 refactorings specifically suited for large process repositories.
These techniques allow process designers to better deal with model complexity
and to make process models easier to change and better understandable. With
the increasing adoption of PAIS and the emergence of large process repositories
systematic support for model management is getting increasingly important.
We are currently working on a reference implementation of a tool for refactor-
ing process models to support users in both identifying refactoring options and
applying behaviour-preserving or compliance-ensuring refactorings. We further
plan to integrate this with our previous work on change patterns [13,18], model
evolution [35], and process change mining [23] to provide integrated support for
the management of process models throughout the entire process life cycle.
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