
Ulm University | 89069 Ulm | Germany Faculty of Engineering,
Computer Science
and Psychology
Institute of Databases and
Information Systems

Development of a Distributed Workflow-
based Analysis Service for Metadata of
Mobile Applications

Master’s thesis at Ulm University

Submitted by:
Jörn Hofschlaeger
joern.hofschlaeger@uni-ulm.de
791591

Reviewer:
Prof. Dr. Manfred Reichert
Prof. Dr. Rüdiger Pryss

Supervisor:
Michael Stach

2020

Version of June 29, 2020

© 2020 Jörn Hofschlaeger

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International (CC BY-NC-SA 4.0) License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0 or send a letter to Creative
Commons, PO Box 1866, Mountain View, California, 94042, USA.
Set: PDF-LATEX 2ε

https://creativecommons.org/licenses/by-nc-sa/4.0

Abstract

Smartphones have multiple functions and can, therefore, be used for many different
applications. An interesting use case is in the area of mHealth apps. Therapists
can use mHealth apps for special treatments in the field of meditation, depression,
or tinnitus, to name just a few. This poses a problem because the ratings of apps
are not objective and can be misleading. This leads to the difficulty that therapists
are not able to make a good decision based on the information provided.
To improve this situation, a workflow-based service for the use case of the analysis
of metadata for mHealth apps is developed. This service retrieves the metadata of
the apps from the Google Play Store and allows to save the metadata of different
points in time. In addition, experts can rate the apps using the MARS questionnaire
in order to extend the existing data. The advantage of this service is that more in-
formation about mHealth apps is available, and the evaluations are more objective.
By using the metadata of an app at different points in time, changes can be an-
alyzed. The analysis of app metadata and the questionnaire data is used for the
creation of a user interface that provides an overview of the changes and shows the
results of the questionnaires. Consequently, this will help therapists to determine
whether the app is suitable for a specific case.
In this thesis, a workflow engine for the orchestration of microservices is used. This
is a modern approach to achieve a maintainable and scalable solution. The core
of the presented solution is based on Zeebe, a product for orchestration of service
tasks defined in a BPMN 2.0 workflow. Each service task is implemented as a
microservice. The service tasks are implemented using the Zeebe client and are
developed in the modern programming language Go. To store the data, CouchDB
is used. An open-source web scraper written in JavaScript is used to retrieve the
app metadata from the Google Play Store. The prototype presented in this thesis
shows that a service for analyzing metadata of mobile applications can be based
on the technologies used.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Analysis . 2
1.3 Contribution . 5
1.4 Outline . 6

2 Fundamentals 7
2.1 Mobile Health App Database . 7
2.2 Databases . 8

2.2.1 Relational Databases . 8
2.2.2 Non-Relational Databases 9

2.3 Microservices and their Orchestration 10
2.3.1 Distributed Architecture . 11
2.3.2 Choreography and Orchestration 12
2.3.3 Building Workflows . 13

2.4 Retrieve Data From App Stores . 14
2.4.1 Using an API . 14
2.4.2 Using a Scraper . 15

3 Requirement Analysis 16
3.1 Functional Requirements . 16

3.1.1 Account . 17
3.1.2 Search . 18
3.1.3 App . 19
3.1.4 Review . 20
3.1.5 Analysis . 21

3.2 Non-Functional Requirements . 22

iv

Contents

4 Concept 23
4.1 Microservice Orchestration . 24

4.1.1 Zeebe . 24
4.1.2 Zeebe Client . 25

4.2 Database . 27
4.2.1 CouchDB . 27
4.2.2 Fauxton and API . 29

4.3 User Interface . 30

5 Implementation 32
5.1 Google Play Scraper . 32

5.1.1 Fixing the Google Play Scraper 33
5.1.2 RESTful API . 36

5.2 Workflows and Microservices . 37
5.2.1 Implementing the Play Scraper 38
5.2.2 Implementing the Persistence Layer 41
5.2.3 Implementing Database Search 45
5.2.4 Implementing Database Updates 47
5.2.5 Implementing Ratings . 52
5.2.6 Implementing Metadata Analysis 54

5.3 User Interface . 56
5.3.1 User Login . 57
5.3.2 Searching and Adding Apps to Database 58
5.3.3 Show Saved Apps . 64
5.3.4 Update Apps . 69
5.3.5 Rate Apps . 70
5.3.6 Analysis of Metadata . 71

6 Compliance with Requirements 75
6.1 Functional Requirements . 75
6.2 Non-Functional Requirements . 76

7 Conclusion and Future Work 77
7.1 Conclusion . 77
7.2 Future Work . 79

v

Contents

A Software Used and Its Versions 81

Bibliography 82

vi

1 Introduction

This chapter first motivates the chances that are being created when adding ad-
ditional information to smartphone applications. Afterwards, problems are getting
discussed that are cumming up when creating a distributed service with distribution
and complexity. Additionally, a general problem with ratings in app stores is getting
explained. Then, it gets explained what the contributions of this thesis are. Last,
the outline of this thesis is presented.

1.1 Motivation

Nowadays, more than three of four German citizens over 16 years own a smart-
phone [2]. Additionally, the market with apps, services, and infrastructure for smart-
phones grows by two percent per year. Therefore, this market is getting more and
more significant.
For adding functionalities to a smartphone, applications are needed. Those appli-
cations are mostly distributed by the Apple App Store1 for Apple devices and the
Google Play Store2 for devices running Android. Those platforms are called app
stores.
However, for some cases, like for mobile health (mHealth) apps, the ratings in those
app stores do not help decide which application is the best to treat a specific dis-
ease, e.g., an app that has a lot of surveys that must get completed between the
regular app content can have a poor rating but still can be very helpful [39]. This is
the case since users describe in those ratings how they liked the app while they do

1https://www.apple.com/de/ios/app-store/
2https://play.google.com/store/apps

1

https://www.apple.com/de/ios/app-store/
https://play.google.com/store/apps

1 Introduction

not differentiate between categories that are important for deciding which applica-
tion is best for treatment [27].
To generate data that is more meaningful for therapists, there is the possibility to
create an additional service, where the information from the original app stores is
getting enriched with ratings and further additional information by experts. Those
expert ratings are being created using a standardized questionnaire to rate apps
under certain aspects which helps to make ratings more comparable.
To prevent having to copy or rewrite all information which is already given in the app
stores, some platforms offer an application programming interface (API) which can
get used for getting this information.

1.2 Problem Analysis

When writing a service that can get used by many users at the same time, scala-
bility is a first big issue [4]. This can be solved by distributing the load. To make it
possible to distribute the workload, different techniques can get applied.
One way to distribute the workload is by offering the same service multiple times.
This idea can get implemented easily using a multi-site load balancer, which lets
always balance the workload and capacity of each host running the service and
lets the users use a host having enough capacity. How this can get implemented is
shown in Figure 1.1.
However, in most cases, not the whole service is affected when more users are us-
ing it at the same time [11]. Still, it can be difficult to find out which part of a monolith
service has problems with scaling. Thus, a solution can be splitting one monolith
service into smaller and distributed microservices. This allows detecting the parts
that scale badly and replicate only those. This is especially possible because the
microservices are implemented independently. Furthermore, when splitting a ser-
vice into microservices, this allows distributing the single services onto different
servers. How this could get implemented is shown in Figure 1.2. Doing this in-
creases not only scalability but the availability since when one microservice is not
reachable this does not mean that the whole service cannot work. This is the case
since every microservice is a single process, and users who do not need to utilize
this microservice do not use the capacity of those.

2

1 Introduction

Host 3

Component 2

Component 1

Component 3

Host 2

Component 2

Component 1

Component 3

Host 1

Component 2

Component 1

Component 3

Load
Balancer

Figure 1.1: A monolithic service, having three components running on three hosts.
The load balancer decides which of those gets used by each user to
balance the workloads for the hosts. Based on [11].

Another important issue is complexity. Nowadays, activities that are required to per-
form are becoming more sophisticated and need the interaction of many persons or
systems [7]. A possible approach to visualize and allow simplification of the busi-
ness can get reached using business processes. Those business processes are
describing all necessary activities and interactions. To allow automation and ad-
ministration of business processes, those can get implemented in workflows [40].
Galler define workflows as the implementation of business processes [14].
When defining workflows it is essential to design and document every workflow so
that it is unambiguous [7]. This means that every reader understands the same
when reading a business process. Unambiguity is even more critical when imple-
menting a business process into a workflow since here a machine needs to under-
stand the process.
However, having a well-designed workflow, it allows getting more insight into all
process activities [7]. A workflow allows identifying problems and areas where opti-
mization is possible. Second, redundancies can get determined by using the gained
insights. Third, by having responsibilities defined in business processes, it is clear
who has to fulfill each task by when. Finally, it is always clear what to do with the

3

1 Introduction

Host 1

Service 2

Service 1

Service 2

Overlay Network

Load
Balancer

Host 2

Service 3

Service 1

Figure 1.2: Microservices are running on two hosts. A load balancer decides which
service is used for each user. Services can run multiple times or just
once independent from the host. Based on [11].

results, i.e., what is the next task to get performed with the results.
In summary, using business processes makes it easier to track and improve all
processes. When automating and turning business processes into workflows, the
likelihood of human errors gets reduced, and the efficiency of the tasks can get im-
proved even more.
In some cases, the data that is given by the app stores comes not with enough in-
formation since ratings and comments are not objective and often contain personal
views of the users. To solve this issue, additional data can get gathered by letting
experts rate apps using standardized questionnaire, which allows reaching an ob-
jective level of ratings. However, apps are getting updated, and when having many
apps already rated by those experts, it is essential to review those ratings when the
app gets changed.
Therefore, it is essential to check for updates and what is even more important to
check if the quality of the app changes. To make this possible without letting experts
check every app on each update, this can be solved analyzing the metadata of the
apps. Thus, when the ratings in the app store change a lot after an update, the
chance that this app was altered in a way that it needs to get reviewed is higher
than in other cases where nothing changes. Here it is essential to track the ratings
since, in the app store, it is not possible to get the ratings by time, i.e., it is not possi-
ble to get whether ratings are made before or after an update [27]. The downloads
and comments can get further insights into what was changed, but it is hard to get

4

1 Introduction

if changes are essential from those automatically. Furthermore, the investigation
of the update rates can be attractive, since this allows recognizing if an app is still
getting improved.
All this gathered data can get visualized and therefore help to decide if an app re-
view potentially needs to get updated and help to choose an app to use when more
than one app could be used in the same context.

1.3 Contribution

The aim of this thesis is the development of a prototype for a workflow-based analy-
sis service. This service analyses the metadata of mobile apps to create additional
information. When the service is implemented, a use case is to create a service for
mHealth apps. Therefore, the service can help in cases a mobile app should get
used for treatment. For creating a service that helps to decide which app is best for
treatment, the metadata of apps is getting analyzed to help seeing changes, e.g., in
ratings from one update to the next. Additionally, experts can add ratings that are
more objective and have different categories in which the app gets rated.
A therapist can use the service via an internet user interface to search for apps.
In many cases, there is not only one app that can help. To help to decide which
app is best other experts rate the apps, and the ratings and changes in the ratings
get analyzed. Having decided for an app, the therapist can add a rating afterwards,
which helps other users of the service.
Using workflows for the service implementation allows letting services run multi-
ple times and on different hosts. Doing this helps, e.g., when scraping the Google
Play Store since here, the number of requests per host is limited. Additionally, us-
ing independent microservices allows developing and scaling each of the services
individually when it is necessary. For testing the use case of the service, a user
interface is implemented. In addition, the user interface allows the presentation of
the results of the metadata analysis and the advantages of this.

5

1 Introduction

1.4 Outline

The remainder of this thesis is getting divided into six chapters. Chapter 2 intro-
duces all the fundamentals and ideas this thesis is based on. Subsequently, the re-
quirements for the service to be developed are defined in Chapter 3. In Chapter 4,
the concept the later work is going to build on is explained. Chapter 5 is dedicated
to the implementation of the concept and the presentation of the UI. Chapter 6
presents the degree of implementation compared to the requirements defined in
Chapter 3. Eventually, in Chapter 7, the thesis is summarized, and conclusions are
getting drawn. Furthermore, this chapter presents possible future work.

6

2 Fundamentals

In this chapter, the fundamentals this thesis is based on are getting discussed.
In the following the mobile health app app database is getting motivated. Then,
different types of databases and two techniques to implement the combination of
microservices are getting discussed. Also, two alternatives for retrieving data from
app stores are reviewed.

2.1 Mobile Health App Database

One field of application of this thesis is for mHealth apps. Those apps can get used
for medical treatments or in medical studies where the information which apps are
useful for special treatment is essential. That information is not given in app stores
where everyone can rate an app by personal opinion and without always looking at
the aspects which are essential for treatments or studies.
Additionally, mHealth apps became more and more popular over the last years [20].
Those apps aim to help the users to improve their health through many different
functionalities, e.g., monitoring health data or training of body functions. Very often,
however, the quality of content and data security are difficult to assess, so that risks,
misinformation, and adverse developments cannot get ruled out when using these
mHealth apps [38]. The Mobile Health App Database (MHAD) is a database system
that tries to generate more transparency regarding the quality of apps in the health
sector [38]. By generating this transparency, patients and practitioners are getting
supported to make informed and quality-assured decisions which app to use.
Each published mHealth app has been reviewed by two specially trained experts
using a validated diagnostic tool called MARS [38]. These reports are getting re-
viewed by a third independent scientist and then released.
For adding new apps to MHAD, those can get searched by a privileged user in the

7

2 Fundamentals

Google Play Store and Apple App Store. Having an app found it can get added
to the MHAD review process. After going through that process, the app is getting
added to the MHAD.
The MHAD can still get improved. In this thesis, a workflow-based service is getting
designed and implemented that has the potential to do so. However, integrating
the workflow-based service into the MHAD is not part of this thesis. Therefore, for
the prototype implementation of this thesis, a simple user interface will get imple-
mented. This user interface will demonstrate the usage of this service.

2.2 Databases

In this thesis, an analysis service is going to get planned and implemented.
However, there are a lot of different databases for each type of database. Since the
choice of database changes how data is stored, how to talk to the database, and a
lot more, it is essential to compare the possibilities.

2.2.1 Relational Databases

Since 1970 there was the idea of ordering data in sets of tuples [22]. Those data-
bases were so-called relational databases where data gets organized in tables.
Additionally, data values must get typed to be, e.g., strings, dates, or numeric [32].
Once a table gets created, whereby the types are set, these types are enforced by
the system. Having tables and types inside set by creation, it is essential to plan the
usage, and all that will be filled in before [32]. This means it is always clear which
datatype is presented in each field and how to join different tables.
Furthermore, in relational databases, a lot of the logic is already implemented in the
database, which makes it easier to implement it in programs. On the other hand,
this can be a problem when the data structure changes or things should be added
later on.
Additionally, splitting up relational databases after creation, is not possible with mod-
ern relational databases. Therefore the potential of scalability is limited.
When the type of data or the fields can change later, a relational database may not

8

2 Fundamentals

be the right choice. This is the case since a change in a field would make it neces-
sary to overwork the already saved data. Therefore, it would be better to choose a
database without schema which allows reacting to changes in the database using
the software implementation.

