
Ulm University | 89069 Ulm | Germany Medical Faculty
Institute of Medical
Systems Biology

Enhancing Mobile Data Collection
Applications with Sensing Capabilities
Master’s thesis at Ulm University

Submitted by:
Robin Martin
robin.martin@uni-ulm.de

Reviewer:
Prof. Dr. Hans A. Kestler
Prof. Dr. Rüdiger Pryss

Supervisor:
Dr. Johannes Schobel

2020

Version from June 24, 2020

c© 2020 Robin Martin

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Composition: PDF-LATEX 2ε

Abstract

Over the past years, using smart mobile devices for data collection purposes has

become ubiquitous in many application domains, replacing traditional pen-and-paper

based data collection approaches. However, in many cases, modern approaches only

aim to replicate traditional data collection instruments (e.g., paper-based questionnaires)

in a digital from (e.g., smartphone surveys). Thereby, the full potential of smart mobile

devices is often not fully exploited. Most modern smart mobile devices comprise a

variety of sensing capabilities, which may provide valuable data, and thus insights. In

addition, external sensors and devices may be easily connected to become part of the

overall data collection process. In order to integrate sensing functionality into existing

data collection applications, one has to address each desired sensor manually from

within the application, which may cause severe development effort. Alternatively one can

fall back on dedicated sensing frameworks to perform sensing operations. However, the

latter are often targeted towards one specific mobile platform (e.g., iOS or Android) or

lack required functionality, which may also lead to unnecessary development overhead

when implementing mobile data collection applications. To cope with these issues, a

cross-platform mobile sensing framework that can be used within large-scale mobile data

collection scenarios was developed in the context of this thesis. Thereby, an in-depth

look at existing mobile sensing frameworks as well as common use case scenarios

is taken. Further, requirements derived from the latter are explicitly stated and were

taken into consideration in the course of the overall development process. The latter is

documented and discussed in detail in the course of this thesis, including the design of a

framework architecture, implementation details and the integration of the framework into

mobile data collection applications.

iii

Acknowledgment

At this point, I would like to thank my family and friends who supported and continuously

motivated me throughout my studies and during the preparation of this thesis.

Most notably, I would like to thank my supervisor Dr. Johannes Schobel for his excellent

guidance, mentorship and support over the course of my master studies, throughout this

thesis and beyond.

v

Contents

1 Introduction 1

1.1 Outline . 2

2 Fundamentals 5

2.1 Bluetooth Low Energy . 5

2.2 Cross-Platform Development . 10

2.3 Web Components . 13

3 Evaluation of Existing Mobile Sensing Frameworks 15

3.1 SensingKit . 15

3.2 Event-based Sensor Framework . 17

3.3 Google Fit . 20

3.4 Comparison . 23

4 Application Scenarios 29

4.1 Remote Patient Monitoring . 29

4.2 Intensive Longitudinal Methods . 31

5 Towards a Generic Sensor Framework 33

5.1 Requirements . 34

5.2 Framework Architecture . 37

6 Implementation 41

6.1 Technologies . 41

6.2 Capacitor Plugin Implementations . 42

6.3 Software Architecture . 48

6.4 Sensor Implementations . 57

7 Enhancing Mobile Applications with Sensing Capabilities 67

7.1 Framework Setup within Application . 67

7.2 Addressing Sensors . 69

vii

Contents

7.3 Extending the Framework with Custom Sensors 72

7.4 Conclusion . 73

8 Summary 75

8.1 Outlook . 77

A Sources 85

A.1 Implementation of Geolocation Component 85

A.2 Implementation of Custom Battery Sensor 88

viii

1
Introduction

Over the past decade, smart mobile devices, such as smartphones or tablet computers,

became an ubiquitous part of people’s everyday life. Due to their characteristic properties

(i.e., being portable, sensor rich, programmable and powerful computing devices) using

them as a tool for data collection purposes is becoming increasingly popular in many

application domains. Compared to traditional, pen-and-paper based data collection,

digital data collection approaches offer various benefits.

First of all, the unnecessary burden on environment, for example by printing thousands of

sheets of paper, may be lowered drastically by relying on digital solutions. Further, digital

approaches can minimize the overall cost of data collection, and thus, allow researchers

to conduct studies with large sample sizes (e.g., clinical trials) with ease [1, 2]. Also,

collected data may be stored and processed immediately and must not be digitized

manually in tedious and error prone transcription tasks. The latter contributes to an

increase in overall data quality significantly [2].

However, many of the existing tools for mobile data collection (e.g. survey configuration

tools) exclusively rely on a form based approach in order to reproduce traditional paper-

based questionnaires in a digital way on smart mobile devices. Thereby, a lot of additional

benefits that may be gained through the usage of smart mobile devices for data collection

are neglected. Most importantly, smart mobile devices themselves comprise a variety of

internal sensing capabilities (e.g., accelerometer, GPS or microphones). The latter may

be addressed in order to gather rich contextual information in addition to data collected

through regular forms. Further, smart mobile devices offer various wired (e.g., USB)

as well as wireless (e.g., Bluetooth, WiFi) connectivity options, and thus, allow for the

integration of external sensors and devices into the data collection process [3].

1

1 Introduction

Nevertheless, enhancing mobile data collection applications to also collect data from

internal as well as external sensors can be a challenging task. Most existing mobile

data collection tools (e.g., survey configurators) do not provide the opportunity for

configuring data collection instruments that also gather sensor information. Hence, one

has to rely on dedicated, custom implemented data collection applications, rather than

general solutions, for addressing sensors during the data collection process. However,

implementing dedicated mobile applications can be both, cost- and time-intensive as it

requires sophisticated knowledge about platform-specific ways of accessing sensors as

well as the sensors themselves, which may differ greatly in their characteristics. Also,

most of the time, dedicated solutions only serve one specific use case and may be

superfluous afterwards. While approaches for generically addressing sensors on mobile

devices exist, they are often limited to a specific mobile platform and restricted to a small

set of available sensors. In order to cope with these issues, the aim of this thesis is to

design and implement a generalized mobile sensing framework, which may be integrated

into existing data collection tools and applications. Using this framework, one should be

able to build data collection instruments and applications which gather sensor data from

a variety of different sensors on multiple platforms with ease.

1.1 Outline

To begin with, Chapter 2 gives an overview over fundamental aspects that might be

required for further understanding in later parts of the thesis. Thereby, covered topics

include the Bluetooth Low Energy standard (Section 2.1), Cross-Platform Development

(Section 2.2) as well as a brief introduction to Web Components (Section 2.3). Following,

Chapter 3 is concerned with different existing mobile sensing frameworks. The latter

are presented in detail and evaluated from various points of view. Next, Chapter 4

presents multiple use case scenarios, where gathering data from mobile sensors could

find beneficial appliance, with particular attention to Remote Patient Monitoring and

Intensive Longitudinal Methods. With insights from previous chapters in mind, a set

of requirements, the sensing framework to be developed has to fulfill, are elaborated

in Chapter 5. Further, according to elaborated requirements, a general architecture

2

1.1 Outline

for the sensing framework is defined. Chapter 6 then covers in-depth implementation

details about the developed framework, including utilized technologies (Section 6.1),

custom plugin implementations (Section 6.2), details about the software architecture

(Section 6.3) and the actual sensor implementations within the framework (Section 6.4).

In order to demonstrate how to integrate the developed framework into existing mobile

application, Chapter 7 gives a closer look at the framework integration process. Thereby,

the initial framework setup (Section 7.1), different ways of accessing sensor data from

within the application (Section 7.2) and framework extension approaches (Section 7.3)

are discussed in detail. Chapter 8, then recapitulates and discusses several aspects of

the developed framework. Finally, Section 8.1 gives an outlook on how the framework,

developed in the course of this thesis, could be extended with additional features in

further iterations.

3

2
Fundamentals

In this chapter, general aspects which may be important for further understanding parts

of this thesis, are introduced. Section 2.1 covers the Bluetooth Low Energy standard

and gives a brief description about different parts of the Bluetooth Low Energy protocol

stack. Further, cross-platform development, an alternative approach to developing native

mobile applications, is introduced in Section 2.2.

2.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a wireless technology for short-range communication

developed and maintained by the Bluetooth Special Interest Group (SIG). In 2010, BLE

became part of the Bluetooth 4.0 core specification. As the name implies, one of the

key advantages of BLE over previous Bluetooth implementations is its relatively low

energy consumption [5, 4]. Similar to the classic Bluetooth stack, the BLE protocol

stack consists of two major parts, the Controller and the Host (see Figure 2.1). The

layers within the controller part enable a standard interoperable wireless communication

and are responsible for packet transmission and scheduling. Host layers, on the other

hand, implement multiple network and transport protocols, which allow applications

for a standard and interoperable way of communicating with peer devices [6]. As this

thesis does not require in depth knowledge about BLE low-level functionality, this section

focuses on the top-most three layers of the BLE protocol stack. In detail, the following

sections present the Attribute Protocol, Generic Attribute Profile as well as the Generic

Access Profile. Thereby, most of the information provided is consulted from the Bluetooth

core specification [7].

5

2 Fundamentals

Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Host Controller Interface (HCI)

Link Layer

Physical Layer

Attribute Protocol
(ATT)

Security Manager
Protocol (SMP)

Logical Link Control and Adaptation Protocol
(L2CAP)

H
os
t

C
on

tro
lle
r

Figure 2.1: High-level overview of the Bluetooth Low Energy protocol stack [4]

Attribute Protocol

The Attribute Protocol defines the communication between two connected BLE devices.

Thereby, one device takes on a server role, whereas the other one acts as a client. As

the name of the protocol implies, the communication between client and server is based

on the exchange of certain attributes. Attributes are defined as discrete values described

by a universal unique identifier (UUID) as well as a dedicated handle. Further, attributes

6

2.1 Bluetooth Low Energy

may have a set of permissions associated, which allow for a more fine-grained definition

of access rights (e.g., read, write or both) on given attributes. The device with the server

role typically is in charge of maintaining a set of attributes, whereas the client may read

or write these attributes in a typical request/response scheme. Also, the server can send

unsolicited messages to the client via notifications and indications. While indications

require the client to confirm the receipt of the message, no acknowledgement of receipt

from the client is required when sending notification messages. This communication

pattern further contributes to a more energy efficient message exchange.

Generic Attribute Profile

Service

Properties

Descriptor

Descriptor

Value

Characteristic

Characteristic

Profile

Figure 2.2: GATT Profile hierarchy [7]

Built on top of the Attribute Protocol, the Generic Attribute Profile aims to define a service

framework establishing precisely how data is exchanged between two connected BLE

devices on a higher level. Derived from the Attribute Protocol, one of the participating

7

2 Fundamentals

devices must take a server role, while the other one must take the complementing client

role. However, these roles must not be fixed for each device. The roles of participating

devices are determined whenever a procedure is initiated and are released afterwards.

Said procedures (e.g., service discovery, reading, writing or notifying), along with specific

formats, of services and their respective characteristics, are defined within the Generic

Attribute Profile. The latter acts as a reference frame for all GATT based profiles. As

shown in Figure 2.2, GATT follows a hierarchical approach when it comes to organizing

data. The hierarchy can be subdivided into three main levels with descending hierarchy

and ascending granularity, as described below :

Profile. GATT profiles reside at the highest level. Within a profile, the structure in

which data is exchanged is specified. A profile, therefore, explicitly defines basic

attributes (i.e. services and characteristics) necessary in order for a device imple-

menting the profile to work appropriately. Hence, dedicated profiles can be seen

as the backbone of interoperability between devices from different manufacturers.

Service. GATT services can be seen as a collection of data and associated

behaviors needed to accomplish a certain function or feature within a specific

application scenario. A respective service definition describes all building blocks

that are necessary to fulfill aforementioned function or feature. This may include

mandatory and optional characteristics as well as references to other services.

Characteristic. At the lowest level of the hierarchy, GATT characteristics encap-

sulate raw data values. Alongside the actual value, which may be a single data

point or an array of associated data points, a characteristic may contain additional

information. The latter may be information on how the value can be accessed by

the client (e.g., characteristic properties) as well as semantic or descriptive infor-

mation about the underlying value (e.g., descriptors). A respective characteristic

definition contains a declaration, characteristic properties and the actual value

including information on how it is composed. Finally, the characteristic definition

may contain a set of descriptors, which can provide further information about the

value itself (e.g., descriptive texts) or allow for the configuration of the server (e.g.,

enabling notifications via Client Characteristic Configuration Descriptor).

8

2.1 Bluetooth Low Energy

Generic Access Profile

At the top-most level of the BLE stack, the Generic Access Profile defines different

roles, modes and generic procedures related to the discovery of devices and services,

connection management and the use of certain security levels. The four roles within the

Generic Access Profile are defined as follows:

Broadcaster. A device in the broadcaster role continuously sends data packets

over dedicated advertising channels. Thereby, communication is unidirectional and

does not require connection establishment between two devices.

Observer. Complementing with devices having a broadcaster role, devices in the

observer role continuously scan for broadcasters nearby. Data packets sent by

broadcasters may be consumed by a corresponding observer without establishing

an active connection between devices.

Peripheral. Similar to the broadcaster role, devices taking on a peripheral role

initially broadcast advertising packets to their surroundings. Those packets may

contain valuable information regarding the actual data the peripheral provides, for

example explicit service UUIDs. In order to request data from a peripheral device,

an active connection is required. However, one peripheral can only have a single

connection to another device in a central role.

Central. The central role acts as a complement for the peripheral role. Centrals

listen for advertising packets published by peripherals nearby. Once a packet of

interest is received, a device in central role is in charge of initiating connection

establishment with the publishing peripheral. Finally, after creating a successful

connection, a central can interact with a corresponding peripheral as described in

previous sections. As opposed to the peripheral role, devices in the central role

are able to connect and manage connections to multiple peripherals.

However, devices are not limited to one of the above roles. A single device may support

various roles, but can only take on one of them at a given time.

Application profiles, as described in Section 2.1, which allow for the reuse of common

functionality for certain types of applications and enable interoperability between devices

9

2 Fundamentals

from different vendors, can be built on top of the Generic Access Profile. Those appli-

cation specific profiles are specified and maintained by members of the Bluetooth SIG

[8, 9, 10].

In the following course of this thesis, more detailed insights into different application

specific profiles are given.

2.2 Cross-Platform Development

Over the past decade, smart mobile devices have become an ubiquitous part of people’s

everyday life. This widespread dissemination opened the market for mobile applications

running on aforementioned devices. However, there is no universal operating system for

mobile devices. Nowadays, the market share of mobile operating systems is mostly split

between iOS and Android [11].

W
eb

A
P
Is

O
S
A
P
Is

O
S
A
P
Is

Fr
am

ew
or
k

A
P
Is

Framework
native APIs

Mobile Application

Plugins

WebView

Mobile Operating System (OS)

Web Application
(HTML, CSS, JS)

Android

Plugin

iOS

...

Android

Plugin

iOS

...

...

Figure 2.3: Typical software architecture in hybrid mobile applications [12]

10

2.2 Cross-Platform Development

As a result, developing mobile applications can be a quite tedious task, especially when

targeting audiences from both, the iOS and the Android platform. When developing

native applications for each respective platform, the latter impose the use of dedicated

programming languages (e.g., Java / Kotlin for Android, Objective C / Swift for iOS),

patterns and paradigms as well as platform-specific application programming interfaces

upon developers.

In order to encounter the complexity of developing separate native applications, emerg-

ing cross-platform development technologies, tools and frameworks aim to pursue an

alternative development approach. They allow for the creation of mobile applications

for different platforms from a single code base [13]. The majority of those frameworks

and tools rely on state-of-the-art web technologies in order to pursue a cross-platform

approach. As opposed to native mobile applications, web-driven applications are not tied

to a specific operating system to run on, but rather to a specific browser implementation

of the respective platform, which is widely standardized. One of the more prominent

web-driven mobile application approaches are so called hybrid mobile applications. The

latter are assembled from three major parts [12], as can be seen in Figure 2.3.