2.2.2 Non-Relational Databases

Over the last decade, the requirements for databases changed [1, 33]. This change
in requirements happened because the quantity and frequency in which data is
generated and has to get saved within services has grown exponentially. As a re-
sult, new database technologies have been developed to address these new needs.
Those so-called not only SQL (NoSQL) databases are therefore highly scalable and
offer different other optimizations for getting used with many data [34].
Those newly developed databases allow, e.g., to split up databases on many differ-
ent servers, to change the fields in the database from time to time, or save data in
its form even when the data is deeply hierarchical [32].
The most straightforward idea of NoSQL databases were key-value databases [33].
Here key-value pairs are saved like they are in maps or hashtables or modern pro-
gramming languages [32]. Key-value databases are very simple structured and
allow, therefore, very performant operations. However, this type of database is not
useful when complex queries or aggregation is needed.
Columnar databases are designed in a way that always the data from a given col-
umn is getting saved. This significantly improves the access time through optimized
input/output operations. Therefore, columnar databases are the opposite of a rela-
tional database where the information of a row is stored together. Using a columnar
database is very useful for analysis scenarios. Therefore, better when otherwise
storage full of null values would need to get stored. However, when looking only on
the structure, columnar databases are the midway between relational and key-value
databases.
Document databases store documents including the nested structures [32]. This
structure allows for reaching high flexibility. Additionally, a document database im-
poses only a few restrictions on data that should be saved. Each database differ-
ently solves indexing, ad hoc querying, replication, consistency, and other design
decisions.

9

2 Fundamentals

Lastly, there are graph databases that are rarely getting used [32]. This database-
type consists of nodes and their relations to other nodes. Graph databases are very
good at traversing the nodes through the following relationships.
In summary, all those types of NoSQL databases have different advantages and are
structuring the data differently [33]. However, all NoSQL databases have in com-
mon that the specification of a data type for fields is not mandatory. Not knowing
the types of data by the database moves some of the work into the programs that
are using the database. Therefore, it is easier to create the database but it can get
harder to implement it.

2.3 Microservices and their Orchestration

When programming projects, usually, the codebase grows when adding features [28].
Thus, after some time projects are becoming increasingly complex, and dependen-
cies between components lead to undesirable site effects.
One way to solve this is cohesion and the use of vertical services. Different levels of
abstraction are getting added to allow to change things just in one place of at least
knowing where the code has to get adapted. Therefore, microservice architectures
are a current trend in implementing distributed systems. Dragoni et al. define mi-
croservices as independent and small processes that are communicating directly or
using an event bus using messages [11]. Therefore, implementing a project using
microservices means that the project gets divided into smaller sub-projects, which
can do their work independently but communicating with the others to fulfill the
same target as the one big project would. Therefore, microservices are a modern
way of implementing software architectures.
Implementing software using a microservice architecture allows having small teams
to implement small parts that can get combined very flexible to one system [18].
Furthermore, since those services are independent and are communicating over
messages, it is possible to use for each microservice the technology which fits best
- which would typically not be possible in a monolithic project. Therefore, once hav-
ing a microservice for a task implemented, it can get used for many independent
systems. What is more, each service can get scaled individually to fit the needs.
Having a lot of small microservices those can get used for implementing a dis-
tributed system.

10

2 Fundamentals

2.3.1 Distributed Architecture

As already mentioned, using microservices, each of these services has its task,
which can get fulfilled without the others. When implementing every task in an inde-
pendent microservice, this results in the possibility of distributing the services using
APIs. For this, each service can run independently on one or more servers which
adds even more scalability.
However, having those services independently running each microservice need to
fulfill several characteristics resulting in guidelines which are getting stated and ex-
plained in the following [16].
First, each microservice needs to have an independent life cycle. For each of these
services, it must be possible to develop a service in an independent team. There
is not supposed to be any necessity to coordinate with other teams. Additionally, it
must be possible to start and stop or even change a microservice independent from
others.
Second, each microservice must provide stable interfaces that do not change dur-
ing updates. In cases interfaces are getting incompatible for adding more features
or reflecting changes at other parts, this should be done by versioning the interface.
Third, there are cases a microservice must communicate with other microservices.
Here, the communication must get implemented in a way that expects the other ser-
vice not to be able to answer immediately. One way to solve this would be by using
asynchronous messages and a message broker for guaranteed message delivery.
Fourth, each microservice needs to be robust and fault-tolerant. Therefore, when
one microservice causes problems, other microservices are not affected. If one
instance of a microservice has a problem, also its other instances must not be af-
fected by this either.In most cases, it is better to let one instance of service fail or
restart than letting the entire system fail and stop working.
Fifth, for being able to fulfill their work, microservices often keep local copies of the
data they need. Storing local copies mainly helps in meeting the other policies such
as independence.
Last, for allowing independent scalability, it must be possible to provide each service
with the needed resources while not affecting others. However, not every microser-
vice must fulfill all of those mentioned guidelines but reach the same targets to make
it possible for the microservices to work together.

11

2 Fundamentals

2.3.2 Choreography and Orchestration

Microservices can get combined to workflows that define the composition of mi-
croservices, which are needed, to reach a defined condition. For implementing the
workflows, microservices need to get orchestrated or choreographed [26].
When using choreography, the focus is on organizing the collaboration of the ser-
vices. Here, each service calls the next one and hands over the results which are
needed for the next service. However, in cases, one service cannot finish its work,
a fail message needs to get sent. This is necessary to let the other processes know
what problem happened at which service. Therefore, choreographing microservices
means that each service needs to have implemented which service to call after fin-
ishing and what to do in error cases. This implies that each service needs to get
adapted for every workflow. This concept is shown in Figure 2.1 a).
Orchestration prevents that adaption is getting necessary by adding a layer which
takes care of handing messages from one service to the next. This layer is mostly
implemented in a workflow engine. Additionally, when orchestrating workflows, it is
always clear which service does not work as intended in some error cases, and it is
possible to debug such cases since the information that was handed to the service
is available at the orchestration layer. Furthermore, retries can get implemented,
e.g., when the service does not answer at a specified time or when an error is get-
ting returned.

(a)

A

B

C

D

(b)

A

B

C

D

Figure 2.1: The difference of using choreography (a) and orchestration (b) for work-
flow composition. When using choreography all microservices commu-
nicate directly, whereas orchestration adds one more layer for control-
ling.

12

2 Fundamentals

Therefore, having a service implemented it does not need adaptions for different
workflows since the combination to a workflow, and the handling of messages get
moved to another layer. Additionally, when a microservice is always getting used for
a task, errors must get fixed in one place only. The concept of this idea is shown in
Figure 2.1 b).
To sum it up, for being able to use microservices multiple times without having to
change some parts, orchestration has to get used. This is due to the necessity of
combining all services directly. On the other hand, this makes an additional layer
necessary, which orchestrates the microservices. Therefore, both concepts have
reasons to get used.

2.3.3 Building Workflows

When using a microservice architecture, the implementation of workflows is an im-
portant aspect [16]. As already mentioned, workflow engines can get used for this.
For capturing business processes, Business Process Modell and Notation (BPMN)
is a standard [19]. BPMN was published in 2004 by the Business Process Man-
agement Initiative (BPMI) as Process Modelling Notation. After the BPMI and the
Object Management Group (OMG) merged in 2005, the BPMN was published as an
OMG specification for the first time in 2006. When introducing BPMN 2.0, the name
was changed to Business Process Modell and Notation to highlight the introduction
of execution semantics. The current version of BPMN is 2.0.2.
BPMN combines the advantages of using Extensible Markup Language (XML) Pro-
cess Definition Language (XPDL) and Unified Modeling Notation (UML) and is
therefore used in many companies for creating and automating workflows [9].
To allow using the idea of implementing workflows, an approach is to extract the
information of BPMN workflows by software [29]. Extracting the information using
software microservices can get orchestrated following the workflow without having
to implement the orchestration. However, the implementation of the service tasks is
still needed.
To make this process even more comfortable, Camunda created a microservice or-
chestration tool called Zeebe that allows importing the BPMN workflow directly [16].
To be able to import BPMN processes, those are getting written in a modeler, which
saves the workflows in XML. For defining which microservice can get called how

13

2 Fundamentals

this BPMN workflow can get imported to a client. Using the client workflows can get
enriched with information on how to call each microservice.

2.4 Retrieve Data From App Stores

Applications for smartphones are shared in app stores, mainly the Google Play
Store – for Android devices – and Apple App Store – for iOS devices. When the
data of these stores should be analyzed, it must be retrieved from there in some
way. Getting the data allows saving and enriching the data alongside the analysis.
For getting the necessary data from the app stores, two different techniques are
getting discussed here.

2.4.1 Using an API

One technique to get data from an app store is to use an API that is given by the
provider. Such an API allows getting the requested content via specific calls over a
web interface [23]. For the user, it is just essential how to use it and in which form
the necessary data is presented. For making it easy to work with an API, therefore,
proper documentation is needed. Additionally, to make it possible working in pro-
grams with such an API, the data is presented mostly in JavaScript Object Notation
(JSON).
Some years ago, for interchanging data on the web, XML was the primary for-
mat [24]. However, JSON is simple to read and allows translating objects easier
to concepts that are known by software developers such as arrays, objects, and
key-value pairs. Therefore JSON objects are fitting better for the nowadays mostly
used object-oriented design and development.
What is more, JSON documents are faster transmittable and, therefore, more effi-
cient to process than the same data written in XML. Thus, when there is an API for
an app store, this should be used. This is the case since fields in an app store are
changed sometimes – which can cause problems when not changing the software.
This is not the case for an API, for this, the provider mostly does not change the
interface and ensures that the API will still produce the wanted outcome.
However, using an API is not always free. Some APIs like the one of the Apple

14

2 Fundamentals

App Store need to get paid, some others allow a low usage for free, but when more
requests are wanted in a certain period this needs to get paid.
Contrarily, sometimes there is not even a paid API, which is the case for Google’s
Play Store. In this case, where no API is present another way to get the necessary
data has to get found. One solution to still get the data is using a scraper which
collects the information from websites.

2.4.2 Using a Scraper

Having no API given by Google, a way to get the data is to scrape the app store by
using the Play Store’s website. A scraper offers the functionality which is wanted by
an API when no API is given or not accessible [37]. A scraper collects the informa-
tion that is presented on websites and orders them in a way that programs can use
it. Reordering the information to new clusters allows performing different operations
on the data. Thus, the use of scrapers differs for each purpose.
Therefore, it is essential to know that a scraper written for one page does not work
for another website [37]. This is the case since it has to get modified to scrape
the necessary information from each site. This adaption is required because the
scraper gets a full website and tries to detach all necessary information from it. To
make this possible, it needs to get implemented where on the site which information
can get found.
If not only information from one page is to be scrapped, but all information that a
website offers, a scraper must also scrape different sub-pages to get to the nec-
essary information. In some cases, it is furthermore necessary to combine the
knowledge of different sites. For controlling a scraper, one could implement it into
the service that needs the information. This allows calling the scrapers functions
directly. Another possibility, which is not always given, is to use an API for this task.
This possibility is not always given since the scraper needs to offer an API, which
means additional work when implementing it. An advantage of this is that it opens
the potential of using more than one scraper for the same instance of a workflow to
distribute the web calls one scraper needs to do. However, for getting able to use a
scraper as a microservice, it needs to implement an API. Therefore, a scraper can
not get implemented as a microservice directly. However, a solution can be to add
a API layer which allows using the scraper as microservice.

15

3 Requirement Analysis

In this chapter, the requirements for this thesis are getting analyzed and defined.
With this, a distinction is made between functional and non-functional requirements.
In order to improve the overview of the requirements, these are divided into mod-
ules. Each requirement has a code and a description that can be used to refer to
the requirements. Additionally, each requirement is assigned a priority according to
the MoSCoW method [5].

3.1 Functional Requirements

The functional requirements define all functionalities that the application has to ful-
fill. These requirements affect all later decisions that relate to the implementation of
the application. Each module of requirements is described with a use case diagram.
All actors that are used in the use case diagrams are defined in the following.

Guest: Every actor that is not logged in to the application is a guest. Guests are
only allowed to log in and register.

User: After registering, every actor is a user. Users of the application can view all
app metadata and analysis that are saved to the service. Users can rate apps using
a standardized questionnaire. Also, users can view all saved questionnaires.

Operator: Operators have all rights of a user. Also, operators can search the app
store for applications and add them to the application.

Administrator: Administrators have all rights of the operator. Additionally, admin-
istrators can administrate users.

16

3 Requirement Analysis

Code Description Priority
Account:
F01 Authorization COULD
F02 Registration COULD
F03 Authentication COULD
F04 User Administration COULD
Search:
F05 Search for Apps MUST
F06 Save App Metadata to Database MUST
App:
F07 Show All Saved Apps MUST
F08 Update App Metadata MUST
Review:
F09 Review App SHOULD
F10 Show All Surveys per App SHOULD
F11 Show Survey Data SHOULD
Analysis:
F12 Analyse App Metadata MUST
F13 Analyse App Survey Data SHOULD

3.1.1 Account

User Interface
(e.g. MHAD)

Administrator

Operator

User

User administration

Register

Guest

Login

Figure 3.1: Use case diagram for the account module.

17

3 Requirement Analysis

F01 (Authorization): When an actor is not logged into the service, access is
blocked on all pages except the login and register page.

F02 (Registration): Guests can log in to the application.

F03 (Authentication): Registered users can log into the application and can use
all functionalities granted to their user group.

F04 (User Administration): Administrators can administrate users. Which means
that they can change for example the user group for every user.

3.1.2 Search

User Interface
(e.g. MHAD)

Microservice Orchestration

Database Google Play Store
Scraper

Load Data

Operator

<< include >>Search for
Apps

Save
App Metadata

Save App
Metadata

<< include >>

<< include >>

Figure 3.2: Use case diagram for the search module.

F05 (Search for Apps): An operator can search for apps. For this task a microser-
vice queries the Google Play Store scraper and returns the results.

18

3 Requirement Analysis

F06 (Save App Metadata to Database): For saving the metadata of an app to
the database, an operator searches for app data as described in F05. Using a mi-
croservice, the app data of a chosen app can then get saved to the database.

3.1.3 App

User Interface
(e.g. MHAD)

Microservice Orchestration

Database Google Play Store
Scraper

Load Data

User

<< include >>Look at
Apps

<< include >>

<< include >>

Update App

Load Data and
Check for Updates

Look at App
Data

<< include >>

Figure 3.3: Use case diagram for the app module.

F07 (Show All Saved Apps): A user can view all saved apps that are saved to
the database. For this, a microservice loads the data of all saved apps from the
database.

F08 (Update App Metadata): For updating the metadata of an app that is already
saved to the database, a user can trigger that process on the user interface where
all data of an app is shown. When triggering that process, a microservice loads the
data that is saved to the database and current data using the Google Play Store
scraper. When both data is queried, it gets checked if the database data should get
updated. In case the data should get updated the microservice is saving the new
data to the database.

19

3 Requirement Analysis

3.1.4 Review

User Interface
(e.g. MHAD)

Microservice Orchestration

Database

Load Data Show all
Surveys

User

<< include >>

<< include >>Review
App Save Data

<< include >>

<< include >>

Look at App
Data

Show Survey
Data

Load Survey
Data

<< include >>

Figure 3.4: Use case diagram for the review module.

F09 (Review App): A user can review apps, by triggering this process from the
app page in the user interface. When the questionnaire is completed it is send to a
microservice that saves the answers to the database.

F10 (Show All Surveys per App): For seeing all reviews that are saved for an
app, opens the app page in the user interface. Doing this, the data for the app gets
retrieved from the database. Also, the corresponding surveys are getting retrieved.

F11 (Show Survey Data): To get all data of a specific review, the user can choose
one of the in F10 retrieved entries. A microservice is triggered by this, that retrieves
the wanted data from the database.

20

3 Requirement Analysis

3.1.5 Analysis

User Interface
(e.g. MHAD)

Microservice Orchestration

Database

Load Data Analyse
Appdata

User

<< include >>Look at App
Data

<< include >>

Figure 3.5: Use case diagram for the analysis module.

F12 (Analyse App Metadata): When a user looks at the app data in the user in-
terface, the metadata of this app gets retrieved from the database. In addition, the
data is getting analyzed or getting returned in a form that it offers additional insights
for the user.

F13 (Analyse App Survey Data): A user can get the analyzed survey data when
looking at the app data in the user interface. Here, when retrieving the survey data,
it gets analyzed, or it gets returned in a form that offers additional insights for the
user.

21

3 Requirement Analysis

3.2 Non-Functional Requirements

The non-functional requirements are listed below. They define the quality in which
the required functionalities are to be provided.

Code Description Priority
System:
NF1 Reliability MUST
NF2 Scalability MUST
NF3 Maintainability SHOULD
NF4 Extensibility SHOULD
NF5 Robustness SHOULD

NF1 (Reliability): The application has to be reliable in any situation. Therefore, the
application must be accessible in all possible situations.

NF2 (Scalability): The application must be scalable. For this purpose, all parts of
the application should be replicable, and the software used should have been im-
plemented with scalability in mind.

NF3 (Maintainability): The implementation of the application must be well docu-
mented. This allows the application to be maintained at a later point in time.

NF4 (Extensibility): Adding additional features to the application should be possi-
ble. For this, documentation of is essential.

NF5 (Robustness): The application should be able to process or intercept incor-
rect user input. Therefore, the application should react in a predefined way.

22

4 Concept

In this chapter, the concept of this thesis implementation is getting explained. There-
fore, in this chapter, the idea, technologies, and the decisions about why each tech-
nology was chosen is getting discussed.
The focus of this thesis is on the development of a workflow-based service and
its functionalities. For implementing the workflows service tasks, microservices are
used. Therefore, an essential part of this thesis is the implementation of a microser-
vice orchestration. This orchestration makes it possible to use microservices that
are using the Google Play Scraper to query app metadata. Also, the service will not
only save app metadata but add additional analysis, e.g., saving the version of the
app when a rating was given, having data about the updates frequency and the app
store rating in connection to this.
The service consists of four parts. First, there is the user interface that every user
uses to interact with the service. An example of the user interface can be the MHAD
explained in Section 2.1. Second, the microservice orchestration. The microser-
vice orchestration is the most critical part of this thesis. Here the tasks which are
requested by the users are getting carried out. Third, the database, which stores
all apps and the analysis of those. Fourth, the Google Play Store scraper, which is
getting the app metadata for android devices.
When looking at apps that are already in the database, first, the data is directly
loaded from there. Additionally, it is getting checked if there are any updates for this
app in the app stores. In the case of a newer version, the saved app metadata is
getting updated. Then changes are getting analyzed. When a user wants to rate an
app, the data is loaded using the same process. Additionally, the user can now rate
the app. The resulting rating is getting saved to the database. When an operator
is adding a new app to the database, the app stores are getting searched for the
desired apps. The results are getting shown the operator who chooses which of the
results should get added to the database.

23

4 Concept

In the following, the concept and decisions for the implementation of the microser-
vice orchestration and the database are getting explained. These are particularly
important for the concept because the decisions made here also have a substantial
impact on the implementation. Last, the concept for implementing a prototype UI is
getting presented.

4.1 Microservice Orchestration

Dividing the service into microservices allows better scalability since this makes
distributing the workload more manageable. Additionally, to prevent having to work
on implementations that are needed more than once, the microservices are getting
orchestrated.

4.1.1 Zeebe

When looking for an orchestration software that is lightweight and focuses on scal-
ability, Zeebe is something that comes up. Zeebe is open-source under the Zeebe
Community License Version 1.0. The official clients are open-source under the
commonly known Apache License, Version 2.0. Being open-source, everyone can
help to find and fix issues that come up when using Zeebe. As mentioned earlier
in Section 2.3.3, Zeebe allows working with BPMN directly. Therefore, the BPMN
workflows are getting written using a modeler that allows adding labels which can
later be referenced when implementing each service task.
Zeebe allows to orchestrate microservices in workflows [15]. Since workflows are
written in BPM, it gets ensured that each task is well defined. By doing this, Zeebe is
scalable and fault-tolerant. Zeebe can be used directly or, what is the recommended
way, with Docker1. Using Docker no installation of software is needed since all this
is coming with Zeebe in the Docker container [25].
When using Zeebe with Docker, several compose files are already given. Using
Docker allows starting Zeebe for a lot of different purposes, i.e., Zeebe can get
started for development or production. The difference is, e.g., that for developing an

1https://www.docker.com/

24

https://www.docker.com/

4 Concept

additional web-monitor is started with Zeebe. This so-called "simple monitor" allows
seeing each implemented workflow and its current state. In Figure 4.1, a workflow
is shown in the simple monitor. On the left-hand side, metadata of the workflow is
getting presented. In the center, the workflow is shown with the running and fin-
ished instances. In the bottom, the data of the selected instance gets presented. In
the tabs, different data of this instance can get selected.
However, when implementing a service task, it can be helpful to see what data was
sent in each step, but for production, this monitor needs additional performance and
should, therefore, not run at all times.

Figure 4.1: The simple monitor is a web-based interface for Zeebe which allows
seeing all current workflows, their progress, and which data was han-
dled.

4.1.2 Zeebe Client

Clients for Zeebe can be used in many different programming languages. However,
the clients who are officially supported are written in Java and Go. For implementa-

25

4 Concept

tion, the Go client is going to get used, since using an official client ensures that this
is going to get supported for new versions directly. Also, community support could
end at any point when the main developer changes to another product or just has
no time to adapt the code.
Using Java was the first idea since Java is a programming language that is often
used to explain most of the concepts of programming. Thus, Java is very well known
and allows implementing code is a known way. Java gets used for an explanation
because it was written already in the 1990s and is very popular since [12]. Java is
a general-purpose programming language that is very powerful [13]. Additionally,
Java is very stable, which made it very popular with enterprises and large shops.
However, code written in Java is not very compact and thus not always easy to read.
Switching from Java to Go has some advantages too. The design of Go was started
in 2009 by three persons working at Google [8]. They designed Go as a language
that can solve common issues that appear when scaling distributed systems. When
implementing functions in Go, many errors get caught by the compiler, e.g., imple-
menting a package and not using it creates an error [41]. For preventing different
styles of using curly braces when programming in Go, there is just one right way of
using those. In Go, the opening curly brace has to be in the same line as the func-
tion it is opening since, in other cases, it is not going to compile. Another thing that
makes code written in Go very readable is that defining a new variable is different
than when using an already used one. For creating a new variable ":=" is getting
used, for defining a value to an already known variable "=" is used.
For implementing a concept based on microservices, it is essential to reuse the
methods. Therefore, the implementation of service tasks needs to get implemented
not directly in the same file or packet where the workflow is getting defined and sent
to the workflow engine. Thus, the service tasks are getting implemented in an extra
package which gets imported.
Importing functions from other packages in Go is different than in other program-
ming languages [41]. In Go, every function that should get exported and therefore
is possible to import has to start with a capital letter. Any functions that do not start
with a capital letter are not accessible from outside the package. Second, importing
own packages can get done using several options. The easiest way is by using rel-
ative paths. Another possibility is compiling the package that should get imported,
which saves the compiled package to the local cache. Using relative paths allows
preventing that step of having to compile the package for each change, but since

26

4 Concept

the path could be not the same on another machine. Therefore, using relative paths
for import should only get used for testing. Thus, the service tasks are getting still
adapted, for imports relative paths are used for now.
To sum it up, code written in Go is very readable and better scalable than code in
Java since scalability is one of the main focuses of Go. Some things are different
than in other programming languages; this is going to create some issues when
starting to work with Go. However, accepting the differences, these concepts en-
hance writing code that is readable and understandable by others. Therefore, Go is
going to get used for the implementation of this project of the Zeebe client.

4.2 Database

When implementing a service that needs to save data, one of the most critical
decisions is which database going to get is used. This decision is essential since
each database has advantages and disadvantages compared to others that are
more or less important for the desired usage [32]. Thus, even if all databases can
save data, it is essential to choose a database that focuses on the aspects that are
needed for the service.
First, it is essential to have the possibility to save data not always in the same
format - the data which is obtained from app stores could change over time. The
database should allow saving data in different formats and let the implementation
solve possible issues with changes. Second, creating a distributed service, it is
hard to predict the amount of data or users before. Therefore, the database should
be scalable. Third, it should be possible to search the database fast for the wanted
results, e.g., all data of one app and the differences in metadata. A database that
fits the explained needs is CouchDB.

4.2.1 CouchDB

For the implementation, CouchDB, a document-based database, is used. Describ-
ing CouchDB, one word is very important; it is "relax" [3]. Relaxation in the context
of CouchDB means many different things. First, the core concepts of CouchDB are
focused on ease of use. Therefore those concepts can get understood quite easily

27

4 Concept

by everyone who has been working on the web. Second, CouchDB has an inter-
nal structure that is fault-tolerant. Thus, failures that occur get controlled and stay
isolated in single requests. Third, CouchDB is built for handling varying traffic. In
cases of traffic spikes, CouchDB will take more time to answer, but all requests are
getting answered. Additionally, after those spikes, CouchDB will return to regular
speed. Fourth, the hardware running CouchDB can get scaled easily. Therefore,
when more requests are expected from a certain point in time, hardware can get
scaled up without any problems. In other cases, or when less traffic gets expected,
the hardware can get scaled down the same way. Last, some features which would
result in preventing to allow scaling are left out by design. Thus, some ways of im-
plementing are not possible using CouchDB which results that some things have to
get done not as it would be normal with other databases.
For scaling the database, one of the core features of CouchDB is replication [21].
Databases can get replicated very quickly, which allows bringing the data closer to
the user or adding more capacity to the database. When replicating a database,
it is possible to replicate not all data in a database, which can get useful in cases
only a part of documents is needed more often or for clients closer to the replicated
database. For preventing documents from getting replicated, they can get created
as local documents that get never replicated. Another possibility to choose which
documents should get replicated is including a selector object to the documents that
should get replicated. Last, a filter function can get used for filtering the documents
from a database that should get replicated. Replication can be continuous or just
made once. When replicating, the changes will get transferred only in one direction.
However, a continuous replication can get archived when setting up a replication
task on both nodes in the opposite direction.
Another essential feature of CouchDB is design documents [36]. Design docu-
ments are a particular document type which contains application code. Since this
code is running directly inside a database, the application API runs very efficiently.
In design documents, views and other application functions can get created. These
views getting created using JavaScript and are the primary tool for querying. Views
consist of a map and a reduce function, where the reduce function is optional.
For aggregating information that gets stored in CouchDB views are needed [6].
Views allow converting single documents into a list of information. This list can then
get used for querying and selecting information, or group the information by se-
lected values. Thus, views allow to index and query information which gets stored

28

4 Concept

in documents. Furthermore, views allow producing lists of specific elements of a
document. Another use case is using views to create tables or lists of informa-
tion, which is summarizing the data of documents. Views can further get used for
extracting or filtering information from documents. Last, views can get used for cal-
culating, summarizing, or reducing documents. For each database, multiple design
document, each including multiple different views can get created to get the wanted
information.
When using views, it is essential to know that views get only updated when ac-
cessing the view [6]. Meaning, views do not get updated when adding data to the
database or when updating it. Thus, when accessing a view the first time, or after
many changes in the database, it will take some time until the index gets created or
updated, and the view gets generated. However, in most cases, the update process
is comparatively fast. Another important aspect of views is that they are working
with B-Trees, which are bound to the design document. Therefore, accessing a
view, all views indexes that are bound to the same design document are getting
updated, even when only one view was accessed. Using a B-Tree for storing the
information makes it very efficient to get an item based on a key, or even a range of
keys. Furthermore, a view can get queried while grouping by the key. Grouping the
data allows querying a view only for a given key, or for all keys at the same time but
get the results subdivided for each key.

4.2.2 Fauxton and API

When working with CouchDB, there are two ways of communicating with it. First,
there is Fauxton2, a web-based interface which is built into CouchDB. Second, there
is an API.
Using Fauxton to communicate with CouchDB allows using the majority of the func-
tionality, including the ability to create and update views and documents. Addition-
ally, CouchDB can get configured using Fauxton. Therefore, Fauxton can get used
for configuring CouchDB and allows looking at the data in the databases. How
Fauxton looks like is shown in Figure 4.2. Additionally, Fauxton allows creating and
testing views without the necessity of writing the requests to query the view with all
options.

2https://couchdb.apache.org/fauxton-visual-guide/

29

https://couchdb.apache.org/fauxton-visual-guide/

4 Concept

Figure 4.2: Fauxton, a native web-based interface for CouchDB.

However, for implementation, the CouchDB API can get used. Having an API given,
microservices using CouchDB can get implemented easily, as explained earlier. All
aspects that are needed for implementing the API get explained in detail when using
them the first time.