Web Application. Hybrid mobile applications are implemented as regular web

applications. Therefore, the entire business logic is written in JavaScript. Further,

the application’s user interface is defined by making use of Hypertext Markup

Language (HTML) and Cascading Style Sheets (CSS). For more complex, large-

scale applications, it may be advisable to fall back on common web front-end

frameworks which provide a robust frame and predefined application building

blocks .

Web View. The Web View is a platform-specific, native component (e.g. WebView

on Android and WKWebView on iOS). It can be seen as lightweight mobile web

browser which can be integrated into regular native mobile applications. As such,

it provides a run-time environment for web applications within a traditional, native

application.

Plugins. Since access to native resources and functionality via standard Web

APIs may be restricted, hybrid mobile applications make use of dedicated plugins

11

2 Fundamentals

in order to access platform-specific, native features. Thereby, a plugin consists

of platform-specific code snippets, written in the native programming language of

the respective platform and a dedicated JavaScript API, which is exposed to the

application. At run-time, native code may be invoked via foreign-function interfaces

by performing respective JavaScript API function calls.

2.2.1 Capacitor

One framework which aims to pursue the aforementioned paradigm is Capacitor. The

self proclaimed spiritual successor of the popular Apache Cordova framework, provides

a cross-platform application run-time for hybrid mobile applications. Therefore, it al-

lows for developing web applications running natively on iOS, Electron and the web

[14]. Access to native features is granted through dedicated Capacitor plugins while

remaining backwards compatibility with most Cordova plugins [15]. For common use

cases, Capacitor provides a set of pre-implemented native plugins, allowing access

to platform-specific native features such as location tracking, file system manipulation

or a mobile device’s camera, to name a few. However, despite of being a relatively

new framework, Capacitor enjoys rapidly growing community participation resulting in

many custom open-source plugin implementations in order to meet specific application

requirements that go beyond the already implemented plugins. To allow for the latter,

Capacitor provides abstract plugin implementations in Swift, Java and TypeScript. By

extending said implementations, adding custom functionality and registering them within

the application at build-time, custom plugins may be accessed through common Type-

Script plugin interfaces at run-time. One key factor separating Capacitor from Cordova

is that the actual application build and publishing is not part of the framework. Rather,

these tasks have to be done manually using platform-specific tools and IDEs. One could

argue that this may lead to an increasing development effort, however, it also allows for

a more fine grained, platform-specific configuration of resulting applications.

As Capacitor only provides a run-time and access to native features for hybrid mobile

applications, technologies to implement the actual business logic and user interface may

be selected freely by application developers. One could rely on plain Vanilla JavaScript,

12

2.3 Web Components

HTML and CSS or fall back on popular front-end web development frameworks (e.g.,

Angular, React, Vue, etc.). The latter provide a more or less rigid frame for developing

single-page and progressive web applications.

2.3 Web Components

Developing user interfaces for the web can be a quite tedious task. Implementing custom

user interface controls may quickly lead to very complex markup structures. Further,

scripts defining the behavior of respective elements, and associated style definitions

often interfere with already existing parts of the Document Object Model (DOM) [16]. As

a result, user interface definitions tend to become confusing and hard to maintain. While

many web frameworks (e.g., Angular, React, etc.) aim to solve this issue by offering a

component-driven approach for defining custom user interface controls, the latter can

only be applied in the context of the respective web framework.

Web components aim to solve this problem by relying on already existing web APIs

rather then dedicated framework APIs in order to define sophisticated, reusable user

interface controls with encapsulated business logic and styles. To achieve the latter, web

components use a combination of different technologies [16]:

Custom Elements: A set of web APIs allowing for the definition of custom user

interface elements and their respective behavior. The latter may be directly embed-

ded into an existing user interface.

Shadow DOM: Web APIs which allow for attaching an encapsulated DOM tree

to an existing element and control associated behavior. The latter is rendered

separate from the main document in order to keep the features of a certain ele-

ment within its own scope. Hence, the behavior and style of an element can be

implemented without having the risk of possible collisions with other parts of the

document.

13

2 Fundamentals

Templates: Dedicated elements (e.g., <template> and <slot>) allow for defin-

ing markup templates, which are invisible within the resulting page. Said templates

may be reused as building blocks for the structure of custom elements.

The use of web components gained significant traction over the past few years, with

nearly every modern browser implementing necessary APIs, required for web compo-

nents to work properly. As a result, a variety of tools for supporting and speeding up the

development of web components emerged.

2.3.1 Stencil

Stencil [17] is one of the tools which aims to ease the process of developing web

components. In detail, Stencil is a compiler that generates custom, standards-compliant

HTML elements from a set of source definitions. Generated components may integrate

state-of-the-art features, such as Virtual DOM, asynchronous component rendering and

reactive data-bindings. In order to properly define components and facilitate development

(e.g., reducing boilerplate code), Stencil provides a set of high-level TypeScript utility

APIs including component lifecycle-hooks and custom method and property decorators.

By using the latter, the look and behavior of resulting web components may be adjusted

as desired. Stencil components themselves are implemented using TypeScript to define

a component’s business logic, JSX for templating purposes and CSS to define the

styles of a component. However, Stencil also offers a set of plugins, which allow for the

integration of CSS pre-processors, such as SASS or LESS, into the build pipeline.

Stencil may be used to build entire web applications or dedicated web component

libraries. Compiled web component outputs are self-contained, meaning they have no

external dependencies and may be used in a standalone fashion. Web components built

with Stencil can be integrated into different popular web frameworks, such as Angular,

React or Vue, with little to no effort.

14

3
Evaluation of Existing Mobile Sensing

Frameworks

The integration of sensors in mobile applications can be a sophisticated and tedious task

for application developers. It requires in-depth knowledge about the sensors themselves,

their protocols as well as platform-specific APIs, which allow to access raw sensor data.

Hence, there exist mobile sensing frameworks that aim at abstracting and generalizing

common sensing functionality on mobile devices. The latter allow application developers

to address a wide range of sensors on a high level of abstraction, requiring minimal

programming effort and knowledge about the underlying platform-specific, low-level

sensor implementations.

In this chapter, a closer look at three mobile sensing frameworks is taken and they are

compared and evaluated from various points of view.

3.1 SensingKit

SensingKit [18] is an open-source, multi-platform mobile sensing framework allowing

to communicate with a multitude of different mobile sensors. Therefore, SensingKit

provides dedicated client libraries for both, the iOS and Android platform. The latter may

be integrated into existing native mobile applications of the respective platform. While the

framework itself provides access to a wide range of device internal sensors, addressing

external sensors is not supported by default. Available sensor implementations vary,

depending on the underlying platform, from motion sensors (e.g., accelerometer, gyro-

scope), over environmental sensors (e.g., for measuring ambient light or audio levels),

15

3 Evaluation of Existing Mobile Sensing Frameworks

up to positioning sensors (e.g., magnetometer or GPS). Currently, sensor measurements

can only be retrieved by registering listeners for the respective sensor. The latter con-

tinuously publishes sensor readings to all of its listeners. Other interaction patterns, for

example requesting a single measurement from a sensor, are not supported.

Application

Framework

SensingKit

Sensor Manager

Sensor Module

OS

Sensor Sensor Sensor

Figure 3.1: SensingKit Framework Architecture [19, 20]

The overall framework architecture can be subdivided into three main parts [19, 20], as

depicted in Figure 3.1.

SensingKitLib. As the central entity of the framework, the SensingKitLib in-

stance acts as an intermediary between the SensorManager and the mobile

application. Therefore, it provides an interface, which exposes methods and func-

tionality for registering/unregistering sensor modules and sensor listeners as well

as starting/stopping sensor modules, to the mobile application. However, aforemen-

tioned actions are not performed by the SensingKitLib instance itself. Rather,

the latter simply forwards request from the application to the SensorManager.

16

3.2 Event-based Sensor Framework

SensorManager. Located in the next lower layer, the SensorManager is respon-

sible for the actual interaction with requested sensor modules. When requested,

sensor modules may be instantiated dynamically by the SensorManager. In order

to avoid duplicate instantiations of the same sensor module, the SensorManager

keeps track of already created sensor modules. Further, application calls (e.g., for

registering a sensor listener) received from higher levels, are forwarded to their

corresponding sensor module in charge.

Sensor Modules. The smallest building blocks within the framework are dedicated

sensor modules. Thereby, for each sensor addressable through the framework,

a separate sensor module exists. Within the latter, the actual implementation

logic for accessing sensor data resides. For addressing the various sensors that

may be available on a certain device, the sensor modules fall back on platform-

specific native APIs. In order for the SensorManager to be able to interact with

sensor modules in a generic way, every module is derived from a common base

class. The latter defines abstract functionality and behavioral blueprints, which can

then be further specified in respective sub classes or within the sensor modules

themselves.

This architectural approach allows for a rather easy way of adding further function-

ality to the framework. Due to the modular design, custom sensor implementations

can be defined as their own sensor modules or inherit from existing sensor module

implementations, to further specify or alter sensor behavior.

3.2 Event-based Sensor Framework

Another interesting approach towards a generic mobile sensing architecture is described

in [21]. The resulting Android-based framework is capable of addressing a variety of

different sensors. At the same time, internal as well as external sensors may be ad-

dressed via dedicated communication channels (e.g., Bluetooth or USB). The framework

communication completely relies on an event-driven approach. This means that the

communication with the host application as well as internal communication between

17

3 Evaluation of Existing Mobile Sensing Frameworks

Bluetooth
Manager

Android Application

Application Event Bus

Sensor Framework Manager

Sensor Framework Event Bus

Internal
Manager

Bluetooth Bus

S
en
so
rF
ra
m
ew
or
k

Bluetooth Sensor Internal Sensor USB Sensor

Sensor Driver Sensor Driver Sensor Driver

Internal Bus USB Bus

USB
Manager

Figure 3.2: Architecture of Event-based Sensor Framework [21]

the different components of the framework takes place via dedicated events. Therefore,

higher layers do not need to know about specific implementation details of layers un-

derneath. Hence, an overall loose coupling between different parts of the framework is

achieved. In order to allow for an event-driven communication approach, the framework

combines multiple managing layers with dedicated event-bus layers, as demonstrated in

Figure 3.2. The latter act as mediators in between respective layers.

The top-most layer of the framework is where the Application Event Bus resides. All

communication from and to the host application is channeled through the latter. On event

18

3.2 Event-based Sensor Framework

receipt (e.g., for starting/stopping or requesting data from a specific sensor), the event

is forwarded to the Sensor Framework Manager, which is responsible for the dynamic

instantiation and management of the communication-protocol-specific sensor manager

components (e.g., Bluetooth Manager or USB Manager). The latter, in turn, are in charge

of creating instances of, managing and the configuration of requested Sensor Drivers.

Communication with the drivers themselves takes place via respective manager-specific

event buses. Sensor Drivers are located at the bottom of the framework hierarchy and

therefore provide an interface for accessing actual hardware sensors. When receiving an

event from above layers, a Sensor Driver must process the event correctly and address

the underlying hardware sensor accordingly. Therefore, Sensor Drivers can be seen as

the end-points for application requests to the framework.

The architecture described allows for easily extending framework functionality. Custom

sensors may be integrated by implementing a dedicated Sensor Driver. Further, the

categorization of sensors by communication channels, with dedicated protocol-specific

managers allows for a modular extension of the framework in order to work with sensors

supporting different communication protocols than the ones already implemented.

When it comes to the interaction with sensors from a host application, the framework

supports a set of different interaction patterns, which are derived from common service

interaction schemes.

Multiple-Dataresponse. After receiving a Start-event for a specific sensor from

the host application, the sensor framework initiates a continuous stream of sample

data for the given sensor. Sensor data is propagated to the application until

receiving a corresponding Stop-event.

Single-Datarequest. When receiving a request for sensor data from the applica-

tion, requested data is sent back to the latter. Thereby, requested data may be

sent synchronously or asynchronously.

Recording. Recordings of data are initiated via dedicated Start-events. On

receipt, the corresponding sensor starts gathering data internally. Finally, when the

host application triggers the end of a recording through a dedicated Stop-event,

recorded data is sent back to the host application.

19

3 Evaluation of Existing Mobile Sensing Frameworks

Sensors within the framework must support at least one of these interaction patterns,

but may also support multiple. This further contributes to the versatility of the framework,

and allows application developers to address sensors according to their needs.

In addition to the actual sensing functionality of the framework, it also provides a set of

feature modules, enabling event logging, serialization and deserialization of sensor data

as well as visualization of gathered data. Overall, due to its versatility, the framework

may be a suitable solution for a range of data collection scenarios.

3.3 Google Fit

Google Fit is a cloud-based platform for fitness and health data developed by Google

[22]. It allows developers to gather, store and share data from a mobile device’s internal

sensors as well as external sensors and wearable devices centrally. Thereby, external

sensors (e.g., heart rate monitors or weight scales) are integrated via Bluetooth Low

Energy. The Google Fit documentation states, that the platforms offers support for all

BLE sensors that implement one of the standard GATT application profiles (e.g., Heart

Rate Profile or Weight Scale Profile) [23]. In addition to sensors supporting a standard

GATT profile, custom sensors implementing proprietary profiles may also be integrated.

The latter can be achieved within an Android application, by creating a dedicated service

responsible for sensor interaction. Such a service for a custom sensor must inherit

from the FitnesSensorService, which is part of the Google Fit package on Android.

By adding the service to a mobile applications manifest.xml file, functionality of the

custom sensor implementation may be exposed to Google Fit as a software sensor.

Once the application is installed on an Android device, the custom sensor becomes

available to be discovered and used in other applications on the same device [24]. Next

to sharing certain functionality, Google Fit also offers the possibility to share stored data

between different fitness applications and devices.

The latter is achieved through the architectural design of the Google Fit platform, which

is depicted in Figure 3.3. The platform itself is composed out of various building blocks.

20

3.3 Google Fit

Android Device

Client Device

Google Play Services

Application

Google Fit Android APIs

Google Fit Rest API

Web App

Web Browser

Sensor Adapters

Android
Sensors

Wearable
Devices

Google Fitness Store

Figure 3.3: Google Fit high level architecture overview [22]

Google Fitness Store. As the central unit of the platform, the Google Fitness

Store allows for inserting and querying sensor data gathered from different mobile

devices. The store itself is a cloud based service, which can be accessed via a

rich set of platform APIs.

Google Fit APIs. For interaction with the Google Fitness Store and locally avail-

able sensors, the platform offers various APIs. In a native Android environment,

real-time raw sensor data may be accessed using the Sensors API. However,

21

3 Evaluation of Existing Mobile Sensing Frameworks

the latter does not store sensor measurements or subscriptions to sensor data

automatically. In order to persist sensor readings and subscriptions, one can fall

back on the Recording API [25]. Further, sensor readings previously recorded

and stored within the Google Fitness Store may be accessed using the History

API. It can be used to perform typical CRUD operations on the Google Fitness

Store, including bulk operations and data aggregations [26]. While those APIs

are only accessible in native Android applications, the Google Fit REST API en-

ables access to the Google Fitness Store for fitness applications regardless of the

underlying platform.

Sensor Framework. To allow for interoperability with sensor data across different

devices and platforms, high-level representations for sensors, data types, data

points and activity sessions are defined within the Sensor Framework. Thereby,

both, hardware and software sensors are defined as Data Sources. A Data Source

may provide one or multiple Data Types. The latter provide a schema for one

specific kind of fitness data (e.g., heart rate). Further, Data Points describe the

most fine-grained entity within the framework, which represent a single reading

from a Data Source with a specific Data Type. Finally, Sessions represent a

specific time frame during which physical activity is performed by a user. Sessions

do not include actual sensor data themselves, but provide valuable meta data to

support data organization and aggregation.