4.3 User Interface

For using the analysis service not only for testing, a web user interface (UI) is also
implemented. However, the focus of this thesis is not the UI. Therefore, the UI is
going to get implemented functionally as a prototype.
To allow creating a UI that is created fast, it is getting written in HTML templates, im-
plementing a CSS stylesheet that makes the HTML elements looking good without
further work. The stylesheet which is going to get used is MVP.css3 a minimal-

3https://andybrewer.github.io/mvp/

30

https://andybrewer.github.io/mvp/

4 Concept

ist stylesheet. MVP.css is getting used here since it does not change the HTML
based on classes as other stylesheets do – it does change the HTML elements di-
rectly. Thus, the HTML template does not need to get changed to make use of this
stylesheet.
The functionality of the UI is written in Go. Using Go for the functionality is going
to allow using the same Zeebe client as for the implementation to start workflows
and accessing the workflow variables. Thus, the code that is implemented before
testing the workflows can get reused in some parts. Additionally, using Go here
means that the expertise of using Go is getting more over the whole work which will
result in the best possible implementation at the end.
For being able to implement some of the analysis parts in the UI, JavaScript is also
used. Using JavaScript will allow representing app metadata dynamically for each
app. For creating charts for the analysis ChartJS4 is used. ChartJS is an open-
source JavaScript library that allows creating different sorts of charts in HTML5.
Thus, the analysis changes on each update of the app metadata, which is getting
saved to the database. Furthermore, JavaScript is used for implementing the expert
rating generated with the library SurveyJS5. SurveyJS is a JavaScript library that al-
lows showing a survey that gets generated from JSON data. The data requested
in the survey is getting returned in a text form that can get transferred to JSON di-
rectly. Having the data in JSON allows saving it to CouchDB in an afterward easily
accessible format.

4https://www.chartjs.org/
5https://surveyjs.io/

31

https://www.chartjs.org/
https://surveyjs.io/

5 Implementation

In this chapter, the implementation of the service will be explained. First, the parts
needed for the service will get explained. Afterward, the implementation of these
parts in the analysis service and the implementation of the service tasks are shown
and explained.

5.1 Google Play Scraper

For this thesis, an scraper for the Google Play Store is getting used. Using a scraper
is necessary since Google does not have an API that can get used. Using an al-
ready working scraper allows focusing less on the scraping and more on additional
services.
Therefore, an open-source Node.js scraper, called Google Play Scraper [31], which
is used by more than 300 other projects, is used. Using this scraper, which has a
supportive community, ensures that even after the end of this thesis, the scraper will
be adapted to work with the Google Play Store. Updating the scraper is necessary
since the Google Play Store gets adapted every once in a while which would result
otherwise in a not working play scraper.
Furthermore, for this project, there is the possibility of using an API that allows con-
suming the data produced by the scraper. Using the scraper and the corresponding
API is going to allow using the data from the Google Play Store in the service, which
is going to get implemented in this thesis.
However, this play scraper has some open issues. One of those, which can affect
the quality of the service first had to be fixed.

32

5 Implementation

5.1.1 Fixing the Google Play Scraper

A problem with the scraper was that it could not get app data with full detail when
searching for an app by name. An executed search only returns the data, which is
visible when searching for an app in the browser. However, this is a known issue1

that came up during a restructuring of the code at the beginning of 2019.
Since this can be an issue for the service that is going to result from this work, solv-
ing this issue is an excellent first step. Furthermore, this is an excellent possibility
to get to know the scraper and its possibilities better.
Before solving this issue, it made no difference if fullDetail was set to true when
using the search function, which is shown with its results in Listing 5.1.

1 g.search ({term: 'panda ', num:1, fullDetail: true })

2 .then(console.log);

3 [{

4 title: 'Panda Pop! Bubble Shooter Saga & Puzzle Adventure ',

5 appId: 'com.sgn.pandapop.gp',

6 url: 'https :// play.google.com/store/apps/details?id=com.sgn.

pandapop.gp',

7 icon: 'https ://lh3.googleusercontent.com/n-N5SeSksOVootPWoYDGek1iY

-_EeoL46hhWOgnxbbP0eypVMqMlJtOwAZSzN -yDoOtO ',

8 developer: 'Jam City , Inc.',

9 developerId: '5509190841173705883 ',

10 priceText: 'FREE',

11 free: true ,

12 summary: 'Aim , match , shoot and pop in this free bubble shooter

classic saga adventure!',

13 scoreText: '4.4',

14 score: 4.4345155

15 }]

Listing 5.1: An example search using the Google Play Scraper with not working
fullDetail option.

As it gets shown here, there is already some information visible. Even more data, is
missing, e.g., which Android versions are supported, how often the app is installed,
and the full app description.
For solving this issue, the first step was to understand the issue. The problem when
using full detail was that the additional wanted information is not in the HTML re-
sponse when using the search on the page, in which the search function is scraping.

1https://github.com/facundoolano/google-play-scraper/issues/311

33

https://github.com/facundoolano/google-play-scraper/issues/311

5 Implementation

Therefore an additional call for each wanted app using the apps id is needed at the
right place.
In Listing 5.2, the code where the full detail option should be looked on can be seen.
Here a different treatment for the results should be applied when the option was set.

1 function search (getParseList , opts) {

2 return new Promise(function (resolve , reject) {

3 if (!opts || !opts.term) {

4 throw Error('Search term missing ');

5 }

7 if (opts.num && opts.num > 250) {

8 throw Error("The number of results can't exceed 250");

9 }

11 opts = {

...

21 };

23 initialRequest(opts)

24 .then(resolve)

25 .catch(reject);

26 });

27 }

29 module.exports = search;

Listing 5.2: An excerpt of lib/search.js showing the code which results in not working
fullDetail option.

When starting to implement the functionality, it was hard to understand the Node.js
semantics and especially how to work in this case with asynchronous calls. The
problem with those asynchronous calls was that they often returned a pending
promise. In Javascript a promise object is used for asynchronous computations.
A promise represents a value which was not available at the point in time it was re-
quested. Before understanding and then solving the issue of getting those objects
returned, it happened even that the written functions returned an array of pending
promises or a pending promise object including other pending promises.
Though, it was needed that the functions wait for the promise to get fulfilled and
not return it before. When returning a value pending promises, it should be waited
for pending promises. However, this is just working for one promise. Therefore, for

34

5 Implementation

each return value, just one promise should be pending. In cases this is not possible,
there is the possibility to wait for those promises, but this is more complicated than
just returning this. Another thing which has to be in mind is that getting apps with
all information can take a lot longer. Therefore, this additional information should
only be called for apps in which the user is interested. Also, this has to be in mind,
when testing this functionality since for tests there is often a timer which prevents
waiting forever for a test. At the end, a solution was found for the given problem.
This solution has been simplified after revising it multiple times.
For this solution, the apps are getting enriched with full detail directly before they
would be returned otherwise. Not trying to add the details earlier makes sure that
the app Id is saved for each requested app. Additionally, at this point, only the re-
quested apps are getting treated. For this, a map function is used to call the app
module to load the additional data. Finally, before returning the promises, which
would be returned otherwise, are getting resolved.
However, the additional needed time comes from here. For each app where full de-
tail is wanted, a new call for this app is getting created. This new call for each app
is necessary since the wanted data is not shown on the overview page but the apps
page. This page is getting scraped using the app module. To make this possible
the app module is called for each app using the apps identifier.
The implementation is shown in Listing 5.3.

1 function search (getParseList , appData , opts) {

...

23 initialRequest(opts)

24 .then(resolve)

25 .catch(reject);

26 }).then((results) => {

27 if (opts.fullDetail) {

28 // if full detail is wanted get it from the app module

29 return Promise.all(results.map((app) => appData ({ ...opts ,

appId: app.appId })));

30 }

31 return results;

32 });

33 }

35 module.exports = search;

Listing 5.3: An excerpt of lib/search.js showing the proposed solution for searching
apps with full detail.

35

5 Implementation

After having the issue with the not working full detail in search solved, a pull request
was made in the original repository2 to make this solution available for everyone
using the Google Play Scraper.
When having the pull request submitted, the code was reviewed by the maintainer
of the scraper. The maintainer found that even when having now code that is very
short and easy to read, using the app metadata and importing this functionality
could be a problem when using the scraper together with a memoization functional-
ity that allows caching the results of a query to prevent scraping for the same apps
more often than necessary. To prevent this, it was needed to hand the import over
from index.js where the functionality of each function is set. A problem with this was
that here Ramda [35] is used to simplify the code. Ramda allows writing functional
JavaScript, which is very elegant to write and read once it is understood.
When having this final problem solved, the pull-request was accepted. Therefore,
apps can get with having full details from the play store. As a result, the previously
used query now provides much more information, which can be seen in Listing 5.4.
The fix was released shortly after in Google Play Scraper version 7.1.2. Therefore,
the fix, which was implemented here can now get easily implemented using this
version release.

5.1.2 RESTful API

For implementing the Google Play Scraper, it offers a RESTful API [30]. The API
can be used directly or in a Docker container, which makes it easily set up and us-
able.
Having the API running, this allows calling the API with HTTP GET calls and to get
the wanted app metadata back in a JSON format. Before the API can be used, it
is essential to check the versions of the packages it uses. Checking the version
is necessary especially for the play scraper, where it is using version 6.2.7 in the
current version. Therefore, the earlier explained pull request is not implemented
here. However, this can be changed easily in the APIs package file where all de-
pendencies are defined. When the API is running, the requests that are sent to it
are passed to the play scraper. The API returns the responses. Thus, the API can
get used with the play scraper as a microservice with the orchestration.

2https://github.com/facundoolano/google-play-scraper/pull/384

36

https://github.com/facundoolano/google-play-scraper/pull/384

5 Implementation

1 g.search ({term: 'panda ', num:1, fullDetail: true })

2 .then(console.log);

3 [{

4 title: 'Panda Pop! Bubble Shooter Saga | Blast Bubbles ',

5 description: 'Enjoy playing free bubble shooters? \r\n\r\nGet

ready to pop bubbles and beat ... '

6 descriptionHTML: 'Enjoy playing free bubble shooters?

Get ready to pop bubbles and beat ... '

7 summary: 'Aim , match , shoot and pop in this free bubble shooter

classic saga adventure!',

8 installs: '50 ,000 ,000+',

9 minInstalls: 50000000 ,

10 score: 4.6056385 ,

11 scoreText: '4.6',

12 ratings: 1069607 ,

13 reviews: 319152 ,

...

69 released: 'Jan 9, 2014',

70 updated: 1581534902000 ,

71 version: '8.7.100 ',

72 recentChanges: '- Pop on with more new levels
- NEW

Collection Babies to collect!
- NEW Event Badge

Organization
- Valentines Day Theming ',

...

80 editorsChoice: false ,

81 appId: 'com.sgn.pandapop.gp',

82 url: 'https :// play.google.com/store/apps/details?id=com.sgn.

pandapop.gp&hl=en&gl=us'

83 }]

Listing 5.4: An excerpt of an example search using the Google Play Scraper with
working ‘fullDetail’ option. Everything which was in Listing 5.1 is
included here but may be left out in this excerpt.

5.2 Workflows and Microservices

For using Zeebe, a docker-compose file is offered in a git repository3 [17]. Using
this, all docker containers that should get started can be configured in a YAML file.
After having the Docker container started, workflows can be modeled using a BPMN
2.0 modeler. This BPMN 2.0 modeler is exporting the workflows in XML which can
be executed by Zeebe.
For sending the workflows to Zeebe, a program needs to get implemented. This
program contacts the Zeebe engine and hands over the workflow and all needed

3https://github.com/zeebe-io/zeebe-docker-compose

37

https://github.com/zeebe-io/zeebe-docker-compose

5 Implementation

methods. For implementing this program and all functions, the programming lan-
guage Go will get used. When using Zeebe first, a BPMN 2.0 workflow needs to get
created. Once the workflow is written, this is getting implemented using the Zeebe
client, where it gets added. For implementing functionality and adding microser-
vices, for each BPMN service task, a worker can get created. This worker can get
programmed using the client. Thus, for each service task, microservices are getting
created which fulfill their job. Each microservice individually can get scaled when it
is needed.
Workflows for Zeebe are, as already mentioned, defined using BPMN 2.0. For defin-
ing those workflows, Zeebe offers a BPMN modeler called Zeebe Modeler which is
based on BPMN.io. Using this modeler workflows can be defined in a graphical ed-
itor that exports the workflow in XML. Having the workflow implemented it can then
be imported to the Zeebe client where all service tasks can get defined. The first
defined workflow allows getting data from the Google Play Scraper by using its API.
Therefore, the scraper does not have to get used as a microservice but is getting
queried by the implemented microservices.

5.2.1 Implementing the Play Scraper

The first workflow will get app metadata from the play scraper API and hands this
data in a wanted format to the database. As a first step, a workflow needs to get
defined. The workflow should only search for app metadata with given commands
and then show the results. This workflow is shown in Figure 5.1.

Figure 5.1: Here the BPMN workflow which is getting used in Zeebe for searching
for app metadata using the play scraper is shown.

Once having a workflow defined, its service tasks need to get implemented. To do
this, first, the play scrapers API needs to get understood. The API can get used
only with GET requests. Therefore different options are getting separated using an

38

5 Implementation

"&." An example request is shown in Listing 5.5. Other examples without linkage
were presented in the API’s git repository readme4.

GET /api/apps/?q=tinnitus&num =1& fullDetail=true&lang=de

Listing 5.5: An example call to get the first app which is found using the keyword’
tinnitus.’ The result should be presented in the german language.

For implementing this workflow, first, the microservice Search Appdata is getting de-
fined using the Zeebe client implementation. The service task of this microservice
first tries to get the data that is necessary to call the API. In case this is successful,
the API is called using a web request. The returning data is saved to a map that
is getting used to hand data from one microservice to the next. Saving the data
into a map makes it possible to call the values by a given name and add additional
information later. In error cases, a method gets called, which sets the job to failed
and reduces the retries if the service has them by one. The implementation can be
seen in Listing 5.6. For later usage, this implementation must be revised for making
it possible not always to set each of the variables and allow setting additional ones.
In the revised implementation, a user should be able to set these variables in an
interface. At first, in this service implementation, the job key and the handed vari-
ables are saved into a local variable for later usage. When using Go, the second
return parameter here is for the error, which is set in error cases.
Therefore, if the error is not nil, the job fails, meaning that the retry counter will get
lowered by one, and the method returns. Next, the search terms are getting used
for creating a string that gets used for the following API call. Here, it is essential that
using an app id for using the play scraper. The search term needs to get created
differently than when using a search term. Additionally, using an app id, the return-
ing app metadata cannot get adapted using further search terms. In other cases,
all search terms are getting added to the mentioned string, which is then used to
call the API. When there is no error during this method, the response of the API is
saved to hand it back to the handler. At the end, the job gets marked as finished.
The second microservice in the workflow is just printing in the first microservice col-
lected data to the console. This service task was implemented to allow testing the
handling of data from one microservice to the next. Additionally, all examples in the
official tutorial just were using one microservice. Therefore, it was necessary to find

4https://github.com/facundoolano/google-play-api/blob/master/README.md

39

https://github.com/facundoolano/google-play-api/blob/master/README.md

5 Implementation

out how to implement more than one microservice. This issue could get solved by
adding jobs to the job worker.

1 func SearchScraperService(client worker.JobClient , job entities.

Job) {

2 jobKey := job.GetKey ()

3 //get variables from job

4 variables , err := job.GetVariablesAsMap ()

5 if err != nil { ... }

8 // build search string

9 builder := ""

10 ...

20 if variables["app_id"] != nil{

21 builder = variables["app_id"].(string)

22 }else {

23 for term , content := range variables {

24 builder += "&" + term + "=" + content .(string)

25 }

26 }

28 //use play scraper API

29 response , err := http.Get("http :// localhost :3000/ api/apps/?q=" +

variables["search -term"].(string) +

30 "&num=" + variables["number"].(string) + "&fullDetail=" +

variables["full -detail"].(string))

31 if err != nil { ... }

39 //get results of response

40 data , _ := ioutil.ReadAll(response.Body)

41 variables["search -result"] = string(data)

42 // return results to job

43 request , err := client.NewCompleteJobCommand ().JobKey(jobKey).

VariablesFromMap(variables)

44 if err != nil { ... }

51 log.Println("Complete job", jobKey , "of type", job.Type)

52 ctx := context.Background ()

53 request.Send(ctx)

54 }

Listing 5.6: An excerpt of the implementation of the first microservices service task
which uses the play scraper API (written in Go)

40

5 Implementation

5.2.2 Implementing the Persistence Layer

Next, the data needs to get saved to a database, which allows further usage of the
data. For saving the data, the first workflow gets revised. The adapted workflow
is shown in Figure 5.2. To address the in Section 5.2.1 mentioned issue and al-
low treating results which are not limited to a single app, an intermediate event got
added. This event waits for a message containing the selection of one of the apps
which got returned by the first service task. Second, the service task which printed
the results got removed. Last, a service task which saves the results to a database
was added.

Figure 5.2: The workflow shown in Figure 5.1 got adapted. Adapting the workflow
allows choosing which apps data should get saved. Therefore, an in-
termediate event and a new service task got added. Additionally, the
service task for printing the app metadata got removed.

For being able to implement the persistence layer, several issues need to get solved.
First, it had to get understood how to use the database using the Go Zeebe client.
Second, the data which is getting handed over from the scraping microservice
needs to get treated in a way that it can get saved to the database. As men-
tioned earlier in Section 4.2 it was already known that for communication with the
database, an API will get used. However, the API of CouchDB is more comprehen-
sive than the API of the already used play scraper. Thus, more things can be done
using the API of CouchDB. Besides, the API makes use of different HTTP methods,
e.g., for sending data to the database for saving it, the HTTP PUT method is getting
used. For understanding the API, the CouchDB documentation5 was very helpful.
It is essential to demand authentication for the database to prevent allowing every-
one to save and get the data from the database. For authenticating to the database,
a POST request is getting used to sending the credentials. In return, a session
cookie is passed back. This session cookie can then get used to authenticate the
following requests. For being able to use the cookie, it was essential always to use

5https://docs.couchdb.org/en/stable/

41

https://docs.couchdb.org/en/stable/

5 Implementation

the same client for all requests and additionally add a cookie jar to the client. A
cookie jar is saving all cookies so that they can get reused. Thus, using this cookie
jar, the authentication cookie can get saved and then send with every request to the
database API from there. When requesting an authentication cookie, the rights for
the current session are getting set. Thus, it is essential for later, that not every user
is allowed to add data or even delete the whole database.
For saving the play scraper APIs data to the database, it is very convenient that
both APIs are using JSON formatted data to communicate. Nevertheless, the data
which is getting sent by the play scraper API is still not in a format that should get
saved to the database directly. The data from the play scraper can only get used di-
rectly when an app is getting fetched using the unique id. In all other cases, a JSON
results object is getting returned in which all apps that are returned are included.
This structure is also used in cases where only one app was fetched. Therefore, for
saving each app the same way, nevertheless, it gets fetched by app id or using a
search, the format was getting changed in the Zeebe client.
For implementing the service which saves the data to the database, an additional
service task gets used. The implementation is shown in Listing 5.7.
At the beginning of the implementation, the results of all earlier tasks are getting
saved into a local variable. Then this data is getting unmarshaled into JSON. After
having the data converted to the wanted format, it is getting checked if data of more
than one app was handed over. In this case, the selected app gets used, where the
selection comes from the earlier mentioned intermediate message event. When
there is just one app, this is getting taken. Next, a database client is getting created
and authenticated at the database using the createClient function, which is getting
shown in Listing 5.8.
Then the data from before is getting saved to the database using the myRequest
function, which can get found in Listing 5.9. To make this possible, the earlier cre-
ated client, the id, which is used to saving the app. Then, the app metadata gets
handed over to this function. Last, the service task is getting ended.
When creating a client for the database, first, a cookie jar needs to get created. As
mentioned earlier, a cookie jar allows to save the cookies that are getting returned
by requests. Thus, a cookie jar allows using the authentication of an earlier request
for all following requests. Next, a HTTP client gets created, to allow sending re-
quests to the database. Then, the client is getting authenticated to the database
using the login function which is shown in Listing 5.10.

42

5 Implementation

1 func SaveService(client worker.JobClient , job entities.Job) {

2 ...

10 //get results from scraper

11 data := variables["search -result"].(string)

12 var dat map[string]interface {}

13 if err := json.Unmarshal ([] byte(data), &dat); err != nil { ... }

23 // prepare variables

24 timestamp := time.Now().UnixNano () / 1000000

25 var appId string

26 var appData map[string]interface {}

28 //if there is more than one app

29 if dat["results"] != nil {

30 results := dat["results"].([] interface {})

31 appData = results[int(variables["appInList"].(float64))].(map[

string]interface {})

32 ...

34 } else {

35 appData = dat

36 ...

38 }

39 // create authenticated Client with cookie jar for database

interactions

40 DbClient , err := createClient(variables["database -addr"].(string

))

41 if err != nil { ... }

47 //send database request

48 result , err := dbRequest(DbClient , http.MethodPut , variables["

database -addr"].(string) + variables["database -name"].(

string) + appId , appData)

49 if err != nil { ... }

54 // return variables and end job

55 ...

71 }

Listing 5.7: An excerpt of the service tasks implementation that saves data of
selected apps to the database.

Last, in case the login function is not returning an error, the client is getting returned
with nil errors. The login function gets the client handed in, which is getting used
to calling the database. Then the login data is saved in a map format that can get
transformed later into JSON data, which is necessary to send it to the database.
After having the login data saved into the wanted format, an HTTP POST request is
called using the function shown in Listing 5.9. The data and error which is returned
from the request function are returned by this login function.

43

5 Implementation

1 func createClient(databaseAddr string) (*http.Client , error) {

2 // create cookieJar

3 cookieJar , err := cookiejar.New(nil)

4 if err != nil { ... }

9 // create a client for CouchDB using the cookieJar

10 CouchClient := &http.Client{

11 Jar: cookieJar ,

12 }

13 if err := login(CouchClient , databaseAddr); err != nil { ... }

18 return CouchClient , nil

19 }

Listing 5.8: This function is used to create a database client which is necessary for
calling the database.

1 func dbRequest(client *http.Client , method string , url string ,

values map[string]interface {}) (map[string]interface{}, error)

{

2 data , _ := json.Marshal(values)

3 // create http request , using the handed values

4 req , err := http.NewRequest(method , url , bytes.NewBuffer(data))

5 if err != nil { ... }

8 //set HTTP content type

9 req.Header.Set("Content -Type", "application/json")

11 //send request

12 resp , err := client.Do(req)

13 if err != nil { ... }

15 //read response

16 body , _ := ioutil.ReadAll(resp.Body)

17 //pack response status header and body to a map

18 re := map[string]interface {}{"Status": resp.Status , "Headers":

resp.Header , "Body": string(body)}

20 return re , nil

21 }

Listing 5.9: The database request function which creates a request in the format
which is needed to use the database API.

The request function translates the handed data from a map structure to JSON.
Then this JSON data is used for creating an HTTP request. After adding the con-
tent type in the header to let the database know that the data JSON formatted,
the database is getting called. In error cases, the error gets returned to the calling

44

5 Implementation

1 func login(CouchClient *http.Client) (map[string]interface{},

error){

2 username := "******"

3 password := "******"

4 values := map[string]interface {}{"username": username , "password

": password}

6 return myRequest(CouchClient , http.MethodPost , "http :// localhost

:5984/ _session", values)

7 }

Listing 5.10: The login function which authenticates to the Database. Being
authenticated allows reading and writing data of the database.

method. Finally, the data which is getting returned by the HTTP request gets saved
to a map, which is then getting returned with nil errors. Doing this all returned val-
ues are accessible by name while having them stored together in one value.
After having all this implemented, the workflow can get used to get data from the
play scraper and then save the results to CouchDB. Saving the data to the database
allows working on the data and add further information, e.g., reviews or metadata
analysis to it.

5.2.3 Implementing Database Search

Now, being able to search and save app metadata using the play scraper API, an
important next step is to find data that was already saved to the database. Being
able to find this data is essential for several aspects. First, local searches are es-
sential for users that are not allowed to add apps to the database to see which apps
are already added for each keyword. Additionally, being able to search for apps
allows further steps which are planned, e.g., updating apps in the database and
analyzing the metadata.
A problem that comes up when implementing a search is that CouchDB does not
come with a full-text search. For implementing a full-text search, an additional in-
dexer is needed to get this. Another option to solve the issue would be to work with
views which allow searching for the items of the view.
However, at this point, it is not important how this issue is getting solved since the
focus will be first on implementing the search for app ids and exact matches to other

45

5 Implementation

fields. Additionally, it is possible to use lower equals or higher equals method. This
search method allows searching, e.g., for all apps which got downloaded more than
100 000 times or only got apps that have a rating higher than three of possible five.

Figure 5.3: Here, the BPMN workflow, which is getting used in Zeebe for searching
the database for app metadata, is shown. The first service task is getting
the data from the database. The second one is showing the results.

For implementing the search task, a new workflow was created, which is shown
in Figure 5.3. The workflow looks the same as the workflow shown earlier in Fig-
ure 5.1 since both are searching data and showing the results. However, there is a
difference between the implementation of those two workflows. The differences are
due to the now implemented workflows service tasks are searching for the data in
the local database and is not using the play scraper. Thus, the implementation of
this service task is completely different. The implementation of the service task for
database search is shown in Listing 5.11.
In the implementation, first, the database connection is created. How the con-
nection is implemented is not shown, since it was already shown earlier. Then
the selector, which is getting used to decide which data will get selected from the
database, is getting saved from the by Zeebe-client. Then the data handed over
a variable to a local one. With this, the variable is saved in JSON format, which
allows, as before, to hand it to the earlier written request method. This time the
request method is called using the HTTP POST method using the API find method.
When no error comes up, the returning values are getting saved and send back to
the Zeebe-client.

46

5 Implementation

1 func SearchDbService(client worker.JobClient , job entities.Job) {

2 ...

11 //fail if no search selector is given

12 if variables["selector"] == nil{ ... }

18 // create authenticated Client with cookie jar for database

interactions

19 DbClient , err := createClient(variables["database -addr"].(string

))

20 if err != nil { ... }

25 // prepare database search

26 values := map[string]interface {}{"selector": variables["selector

"]} // "fields ": fields

27 // search database for search -term

28 resp , err := dbRequest(DbClient , http.MethodPost , variables["

database -addr"].(string) +

29 variables["database -name"].(string) + "_find", values)

30 if err != nil { ... }

36 //save database response

37 log.Println("Database status:", resp["Status"])

39 variables["databaseApps"] = resp["Body"]

40 // return variables and end job

41 ...

57 }

Listing 5.11: An excerpt of the service tasks implementation which allows searching
the database for a given selector.

5.2.4 Implementing Database Updates

When searching apps in the local database, it is important to check if the apps
which are saved in the database are still up-to-date. In cases the app got updates,
the database needs to get updated too. Additionally, there could be cases in which
an app gets removed from the app store. In this case, it is important to remove the
app from the database or mark the app as removed.
For checking if there are updates that should get saved to the database in the app
store, it is essential to find out which data changes when an app gets updated. For
this, the app metadata which is going to get saved needs to get viewed. This data
is getting returned in JSON and shown in Listing 5.12.
The first finding in this data is if there is a new version in the app store, the field

47

5 Implementation

1 {

2 "title": "Beltone Tinnitus Calmer",

...

6 "installs": "100.000+",

7 "minInstalls": 100000 ,

8 "score": 4.5797873 ,

9 "scoreText": "4,6",

10 "ratings": 1889,

...

12 "histogram": {

13 "1": 40, "2": 50, "3": 60, "4": 361, "5": 1376

14 },

...

22 "androidVersion": "5.0",

23 "androidVersionText": "5.0 and up",

...

46 "released": "Jan 6, 2015",

47 "updated": 1581582234000 ,

48 "version": "5.2.4",

49 "recentChanges": "Japanese localization",

...

58 "appId": "com.beltone.tinnitus",

...

63 }

Listing 5.12: An excerpt of the response using the search workflow described in
Section 5.2.1

updated and the field version, which are shown when getting an app with full detail.
Since an app might get an update without changing the version number, the field
updated seems to be more promising. The updated field shows a number which is
representing the time in milliseconds counting from 1 January 1970, which is often
used for timestamps in Unix systems. In the shown example 1581582234000 rep-
resents 13 February 2020 09:23:54.
However, even when there is no update to the app, there could be interesting
changes, e.g., the ratings or download counts. This fields may not be as impor-
tant as a new version but changes in ratings could be important when choosing an
app in cases more than one app could get used for the same.
When starting the implementation of the updates, two workflows were getting cre-
ated. One of those workflows is updating a selected apps data; the other is up-
dating all apps data. The workflow for updating a selected apps data is shown in
Figure 5.4. The first task in this workflow is searching the database for an entry.

48

5 Implementation

Next, an intermediate event is waiting for a message, including the selection of an
app. After having the app selected, the data of this app is getting searched in the
app store. As a fourth step, the data is getting compared. For detecting an update
was made the earlier mentioned fields in the metadata get used. Thus it can get
detected if an update has been made since adding the app or since the last update.
In case an update gets detected, the app metadata gets updated. Additionally, the
app gets updated in cases when the last update to the database was more than a
week ago.

Figure 5.4: The workflow searches in the database. Then one app gets selected,
which gets searched app store to detect updates. In case of updates,
those are getting saved to the database.