Since recorded sensor data stored within the Google Fitness Store may be shared

between different devices and applications, the Google Fit platform defines fine-grained

permission scopes with separate access privileges. Thereby, each permission group

allows for access to a set of Data Types residing in the latter. In order for an application

to gain access to Data Types of a certain permission group, user consent is always

required.

Similar to Google Fit, Apple provides their own framework, HealthKit, for storing and

accessing fitness and health data [27]. However, access to said data may only be

available for devices within the Apple ecosystem via dedicated software development

kits for iOS, MacOS and watchOS.

22

3.4 Comparison

3.4 Comparison

In the following, the three frameworks presented above are evaluated from several points

of view. Thereby, relevant aspects include the quantity of sensors each framework

is able to address, supported interaction patterns for sensors within each framework,

possibilities for extending framework functionality and finally, their suitability for multi-

platform and cross-platform application scenarios.

3.4.1 Available Sensors

The ability to address a variety of different sensors as well as versatility when it comes

to supporting multiple communication protocols may be crucial for a sensor framework.

Therefore, all of the frameworks aim to support a broad range of sensors.

SensingKit offers a set of internal default sensor implementations, which can be ac-

cessed within a mobile application. In addition to motion, environment and positioning

sensors, it also allows for accessing other smartphone capabilities. The latter includes

recording audio tracks, tracking the surrounding audio level or monitoring a mobile

devices battery status, to name a few. While being able to address internal sensing

capabilities, Google Fit is mostly restricted to fitness and health related, often computed

software sensors used to track a users behavior or physical activity (e.g., step counter,

speed, etc.). Access to low level, raw sensor data may be achieved via custom sensor

implementations. As the Event-Based Sensor Framework aims to provide a versatile

architecture for sensor integration rather then actual sensing functionality, there are no

predefined implementations for commonly sought internal sensors (i.e., accelerometer,

magnetometer, etc.).

When it comes to connecting external sensing devices, Google Fit, by default, allows for a

connection with Bluetooth Low Energy enabled devices implementing one of the standard

GATT profiles. Custom profiles may also be supported via custom software sensor

implementations. The Event-Based Sensor Framework is highly versatile in supporting

external sensors via different communication protocols. Due to the categorization

of sensors by their connection type, with dedicated, communication-protocol-specific

23

3 Evaluation of Existing Mobile Sensing Frameworks

sensor managers and event buses, there may be no limits for external sensor integration.

However, by now, only sensor managers for connecting to external sensors via Bluetooth

and USB are implemented. In contrast, SensingKit does not provide a default way

of integrating external sensing devices, and, therefore is limited to its internal sensing

capabilities.

3.4.2 Supported Interaction Patterns

The three discussed frameworks vary when it comes to different ways of interacting

with provided sensors. SensingKit, for example, only allows for continuously monitoring

sensor updates, via a common publish-subscribe-pattern, within mobile applications. In

contrast, the Event-Based Sensor Framework offers various ways of interacting with

available sensors. Depending on the sensor implementation, data may be obtained in a

single request, or, similar to SensingKit, continuously by subscribing to value changes

of a respective sensor. Further, data may be recorded over time. Thereby, recorded

data is stored internally an can be returned to the application in a bulk manner, once the

sensor is stopped. Google Fit also allows for receiving continuous sensor updates in

real-time. Further, sensor readings may be recorded and stored online. Via dedicated

APIs, recorded data can be obtained and aggregated.

It has to be mentioned that certain interaction patterns may be implemented within a

host application, by making use of other interaction patterns. For example, requesting

a single sensor reading could also be achieved by subscribing for continuous sensor

readings and unsubscribing after the first value is successfully obtained. However, this

may impose significant development effort upon application developers.

3.4.3 Extendability

Framework extendability is a key factor when targeting a wide range of application

scenarios. A versatile sensor framework should allow for the integration of additional

sensors and sensor communication protocols with minimal effort.

24

3.4 Comparison

Therefore, all of the frameworks aim to provide ways of extending framework functionality.

The architecture of the Event-Based Sensor Framework, for example, is designed with

extendability in mind. Due to the lose coupling of its internal layers, as well as the abstrac-

tion of sensors and communication protocols, additional sensors and communication

protocol manager may be implemented and integrated with ease. Further, predefined

abstract classes and interfaces minimize the overall development effort necessary to

extend framework functionality.

Extending SensingKit with additional sensors can be achieved by implementing ded-

icated sensor modules. This may also allow for the integration of external sensors,

which the framework is not supporting by default. As an example, Bluetooth Low Energy

sensors could be integrated by implementing an abstract generic base module, which

is in charge of all communication protocol specific operations (e.g., device discovery,

connection establishment/release, etc.). More fine-grained sensor-specific modules

could be derived from the latter and manage sensor specific tasks, such as transform-

ing gathered data. However, due to a lack of predefined functionality, this may cause

significant development effort.

Within the Google Fit platform, additional sensors can be integrated by implementing

a custom service inheriting the predefined FitnessSensorService. Also data returned

from the sensor may be specified by creating a custom DataType as described in [28].

By doing so, additional sensors can be addressed just like predefined sensors within

the framework. Further, custom software sensors may be registered within Google Fit

making them addressable by other applications on the same device. Custom Data Types,

however, can only be used within the application that created the latter.

3.4.4 Multi-Platform & Cross-Platform Capabilities

When it comes to multi-platform and cross-platform capabilities, the presented frame-

works differ greatly. To begin with, the Event-Based Sensor Framework is strictly limited

to the Android platform. Hence, it may not be the right choice for multi-platform or

cross-platform development scenarios. SensingKit, however, provides integrations for

the two most popular platforms, namely iOS and Android. This way it can be used

25

3 Evaluation of Existing Mobile Sensing Frameworks

when developing separate native applications for the two platforms. Lastly, Google

Fit maybe offers the most promising approach for cross-platform scenarios. While a

majority of the tooling offered by Google Fit is targeted towards the Android ecosystem

in the form of native Android libraries and APIs, the platform is not limited to Android.

By exposing interfaces for querying and writing sensor data from and to the Google

Fitness Store via the Google Fit REST API, the platform allows for participation of all

applications, independent of an application’s underlying mobile platform. However, in

order to get real-time raw sensor data on platforms other than Android, one still requires

sophisticated knowledge about platform specific sensor APIs. Also, using the Google Fit

REST API requires an active internet connection, which might not be suitable or even

possible in many application scenarios.

3.4.5 Conclusion

After all, it can be said that the visited frameworks themselves, despite of sharing some

similarities, differ widely within the four evaluation categories. While one framework may

have advantages over the other ones in one category, others may do better in another

category. Hence, when it comes to choosing a one specific framework to integrate into

a mobile application, the decision should be made depending on aspired use cases

and application scenarios. For example, when aiming to integrate fitness and health

data into an application, Google Fit may be the right choice. In contrast, when creating

applications, targeted towards Android and iOS, that require access to low level, raw

sensor data (e.g., gyroscope, accelerometer, etc.) SensingKit could be a suitable choice.

Likewise, Android applications requiring custom sensing capabilities with a range of

internal and external sensors in a highly versatile manner, the Event-Based Sensor

Framework would be a perfect fit.

However, where all of the frameworks seem to have downsides is when it comes to

cross-platform capabilities. Mainly, framework APIs and tools are targeted towards native

application development on respective platforms. Using the same tool sets in order

to equip mobile applications with sensing capabilities on multiple platforms, without

26

3.4 Comparison

requiring an active internet connection, could ease sensor integration and, therefore

minimize development effort drastically.

27

4
Application Scenarios

While Chapter 3 presented and discussed different mobile sensing frameworks, this

chapter is concerned with specific use case scenarios, where such frameworks could find

appliance. Thereby, the most prominent application scenario may be the enhancement

of existing mobile data collection applications with sensing capabilities. Using sensors

for gathering passive as well as active data during the overall data collection process is

enjoying growing popularity and may be suitable in a wide range of application domains.

Therefore, selected real-world application scenarios, with special regard to the health

care and clinical research domains are presented in the following sections.

4.1 Remote Patient Monitoring

According to the World Population Ageing report [29], the global number of elderly

people increased substantially within recent years, with about 901 million people aged

60 years or above in 2015. This trend is projected to go even further, with an estimated

increase of 56 % until 2030 [29]. Meanwhile, the number of people suffering from chronic

diseases such as heart failures or diabetes increases at a staggering rate [30]. However,

medical systems and institutions around the world are far away from being able to cope

with these trends. With an increasing number of people requiring medical treatment,

traditional healthcare delivery approaches (e.g., on-sight patient examinations) could

easily reach their limits [30]. Therefore, a shift towards delivering remote healthcare by

relying on digital approaches could potentially benefit all participants of the healthcare

delivery process.

29

4 Application Scenarios

As a result, one central research topic focuses on the conception of digital systems,

enabling continuous monitoring of the health status of people with medical conditions

outside of clinical environments.

For instance, Bot et al. [31] aim to evaluate the feasibility of remotely collecting informa-

tion about changes in the severity of symptoms for patients diagnosed with Parkinson dis-

order (PD) as well as their sensitivity to medication. Rather than traditional approaches,

where affected patients have to visit a physician every 4-6 months, the approach of Bot

et al. requires patients to participate in self-assessments on a daily basis. The latter

could reveal opportunities for interventions, which might significantly increase the quality

of live of affected patients. Thereby, regular self-assessments take place via the mPower

mobile application. Using the application, participants have to fill out PD specific ques-

tionnaires, such as the Parkinson Disease Questionnaire (PDQ-8) on a monthly basis.

Further, participants are asked to fulfill physical tasks on a day-to-day basis. The latter

incorporate smartphone sensors such as microphones, for recording voice activities,

or accelerometers and gyroscopes for evaluating the patients gait and balance during

walking activities. Data collected through the mPower application,including self-reports

and sensor readings, is shared with research teams for further analysis and evaluation.

A system for remotely monitoring patients with congestive heart failure (CHF), is de-

scribed in [32]. WANDA (Weight and Activity with Blood Pressure Monitoring System)

aims to facilitate the early detection of key clinical symptoms, prevention, monitoring

and treatment of CHF patients. The system architecture consists of sensors for gath-

ering CHF related data from patients and back-end technologies such as web servers

and databases for data storage and analysis. While the first iteration of WANDA was

designed for patients that are unfamiliar with smart mobile devices (e.g., elderly patients)

and transferred data from sensors (e.g., weight scales, blood-pressure monitors) directly

through a phone line system, a second version of WANDA incorporated smartphones for

data collection and transfer. More precisely, the second version uses Bluetooth-based

weight-scales and blood-pressure monitors, smartphone-internal sensors for activity

monitoring and fall detection as well as a variety of symptom questionnaires which can

be filled out by patients directly on the mobile device. A real-life study incorporating

30

4.2 Intensive Longitudinal Methods

WANDA showed, that by using the system, the number of weight and blood-pressure

measurements that fall out of an acceptable range can be successfully reduced.

Apart from monitoring patients with chronic diseases, Remote Patient Monitoring ap-

proaches may also be applicable in a range of other medical scenarios. For example

Marko et al. [33] investigated on the feasibility of using mobile applications in combination

with other connected devices for monitoring patients health in prenatal care scenarios.

Therefore, study participants received a mobile application, a digital weight scale and

blood-pressure cuff for collecting data at home for the duration of their pregnancy. Col-

lected data was then assessed for irregularities in weight and blood pressure to generate

alerts for both, patients and clinicians. In the course of this study, the remote assessment

approach demonstrated a high patient satisfaction and could help identify two episodes

of abnormal weight gain.

4.2 Intensive Longitudinal Methods

The term Intensive Longitudinal Methods is an umbrella term to describe a variety

of research methodologies such as experience sampling, daily diaries or ecological

momentary assessment [34]. Said methodologies may be used to examine thoughts,

feelings or behaviors in their natural, real-time contexts on a high frequent basis over

an extensive period of time [34]. These days, intensive longitudinal studies often rely

on smart mobile devices (e.g., smartphones or tablets) to gather data from research

participants in their day-to-day lives. A key benefit of using smart mobile devices for

collecting longitudinal data is, that in addition to active data (e.g., from self-reports),

passive data (e.g., from smartphone sensors) may be collected to provide rich, contextual

information [1].

For instance, the TrackYourTinnitus platform [35, 36] relies on ecological momentary

assessments in order to support the assessment of tinnitus symptoms for researchers

and affected patients. Tinnitus, a disorder leading to the perception of sound with no

corresponding external source of sound, affects about 10-15 % of the world’s popu-

lation [35]. Since tinnitus is a highly subjective perception, assessing the symptoms

31

4 Application Scenarios

can only take place with the help of reports from affected patients. Further, in order to

provide proper treatment and further insights about the disorder itself, sufficient qual-

itative longitudinal measurements from patients are necessary. Therefore, traditional

assessment strategies (e.g., clinical interviews or pen-and-paper questionnaires) may be

inappropriate to achieve the latter, for example due to the retrospective bias of a patient

or the overall cost to conduct such large scale trials [35, 36]. The TrackYourTinnitus

platform, therefore, follows a mobile crowd sensing approach, which allows to gather

large amounts of longitudinal patient data using smart mobile devices. Dedicated mobile

applications enable affected patients to record fluctuations of tinnitus symptoms in their

everyday lives. Thereby, data collection takes place via dedicated self-assessment

questionnaires. In addition to the latter, the TrackYourTinnitus mobile application makes

use of smartphone-internal sensing capabilities in order to enrich self-reports with con-

textual information. In detail, the application uses the built-in microphone, to measure

the pressure of environmental sound while a patient completes a questionnaire.

Another example where capturing sensor data could be useful, is for monitoring depres-

sion symptoms. Cao et al. [37] investigated on whether monitoring depression symptoms

for people in their adolescence using smartphone applications is useful, compared with

other clinical psychometric instruments (e.g., PHQ-9). Therefore, over an eight week

period, self-reports, sensor data and evaluations from parents were conducted on a

daily basis from recruited families with adolescent patients diagnosed with major de-

pressive disorder. Thereby, the mobile application collected a variety of different sensor

measurements. The latter included mobility measurements (e.g., step counter, GPS

coordinates) as well as measurements for social interactions (e.g., SMS frequency and

call duration). Meanwhile, measurements for baseline depression and anxiety symptoms

were taken once every two weeks, using traditional clinical psychometric instruments.

The study showed, that by combining the data collected through self-reports with sensor

readings from the mobile mobile device, the PHQ-9 score could be predicted with an

accuracy of 88 %. By taking evaluations from the parents of a patient into consideration,

the accuracy further increased.

32

5
Towards a Generic Sensor Framework

Gathering sensor data may be indispensable in mobile data collection scenarios. As

elaborated in previous chapters, integrating sensors into the data collection process

comes with a number of benefits for both, data collectors (e.g., researchers, clinical staff,

etc.) as well as for the people whose data is collected (e.g., study participants, patients,

etc.).

Smart mobile devices, used in mobile data collection scenarios, comprise a variety

of internal sensing capabilities as well as interfaces to connect with external sensing

devices. However, there is no common way of addressing all of these sensors in a

generic way. Sensors differ in their type of connection (e.g., internal, wired or wireless),

communication protocols, interaction paradigms to collect data and their output format.

Depending on the underlying mobile platform (e.g., iOS or Android), addressing sensors

requires the use of different, platform-specific APIs. This imposes massive challenges to

application developers as it requires significant knowledge about the sensors themselves

as well as the underlying mobile platforms and their APIs to address sensors.

Existing mobile application used for data collection purposes may already access sensors

to gather data, nevertheless, they often use dedicated, application-specific implementa-

tions to do so. The latter makes it especially hard to further maintain said applications

and reuse functionality within other applications. While there exist libraries and frame-

works that aim to provide a generic way of addressing a broad spectrum of available

sensors (see Chapter 3), the latter may have downsides or lack certain functionality

required for specific application scenarios.

To cope with this issue, this thesis is concerned with the development of a sensor

framework that may be integrated within existing data collection applications on multiple

33

5 Towards a Generic Sensor Framework

platforms in order to generically address sensors in an easy and abstract way. Sec-

tion 5.1, therefore, specifies requirements such a framework has to fulfill in order to be

suitable for a wide range of different application scenarios. With regard to the latter,

a general framework architecture, which may act as a reference frame for the actual

development of the framework is presented in Section 5.2.

5.1 Requirements

In this section, the most important requirements the mobile sensing framework has to

meet are elaborated. Thereby, advantages and drawbacks of existing solutions from

Chapter 3 as well as requirements derived from specific application scenarios from

Chapter 4, are taken into consideration. Requirements are defined in the following

sections and are categorized as either functional or non-functional requirements.

5.1.1 Functional Requirements

The requirements defined in this section describe features and functionality the sensor

framework to be implemented has to provide.

FR#1 Support device internal sensors:

Modern smart mobile devices are equipped with a rich set of on-board sensing

capabilities. Depending on the device, sensors may range from cameras and mi-

crophones up until motion, environment and position sensors (e.g., accelerometer,

photometer, magnetometer, etc.). The framework should provide ways to access

and allow for gathering data from the latter.

FR#2 Support external sensors and devices:

Smart mobile devices offer a number of connectivity options to device external

resources and are able to communicate with them via different protocols. Thereby,

connection may be wired (e.g., USB) or wireless (e.g., Bluetooth or WiFi). The

framework should provide developers the opportunity to establish connection with,

34

5.1 Requirements

and, communicate with external sensing devices connected to a smart mobile

device.

FR#3 Allow for fine-grained sensor-specific configuration at run-time:

Not only do sensors differ in the type of data they are measuring, but also in

how their behavior may be adjusted in order to have more use-case specific

sensing outcomes (e.g., adjusting sampling frequency). Hence, sensors within

the framework should not have hard-coded, predefined configurations. Rather,

configurations should be passed, when requesting data from a specific sensor at

run-time. The latter allows for a more versatile use of the framework within different

application scenarios.

FR#4 Allow for registration of sensors at run-time:

Since there exist tons of different sensors which can be addressed via smart mobile

devices, it is impossible to provide dedicated predefined implementations for every

single one of them. While providing a set of default sensors for common appli-

cation scenarios, the framework should allow for registering and communicating

with framework-compliant custom sensor implementations created within a host

application.

FR#5 Support different sensor interaction patterns:

Since sensors may differ in what data they provide and how they are providing it,

addressing every sensor the same way might not be the best solution. For example,

measuring device acceleration requires frequent and continuous measuring while

measuring a devices current location only requires a single request for GPS

coordinates. To conform with said peculiarities of different sensors, the framework

should support multiple ways of interacting with specific sensors. Thereby, sensors

within the framework should support at least one particular interaction pattern.

FR#6 Offline Usage:

As in many application scenarios a stable internet connection may not be guaran-

teed [38], the framework itself should follow an ’offline first’ approach. Therefore,

sensor implementations within the framework, in general, should not require an

internet connection for accessing data.

35

5 Towards a Generic Sensor Framework

5.1.2 Non Functional Requirements

Requirements defined within this section are not concerned with specific functionality

or features the framework should provide, but rather with general characteristics the

framework should have.

NFR#1 Appropriate output format for sensor data:

Data gathered from sensors should be formatted in a meaningful way. The output

data should be both, suitable for further digital processing as well as easy to

read and understand for human beings. Following this, data may be processed,

analyzed or displayed within the host application. Further, using a format that

is easy to read (e.g., JSON) instead of raw sensor data formats (e.g., raw byte

strings) enables non tech-savvy people to better understand sensor outputs without

requiring knowledge about sophisticated sensor specifications.

NFR#2 Extensibility:

The framework should be designed in a way that allows for easily extending it with

additional functionality. The effort imposed on application developers to integrate

custom sensors into the framework should be kept minimal. To achieve the latter,

the framework should provide sufficient methods and tooling.

NFR#3 Fault Tolerance:

By providing a generic way of accessing sensors on smart mobile devices, certain

error scenarios have to be taken into consideration. Some requested sensors may

not be available on a specific device or certain permissions required for accessing

sensor data are not granted by the user. Also, sensors themselves are prone to

errors in numerous ways (e.g., hardware failure). However, possible errors from

within the framework should not cause a host application to stop working or even

crash. To cope with these issues, there should be ways for the framework to

properly communicate errors to the application.

NFR#4 Framework integration:

Since the main purpose of the framework is to enhance existing mobile applications

with sensing capabilities, integrating and using it within an existing mobile applica-

36

5.2 Framework Architecture

tion should be as easy as possible. The number of installation and configuration

steps required to make the framework work within a mobile application should be

kept minimal. In a best-case scenario, the framework should be integrated in a

’plug-and-play’ fashion, with no additional configurations steps needed.

NFR#5 Support different mobile platforms:

As elaborated in Chapter 3, existing sensor framework approaches are often

targeted towards one specific mobile platform. As a result, application developers

may neglect a specific framework since it is essential nowadays to provide mobile

applications for all major platforms. Hence, the framework developed in the course

of this thesis should be implemented in a way, so that it can be integrated into

mobile applications running on different platforms (e.g., iOS, Android, etc.).

5.2 Framework Architecture

With the requirements elaborated in Section 5.1 in mind, a general architecture for the

framework to be implemented, was designed. An overview of the latter is presented in

Figure 5.1.

To begin with, the sensor framework is designed in a modular way which allows for

different parts of the framework to be easily adjusted or extended according to application

specific needs. The framework itself should be a module comprising all necessities and

functionality to run properly after integration into an existing host application. Further,

said framework module should expose interfaces and building blocks, which may be used

to perform fine-grained adjustments or enhance framework functionality with custom,

application-specific framework extensions (e.g., additional sensor implementations).

Communication between a host application and sensors within the framework should not

take place directly, as it may lead to unwanted side effects and development complexity

when addressing multiple sensors within different parts of the application. Rather, there

should be a central unit (see Figure 5.1, Sensor Framework Manager) which provides an

interface for a host application to address every sensor available within the framework.

37

5 Towards a Generic Sensor Framework

Ext. Sensor

Ext. Sensor

Ext. Sensor

Sensor Framework Manager
U
I-
W
id
ge
ts

M
ob
ile
D
ev
ic
e

Abstract Sensor Definition

Concrete Sensor
Definition

Sensor Plugin
Definition

Web
Plugin

Native
Plugins

Sensor Registry

Mobile Application

Sensor Framework

Mobile Operating System

Sensor Sensor Sensor

Figure 5.1: Generic Sensor Framework Architecture

In order to address specific sensor implementations in a generic way, proper abstractions

from concrete sensor behavior have to be made. Therefore, the framework has to provide

a generalized blueprint (see Figure 5.1, Abstract Sensor Definition), defining basic inter-

faces and behavior for sensors within the framework. The latter may also be used when

developing application-specific, custom sensor implementations. By doing so, it can be

guaranteed that custom implementations can also be addressed through the framework.

While the Abstract Sensor Definition provides a reference frame for all sensors, abstract

functionality may be refined within dedicated, sensor-specific implementations (see

Figure 5.1, Concrete Sensor Definition). The communication with the actual sensors via

platform-specific APIs takes place in dedicated native implementations (see Figure 5.1,

Web Plugin and Native Plugins).

38

5.2 Framework Architecture

For sensor implementations to be discovered and addressed through the framework, a

central unit (see Figure 5.1, Sensor Registry) should be in charge of holding references

to sensor implementations registered within the framework. The latter may include

default implementations from within the framework and application-specific, custom

sensor implementations defined outside of the framework.

Finally, the framework may provide a set of user interface components (see Figure 5.1,

UI-Widgets) that can be embedded directly into the user interface of a host application.

39

6
Implementation

While previous chapters were more focused on theoretical aspects, this chapter describes

the actual implementation of the sensor framework, based on requirements elaborated

in Chapter 5. Thereby, Section 6.1 briefly describes the technology stack used to build

the framework. Next, relevant aspects concerned with the software architecture of the

framework implementation are presented in Section 6.3. Finally, Section 6.4 covers

in-depth implementation details of sensors within the framework.

6.1 Technologies

Since NFR#5 requires the framework to run on various mobile platforms, it was chosen

to go with a web technology based implementation approach. The latter allows the

framework to run within a regular web browser, but also enables the integration of the

framework into mobile applications following a cross-platform development approach,

as described in Section 2.2. More specifically, the framework aims to go hand in hand

with Capacitor -based mobile applications. Therefore, the framework heavily relies on

either existing or dedicated, custom Capacitor plugins in order to address internal as

well as external sensors on various mobile platforms. Since Capacitor only provides an

application run-time and access to native platform features, application developers are

not tied to a specific front-end framework in order to implement the application’s business

logic and user interface. The choice of a certain framework may also be rejected in favor

of using Vanilla JavaScript, HTML and CSS. With regard to the latter, user interface

widgets within the framework were built as web components using Stencil. As a result,

while being tightly coupled to Capacitor, the sensor framework is completely independent

41

6 Implementation

when it comes to front-end web frameworks, which further eases possible integration

scenarios (NFR#4). In detail, the developed sensor framework may be used with the

latest state-of-the art front-end web frameworks, such as Angular and React.

6.2 Capacitor Plugin Implementations

As elaborated before, the developed framework makes use of Capacitor plugins in order

to address native features on respective platforms. However, since Capacitor is still in

its early stages, the core plugin set is limited and does not cover the whole spectrum of

sensors that may be suitable for specific use case scenarios. To cope with this issue,

custom capacitor plugins were implemented whenever the functionality provided by core

plugins was insufficient. In detail, plugins for communicating with Bluetooth Low Energy

peripheral devices (Subsection 6.2.1) and addressing motion, environment and position

sensors of a mobile device (Subsection 6.2.2) were developed.

While Capacitor core plugins provide native implementations for Android, iOS and

the web by default, the plugins developed in the course of this thesis only include

implementations for Android and the web. An iOS implementation for the custom plugins

may surely be possible, but were out of the scope in the context of this thesis.

6.2.1 Bluetooth Low Energy Plugin

Due to its energy efficiency, Bluetooth Low Energy enjoys growing popularity as a wire-

less communication standard for external sensing devices, such as heart rate monitors,

pulse oximeters and thermometers, to name a few. In order to be able to connect to the

latter through the developed framework (FR#2), a custom Capacitor plugin, enabling

communication with Bluetooth Low Energy peripheral devices, was implemented. The

peripheral devices themselves may implement one of many application specific GATT

profiles, defined by the Bluetooth SIG [8]. For example, a heart rate monitor may use

a corresponding Heart Rate Profile. For devices implementing a specific profile, the

availability of services and characteristics defined within the respective profile specifica-

42

6.2 Capacitor Plugin Implementations

tion may be guaranteed. Further, this implies that available services and characteristics

comply with their corresponding definitions.

In order to avoid implementing separate plugins to support multiple application specific

profiles, the plugin follows a generic implementation approach. Hence, it is compatible

with all peripheral devices implementing one of the standard Bluetooth SIG application

profiles. The plugin itself provides an interface for performing standard Bluetooth Low

Energy related operations. First of all, it allows for checking whether Bluetooth Low

Energy is supported by a certain mobile device. As described in Section 2.1, Bluetooth

Low Energy was introduced as part of the Bluetooth 4.0 core specification, and thus,

may not be available on older devices. Further, surroundings may be scanned for

advertising packets from peripheral devices. Thereby, the plugin allows for passing a

set of service UUIDs in order to limit the scan results to only peripherals which offer

services that correspond with the passed UUIDs. Scan results contain identifiers of

matching peripherals, which may be used to establish connection to or disconnect

from a corresponding peripheral device via dedicated connect() and disconnect()

methods provided by the plugin. After establishing a connection the plugin allows for

performing standard GATT operations on peripheral devices, such as service discovery,

reading and writing characteristic values or descriptors as well as enabling and disabling

notifications or indications for characteristics supporting the latter.

Within the Android implementation of the plugin, Bluetooth related features are accessed

through the default Android BluetoothManager service. The latter requires a set of

Bluetooth as well as location related permissions to be granted by the user in order

to work properly. In contrast, the web implementation relies on the Web Bluetooth

API [39], a specification from the Web Bluetooth Community Group, which may be

exposed through a web browsers Navigator interface. However, the specification is

only implemented in a limited set of browsers and is neither a W3C standard, nor on the

track to become one, at the moment.

The plugin itself, in both, the web and Android implementation, returns data, from

read operations or as part of notifications/indications, as raw byte values. This raises

problems when it comes to further processing and analyzing gathered data. For example,

43

6 Implementation

characteristic values mostly contain multiple pieces of information at once, which are

implicitly encoded within one or multiple bytes. Further, the raw byte does not contain

information about what it actually refers to. Hence, delivering raw byte data would require

sophisticated knowledge about the underlying definition of a characteristic value, for

proper processing and analysis. To cope with this issue, the plugin provides a set of

transformation methods for selected characteristic values. As depicted in Listing 6.1 for

temperature measurements of a thermometer peripheral, those transformation methods

receive raw byte data, transform the latter according to the respective characteristic

definition, and return processed data as JSON objects (NFR#1).

1 expor t const TemperatureMeasurementCallback = (data) => {

2 const view = toDataView (data) ;

3 const f l a g s = view . getU in t8 (0) ; / / get f l a g s byte a t index 0

4 l e t index = 1;

5 l e t measurement = { } ;

6 const u n i t = (f l a g s & 0x1) ? "F" : "C" ; / / check i f b i t a t index 0 of f l a g s byte i s set

7 const temperature = getF loat32 (view , index) ; / / temperature value i s encoded i n the next 4 bytes

8 measurement = { . . . measurement , un i t , temperature } ;

9 index += 4;

10 const t imestampPresent = f l a g s & 0x2 ; / / get b i t a t index 1 of f l a g s byte

11

12 i f (t imestampPresent) {

13 / / . . .

14 }

15 const temperatureTypePresent = f l a g s & 0x4 ; / / get b i t a t index 2 of f l a g s byte

16 i f (temperatureTypePresent) {

17 const temperatureType = view . getU in t8 (index) ;

18 measurement = { . . . measurement , temperatureType } ;

19 }

20 return measurement ;

21 } ;

Listing 6.1: Transformation from byte data to JSON format for temperature measure-

ments

6.2.2 Internal Sensor Plugin

Most modern smart mobile devices have a variety of built-in sensors. Thereby, the

latter may measure acceleration forces along the three axes of a mobile device (e.g.,

gyroscope, accelerometer), environmental parameters such as the ambient light level

or temperature (e.g., photometer, thermometer) or a device’s physical position (e.g.,

44

6.2 Capacitor Plugin Implementations

magnetometer, orientation sensors) [40]. For the purpose of addressing aforementioned

sensors within the developed framework, a custom Capacitor plugin was implemented.

The latter acts as an abstraction layer to platform-specific native implementations, and,

therefore, provides a common API to check for availability and activity of a certain sensor

as well as for starting and stopping specific sensors, on respective platforms. Further,

the plugin may dispatch sensor specific events whenever the value of a sensor changes

or its accuracy changes. Those events contain data that may be consumed by the

developed framework.

In native Android environments, calls to the plugin are dispatched to a dedicated Java

implementation of the plugin. The latter, in turn, relies on the Android Sensor Frame-

work [40] which allows for a generic way of accessing internal sensors of a smart

mobile device running Android. Thereby, interactions with sensors take place via the

SensorManager Android system service. The service itself provides functionality to

get instances of specific system sensors as well as registering/deregistering listeners for

the latter. Said listener classes may be defined manually and must implement a common

SensorEventListener interface, and, therefore, need to provide implementations

for onSensorChanged() and onAccuracyChanged() methods. These methods are

called internally by respective sensor implementations whenever its value or accuracy

changes. Since the plugin should allow for addressing multiple different sensors, a

custom listener class had to be implemented for each sensor. Therefore, common func-

tionality was outsourced to the AbstractSensorListener base class, which imple-

ments the SensorEventListener interface and handles onSensorChanged() and

onAccuracyChanged() functionality. Further, AbstractSensorListener defines

two abstract methods getSensorType() and toJSON(). Thereby, getSensorType()

should return the type of the sensor for which the listener is registered and toJSON()

should transform sensor readings from float arrays into a more readable JSON format

(complying with NFR#1). However, the specific implementation of these methods is

outsourced into dedicated sensor listener classes (e.g., AcceleormeterListener

) which, in turn are derived from the AbstractSensorListener base class (see

Listing 6.2). The sensor-specific listener implementations can then be instantiated dy-

45

6 Implementation

namically and registered for their corresponding sensor through the SensorManager

service at run-time.