This workflow is a lot more complex than the earlier ones, which results in more ef-
fort to implement it. However, some of the service tasks were already implemented
for earlier tasks, which allows reusing them and their implementation. However,
since those service tasks were not implemented in a way to work together, they
need to get overworked. First, they have to get adapted to have their outputs named
unambiguously. Second, it is important to hand the variables always into a service
task the same way. Therefore, the client needs to implement this, i.e., before calling
a service task, it needs to get ensured that all inputs are handed to the service tasks
the right way. However, the changes to the service tasks have to get implemented
only once. At least when using the same code for each implementation, which is
one of the enhancements when using the concept of orchestration.
However, the first service task that was not already created checks if the app which

49

5 Implementation

was got from the database differs from the returns of the app store search. For
this, the earlier mentioned updated field gets checked. Additionally, a field which
includes the timestamp when adding the app metadata to the database is getting
used to test if the last update to the app was done more than a week ago. This
process returns whether the app was updated, or the last update was more than a
week ago. The implementation of this service task can be seen in Listing 5.13.

Figure 5.5: The workflow searches in the database and app store to detect updates.
In case of updates, those are getting saved to the database.

The second workflow for updating all apps, under the earlier mentioned conditions,
is shown in Figure 5.5. In contrast to the workflow, which is used to update a single
app, here, the selection of an app is not necessary. Therefore, the intermediate
event is left out. Even when this does not make much difference in the workflow,
it is important when implementing to have both workflows in mind. To have both
workflows is important because treating single apps data is a lot different than a list
of apps in many cases.
In case of changed the xor path to the service task to update, the data gets used.
The first idea was to update the data in the database. However, when doing this, the
original data is not always accessible. Even when allowing to access old versions
to solve conflicts, the original data is not accessible on replications. Additionally,
when using compaction, all old versions are lost. Therefore, all data that is not get-
ting analyzed before the differences cannot get analyzed at any later point in time.
Thus, the solution is to save the app metadata every time in total. When saving the

50

5 Implementation

1 func CheckUpdatedService(client worker.JobClient , job entities.Job

){

...

10 //if one of both variables is not set , fail and retry

11 if variables["updated_Db"] == nil || variables["updated_Scraper"

] == nil{

12 failJob(client , job)

13 return

14 }

16 //if variables differ , the app was updated

17 if variables["updated_Db"] != variables["updated_Scraper"] {

18 variables["updated"] = true

19 }

21 request , err := client.NewCompleteJobCommand ().JobKey(jobKey).

VariablesFromMap(variables)

...

34 }

Listing 5.13: The service task implementation which checks if the app got updated.

metadata of each version in total, it is important to know that all apps need a dif-
ferent database id, which is not the case in the earlier implementation. For solving
this issue, when adding the app to the database first, nothing gets changed, and
the app id gets used as the database id. When updating, the current timestamp
gets added to the database id. The resulting service task implementation is shown
in Listing 5.14.
In the shown function, first, the data which was got by from the database and
scraper is getting saved to local variables. After that, the app id and the revision
id are taken from the database data. Both ids are used for enriching the data, which
was obtained from the scraper since this is the more current data. For being able
to address the data, which was got from the database and scraper, it needs to get
converted into JSON. Adding the ids to the scrapers data is necessary to allow
updates, as mentioned earlier. Additionally, a timestamp gets added to allow ana-
lyzing when the data got updated last. Then an HTTP client is getting created and
authenticated with the database. Finally, the enriched data is getting saved to the
database.
After having the database updated, the saved results get shown using the already
known service task to do so.

51

5 Implementation

1 func UpdateDbService(client worker.JobClient , job entities.Job){

2 //get variables from job

...

4 //get results from scraper

5 data := variables["search -result"].(string)

7 var appData map[string]interface {}

8 if err := json.Unmarshal ([] byte(data), &appData); err != nil {

... }

13 // timestamp in milliseconds

14 timestamp := time.Now().UnixNano () / 1000000

15 appId := appData["appId"].(string)

17 appData["addedToDb"] = timestamp

19 // create authenticated Client with cookie jar for database

interactions

20 DbClient , err := createDbClient(variables["database -addr"].(

string))

21 if err != nil{ ... }

26 result , err := dbRequest(DbClient , http.MethodPut , variables["

database -addr"].(string) +

27 variables["database -name"].(string) + appId + "-" + strconv.

FormatInt(timestamp , 10), appData)

28 if err != nil{ ... }

34 //save variables and end job

...

42 }

Listing 5.14: An excerpt of the service tasks implementation for the database
update.

5.2.5 Implementing Ratings

One aspect which got mentioned in the concept is the possibility to add expert rat-
ings to the app metadata in the database. Since the expert is always reviewing one
version of the app at a certain point in time, the review should include the version
and timestamp of the reviewed app.
A hard decision was how to save the ratings. The first idea was adding the review
data to the app metadata. When adding the data to the app directly, it would always
be clear and easy to see which app version got rated. However, doing this has some
drawbacks. When only the data of the review is needed, the app metadata needs

52

5 Implementation

to get queried too. A second idea was attaching the rating to the app metadata. At-
taching the data as a document has the advantage that a document does not need
to get updated to add a rating. However, the problem of querying is the same as
when adding the data to the document itself. The third idea was saving the ratings
to their database. Saving the ratings to another database allows querying the data
directly or using views without looking at the app metadata. Therefore, the problem
using an own database is that the linking between rating and a specific app and
timestamp of this is not given. For creating such a link, the app id and timestamp
needs to get added to the rating data. Since the problems were best solved with
the third idea, this was implemented.
The workflow which gets used here is very simple, it is getting the rating data and
saved this to the database. The workflow is shown in Figure 5.6. Using simple
workflows having just one service task, is a result of using a workflow for querying
the database and returning the results. This is done, to allow to scale the service by
only adding more instances of the same microservice without the necessity having
to change the implementation.

Figure 5.6: The workflow which is saving the Rating to database.

The implementation of this workflows service task can get seen in Listing 5.15. In
the shown function first, the handed variables were obtained from the job, and a
database client is getting created. Then, the rating data is obtained from variables.
This data needs to get unmarshalled to JSON to allow adding further data. As men-
tioned before, the app id is saved to allow linking the rating to an app. Additionally,
a current timestamp is getting added to allow ordering the ratings. When having all
data set up, the rating is saved to the database using the already known dbRequest
function.
The data of the rating will get created using the earlier mentioned MARS question-
naire. This survey will get implemented in JavaScript that will get served to the user
in the UI. The data of this survey is getting handed over in JSON directly. Therefore,
no further implementation is necessary.

53

5 Implementation

1 func SaveSurveyService(client worker.JobClient , job entities.Job){

2 //get variables

...

3 // create authenticated Client with cookie jar for database

interactions

4 DbClient , err := createDbClient(variables["database -addr"].(

string))

5 if err != nil{ ... }

10 //get rating/survey data and unmarshall to string

11 var surveyData map[string]interface {}

12 if err := json.Unmarshal ([] byte(variables["surveyData"].(string)

), &surveyData); err != nil { ... }

16 //get variables needed to save rating to db

17 databaseId := variables["databaseId"].(string)

18 appId := strings.Split(databaseId , "-")[0]

19 //get timestamp in milliseconds

20 timestamp := time.Now().UnixNano () / 1000000

21 //add timestamp and app id to rating data

22 surveyData["addedToDb"] = timestamp

23 surveyData["appId"] = appId

24 surveyData["rated"] = databaseId

25 //save data to database

26 result , err := dbRequest(DbClient , http.MethodPut , variables["

database -addr"].(string) +

27 variables["database -name"].(string) + "-" + timestamp ,

surveyData)

28 if err != nil{ ... }

32 //save results to variables and end job}

...

36 }

Listing 5.15: An excerpt of the serivce tasks implementation which saves the ratings
to database.

5.2.6 Implementing Metadata Analysis

The most critical and final step is to implement the analysis of metadata of the saved
apps. However, it is essential to implement the analysis last, since now there are
apps and updates of those saved in the database now. When having the metadata
retrieved from the database, it is possible to test the analysis on this metadata and
add more data using the earlier implemented workflows.
Since the updates are not saved to one document, it is necessary to get the dif-
ferences from different documents but group it for the same app to prevent getting
data mixed from different apps. For querying all updates, CouchDB views are get-

54

5 Implementation

ting used. As explained in Section 4.2.1, views allow searching and aggregating
data from different documents. Additionally, to allow grouping the results, reduce
functions that need to get added. Therefore, the central part of analyzing differ-
ences is getting written in JavaScript which is used for defining those views.
However, using a view the data is not getting analyzed but it is possible to get the
wanted information that is necessary to perform the analysis from all apps at the
same time. An implemented view is shown in Listing 5.16.

1 function (doc) {

2 emit(doc.appId , {'minInstalls ': doc.minInstalls , 'updated ': doc.

updated , 'version ': doc.version , 'addedToDb ': doc.addedToDb ,

'score': doc.score});

3 }

5 function(keys , values , rereduce) {

6 if (rereduce) {

7 return values.reduce(function(a, b) {

8 return []. concat(a, b);

9 }, [])

10 } else {

11 return values;

12 }

13 }

Listing 5.16: ’The implemented view which returns the emitted data of each app
grouped by app id. This is getting used for analyzing changes between
different versions.’

In the top, the map function gets presented. In the map function of a view, it gets
defined which data is getting emitted when the view gets called. In views always
a key, value pair gets emitted. Therefore, the app id is the key, and a map of the
other elements is the value. Below the map function, a reduce function is shown.
The reduce function gets used when a view gets called with grouping. When the
data for analysis of all saved apps should get grouped by the app id, this is wanted.
Therefore, a so-called reduce function got implemented. For understanding a re-
duce function, it is important to know that views are getting represented as a b-tree.
This tree gets reduced using the reduce function. In cases that reducing the tree,
the first time is not enough to get the result re-reduce is set to true. In the shown
reduce function, the values are getting returned in the not re-reducing case. In the
case of re-reducing, the values are getting concatenated in an array of all emitted
values. The data is concatenated until there is just one element or, in case of group-

55

5 Implementation

ing, one element per group left. The resulting data in an array of all selected fields
are wanted for analyzing the changes of the app version for all apps grouped by
app id if grouping is used. Additionally, all changes of a single app can get queried
using this view when using grouping and setting an app id as a map key.
The workflow for retrieving the analysis data is shown in Figure 5.7. The workflow
has only one service task. This is due to the idea of using the view to get the data
directly. Therefore, this data has only get retrieved in one task. The implementation

Figure 5.7: The workflow which is used to get the data that gets used for analysis.

of the service task is shown in Listing 5.17. In this code, first, the variables are
getting retrieved from the job. Next, a database client is getting prepared for usage.
In case there was no error, the view shown in Listing 5.16 gets queried by enabling
grouping and using the app id as a key. Here it was imperative that the app id,
which is used as the key, needed to get send in quotation marks. For adding those
to a string, they need to get escaped. When using the grouping and key, only the
elements having the app id as key are getting returned. The data that is getting
returned from the view is saved to the variables which are getting returned to the
job at the end. The implementation of the analysis is mainly will get implemented
in the view directly using JavaScript. The other parts will get implemented in the
functionality of the view.

5.3 User Interface

This user functionality of the UI is written in Go. As described earlier, this allows
using the Go Zeebe client. Using Go allows writing the visible parts of the UI in as
templates in HTML. Thus, the UI can get accessed using a web browser.
When implementing the UI functionality, it is essential for the concept, that – as
before – every data that is getting saved or retrieved using Zeebe workflows. Doing

56

5 Implementation

1 func GetAnalysisDataService(client worker.JobClient , job entities.

Job){

2 jobKey , variables := getVariables(client , job)

3 //get appId from variables

4 appId := variables["appId"].(string)

5 // create database client

6 DbClient , err := createDbClient(variables["database -addr"].(

string))

7 if err != nil { ... }

12 //get id of the newest version of each app in db from view

13 resp , err := dbRequest(DbClient , http.MethodGet , variables["

database -addr"].(string) + variables["database -name"].(

string) + "_design/"+ variables["doc"].(string) + "/_view/"

+ variables["view"].(string) + "?group=true&key=\""+ appId +

"\"", nil)

14 if err != nil { ... }

19 // unmarshall results

20 var dat map[string][]map[string]interface {}

21 if err := json.Unmarshal ([] byte(resp["Body"].(string)), &dat);

err != nil { ... }

26 //add only data to return if there is something returned from

the database

27 if len(dat["rows"]) > 0 {

28 variables["analysisData"] = dat["rows"][0]["value"].([]

interface {})

29 }

30 //end job and return variables

...

33 }

Listing 5.17: The implementation of the service task used for retrieving the data for
analysis from the database.

this allows using multiple workers for the same service task which creates, e.g., the
possibility of using different servers for scraping the app store.
When starting to create a web UI, first, a web server is needed. However, using
Go, this can get done by implementing only a few lines of code. The code for
implementing the web server and add the main page are shown in Listing 5.18.

5.3.1 User Login

In order to restrict the use of the service to registered users, a login page has been
implemented. To be able to use the rest of the service a login on this page is nec-

57

5 Implementation

1 func main() {

2 //call Index function when accessing /

3 http.HandleFunc("/", Index)

4 //open web server on port 8080

5 if err := http.ListenAndServe(":8080", nil); err != nil {

6 fmt.Println(err)

7 }

8 }

10 func Index(w http.ResponseWriter , r *http.Request) {

11 // parse index.html when accessing /

12 tmpl := template.Must(template.ParseFiles("html/index.html"))

13 if err := tmpl.Execute(w, nil); err != nil {

14 fmt.Println(err)

15 }

16 }

Listing 5.18: The implementation of a simple webserver which offers an index HTML
page using templates.

essary. The login page is shown in Figure 5.8. When a user uses the service for
the first time, he can register for the service using the link at the top right of the
navigation bar.
For the service, three different roles of users are implemented: user, operator, and
administrator. The user can look at saved apps, update and rate those. The op-
erator can also search for new apps and save them to the database. In addition,
an administrator can manage the registered users. When being logged in, for each
user only the permitted applications are getting shown in the navigation. However,
only hard-coded user credentials are implemented. Where this is enough to show
the different roles a user can have, for using the system this should get changed to
credentials that are getting encrypted and loaded from the database.

5.3.2 Searching and Adding Apps to Database

The functionality to search for app metadata using the play scraper API was the
first functionality that was implemented in the UI. For this, the workflow is shown in
Figure 5.2 was used. Using the Go Zeebe client, a problem was that accessing the
values of a workflow was not possible. However, it was possible accessing the vari-

58

5 Implementation

Figure 5.8: The login page.

ables at the end of a workflow. Thus, the workflow was divided into two processes.
Additionally, to the workflows, two HTML pages were created first to allow entering
search terms and then saving results.
Dividing the workflow has several advantages. The necessity to wait for a message
from the user which app should get saved. Thus, it is not a problem when users do
abort the process without sending the message. Another important aspect is that
creating smaller workflows allows balancing the workloads better to the services.
When a new app should get saved to the database, first, an HTML page gets
loaded, which is shown in Figure 5.9. Here the user can enter a search term and
the number of results that should get retrieved. When clicking on ’Submit Query,’ a
workflow gets started to get the wanted information.
The UI function implementation for searching the play scraper is shown in List-
ing 5.19. In this code, the search UI is getting executed, if the HTTP call handed to
the function was not a POST request. When submitting a search, the data which got
entered into the fields is getting handed in a POST request to this method. There-
fore, those handed values are getting saved into a map, which then gets handed
to a function creating a new workflow instance for calling the play scraper with this
data.