1 public class Acce lerometerL is tener extends Abst rac tSensorL is tener {

2

3 public Acce lerometerL is tener (SensingKi t k i t) {

4 super (k i t) ;

5 }

6

7 @Override

8 protected S t r i n g getSensorType () {

9 return SensorNameResolver .NAME_ACCELEROMETER;

10 }

11

12 @Override

13 protected JSObject toJSON (f l o a t [] values) {

14 JSObject reading = new JSObject () ;

15 reading . put (keyX , values [0]) ;

16 reading . put (keyY , values [1]) ;

17 reading . put (keyZ , values [2]) ;

18 return reading ;

19 }

20 }

Listing 6.2: Java implementation of AccelerometerListener

When starting an internal sensor through the plugin, a desired sampling frequency (in

Hz) may be passed. If supported by the respective sensor, this property can be used

when registering a listener for the sensor through the SensorManager service. Since

the Android Sensor Framework internally uses time-intervals in microseconds to express

the frequency, the property is converted before registration, using Equation 6.1. However

it has to be noted, that this parameter only acts as a suggestion and the actual sampling

frequency may vary slightly [40].

b 1
frequency

∗ 1000c ∀frequency > 0 (6.1)

In addition to the Java implementation for Android, the plugin provides a JavaScript/-

TypeScript implementation. The latter makes use of the Generic Sensor API [41], a

W3C specification, which is in a Candidate Reccomendation state currently and aims to

define a framework for exposing sensor data on the web in a consistent way. By now,

the Generic Sensor API is only implemented within a few modern web browsers and is

46

6.2 Capacitor Plugin Implementations

not enabled by default. Rather, the API is available as an experimental feature within

supporting browsers and has to be enabled manually in the web browser settings by the

user. As opposed to the Android Sensor Framework, there is no central entity in charge

of handling sensor availability and access. Rather, interfaces for specific sensors (e.g.,

Accelerometer, Magnetometer, etc.) are exposed within the window scope of a

web browser directly. Sensors have to be initialized manually by creating an instance of

the respective sensor class. Optionally, the sensor classes accept a sampling frequency

(in Hz) which may be passed as a constructor parameter. After instantiation of a sensor,

dedicated handlers can be attached to the instance, in order to define its behavior on

activation, in cases of an error occurring or when there is sampling data available for the

sensor. For starting and stopping the sensing process for a particular sensor, the sensor

class provides respective start() and stop() methods.

In order to be able to call sensors in a generic way, each sensor type is defined by a

unique name, which acts as an identifier across different platforms. For name resolution

purposes, each platform specific implementation of the plugin contains a dedicated

resolver. The latter assigns platform specific properties to the name for each sensor type.

For Android, resolver entries include the Android specific identification for the sensor

type as well as a reference to its corresponding listener class (see Listing 6.3).

1 public class SensorNameResolver extends HashMap<St r ing , SensorNameResolverEntry > {

2 public s t a t i c f i n a l S t r i n g NAME_ACCELEROMETER =" accelerometer " ;

3 . . .

4 public SensorNameResolver () {

5 super () ;

6 put (NAME_ACCELEROMETER, new SensorNameResolverEntry () { {

7 put (SensorNameResolverEntry . keySensorType , Sensor .TYPE_ACCELEROMETER) ;

8 put (SensorNameResolverEntry . keyLis tenerClass , Acce lerometerL is tener . class) ;

9 } }) ;

10 . . .

11 }

12 }

Listing 6.3: SensorNameResolver within Android Implementation

In contrast, resolver entries within the web implementation of the plugin (see Listing 6.4)

include a reference to their corresponding sensor class in the window scope as well

as a sensor specific getValue() method which may be attached to a sensor instance

47

6 Implementation

as a handler in order to extract desired properties whenever the value of the sensor

changes. Further, resolver entries contain the maximum sampling frequency allowed

for a certain sensor and a list of permissions required for the sensor to work. The latter

have to be granted by the user.

1 expor t const SensorNameResolver = {

2 [SensorType .ACCELEROMETER] : {

3 class : window . Accelerometer ,

4 permiss ions : [SensorPermission .ACCELEROMETER] ,

5 maxFrequency : 60 ,

6 getValue : (sensor : Accelerometer) => {

7 const x = sensor . x ;

8 const y = sensor . y ;

9 const z = sensor . z ;

10 return { x , y , z } ;

11 }

12 } ,

13 . . .

14 } ;

Listing 6.4: SensorNameResolver within Web Implementation

6.3 Software Architecture

The overall software architecture of the developed framework is derived from Section 5.2.

This section in particular discusses the three main entities of the framework, highlighted

in Figure 6.1. The latter aim to provide an abstract and solid foundation for the entire

framework.

At the bottom-most layer, the Sensor base class acts as a blueprint for all concrete

sensor implementations within the framework. References to the latter are held cen-

trally within the SensorRegistry. The SensorRegistry, in turn, is used by the

SensorManager in order to properly resolve and forward requests from a host applica-

tion to the respective sensor instances.

In the following sections, core concepts and implementation details regarding the Sensor

base class, SensorRegistry and SensorManager, are elaborated.

48

6.3 Software Architecture

SensorRegistry

SensorManager

Sensor Framework

Sensor

Figure 6.1: Simplified General Software Architecture of the Developed Framework de-
rived from Figure 5.1

6.3.1 Sensor

Within the framework, each physical or software sensor available on a mobile device

is represented by a dedicated framework-specific software sensor. The latter reside at

the bottom-most layer of the framework and define the communication with the actual

sensors in a concrete way. Therefore, they are using platform specific APIs and access

patterns which may be further wrapped within Capacitor plugins. Said APIs and access

patterns may differ greatly between different platforms and sensors. Hence, another

abstraction layer is needed to be able to address sensors in a generic way, despite of their

characteristic differences. Therefore, a common Sensor base class was implemented.

For a sensor to work properly within and be addressed through the framework, it has to

extend this basic Sensor class. The latter defines abstract, sensor related procedures

and provides both, interfaces for being addressed through the SensorManager as well

as hooks and utility methods to be used within concrete sensor implementations. Further,

the Sensor class implements common functionality related to state management and

event handling. Some of the key concepts concerned with the framework specific sensor

implementation are described in the course of this section.

49

6 Implementation

Configuration

To be able to properly address a sensor at run-time it must provide a dedicated configura-

tion. The Sensor base class, therefore, accepts a SensorConfig object as constructor

parameter. Said configuration object consists of a name as well as an actions property.

The name property acts as a unique identifier for a certain sensor within the framework.

The latter is used to forward calls from an application to a corresponding sensor as

well as to provide contextual information within sensor readings. Further, the actions

property defines a set of actions associated with a certain sensor. Actions, in turn, refer

to specific interaction patterns which may be supported by the sensor. Thereby, each

action is represented by a boolean flag which can be set to true if the corresponding

sensor supports a certain action. By default, Sensor instances do not support any

action, so action flags have to be set explicitly.

Sensor Interaction Patterns

When it comes to gathering data from sensors, the framework offers a predefined set

of different interaction patterns (FR#5, see Figure 6.2). For each possible interaction

pattern, the Sensor base class provides a dedicated method allowing a host application

to initiate interaction with a certain sensor. For enabling concrete sensor implementations

(sub-classes of Sensor) to adjust their behavior in specific interaction scenarios, the

framework follows a hook-based approach. Thereby, if a certain sensor aims to provide

functionality for an interaction pattern, a corresponding hook has to be implemented.

The latter gets called internally when the interaction is initiated by the host application.

Available sensor interaction patterns and their corresponding hooks are briefly described

in the following.

get This interaction pattern can be initiated by calling the get() method on a sensor

instance. Similar to the Single-Datarequest pattern described in Section 3.2, on request,

the sensor instance is in charge of creating and returning a single measurement (e.g.,

obtain the current location of a user). Therefore, the underlying sensor class has to im-

50

6.3 Software Architecture

Application Sensor Framework
start(sensor)

stop(sensor)

get(sensor, options)

data

GET
Application Sensor Framework

start(sensor)

stop(sensor)

push(sensor, options)

data?

PUSH

Application Sensor Framework
start(sensor)

stop(sensor)

record(sensor, options)

getRecording(sensor, recordingID)

data

recordingID

RECORD

Application Sensor Framework
start(sensor)

stop(sensor)

watch(sensor, options, callback)

data

data

data

WATCH

Figure 6.2: Sensor Interaction Patterns

plement the onGet() hook, which must return requested measurement as JSON object.

Further, the get flag has to be set within the actions property of the corresponding

SensorConfig.

watch In order to initiate a continuous stream of sensor measurements (Multiple-

Dataresponse in Section 3.2), for example when monitoring heart-rates, one has to call

the watch() method on a sensor instance. A callback method may be passed, which is

triggered whenever the value of a certain sensor changes. Within the underlying class

of the sensor, the onWatch() hook must be implemented. Within this hook, changes

may be propagated upwards by calling the onSensorDataChanged() method and

51

6 Implementation

passing the updated value as parameter. Also, the watch flag must be part of the

SensorConfig.

record This pattern shares similarities with the Recording pattern from Section 3.2.

It allows for gathering sensor data internally until the sensor stops running (e.g., audio

or video recordings). The recording can be initiated by calling the record() method

on a sensor instance supporting the record pattern. Therefore, the onRecord() hook

needs to be implemented within the corresponding sensor class. The hook must return

a unique identifier for a given recording. The latter is used later to obtain gathered

data after the sensor instance stops running, by passing the identifier to a dedicated

getRecording() method as a parameter. In order to be able to initiate a recording,

the record flag has to be set within the SensorConfig of the respective sensor class.

push This particular interaction pattern can be seen as a counterpart to the previously

described get pattern. Rather than requesting a measurement from a certain sensor,

data is propagated from the host application to the sensor (e.g., perform Post request to

sensor via HTTP). Thereby, the interaction can be initiated using the push() method

on a sensor instance. Data to propagate to the sensor may be passed as a parameter.

The actual propagation logic has to be implemented within an onPush() hook of the

given sensor class. Finally, the push flag has to be configured accordingly.

All of the aforementioned methods to initiate interaction with sensors additionally accept

an optional options parameter. These options are sensor specific and may be used

to configure the behavior of a sensor or its outputs at run-time (FR#3). In order for the

options object to be available within concrete sensor implementations, it is passed

down to the corresponding interaction hook.

In addition to the interaction patterns described above, the Sensor base class defines

a start() and stop() method. Corresponding onStart() and onStop() hooks

may be implemented within concrete sensor definitions in order to initially set up a given

sensor or perform cleanup tasks on sensor termination. Therefore, after calling start()

on a sensor instance, the latter should be ready to handle all kinds of supported,

52

6.3 Software Architecture

data related interactions. Consequently, after calling stop() on a sensor instance,

all currently running sensor operations (e.g., watch or record) should be terminated.

Further, the state of the sensor instance should be reset in such a way, that it may be

started again.

User-Driven Sensor Configuration

While the framework is designed to run in a headless manner, there may be edge cases,

where a manual configuration by a user is required in order for a sensor to run properly.

For example, for security purposes, some browser APIs (e.g., requestDevice() from

the WebBluetooth API [39]) require an explicit user interaction to be triggered. To cope

with this issue, the framework defines a mechanism, which allows sensors to request a

manual configuration from the user via dedicated user interface components (see Fig-

ure 6.3). By calling requestUserConfiguration() at any given point of time within

sub-classes of the Sensor base class, a manual configuration can be initiated . This

method accepts a SensorUIConfig object as parameter. Within the latter, a compo-

nent as well as properties required for a manual configuration are defined. A framework

internal component, namely SensorConfigurationComponent, is responsible for

displaying and managing user interface widgets for manual configuration tasks. Multiple

SensorUIConfig objects from different sensor implementations may be registered

within the configuration queue of the SensorConfigurationComponent. The latter

dynamically creates the configuration widgets according to the passed definition. In

order to be properly displayed and processed, configuration widgets must follow the

Custom Elements Specification [42] and must be registered within the browser. Fur-

ther, configuration widgets must implement the SensorConfigElement interface, thus,

emit onSuccess and onError events after successful or unsuccessful configuration.

Configuration output data, which may be required for a certain sensor implementation to

further operate, is returned to the sensor within the event payload.

Alternatively, to bypass the SensorConfigurationComponent, sensor configuration

widgets may be directly embedded into the existing user interface. By specifying a

host element within the SensorUIConfig, the display and management of a certain

53

6 Implementation

Figure 6.3: Requesting users to manually configure sensors

configuration widget is outsourced to the specified element. The latter must implement

the SensorHostElement interface and, therefore, provide a presentUIConfig()

method which is called internally to pass the respective configuration object.

Sensor Data

Due to the versatility and abstract definition of the framework, it allows for the integration

of a multitude of different sensors. However, the latter may measure all kinds of different

things resulting in highly sensor specific output data. In order to further generalize data

gathered through the developed framework, raw output data from interactions with con-

crete sensor implementations is never sent back to the host application directly. Rather,

each output entity is wrapped within a SampleData object before it gets forwarded

to the host application. Thereby, additional meta information such as the name of the

corresponding sensor and a timestamp (in milliseconds) is attached to the sensor output.

Attached meta information may be valuable when it comes to further processing and

analyzing sensor outputs. For example, sensor data may be aggregated or outputs from

simultaneously measuring sensors may be analyzed for correlations. Also, sensor data

may be used to provide additional context to host application specific measurements.

54

6.3 Software Architecture

Error Handling

The framework aims to support a variety of sensors on different mobile platforms. By

providing a generalized solution, which abstracts from the underlying platform and

its dedicated APIs for addressing sensors, failure scenarios may be predetermined.

For example, depending on the mobile device, some sensors or features may not be

available despite of an existing framework specific sensor implementation. Further,

platform specific ways of addressing sensors and their behaviors can differ greatly,

making it hard to cope with errors in a generic way. Also, since the framework allows

for the registration of custom, application specific sensor implementations, it is prone to

implementation errors caused by third parties and resulting failures at run-time. In order

to avoid the host application to stop working due to errors from within the framework

(NFR#3), the latter follows a defensive implementation approach. In detail, all sensor

related exceptions thrown within a concrete sensor implementation (e.g., within dedicated

access hooks) are caught at the top-most level in the Sensor base class. From there

on, the exception is propagated to the host application via a dedicated onError event

channel. A host application may register dedicated error handlers for sensor instances

by calling the onError() method and passing the handler as a parameter. The handler

is then triggered whenever a failure occurs on the given sensor instance and it is up to

the host application to decide how to handle the error. If no error handler is registered

for a given sensor, it will just fail silently without causing the host application to crash.

6.3.2 SensorRegistry

In order to properly forward incoming calls from the SensorManager to the sensor

implementations in charge, the SensorRegistry acts as a resolving entity. There-

fore, the SensorRegistry class maintains an index of specific sensor identifiers and

corresponding sensor instances. The identifier, thereby, corresponds with the name

property within the SensorConfig of a given sensor implementation. A sensor instance

can be obtained by calling the getSensor() method and passing the identifier of the

desired sensor implementation as a parameter. Additionally, one may proactively call

isSensorAvailable() to check whether there already exists a SensorRegistry entry

55

6 Implementation

for a given sensor identifier. Further, additional sensor implementations may be regis-

tered within the SensorRegistry at run-time (FR#4) by passing an instance of the cor-

responding sensor class to the registerSensor() method. By doing so, either a new

registry entry is created for the passed sensor instance or an existing entry is updated

to reference the passed instance. The default SensorRegistry instance contains

entries for all framework-internal pre-implemented sensors. However, by implementing

the ISensorRegistry interface, it is possible to create a custom SensorRegistry

instance. The latter may only reference a subset of the pre-implemented sensors or

completely rely on application specific sensor implementations.