59

5 Implementation

Figure 5.9: Using the UI to search the Play Store to find Apps.

1 func Search(w http.ResponseWriter , r *http.Request) {

2 // prepare html file , if it cannot get found stop with error

3 tmpl := template.Must(template.ParseFiles("html/search.html"))

4 //if the request to page was not POST send search page

5 if r.Method != http.MethodPost {

6 if err := tmpl.Execute(w, nil); err != nil { ... }

8 return

9 }

10 // preventing error cases

...

20 // create map of search terms

21 details := SearchTerms { searchTerm: r.FormValue("searchTerm"),

num: r.FormValue("num") }

22 //use play scraper to get the app metadata

23 res := startScraper(details.searchTerm , details.num)

24 //get the data from the before returned JSON

25 app := getValues ((*res).Variables)

26 // parse results page

27 t, _ := template.ParseFiles("html/results.html")

28 // execute new template while handing over the app metadata

29 if err := t.Execute(w, struct { Success bool; Application []App

}{true , app}); err != nil { ... }

...

40 }

Listing 5.19: An excerpt of the implementation used for searching apps to show the
results in the UI.

60

5 Implementation

The returned apps are in a JSON string, which needs to get unmarshalled to get
the variables of the apps that is necessary to show the search results. When this is
done, the results are handed to a template which is serving the results page. The
results in the UI are shown in Figure 5.10.

Figure 5.10: The results of a search are getting shown in the UI.

The workflow that was used for searching the Play Store can be seen in Figure 5.11.
It is the shortest workflow possible since it only has one service task. When starting
the workflow, the ’Search App’ service task is searching the Play Store using the
search terms that a user enters in the UI. The implementation of this workflow was
already shown an explained earlier in Section 5.2.1. This workflow could get used
without changes.
When the workflow is finished, the results are getting shown. A page showing the
results is shown in Figure 5.10. Here only the app id, the name, and the current
rating are shown. However, this can get adapted easily when more information is
needed for deciding which apps data should get added to the database. In the last
column on the right-hand side, a submit button is shown. When clicking on the sub-

Figure 5.11: The simplified workflow for retrieving app metadata using the play
scraper.

61

5 Implementation

mit button, the app in this line gets saved to the database. For saving, the second
workflow gets triggered. This workflow is shown in Figure 5.12.

Figure 5.12: The workflow used for saving the app metadata to the database.

The part where the data gets saved to the database is shown in Figure 5.12. In
this workflow, the app metadata gets searched with full detail in the first service
task, using the Play Scraper. Searching the apps in full detail is necessary due to
searching before the apps without full detail. The first search is not done with full
detail because this can take much additional time. When having retrieved the app
metadata, it is getting saved to the database.
The implementation of both service tasks was already shown before when dealing
with the implementation of the play scraper (Section 5.2.1) and the implementation
of the database (Section 5.2.2).
When having saved the app metadata, the button in the UI gets disabled, and the
shown text in the button changes to saved. For this, Asynchronous JavaScript and
XML (AJAX) gets used. Using AJAX for this task allows changing the button without
having to reload the whole site. Furthermore, using AJAX allows saving all of the
shown apps by clicking on the corresponding submit button. The UI, when having
saved the data of one of the apps to the database, is shown in Figure 5.13.
Here it is visible that the submit button of the app metadata, that was saved, is
getting disabled, and the label is changed to saved. Thus, it is always clear which
app was yet saved to the database. Additionally, it is prevented that a submit button
gets clicked multiple times. However, when trying to save an app that was already
saved to the database, the app gets not saved again to the database. Therefore, in
a later version, the submit button for apps that are already saved to the database is
already disabled when the results get shown. Additionally, the label will show that
the app is saved.
As mentioned, for saving the app to the database, AJAX is getting used. When
clicking on the submit button, a POST request is getting performed, sending the
app id to another function, which gets shown in Listing 5.20.

62

5 Implementation

Figure 5.13: When an App gets saved to the database the button to save it gets
disabled and its value changes to show that the saving was successful.

1 func receiveAjax(w http.ResponseWriter , r *http.Request) {

2 if r.Method == http.MethodPost {

3 // saveId = appId

4 if r.FormValue("saveId") != "" {

5 res := saveAppData(r.FormValue("saveId"))

6 // unmarshall results

7 var docs map[string]interface {}

8 if err := json.Unmarshal ([] byte ((*res).Variables), &docs);

err != nil { ... }

9 log.Println("Save App to Db resp:", docs["dbStatus"])

10 }

...

21 }

...

24 }

Listing 5.20: An excerpt of the implementation used for saving the app metadata to
the database.

Here the handed app id is used when calling a function that starts the workflow to
save the app metadata of the selected app to the database. The called function to
save the app metadata is shown in Listing 5.21. The function returns the result from
Zeebe, which gets used for logging the database status. The database status could
get used later to implement treating errors in a way that the UI shows an error in
error cases.

63

5 Implementation

1 func saveAppData(appId string) **pb.

CreateWorkflowInstanceWithResultResponse{

2 // create Zeebe client to send the workflow

3 zbClient , err := zbc.NewClient (&zbc.ClientConfig{

4 GatewayAddress: BrokerAddr ,

5 UsePlaintextConnection: true})

6 if err != nil { ... }

9 ctx := context.Background ()

11 // prepare necessary variables and prevent errors

12 variables := make(map[string]interface {})

13 variables["appId"] = appId

...

16 // create workflow call

17 request , err := zbClient.NewCreateInstanceCommand ().

BPMNProcessId("save -selected -process").LatestVersion ().

VariablesFromMap(variables)

18 if err != nil { ... }

20 // create new workflow instance and return back its results

21 res , err := request.WithResult ().Send(ctx)

22 if err != nil { ... }

25 return &res

26 }

Listing 5.21: An excerpt of the ’saveAppData’ function called in Listing 5.20.

In this method, first, a Zeebe client gets created. Then the necessary variables
which should get handed over are getting saved into a map. When creating a new
instance of the workflow, the map is handed over to this. After having this done,
the workflow is getting sent. When the workflow is finished, its results are getting
returned. Last, these returned results are getting returned to the calling function.

5.3.3 Show Saved Apps

A next functionality that is essential for the UI is showing all apps that are currently
saved in the database. Implementing this task is more complicated than it sounds
in the first place. That saving the data to the database is complicated is due to the
way of saving updates to the database. In the database, each update is saved as an
own document, which was explained earlier when the updates were implemented

64

5 Implementation

in Section 5.2.4. Thus, each app should get shown only once. For achieving to
retrieve each app only once from the database, a view can get utilized. In the im-
plementation of the view, all apps are getting reduced to only the newest version of
the app where the app id from the Google Play Store is getting used as an identifier.
The view which was used for that is shown in Listing 5.22.

1 function (doc) {

2 emit(doc.appId , doc._id);

3 }

4 function (keys , values , rereduce) {

5 if (rereduce) {

6 // return the maximum of both handed in timestamps

7 return values.reduce(function(a, b) { return Math.max(a, b) },

-Infinity)

8 } else {

9 return (function () {

10 var timestamp = 0;

11 values.forEach(function (value) {

12 // split database id to get the timestamp

13 var res = value.split("-");

14 //if there is a timestamp

15 if (res.length > 1){

16 //save the maximum timestamp

17 timestamp = Math.max(timestamp , res [1])

18 }

19 });

20 return timestamp;

21 })()

22 }

23 }

Listing 5.22: The implementation of the view which is returning the newest database
id for each app id.

The map function of this view is emitting only the app id and the documents database
id. The database id consists of the app id followed by a timestamp. Therefore, the
database id can be divided into two parts, of which it consists using a split function.
Splitting the database id allows using the reduce function to return the maximum
timestamp. Thus, the view is returning the app id as the key and the newest times-
tamp as value. Knowing both allows querying the newest app metadata for each
app from the database.
After having the view implemented, a workflow got created to get this data. The
workflow is shown in Figure 5.14.

65

5 Implementation

This workflow has only one service task. However, when creating a prototype, not
everything possible is implemented, which leads to simple workflows. Since show-
ing all apps newest version is an issue that was not solved before, the service task
needed to get implemented. The implementation can get seen in Listing 5.23.
The service task first gets the variables from its job. When it uses the DB request
method to get the data from the earlier shown view. After having this done, for each
of the returned apps, the app metadata is got from the database, using the returned
app id. For returning the app metadata, it is saved in a map that allows returning all
wanted data in one object.

Figure 5.14: The workflow to get the newest versions metadata of each app.

Additionally, using a map for saving the app metadata, the app id is the key to ac-
cessing the values. Thus, the app id is handed back without having to save it into
another value. The app metadata gets used to show the newest version of all saved
apps and some of its data on an overview page, which is shown in Figure 5.15.
Here the title, platform, current rating, and when its last updated in the database
gets presented for each app that is saved in the database. The shown timestamp
that shows when the app was last updated is showing the date and time which was
especially important for testing the UI. However, if showing the time is necessary
depends on the time after which another update can get saved. Additionally, a more
information button leads to a UI page that is presenting more details about this app.
When clicking on the more information button, the information of the chosen app
gets retrieved using another workflow, which gets displayed in Figure 5.16. This
workflow gets the database id handed in and queries the corresponding app meta-
data from the database.
The UI for showing more information on the app metadata is shown in Figure 5.17.
Here, at the top, the header image of the app is displayed. Directly thereunder, the
title of the app gets presented. Below that, a summary describing what the app is
made for is shown. When clicking on this summary, the full app description gets

66

5 Implementation

1 func GetAllAppsNewestVersions(client worker.JobClient , job

entities.Job){

2 //get variables and create database client

...

5 //get id of the newest version of each app in db from view

6 resp , err := dbRequest(DbClient , http.MethodGet , variables["

database -addr"].(string) + variables["database -name"].(

string) + "_design/appdata/_view/latest?group=true", nil)

7 if err != nil { ... }

...

26 apps := make(map[string]interface {})

27 //get all newest apps data

28 for elem := range data["rows"] {

29 //get app metadata from database

...

52 apps[appId] = appData

53 }

54 //save resulting apps to variables

55 variables["apps"] = apps

57 //end job and return variables

...

60 }

Listing 5.23: An excerpt of the service tasks implementation used to retrieve all
apps newest app metadata from database.

Figure 5.15: The UI page showing basic information of the newest version of each
saved app.

shown. Since this description is very long for some apps, this is hidden when ac-
cessing the page. Below the summary and description, three boxes with additional
information on the app are getting displayed. In the left-hand box, general informa-

67

5 Implementation

tion of the app is shown, e.g., who is the developer of the app, when was the app
released, what is the current rating of the app. In the central box, it gets displayed
when the app was last saved to the database and information to the costs if apps
are supported, and the minimum Android version to use the app. Additionally, in
this box, an update button is shown. However, at this point, it is just a dummy which
later will get the functionality to save a current version of the app to the database.
The right-hand side box, a rating histogram, is shown. In this histogram, it can
get seen at a glance the distribution of the ratings from one star up to five stars.

Figure 5.16: The workflow used for retrieving the chosen apps data from the
database.

Figure 5.17: The UI app page, showing information which is retrieved from the
database.

68

5 Implementation

On this page, further information could get displayed. However, since this is just a
prototype, it should get shown how information can get displayed.

5.3.4 Update Apps

For updating the apps, the update button is shown in Figure 5.17 needs to get
functionality implemented. For doing this, first, the workflow that was shown earlier
in Section 5.2.4 for updating app metadata got overworked. The resulting workflow
is shown in Figure 5.18. The main difference to the earlier workflows to update
is the addition of the first service task check version. In this service task, it gets
checked whether the app page the update process gets triggered from is the newest
app version, which is saved in the database. For this, the view that was shown in
Section 5.3.3 gets queried to get the newest app database id of this app. When
having retrieved the newest versions database id, the corresponding data is getting
queried in the next service task. Then, the current data is getting retrieved from the
app store. After having retrieved the most current data from the database and app
store, it gets checked whether the app was updated since the last database update,
or if the last update was more than a given time slot ago. For testing, the time slot
was set to one hour. In case one of the conditions is true, the data from the app
store is saved as a new version in the database. Otherwise, the new data is getting
discarded.

Figure 5.18: The workflow used to update the app metadata.

69

5 Implementation

For implementing the update functionality, as before for saving the data, AJAX is
getting used. When for this, the app id used to instantiate the workflow shown
earlier to save the current version of the app to the database. When having saved
the data, the page is getting reloaded. Reloading the page allows recalculating the
analysis data, which will get implemented later.

5.3.5 Rate Apps

For implementing the rating in the UI, the workflow and service task implementation
shown and described earlier in Section 5.2.5 were used. Therefore, only the UI and
its functionality have to get implemented.
For showing the questionnaire to rate the app SurveyJS was used. The data from
this questionnaire gets handed back in JSON, which allows saving the data directly
to the database. SurveyJS was already used for creating the MARS questionnaire
[10]. Thus, the questionnaire could get directly implemented.
In addition to saving the ratings of the questionnaire, it could be interesting to look
at the saved questionnaires. For presenting all saved questionnaires, a box got
implemented. In this box, a button gets shown with the date when the rating was
saved. Clicking on the button leads to the questionnaire where all filled values are
getting shown. The box that gets shown in the UI gets presented in Figure 5.19.
Here only two ratings are saved for the app that is currently selected. When saving
more ratings the box gets expanded downwards.

Figure 5.19: The UI element that shows the saved ratings and allows to access
those.

70

5 Implementation

For the implementation of this, the rating data got queried from the database. When
querying the database, using a view was required since all ratings for a specific app
should get queried at once. The view used for this task is shown in Listing 5.24.

1 function (doc) {

2 emit(doc.appId , doc._id);

3 }

5 function(keys , values , rereduce) {

6 if (rereduce) {

7 return values.reduce(function(a, b) {

8 return []. concat(a, b);

9 }, [])

10 } else {

11 return values;

12 }

13 }

Listing 5.24: The view which is used to get all rating database ids by app.

This view is similar to the view used for retrieving the analysis data before. In the
map function in the top, the app id and the document id get emitted. In the reduce
function, the values are getting concatenated. Querying this view results in getting
an array of all rating database ids for each app when grouping by app id. Regarding
Zeebe, the workflow is shown in Figure 5.7 could get used again. Therefore, it was
not necessary to implement a new workflow. Then the data could get implemented
using SurveyJS.