6.3.3 SensorManager

Application SensorManager SensorRegistry Sensor

get(sensorId, options)

getSensor(sensorId)

get(options)

data

data

Sensor Reference

Figure 6.4: Call procedure for a get - interaction with all participating entities

The SensorManager can be seen as the central entity of the framework. As such it

acts as an intermediary between a host application and instances of sensors registered

within the framework. Therefore, it provides an interface for the application for starting

and stopping a certain sensor, as well as for interacting with the latter using one of

the possible interaction patterns defined within the framework. The SensorManager

itself, thereby, is in charge of forwarding calls from the application to the requested

sensors. Illustrative for a get - interaction, this procedure is visualized in Figure 6.4.

Upon receiving a call from the host application, the SensorManager gets a reference

56

6.4 Sensor Implementations

to the corresponding sensor instance from the SensorRegistry. For the latter to work

properly, calls to the SensorManager have to provide a sensorId parameter, which

is part of the call signature for every sensor related method of the SensorManager

class. Once the reference to a sensor is successfully obtained, the corresponding

action is executed on the sensor instance and the execution result (e.g., sensor data,

SensorListenerHandle) is returned back to the application. The SensorManager

is exposed to the application as a singleton instance. This means, that, at any point in

time, there exists only one instance of the SensorManager throughout the application.

Having a central unit for addressing every sensor within the framework may further

reduce unwanted side effects from operating on the sensor instances directly within

different parts of an application. Finally, in addition to sensor related operations, the

SensorManager provides an interface for adding sensors to the SensorRegistry,

thus, allowing a host application to register sensors within the framework at run-time.

6.4 Sensor Implementations

While Section 6.3 described the overall architecture of the developed framework, this

section covers details about the concrete implementation of sensors within the frame-

work. In order to eliminate the need for application developers to implement custom

sensors, it was aimed to provide a broad spectrum of predefined, ready-to-use sensor

implementations. The latter include implementations for addressing smartphone-internal

sensors (Subsection 6.4.1) as well as external sensing devices (Subsection 6.4.2). How-

ever, despite of having dedicated, framework-specific implementations, some sensors or

APIs to address the latter may not be available on every platform or browser environment.

To give a brief overview, Table 6.1 summarizes the platform availability for predefined

sensor implementations on a wide range of different platforms and web browsers.

6.4.1 Internal Sensors

Smart mobile devices themselves comprise a large number of different sensing utilities

suitable for all kinds of application scenarios. In order to address smartphone inter-

57

6 Implementation

Table 6.1: Platform Availability for Sensor Implementations

Sensor A
nd

ro
id

iO
S

C
hr

om
e

Fi
re

fo
x

S
af

ar
i

E
dg

e

O
pe

ra

C
hr

om
e

A
nd

ro
id

Fi
re

fo
x

A
nd

ro
id

O
pe

ra
A

nd
ro

id

S
af

ar
ii

O
S

Geolocation Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë

Network Status Ë Ë Ë Ë Ë Ë é Ë Ë ? Ë

Microphone Ë ? Ë Ë ? Ë Ë Ë Ë Ë ?

Camera Ë ? Ë Ë Ë Ë Ë Ë Ë Ë ?

Ambient Light Ë é Ë ? ? ? Ë Ë ? é ?

Gyroscope Ë ¦ Ë ? ? ? Ë Ë ? é ?

Magnetometer Ë ¦ Ë ? ? ? Ë Ë ? é ?

Accelerometer Ë ¦ Ë ? ? ? Ë Ë ? é ?

Linear Acceleration Ë ¦ Ë ? ? ? Ë Ë ? é ?

Absolute Orientation é ¦ Ë ? ? ? Ë Ë ? é ?

Relative Orientation é ¦ Ë ? ? ? Ë Ë ? é ?

Gravity Ë ¦ é é é é é é é é é

Proximity Ë ¦ é é é é é é é é é

Ambient Pressure Ë ¦ é é é é é é é é é

Ambient Temperature Ë é é é é é é é é é é

Relative Humidity Ë é é é é é é é é é é

Bluetooth Low Energy Ë ¦ Ë é ? ? Ë Ë é Ë ?

HTTP Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë

Ë Available ¦ Not Implemented ? Availability Unknown é Not Available

58

6.4 Sensor Implementations

nal sensing functionality, the framework provides a wide range of predefined sensor

implementations. The latter are presented in the following.

Motion, Position & Environment Sensors

By default, the framework offers support for a wide range of motion, position and environ-

ment sensors. The latter internally rely on the custom Capacitor plugin implementation

described in Subsection 6.2.2. Due to the generic implementation approach of the latter,

most of the communication logic between plugin and concrete sensor implementation

was outsourced to a common InternalSensor class which itself is derived from the

Sensor base class. Therefore, the concrete implementation of the various sensors

available within the framework could be kept quite minimal. They may only contain a

respective configuration as well as a dedicated type property in order to be properly

distinguished by the plugin.

The following sensor implementations exist within the developed framework :

AbsoluteOrientationSensor. Measures the physical orientation of a mobile

device in relation to the reference coordinate system of the Earth. Measurements

returned from the sensor contain x, y, z and w values, representing the different

components of an orientation quaternion.

RelativeOrientationSensor. Measures the physical orientation of a mobile

device with no regard to the reference coordinate system of the Earth.

AccelerometerSensor. Measures the acceleration forces applied to a mobile

device on all three physical axes including the force of gravity. Sensor outputs

include x, y and z values in m/s2.

LinearAccelerationSensor. Equivalent to the AccelerometerSensor but

measurements exclude the force of gravity.

GravitySensor. Measures the force of gravity on all physical axes, that is applied

to a mobile device. Measurements contain corresponding x, y and z values in

m/s2.

59

6 Implementation

GyroscopeSensor. Measures the rate of rotation of a mobile device around all

its physical axes. Hence, the outputs from the sensor contain x, y and z values in

rad/s.

ProximitySensor. Measures the proximity of an object to a mobile device in

cm. However, some proximity sensors within mobile devices only provide binary

values representing near and far.

AmbientLightSensor. Measures the ambient light-level within the surroundings

of a mobile device and outputs a single illuminance value in lux.

AmbientPressureSensor. Measures the ambient air pressure around a mobile

device. Measurements from the sensor include a single value representing the air

pressure in hPa or mbar.

AmbientTemperatureSensor. Measures the ambient room temperature around

a mobile device. Sensor outputs include a single value representing the tempera-

ture in degrees Celsius.

MagneticFieldSensor. Measures the ambient magnetic field for all three phys-

ical axes of a mobile device. Measurements from the sensor are composed of

corresponding x, y and z values in µT (microtesla).

RelativeHumiditySensor. Measures the relative ambient humidity. The re-

sulting measurements contain a single value representing humidity in %.

All of the above mentioned sensor implementations only support watch interactions.

Thereby, additional options may be passed when initiating the interaction. As already

described in Subsection 6.2.2, a dedicated sampling frequency in Hz may be passed in

order to adjust the behavior of a certain sensor. However, if no frequency value is passed,

the sensors will fall back to reasonable default values. Further, it has to be mentioned,

that some of the sensors are prone to noise interference. As a result, corresponding

outputs have to be post-processed in order to eliminate noise. Such noise elimination

tasks, however, are out of the scope of the developed framework and may be performed

by a host application or when analyzing gathered data at a later point in time.

60

6.4 Sensor Implementations

Geolocation

The GeolocationSensor allows for gathering location related data. Therefore, it al-

lows for requesting location data via get-action as well as monitoring the location of a

mobile device by using the watch-action. For accessing said data, the sensor implementa-

tion relies on the Geolocation Capacitor plugin. The latter provides native implementa-

tions for iOS and Android and a dedicated web implementation based on the widespread

Geolocation API which is exposed through a web browsers Navigator interface. The

sensor outputs may be adjusted by passing dedicated GeolocationOptions to the

respective interaction requests. By doing so high accuracy measurements may be

enabled, altitude data (if required) may be added to the location measurements or a

maximum age for location measurements may be specified. Accordingly, outputs contain

a latitude and longitude value along with a corresponding accuracy. If specified and

available, the altitude and an accuracy for the latter is part of the measurement. Further,

outputs may contain the speed and direction in which a mobile device is moving.

Network Status

A mobile device’s network status, for example to find out whether a stable internet

connection is granted, may be obtained from the NetworkStatusSensor. The latter

supports both, get and watch interactions, and, therefore, allows for requesting the

current network status once or continuously watch for network changes. Internally,

the sensor implementation relies on the Network Capacitor core plugin which offers

dedicated native implementations as well as a web based implementation. The latter

makes use of the NavigatorOnLine API exposed by the web browsers Navigator interface.

Each measurement gathered from the sensor includes a connected property, indicating

whether the mobile device is connected to the internet. Further, data may contain the

type of connection (e.g., Wifi or 4G).

61

6 Implementation

Media Recording

In order to address the microphone and camera of a smart mobile device, dedicated

sensors for audio (MicrophoneSensor) and video (VideoRecorderSensor) record-

ing were implemented. Both of them rely on the same set of browser APIs in order

to gain access and record media in regular browser environments but also within na-

tive environments. For accessing the audio or video stream from a mobile device’s

microphone or camera, the MediaDevices API, which is exposed through the Navigator

interface of a web browser, was used. The returned stream is then captured using the

MediaStream Recording API. By default, the MediaDevices API allows for specifying

a set of MediaStreamConstraints in order to properly configure the stream. The

latter also serve as options for the respective sensor implementations. Thereby, for

video recordings it may be specified which camera to use for the stream (e.g., regular

or front-facing camera), a set of acceptable or required aspect ratios for the video and

a proposed frame rate (in frames per second). For audio streams, in turn, properties

such as a proposed sampling rate, sample size and volume may be set. Also, if required

and supported, echo cancellation and noise suppression may be activated by specifying

respective attributes within the options passed to the sensor instance.

Since the same set of APIs is used for both sensor implementations, an abstract

MediaRecordingSensor class, defining the communication with respective browser

APIs, was implemented. This way the actual implementations of MicrophoneSensor

and VideoRecorderSensor could be kept quite simple. Both sensor implementations

support recording-interactions and return a File object containing recorded audio or

video data. The latter may be then uploaded to a server or stored on the mobile device

locally. Further, the output contains a browser internal Object URL which may be used

to directly embed captured media into the user interface of the host application.

6.4.2 External Sensors

As smart mobile devices offer a variety of wireless but also wired connectivity options,

external sensing devices may be addressed in numerous ways. In order to achieve

62

6.4 Sensor Implementations

a common behavior to address external sensors, despite of the type of connection

they are using for communication, a refined abstraction to the Sensor base class,

an ExternalSensor class, was defined. The latter defines two abstract methods,

connect() and disconnect(), which have to be implemented within respective

sensor sub-classes. The ExternalSensor class then overrides the start() and

stop() method from the base class by inserting connect() and disconnect() calls

after sensor initialization and before cleanup operations are performed. As a result,

external sensors may be treated in the exact same way as internal sensors or other

external sensors using different types of connection (e.g., Bluetooth and USB).

Bluetooth Low Energy Devices

To be able to connect with external sensing devices via Bluetooth Low Energy, a

dedicated abstract BleSensor class, which extends the ExternalSensor class, was

developed. The BleSensor class, thereby, is responsible for the entire communication

with peripheral devices, starting from establishing a connection, performing supported

GATT operations, to releasing the connection again. In order to perform all of the

aforementioned operations, the custom Capacitor plugin, presented in Subsection 6.2.1,

was used. The BleSensor class offers support for get- , push- and watch-interactions

by default. Thereby, the latter correspond with different GATT operations. In detail, the

initiation of a get-interaction corresponds with a GATT read operation, push-interactions

correspond with GATT write operations and watch-interactions enable notifications or

indications on a certain peripheral. However, before performing these operations, the

peripheral has to be discovered and connection to the latter has to be established. This

procedure takes place within the connect() method. As described before, within web

environments, a scan for devices nearby must be triggered through an user interaction.

Also, there may be multiple devices nearby, which match the given scan criteria, thus, a

decision from the user is required in order to connect to a specific peripheral. Therefore,

the BleSensor class relies on the framework-internal mechanism for user-driven sensor

configuration, presented in Section 6.3.1. A dedicated web component, built with Stencil,

is in charge of scanning for peripheral devices nearby and presenting a list of discovered

63

6 Implementation

devices to the user. Once the user selects a peripheral from the list, its device identifier

(e.g., MAC-Address) is returned to the sensor in charge and the latter can connect to

the peripheral using the given identifier. Both, the request for user configuration as

well as the actual connection establishment take place within the connect() method

of the BleSensor class. Since all the communication logic is implemented within the

BleSensor class, concrete sensor implementations only have to provide a configuration

and define a service as well as a characteristic UUID, specifying the type of data to be

gathered from a peripheral. While in theory, concrete implementations for every standard

GATT application profile could be implemented, the framework presented in this thesis,

by default, only provides a selected few that may be suitable for data collection scenarios.

The latter are described below :

BleBloodPressureSensor. This sensor implementation allows for commu-

nication with blood pressure monitor devices implementing the standard Blood

Pressure Profile. Therefore, it supports watch-interactions in order to receive Blood

Pressure Measurement indications from the Blood Pressure Service. According

to the Blood Pressure Measurement characteristic, output values contain the

systolic, diastolic and mean arterial pressure, along with a corresponding unit

(kPa or mmHg). Further, measurements may contain a current pulse rate as well

as a status object. The latter may contain details about the measurement itself

(e.g., body movement detection, irregular pulse detection or whether or not the

measurement took place at an improper position).

BleHeartRateSensor. This sensor allows for receiving Heart Rate Measure-

ment notifications, from heart rate monitors implementing the standard Heart Rate

Profile. Therefore, it supports watch-interactions. The outputs of the sensor are

conform with the respective Heart Rate Measurement characteristic definition.

They contain the actual heart rate value (in beats per minute). Further, they may

contain corresponding RR-interval lengths and energy expenditure estimations.

BleTemperatureSensor. This sensor allows for addressing health thermome-

ters implementing the standard Health Thermometer Profile. In order to subscribe

to Temperature Measurements from the Health Thermometer Service, the sensor

64

6.4 Sensor Implementations

implementation supports watch-interactions. Thereby, Temperature Measurements

contain the temperature value itself as well as a corresponding unit (e.g., Celsius

or Fahrenheit). In addition, the type of the temperature, a number representing the

body area where the measurement took place (e.g., armpit, ear lobe, rectum, etc.),

may be part of the measurement.

BleWeightScaleSensor. For weight scales implementing the standard Weight

Scale Profile, this sensor allows for receiving Weight Measurement indications from

a corresponding Weight Scale Service. Indications from weight scale peripherals

may be gathered using watch-interactions. Measurements contain the units for

weight and height used by the weight scale along with the actual weight value.

Further, if stored on the peripheral, measurements may contain the height of a

user and a resulting body mass index.

HTTP

The HttpSensor allows for communication with sensors over the internet. For example,

it may be used to gather temperature data from a web based weather service or to

interact with the Google Fit REST API, as described in Section 3.3. To achieve the latter

it internally uses the Fetch API, which allows for performing common HTTP requests

from within a web browser. The sensor offers support for both, get- and push-interaction.

Thereby, initiating a get-interaction corresponds with a HTTP GET request whereas

push-interactions internally perform HTTP POST requests. Respective requests may

be configured by passing dedicated options when initiating interaction with the sensor.

For both interaction schemes, an uri property, specifying the endpoint for the HTTP

request, is required. Further, request specific HTTP headers and a strategy for cached

data may be specified. For get-interactions in particular, additional query parameters,

for a more fine grained description of the requested resource, can be provided within

the sensor options. In push - interaction scenarios, data passed to the HttpSensor is

embedded in the request body of the corresponding HTTP POST request. The sensor

outputs are constructed according to the response data from respective HTTP requests.

Thereby, output data contains the response URI and HTTP status code of the response.

65

6 Implementation

Further, data from the response body is attached to the sensor output either in a textual

or JSON format.

66

7
Enhancing Mobile Applications with

Sensing Capabilities

This chapter showcases the usage of the developed framework within, as well as its

integration into, existing mobile applications. Therefore, a new hybrid mobile applica-

tion was created using the Ionic framework. The latter uses Capacitor as application

run-time on mobile devices and Angular, a common front-end web framework, for im-

plementing the application’s business logic. In the first place, Section 7.1 describes the

steps necessary in order to set up the framework within the mobile application. Next,

Section 7.2 elaborates on different ways of addressing senors within the application

using the framework. Finally, an example of extending the framework with additional,

application-specific sensors, is given in Section 7.3.

7.1 Framework Setup within Application

Within the application development environment, the framework may be installed via

common NodeJS package management tools (e.g., NPM, Yarn, etc.). Also, the latter

are in charge of automatically installing all required framework dependencies within the

application.

Since the developed framework uses custom native plugins in order to access internal

sensors and Bluetooth Low Energy functionality of a mobile device, said plugins must be

registered within the application. While the Capacitor core plugins are registered within

the application by default, custom plugins have to be registered manually. Listing 7.1

shows how custom plugins can be registered within Android applications. Thereby, the

67

7 Enhancing Mobile Applications with Sensing Capabilities

common way is to pass references to the respective native class definition of a certain

plugin when initializing the application’s MainActivity.

1 public class MainActivity extends BridgeActivity {

2 @Override

3 public void onCreate(Bundle savedInstanceState) {

4 super.onCreate(savedInstanceState);

5

6 this.init(

7 savedInstanceState,

8 new ArrayList<Class<? extends Plugin>>()

9 {{

10 add(BluetoothLEClient.class);

11 add(SensingKit.class);

12 }});

13 }

14 }

Listing 7.1: Registering Custom Native Plugins within MainActivity.java

In order to be properly displayed within web browsers or web views, the web compo-

nents defined within the framework (e.g., UI widgets for sensor configuration) have to

be made accessible within the application. For component libraries built with Stencil,

the defineCustomElements() utility method, which allows for automatically regis-

tering library internal web components, is generated and exported by default. Ideally,

defineCustomElements() is called at the top-most level of the application hierarchy

(see Listing 7.2), making the web components accessible to the application as soon as it

starts running.

68

7.2 Addressing Sensors

1 import {defineCustomElements} from ’sensors/loader’;

2 (async () => await defineCustomElements(window))();

Listing 7.2: Registering Stencil-built Web Components within main.ts

For Angular projects in particular, simply registering the web components from the

framework is not sufficient when intending to use them within templates of Angular

components. When using these web components within Angular templates, the con-

taining module has to include the CUSTOM_ELEMENTS_SCHEMA in order to not cause

compilation errors. However, this last step only relates to Angular development and,

therefore, may not be necessary when relying on different front-end web frameworks

(e.g., React or Vue).

7.2 Addressing Sensors

While the previous section dealt with setting up the framework within a mobile application,

this section is focused on accessing sensor data through the framework. After success-

fully setting up the framework, there exist two ways of interacting with the framework

at run-time. For demonstration purposes, two Angular components were exemplarily

implemented covering both ways of interacting with two different sensors.

7.2.1 Sensor Access via SensorFrameworkManager

The common approach of accessing sensor data through the sensor framework is

by addressing the SensorFrameworkManager directly. In order to demonstrate this

approach, an Angular component for displaying a mobile device’s current location, by

combining the sensor framework with the Google Maps JavaScript API, was implemented

(see. Listing A.1). Thereby, the position should be set initially and updated whenever the

location of the device changes.

After importing the SensorFramworkManager instance, the latter can directly be used

to address the devices GPS capabilities. Within the ngAfterViewInit() Angular

69

7 Enhancing Mobile Applications with Sensing Capabilities

lifecycle hook, the corresponding sensor is set up through a start() call and the users

initial position is gathered by calling get method on the SensorFrameworkManager in-

stance and passing the name of the sensor as well as sensor specific options. Further, in

order to receive updates whenever the location of the user changes, a callback is passed

to the watch() call, which resets the components position property and adjusts the

map to display the devices updated location. In order to avoid unnecessary resource

consumption, the sensor should be stopped as soon as the component is destroyed.

Therefore, within the ngOnDestroy() lifecycle, the sensor listener is removed, and

the sensor is halted by calling the stop() method on the SensorFrameworkManager

instance.

7.2.2 Sensor Access via Web Component

The way of addressing sensors described in Subsection 7.2.1 requires direct interaction

with the SensorFrameworkManager. The second approach of accessing sensors

through the framework offers an even higher level of abstraction, by making use of the

custom HTMLSensorElement provided by the framework. For demonstration purposes,

this approach was used to connect to and access data from a Bluetooth Low Energy

heart rate monitor.

1 <sensor-element

2 sensor="ble-heart-rate"

3 action="watch"

4 scope="local"

5 (sampleData)="setHeartRate($event)">

6 </sensor-element>

Listing 7.3: Custom HTMLSensorElement within heart-rate.component.html

As indicated in Listing 7.3, the sensor can be set up by simply integrating the HTMLSen-

sorElement within the HeartRateComponent’s template. Thereby, configuration can

70

7.2 Addressing Sensors

be initialized by setting element properties as needed. Further, sampleData events

containing sensor data may be intercepted by binding the event to a corresponding

handler (see Listing 7.4) within the business logic of the HeartRateComponent.

1 setHeartRate(event) {

2 const {data} = event.detail;

3 // work with gathered data ...

4 }

Listing 7.4: Event Handler for Heart Rate Measurements within

heart-rate.component.ts

This template-based approach to accessing sensor data is especially handy when it

comes to dynamically gathering data from multiple sensors at once. As displayed in

Listing 7.5, multiple HTMLSensorElements may be created by looping over an array

of corresponding configuration objects. Emitted data can then be aggregated and

processed by binding events thrown by the sensors to a common event handler.

1 <sensor-element

2 *ngFor="let config of sensorConfigurations"

3 [sensor]="config.sensor"

4 [action]="config.action"

5 [options]="config.options"

6 (sampleData)="onDataAvailable($event)"

7 (error)="onSensorError($event)">

8 </sensor-element>

Listing 7.5: Dynamic Creation of multiple HTMLSensorElements

71

7 Enhancing Mobile Applications with Sensing Capabilities

7.3 Extending the Framework with Custom Sensors

In order to demonstrate how to extend the developed framework with additional, applica-

tion specific sensors, a custom sensor was implemented within the demo application.

The purpose of the sensor was to query and monitor the status of a mobile devices

battery. Since the sensor implementation is for demonstration purposes only, a plugin

implementation with native features was deliberately abandoned. Rather, the sensor

solely relies on the BatteryManager API.

To begin with, a new CustomBatterySensor class extending the Sensor base class

was created (see Listing A.2). Within the constructor of the CustomBatterySensor, a

suitable SensorConfig is passed to the constructor of the parent class. The config-

uration contains the name of the sensor through which it may be addressed later, as

well as the actions supported by the sensor. As the sensor should allow for querying

as well as monitoring the battery status, the pull and watch flags were set appropri-

ately. For setting up the sensor, a reference to the BatteryManager, which is exposed

through the web browsers Navigator interface, is stored internally within the sensor’s

onStart() hook. Further, since the pull and watch flags were set, the corresponding

onPull() and onWatch() hooks had to be implemented. Within the onPull() hook,

the battery status is queried from the BatteryManager and selected properties are

returned. In contrast, for continuous monitoring, a callback for onChargingChange

and onLevelChange events is registered on the BatteryManager instance. As a

result, the callback is triggered whenever either a device’s battery level or its charging

state changes. By calling the onSensorDataChanged() method within the callback,

all entities subscribed to battery sensor changes are notified and provided with passed

sensor data. To avoid unnecessary resource consumption and side effects, the call-

backs on the BatteryManager instance are released and the reference to the latter

is diminished within the sensor’s onStop() hook. Finally, an new instance of the

CustomBatterySensor is created and registered within the framework by calling the

registerSensor() method on the SensorFrameworkManager. Once registered

within the framework, the sensor can be used application wide via one of the aforemen-

tioned access methods.

72

7.4 Conclusion

7.4 Conclusion

Figure 7.1: Resulting Application running on Chrome for MacOS (left), as Android Appli-
cation (center) and within Chrome Mobile Browser for Android (right)

Within this chapter, an in depth description on how to integrate the implemented frame-

work in a mobile application was given. As demanded in NFR#4, the setup of the

framework within an existing application is rather easy. Nevertheless, a pure ’plug-and-

play’ solution could not be achieved, as some manual configuration steps are required

in order to be able to use the framework properly in an existing application. However,

the configuration effort only amounts to adding a few lines of code within the application,

which may be reasonable. Regarding NFR#2, the effort of extending the framework

with an additional custom sensor was quite easy. Since most of the general sensor

functionality is outsourced to the Sensor base class, only specific operations (e.g.,

calling respective sensor APIs) have to be implemented within the corresponding hooks

provided by the framework.

The resulting application (see Figure 7.1) worked properly on various platforms and

devices. For the demonstration of Bluetooth Low Energy features, the nRF Connect

Android application [43], which allows for BLE peripheral simulation on mobile devices,

was consulted.

73

8
Summary

Within this chapter, relevant findings of this thesis are briefly summarized and discussed.

Further, an outlook on how the developed sensor framework could be extended with

additional features and functionality is given.

In Chapter 2, general aspects regarding the Bluetooth Low Energy standard (Section 2.1),

cross-platform mobile development strategies (Section 2.2), with special focus on hybrid

mobile applications, and the concept of web components (Section 2.3), were introduced.

Subsequently, a set of existing mobile sensing frameworks was presented and discussed

in Chapter 3. Visited frameworks included SensingKit (Section 3.1), an event-based

framework approach (Section 3.2) as well as the Google Fit framework (Section 3.3).

In conclusion, all of the frameworks have a justified existence and may be suitable for

a range of use case scenarios. However, under evaluated points of view, most of the

frameworks showed slight downsides. While presented frameworks allow for a generic

way of addressing different sensors, they may greatly differ in the number of supported

sensors, available interaction schemes and extendability options. Most of the frameworks

struggled in terms of cross-platform capabilities, meaning having a single framework

implementation capable of running within applications on different platforms (e.g., iOS,

Android or web browsers). SensingKit and Google Fit may aim to support different

platforms, with dedicated framework libraries or a REST API. Nevertheless, applying the

latter can lead to an enormous developing effort and resulting applications may require

an active internet connection in order to work properly.

Chapter 4 then elaborated on different use case scenarios, where a mobile sensing

framework could find beneficial appliance. While this chapter elaborated on the feasibility

of a sensing framework for data collection scenarios in health care and clinical research,

75

8 Summary

the range of appliance in other domains should not be neglected.

By taking the benefits and drawbacks of existing sensing frameworks into consideration,

a set of requirements, the framework to be developed has to fulfill in order to be suitable

for a wide range of application scenarios, was elaborated in Chapter 5. According to

elaborated requirements, a general framework architecture was set up and described in

Section 5.2.

The actual implementation of the framework is described in-depth in the course of

Chapter 6. In order to be platform agnostic, the developed framework is entirely based

on web technologies, in detail, it is built on top of Capacitor. This choice enables the

framework to be integrated within mobile applications on different platforms, however,

the approach also brings some limitations. As native access to mobile sensor APIs is

achieved through dedicated Capacitor plugin implementations, the framework is tightly

coupled to the Capacitor ecosystem. As a result, the framework may only be integrated

within regular web applications or mobile applications built on top of the Capacitor run-

time. Another limitation may arise when it comes to integrating the framework within

regular web applications. Since the landscape of internet browsers is far more diverse

than the one of mobile operating systems, one can not assume that all browsers in each

version support the necessary features to access mobile sensors. Furthermore, many

APIs used by the framework to access sensors through a web browser (e.g., Generic

Sensor API or Web Bluetooth API) are marked as experimental features, which have to

be enabled manually within the settings of a certain web browser. However, the latter

may be a too complex task to perform for regular users. Therefore, in order to exploit

the full potential of the developed framework, a more widespread availability of modern

web APIs across different browsers is needed. Also, web API implementations within

different browsers must become more reliable. For instance, during the development

of the framework, a browser update caused the NetworkStatusSensor to deliver

inaccurate data. Such flaws may be intolerable in production scenarios. However, these

issues only relate to the web version of the corresponding sensor implementations, not

the native ones.

Finally, to showcase the integration and usage of the developed framework within existing

mobile applications, a demo application was implemented in Chapter 7. The framework

76

8.1 Outlook

setup within the application development environment, as described in Section 7.1,

was straight forward and only required a small number of configuration steps. Next,

the different ways of addressing sensors through the framework were demonstrated in

Section 7.2. Thereby, application developers can choose freely between either accessing

sensor data through framework APIs or making use of provided SensorElement web

component. Section 7.3 then gives insights on how to extend the developed framework

with custom sensor implementations. Since most of the general sensor functionality is

already provided by the Sensor base class, implementing a custom sensor is a quite

easy task and requires minimal effort.

8.1 Outlook

As by now, the mobile sensing framework developed in the course of this thesis is still

in an early stage. Nevertheless, it already supports a broad range of features and

functionality required to fit the needs of many mobile data collection scenarios.

One first step for future development should be the addition of iOS implementations

for the custom Capacitor plugins. While the Android and web implementation were

sufficient as a proof of concept, having an iOS implementation may be crucial in order to

fully comply with the sought-after cross-platform approach. Apart from that, potential

useful additions to the framework are infinite. For instance, further connectivity options

could be implemented within the framework. While at the moment connection to external

devices is only possible via Bluetooth Low Energy or HTTP, one could additionally

include USB sensors or devices. Therefore, the framework could rely on dedicated

platform APIs in native environments and the WebUSB API within web browsers. Further,

the framework could build bridges to other sensing frameworks, for example by making

use of the Google Fit REST API to integrate Google Fit specific capabilities as described

in Chapter 3. Another useful feature could be to allow for gathering sensor data outside

of the application run-time. By now, the framework only collects data within an active

application (e.g., while a user answers questions within a survey). Though, in some

scenarios it might be useful to monitor sensor data while the host application is not

running, for example monitoring the accelerometer for fall detection or monitor a patients

77

8 Summary

heart-rate continuously for irregularities.

However, the maybe most important aspect would be to conduct tests and use the

framework within mobile applications in real-world environments. The latter could give

valuable insights on the suitability of a cross-platform sensing framework in mobile data

collection scenarios as well as how to improve the framework in further iterations.

78

Bibliography

[1] Seifert, A., Hofer, M., Allemand, M.: Mobile Data Collection: Smart, but Not (Yet)

Smart Enough. Frontiers in neuroscience 12 (2018) 971

[2] Schobel, J., Pryss, R., Schlee, W., Probst, T., Gebhardt, D., Schickler, M., Reichert,

M.: Development of mobile data collection applications by domain experts: Experi-

mental results from a usability study. In: International Conference on Advanced

Information Systems Engineering, Springer (2017) 60–75

[3] Schobel, J., Schickler, M., Pryss, R., Nienhaus, H., Reichert, M.: Using vital sensors

in mobile healthcare business applications: challenges, examples, lessons learned.

In: International Conference on Web Information Systems and Technologies. (2013)

509–518

[4] Gomez, C., Oller, J., Paradells, J.: Overview and Evaluation of Bluetooth Low

Energy: An Emerging Low-Power Wireless Technology. Sensors 12 (2012) 11734–

11753

[5] Bhargava, M.: IoT Projects with Bluetooth Low Energy. Packt Publishing Ltd (2017)

[6] Zephyr Project: Bluetooth Stack Architecture. (https://docs.zephyrproject.

org/latest/guides/bluetooth/bluetooth-arch.html) Accessed: 2020-

01-26.

[7] Bluetooth SIG: Bluetooth Core Specification. Bluetooth SIG. (2019) v5.1.

[8] Bluetooth SIG: GATT Specifications. (https://www.bluetooth.com/

specifications/gatt/) Accessed: 2019-11-17.

[9] Bluetooth SIG: GATT Services. (https://www.bluetooth.com/

specifications/gatt/services/) Accessed: 2019-11-17.

[10] Bluetooth SIG: GATT Characteristics. (https://www.bluetooth.com/

specifications/gatt/characteristics/) Accessed: 2019-11-17.

79

https://docs.zephyrproject.org/latest/guides/bluetooth/bluetooth-arch.html
https://docs.zephyrproject.org/latest/guides/bluetooth/bluetooth-arch.html
https://www.bluetooth.com/specifications/gatt/
https://www.bluetooth.com/specifications/gatt/
https://www.bluetooth.com/specifications/gatt/services/
https://www.bluetooth.com/specifications/gatt/services/
https://www.bluetooth.com/specifications/gatt/characteristics/
https://www.bluetooth.com/specifications/gatt/characteristics/

Bibliography

[11] StatCounter: Mobile operating systems’ market share worldwide from January

2012 to July 2019. https://www.statista.com/statistics/272698/

global-market-share-held-by-mobile-operating-systems-since-2009/

(2019) Accessed: 2019-11-11.

[12] Apache Cordova: Architectural overview of Cordova platform - Apache Cordova.

(https://cordova.apache.org/docs/en/latest/guide/overview/

index.html#architecture) Accessed: 2019-11-11.

[13] Palmieri, M., Singh, I., Cicchetti, A.: Comparison of cross-platform mobile de-

velopment tools. In: 2012 16th International Conference on Intelligence in Next

Generation Networks, IEEE (2012) 179–186

[14] Drifty Co.: Capacitor: A Cross-platform App Runtime. (https://capacitor.

ionicframework.com/docs/)

[15] Drifty Co.: Using Cordova Plugins and Ionic Native. (https://capacitor.

ionicframework.com/docs/cordova/using-cordova-plugins) Ac-

cessed: 2020-02-07.

[16] developer.mozilla.org: Web Components. (https://developer.mozilla.

org/en-US/docs/Web/Web_Components) Accessed: 2020-03-14.

[17] StencilJS: Stencil: A Compiler for Web Components. (https://stenciljs.

com/docs/introduction) Accessed: 2019-11-12.

[18] Katevas, K.: SensingKit - A Multi-Platform Mobile Sensing Framework. (https:

//www.sensingkit.org/) Accessed: 2020-01-19.

[19] Katevas, K.: SensingKit - iOS Reference. (https://www.sensingkit.org/

documentation/ios/) Accessed: 2020-01-29.

[20] Katevas, K.: SensingKit - Android Reference. (https://www.sensingkit.

org/documentation/android/) Accessed: 2020-01-29.

[21] Jabs, A.: Konzeption eines Event-basierten Sensor-Frameworks zur Datenerhe-

bung auf mobilen Endgeräten (2015) Diploma thesis at Ulm University.

80

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://cordova.apache.org/docs/en/latest/guide/overview/index.html#architecture
https://cordova.apache.org/docs/en/latest/guide/overview/index.html#architecture
https://capacitor.ionicframework.com/docs/
https://capacitor.ionicframework.com/docs/
https://capacitor.ionicframework.com/docs/cordova/using-cordova-plugins
https://capacitor.ionicframework.com/docs/cordova/using-cordova-plugins
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://stenciljs.com/docs/introduction
https://stenciljs.com/docs/introduction
https://www.sensingkit.org/
https://www.sensingkit.org/
https://www.sensingkit.org/documentation/ios/
https://www.sensingkit.org/documentation/ios/
https://www.sensingkit.org/documentation/android/
https://www.sensingkit.org/documentation/android/

Bibliography

[22] developers.google.com: Google Fit - Platform Overview. (https://developers.

google.com/fit/overview) Accessed: 2020-01-13.

[23] developers.google.com: Google Fit - Use Bluetooth Sensors. (https://

developers.google.com/fit/android/ble-sensors) Accessed: 2020-

01-17.

[24] developers.google.com: Google Fit - Support Additional Sensors. (https:

//developers.google.com/fit/android/new-sensors) Accessed: 2020-

01-19.

[25] developers.google.com: Access Raw Sensor Data. (https://developers.

google.com/fit/android/sensors) Accessed: 2020-02-02.

[26] developers.google.com: Work with the Fitness History. (https://developers.

google.com/fit/android/history) Accessed: 2020-02-02.

[27] Apple Inc.: HealthKit. (https://developer.apple.com/healthkit/) Ac-

cessed: 2020-02-09.

[28] developers.google.com: Google Fit - Custom data types. (https://developers.

google.com/fit/datatypes/custom) Accessed: 2020-01-25.

[29] United Nations, Department of Economic and Social Affairs, Population Division

(2015): World Population Ageing (2015) (ST/ESA/SER.A/390).

[30] Nguyen, H.H., Mirza, F., Naeem, M.A., Nguyen, M.: A review on IoT healthcare

monitoring applications and a vision for transforming sensor data into real-time

clinical feedback. In: 2017 IEEE 21st International Conference on Computer

Supported Cooperative Work in Design (CSCWD). (2017) 257–262

[31] Bot, B.M., Suver, C., Neto, E.C., Kellen, M., Klein, A., Bare, C., Doerr, M., Pratap,

A., Wilbanks, J., Dorsey, E.R., et al.: The mPower study, Parkinson disease mobile

data collected using ResearchKit. Scientific data 3 (2016) 1–9

[32] Suh, M.k., Chen, C.A., Woodbridge, J., Tu, M.K., Kim, J.I., Nahapetian, A., Evan-

gelista, L.S., Sarrafzadeh, M.: A remote patient monitoring system for congestive

heart failure. Journal of medical systems 35 (2011) 1165–1179

81

https://developers.google.com/fit/overview
https://developers.google.com/fit/overview
https://developers.google.com/fit/android/ble-sensors
https://developers.google.com/fit/android/ble-sensors
https://developers.google.com/fit/android/new-sensors
https://developers.google.com/fit/android/new-sensors
https://developers.google.com/fit/android/sensors
https://developers.google.com/fit/android/sensors
https://developers.google.com/fit/android/history
https://developers.google.com/fit/android/history
https://developer.apple.com/healthkit/
https://developers.google.com/fit/datatypes/custom
https://developers.google.com/fit/datatypes/custom

Bibliography

[33] Marko, K.I., Krapf, J.M., Meltzer, A.C., Oh, J., Ganju, N., Martinez, A.G., Sheth,

S.G., Gaba, N.D.: Testing the Feasibility of Remote Patient Monitoring in Prenatal

Care Using a Mobile App and Connected Devices: A Prospective Observational

Trial. JMIR Res Protoc 5 (2016) e200

[34] Bolger, N., Laurenceau, J.P.: Intensive longitudinal methods: An introduction to

diary and experience sampling research. Guilford Press (2013)

[35] Pryss, R., Reichert, M., Herrmann, J., Langguth, B., Schlee, W.: Mobile crowd

sensing in clinical and psychological trials–a case study. In: 2015 IEEE 28th

International Symposium on Computer-Based Medical Systems, IEEE (2015) 23–

24

[36] Schlee, W., Pryss, R.C., Probst, T., Schobel, J., Bachmeier, A., Reichert, M.,

Langguth, B.: Measuring the Moment-to-Moment Variability of Tinnitus: The

TrackYourTinnitus Smart Phone App. Frontiers in Aging Neuroscience 8 (2016) 294

[37] Cao, J., Truong, A.L., Banu, S., Shah, A.A., Sabharwal, A., Moukaddam, N.: Track-

ing and Predicting Depressive Symptoms of Adolescents Using Smartphone-Based

Self-Reports, Parental Evaluations, and Passive Phone Sensor Data: Development

and Usability Study. JMIR Ment Health 7 (2020) e14045

[38] Schobel, J., Pryss, R., Reichert, M.: Using Smart Mobile Devices for Collecting

Structured Data in Clinical Trials: Results From a Large-Scale Case Study. In:

28th IEEE International Symposium on Computer-Based Medical Systems (CBMS

2015), IEEE Computer Society Press (2015) 13–18

[39] Web Bluetooth CG: Web Bluetooth - Draft Community Group Report. https:

//webbluetoothcg.github.io/web-bluetooth/ (2020) Accessed: 2020-

02-24.

[40] developer.android.com: Sensors Overview. (https://developer.android.

com/guide/topics/sensors/sensors_overview) Accessed: 2019-12-28.

[41] w3.org: Generic Sensor API. (https://www.w3.org/TR/generic-sensor/)

Accessed: 2019-12-30.

82

https://webbluetoothcg.github.io/web-bluetooth/
https://webbluetoothcg.github.io/web-bluetooth/
https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview
https://www.w3.org/TR/generic-sensor/

Bibliography

[42] WHATWG: Custom elements. (https://html.spec.whatwg.org/

multipage/custom-elements.html) Accessed: 2020-03-04.

[43] nordicsemi.com: nRF Connect for Mobile. (https://www.nordicsemi.com/

Software-and-tools/Development-Tools/nRF-Connect-for-mobile)

Accessed: 2020-06-22.

83

https://html.spec.whatwg.org/multipage/custom-elements.html
https://html.spec.whatwg.org/multipage/custom-elements.html
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile

A
Sources

A.1 Implementation of Geolocation Component

1 import ...

2 import {

3 SensorFrameworkManager as SFM,

4 GeolocationData,

5 SensorListenerHandle

6 } from ’sensors’;

7

8 @Component({ ... })

9 export class GeolocationComponent {

10

11 private static SENSOR_NAME = ’geolocation’;

12 private position: GeolocationData;

13 private listener: SensorListenerHandle;

14 private options = {

15 enableHighAccuracy: true,

16 requireAltitude: true,

17 };

18

19 private map: any;

20

21 private marker: any;

85

A Sources

22

23 @ViewChild(’map’, {static: true}) mapRef: ElementRef;

24

25 async getGeolocation(): Promise<GeolocationData> {

26 const {data} = await SFM.get(

27 GeolocationComponent.SENSOR_NAME,

28 this.options

29);

30

31 return data;

32 }

33

34 async watchGeolocation(): Promise<SensorListenerHandle> {

35 const callback = (measurement) => {

36 const {data} = measurement;

37 this.position = data;

38 this.setMarker();

39 this.centerMap();

40 };

41

42 return await SFM.watch(

43 GeolocationComponent.SENSOR_NAME,

44 this.options,

45 callback

46);

47 }

48

49 private setMarker() {

50 this.marker.setMap(null);

51

52 const position = {

86

A.1 Implementation of Geolocation Component

53 lat: this.position.latitude,

54 lng: this.position.longitude

55 };

56

57 this.marker = new google.maps.Marker({

58 position,

59 map: this.map

60 });

61 }

62

63 private centerMap() {

64 this.map.setCenter(this.marker.getPosition());

65 }

66

67 async ngAfterViewInit() {

68

69 await SFM.start(GeolocationComponent.SENSOR_NAME);

70 this.position = await this.getGeolocation();

71 this.listener = await this.watchGeolocation();

72

73 const position = {

74 lat: this.position.latitude,

75 lng: this.position.longitude

76 };

77

78 this.map = new google.maps.Map(this.mapRef.nativeElement, {

79 center: position,

80 zoom: 12,

81 disableDefaultUI: true,

82 });

83

87

A Sources

84 this.marker = new google.maps.Marker({

85 map: this.map,

86 position,

87 });

88

89 }

90

91 async ngOnDestroy(): Promise<void> {

92 this.listener.remove();

93 await SFM.stop(GeolocationComponent.SENSOR_NAME);

94 }

95 }

Listing A.1: geolocation.component.ts

A.2 Implementation of Custom Battery Sensor

1 import {Sensor, SensorFrameworkManager} from ’sensors’;

2

3 class CustomBatterySensor extends Sensor {

4

5 private batteryManager;

6

7 constructor() {

8 super({

9 name: ’battery’,

10 actions: {

11 get: true,

12 watch: true

13 }

14 });

88

A.2 Implementation of Custom Battery Sensor

15 }

16

17 protected async onStart(): Promise<void> {

18 if (navigator.getBattery !== ’undefined’) {

19 this.batteryManager = await navigator.getBattery();

20 } else {

21 throw new Error(’Battery API unavailable’);

22 }

23 }

24

25 protected async onStop() : Promise<void>{

26 if (this.batteryManager) {

27 this.batteryManager.onlevelchange = undefined;

28 this.batteryManager.onchargingchange = undefined;

29 }

30 this.batteryManager = undefined;

31 }

32

33 protected async onGet(): Promise<CustomBatterySensorData> {

34 const data = {

35 level: this.batteryManager.level,

36 charging: this.batteryManager.charging,

37 };

38 return data;

39 }

40

41 protected async onWatch(): Promise<void> {

42 const handler = () => {

43 const data = {

44 level: this.batteryManager.level,

45 charging: this.batteryManager.charging,

89

A Sources

46 };

47 this.onSensorDataChanged(data);

48 };

49 this.batteryManager.onlevelchange = handler;

50 this.batteryManager.onchargingchange = handler;

51 }

52 }

53

54 const Battery = new CustomBatterySensor();

55 SensorFrameworkManager.registerSensor(Battery);

Listing A.2: battery.sensor.ts

90

List of Figures

2.1 High-level overview of the Bluetooth Low Energy protocol stack [4] 6

2.2 GATT Profile hierarchy [7] . 7

2.3 Typical software architecture in hybrid mobile applications [12] 10

3.1 SensingKit Framework Architecture [19, 20] 16

3.2 Architecture of Event-based Sensor Framework [21] 18

3.3 Google Fit high level architecture overview [22] 21

5.1 Generic Sensor Framework Architecture 38

6.1 Simplified General Software Architecture of the Developed Framework

derived from Figure 5.1 . 49

6.2 Sensor Interaction Patterns . 51

6.3 Requesting users to manually configure sensors 54

6.4 Call procedure for a get - interaction with all participating entities 56

7.1 Resulting Application running on Chrome for MacOS (left), as Android

Application (center) and within Chrome Mobile Browser for Android (right) 73

91

List of Tables

6.1 Platform Availability for Sensor Implementations 58

93

Name: Robin Martin Matriculation number: 857754

Honesty disclaimer

I hereby affirm that I wrote this thesis independently and that I did not use any other

sources or tools than the ones specified.

Ulm, .

Robin Martin

24.06.2020

	Introduction
	Outline

	Fundamentals
	Bluetooth Low Energy
	Cross-Platform Development
	Web Components

	Evaluation of Existing Mobile Sensing Frameworks
	SensingKit
	Event-based Sensor Framework
	Google Fit
	Comparison

	Application Scenarios
	Remote Patient Monitoring
	Intensive Longitudinal Methods

	Towards a Generic Sensor Framework
	Requirements
	Framework Architecture

	Implementation
	Technologies
	Capacitor Plugin Implementations
	Software Architecture
	Sensor Implementations

	Enhancing Mobile Applications with Sensing Capabilities
	Framework Setup within Application
	Addressing Sensors
	Extending the Framework with Custom Sensors
	Conclusion

	Summary
	Outlook

	Sources
	Implementation of Geolocation Component
	Implementation of Custom Battery Sensor