5.3.6 Analysis of Metadata

For being able to see changes in the app metadata directly, the metadata which got
gathered in the database needs to get analyzed. The data is getting queried from
the database using the workflow and implementation described in Section 5.2.6.
After having the data fetched from the database, different possibilities can get used
for analyzing. First, the average values of specific data can get calculated. Those
average values then can get handed to the UI. Second, the data can get handed to
the UI directly. The analysis then can get implemented in JavaScript which allows
showing line-graphs or dots in a graph to represent changes or specific points in a
timeline.

71

5 Implementation

1 func getAppAnalysis(appId string) ([]App , [] Update) {

2 // create Zeebe client and prepare variables

...

19 request , err := zbClient.NewCreateInstanceCommand ().

BPMNProcessId("analysis -process").LatestVersion ().

VariablesFromMap(variables)

20 if err != nil { ... }

24 // start workflow instance and return results

25 res , err := request.WithResult ().Send(ctx)

26 if err != nil { ... }

30 // unmarshall response to JSON

31 var resVariables map[string]interface {}

32 if err := json.Unmarshal ([] byte(res.Variables), &resVariables);

err != nil { ... }

34 //save the app metadata for analysis to prepared App struct

35 var retData []App

36 data := resVariables["analysisData"].([] interface {})

37 for elem := range data {

38 analysisData := data[elem].(map[string]interface {})

39 //add current apps data to retData

40 retData = append(retData , App{ ... })

46 }

47 //sort slice of apps

48 sort.Slice(retData , func(i, j int) bool {

49 return retData[i]. Timestamp < retData[j]. Timestamp

50 })

51 // special treatment for update data

52 var updateAnalysis [] Update

53 updated := ""

54 for elem := range retData {

55 update := retData[elem]. Updated

56 //if field updated changed save it

57 if update != updated {

58 updated = update

59 updateAnalysis = append(updateAnalysis , Update{ ... })

62 }

63 }

64 return retData , updateAnalysis

65 }

Listing 5.25: An excerpt of the implementation that retrieves the data for analysing
tha app metadata.

In the implemented prototype, the data was handed over without prior calculations.
However, such calculations will get implemented in a later step for analyzing differ-
ent aspects. The implementation of the function is creating the workflow instance,
and treating the data to allow handing them to the UI is shown in Listing 5.25.

72

5 Implementation

In this implementation first, the Zeebe client gets created, and the needed vari-
ables get prepared. Then, the workflow instance is created and then started. The
results contain the app metadata that is getting emitted by the view shown earlier
in Listing 5.16. This data is getting unmarshalled to JSON. After having the data
transformed in JSON format, the data is getting saved into a slice of an app object.
This slice then gets sorted by the timestamp, which is the date when it was added
to the database. Sorting elements is necessary since the data from CouchDB is
not sorted by this timestamp, and for visualizing the data, it is easier to treat sorted
data. At the end, it is checked for each element if it contains a new update. In case
this is true, this gets saved to another prepared slice to allow visualizing the app
update timestamps later.

Figure 5.20: An example app metadata analysis.

The resulting UI is shown in Figure 5.20. As mentioned in the concept, ChartJS was
used for creating the graphs. On the left-hand side, a line chart was created, show-
ing how the downloads of the app changed by time. Each update in the database
creates a new point of data. The date in the x-axis is changing dynamically to
present the given points in time in a readable form. Thus, the x-axis is showing min-
utes, hours, days, or months depending on the data that is handed in. In the center
box, another line chart was created to represent the changes in the rating over time.
The right-hand box shows how often updates were made to the app. Showing how
often updates were made allows seeing if the app is getting developed or not. Fur-
ther app metadata could get analyzed using the same techniques used here. The
shown UI is only representing some fields that are already getting analyzed.

73

5 Implementation

Figure 5.21: An example app rating analysis.

In addition to the analysis of the app metadata, the rating by the surveys can get
analyzed. Analyzing the ratings allows seeing differences in the ratings from dif-
ferent times. Furthermore, even if only one rating is available, adding some visual
analysis can help to get an overview of the rating without having to look at the de-
tails – the implementation if similar to the earlier shown to get the app metadata.
Also, for analyzing the ratings, average data gets calculated. The resulting UI is
shown in Figure 5.21. As for the analysis of the app metadata, three boxes got
implemented. In the left-hand side box, general data of the most current rating get
shown. The centered box shows ratings from all surveys are getting shown in a bar
chart. The right-hand side box shows the average ratings of different categories
rated in the survey. For getting further insights analyzed, more boxes with analy-
ses can get added. However, this analysis can give a good impression on what is
possible using charts and text to analyze rating data.

74

6 Compliance with Requirements

In this chapter the compliance of the implemented analysis service with the func-
tional and non-functional requirements is checked. The conformity is measured in
the following six levels:

(5) The requirement was met in full.
(4) The requirement was satisfactorily fulfilled.
(3) This requirement was not satisfactorily met.
(2) The requirement has not yet been completed.
(1) The requirement was prepared.
(0) The requirement was not met.

6.1 Functional Requirements

When measuring the compliance with the functional requirements, the focus is on
the implementation. That is because the implementation realizes the functions. For
comparing the in Section 3.1 defined functional requirements with the implementa-
tion these are getting listed below in a table.

Code Description Priority Fulfilled
Account:
F01 Authorization COULD 5
F02 Registration COULD 1
F03 Authentication COULD 3
F04 User Administration COULD 1

75

6 Compliance with Requirements

Code Description Priority Fulfilled
Search:
F05 Search for Apps MUST 4
F06 Save App Metadata to Database MUST 5
App:
F07 Show All Saved Apps MUST 5
F08 Update App Metadata MUST 5
Review:
F09 Review App SHOULD 4
F10 Show All Surveys per App SHOULD 5
F11 Show Survey Data SHOULD 5
Analysis:
F12 Analyse App Metadata MUST 5
F13 Analyse App Survey Data SHOULD 4

6.2 Non-Functional Requirements

To measure the compliance with the non-functional requirements, architecture and
implementation are given equal weight. This is done since wrong decisions in the
design of the architecture can have a significant impact on non-functional require-
ments. For comparing the in Section 3.2 defined non-functional requirements with
the architecture and implementation these are getting listed below in a table.

Code Description Priority Fulfilled
System:
NF1 Reliability MUST 4
NF2 Scalability MUST 5
NF3 Maintainability SHOULD 4
NF4 Extensibility SHOULD 4
NF5 Robustness SHOULD 3

76

7 Conclusion and Future Work

In this chapter, a conclusion of this thesis is drawn. Additionally, future work is
pointed out.

7.1 Conclusion

In this thesis, a workflow-based service that is communicating over HTTP was im-
plemented. This service can get used for saving and analyzing the metadata of mo-
bile applications from the Google Play Store. For retrieving the data from the play
store, an open-source play store scraper was used. The structure of the Google
Play Store changes every once in a while which would result in having to overwork
the implementation when implementing a scraper oneself. Using the open-source
play scraper only an update is needed.
The workflows used in this thesis were implemented using Zeebe. Zeebe enables
implementing workflows in BPMN 2.0. Furthermore, Zeebe orchestrates service
tasks. The service tasks of the workflows were implemented using the Zeebe client
written in Go.
The idea of using workflows and their service tasks in order to provide a service
allows using each service task independently as a microservice. Those microser-
vices fulfill only a single task. Therefore, microservices can get reused in different
workflows. Thus, when using microservices for development, each task gets imple-
mented only once. Furthermore, all microservice can get implemented or changed
independently. When improving the code of one microservice, all workflows benefit.
Additionally, implementing small tasks that can get distributed on different servers,
allows scaling each microservice individually which makes scaling the service eas-
ily possible.

77

7 Conclusion and Future Work

For saving the metadata of the apps, CouchDB was used. When using a document-
based database, this allowed saving the data in JSON without defining the structure
of the database beforehand. Furthermore, CouchDB is fault-tolerant and is made
for handling varying traffic. For querying, CouchDB views allow retrieving neces-
sary parts of documents fast and, when implemented, grouped by a key that gets
defined when implementing the view. Therefore, CouchDB is well suited for a scal-
able service.
At the beginning of the implementation, a problem with the used Play Scraper was
fixed. With the Play Scraper, it was not possible to get a list of applications in all
details. Only the data that appears in search results in the Google Play Store was
returned. Fixing this issue allows using this feature and also helped to understand
how the Play Scraper works. A new version of the Play Scraper with the imple-
mented fix was released soon after.
When beginning with the implementation of workflows and service tasks, small
workflows got implemented first. With this, it was discovered how to implement
each technology. Every workflow got tested individually. However, the service tasks
were all implemented in the same place and got included in every test. Including
the services allows accessing the service task implementations from every work-
flow and not having to copy them. Furthermore, when changing the implementation
of a service task, the changes are getting applied to all workflows directly.
After having created all workflows that are needed for the concept, a user interface
was implemented. When creating an interface, testing the workflows in combination
was possible. Furthermore, the use case of analyzing the metadata of apps could
get demonstrated. The user interface was created as a web interface in Go. For cre-
ating the views, HTML templates were used, and dynamic content got added using
JavaScript. Implementing the user interface in Go allowed using the same Zeebe
client as before. Therefore, parts that were written earlier for testing the workflows
could get reused. However, when creating the user interface some of the workflows
needed to get revised, i.e., workflows were split to prevent letting them wait for user
input. Doing this, it was prevented that workflows are not getting finished; when a
user does act differently than it was planned, e.g., the user does not want to save
an app after searching for a keyword. For allowing the users to rate the apps, a
survey based on MARS was implemented. Adding the data of this survey as an ex-
pert rating allows enabling therapists to choose which app is best to treat a specific
disease.

78

7 Conclusion and Future Work

In summary, the analysis service implemented in this thesis is suitable for show-
ing the use case of using a distributed workflow-based service for analyzing the
metadata of mobile applications.

7.2 Future Work

When implementing the analysis service, it was clear that it is not possible to imple-
ment a service that is more than a proof of concept. Thus, the focus of this thesis
was creating a prototype with workflows, service tasks, and a user interface that
shows most aspects of the concept.
Therefore, the services were not distributed to different servers, and the service
tasks were not started by workers multiple times. However, distributing the services
to different servers is possible without any significant changes. The same applies
for letting the same jobs multiple times to distribute the workload.
Furthermore, as the app store, only the Google Play Store got implemented. There-
fore, no apps from the Apple App Store can get searched, saved, and analyzed by
now. Adding more stores to the implementation would mean to add new workflows
and service tasks.
Another aspect that should get implemented is user accounts. For the prototype
implemented, only one user per user role was implemented with a hard-coded user-
name and password. Instead of using these hard-coded user credentials, the user
data should get encrypted and saved to the database. Also, with this, the registra-
tion and user administration can get implemented.
When going on to work with this service, further analysis could get implemented to
give a better overview of the apps. For this, mostly, the user interface would need to
get extended. However, implementing more analysis even later when already using
the service is not a problem, since the app metadata is saved with all details to the
database.
A further idea that could not get implemented is to follow apps from a specific point
in time. Following apps from a point in time would mean, to show the analysis data
on the page of such a followed app from this point. Showing the analysis, not from
the beginning, would allow seeing changes after this point more prominent. There-
fore, this could be interesting for therapists that use an app for treatments.
Since the analysis service was implemented as a prototype, not every possible user

79

7 Conclusion and Future Work

entries were tested. Additionally, when testing the service Zeebe, the database and
the play scraper were always up and answering directly. Therefore, the implemented
service needs to get tested to work as expected in all error situations.
Finally, a problem when using a scraper to get metadata from the Google Play Store,
is that the app store changes the interface once in a while. As a result of a changed
interface, the play scraper cannot get the metadata from the app store as before.
For solving issues as a changed interface, the play scraper gets updated, mostly in
hours after the app store changed. However, to make use of these changes, the
play scraper needs to get updated. When using the service in public, such changes
should get registered and, in the best case, solved automatically.

80

A Software Used and Its Versions

In this appendix, the software that was used for creating the implementation and its
versions are getting stated.
For writing code in JavaScript, which was necessary to fix an issue in the Play
Scraper (Section 5.1) an IDE was very helpful. The same applies for writing code in
Go for the implementation of the Zeebe client (Section 5.2) and the UI (Section 5.3).
Additionally, software was used to run all services that were needed. The Google
Play API was used via npm. Here it was necessary to update the used play scraper
version to make use of the in Section 5.1 implemented fix. Zeebe, the Zeebe simple
monitor, and CouchDB were used with Docker.

Software Version Used For
WebStorm1 2019.3.1 Developing JavaScript
GoLand2 2020.1.2 Developing Go
Zeebe Modeler3 0.9.1 Modeling BPMN 2.0 workflows
google-play-api4 1.0.7 Implementing the play scraper
google-play-scraper5 7.1.3 Sraping the Google Play Store
Zeebe6 0.23.1 Orchestrating workflows
Zeebe Simple Monitor 0.18.0 Debugging workflow implementation
CouchDB7 3.1.0 Saving data persistently

1https://www.jetbrains.com/webstorm/
2https://www.jetbrains.com/go/
3https://github.com/zeebe-io/zeebe-modeler
4https://github.com/facundoolano/google-play-api
5https://github.com/facundoolano/google-play-scraper
6https://github.com/zeebe-io/zeebe-docker-compose
7https://couchdb.apache.org/

81

https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/go/
https://github.com/zeebe-io/zeebe-modeler
https://github.com/facundoolano/google-play-api
https://github.com/facundoolano/google-play-scraper
https://github.com/zeebe-io/zeebe-docker-compose
https://couchdb.apache.org/

Bibliography

[1] Rakesh Agrawal et al. “The Claremont Report on Database Research”. In:
ACM Sigmod Record 37.3 (2008), pp. 9–19. DOI: 10.1145/1462571.1462573.
URL: https://doi.org/10.1145/1462571.1462573.

[2] Hannes Ametsreiter. Smartphone-Markt: Konjunktur und Trends. https://
www.bitkom.org/sites/default/files/2020-02/bitkom-pressekonferenz-

smartphone- markt- 20- 02- 2020- prasentation_final.pdf. (last ac-
cessed: Jun, 19th, 2020). 2020.

[3] J Chris Anderson, Jan Lehnardt, and Noah Slater. Couchdb: The Definitive
Guide. " O’Reilly Media, Inc.", 2010. ISBN: 978-0-596-15589-6.

[4] André B Bondi. “Characteristics of Scalability and Their Impact on Perfor-
mance”. In: Proceedings of the 2nd international workshop on Software and
performance. 2000, pp. 195–203. DOI: 10.1145/350391.350432. URL: https:
//dl.acm.org/doi/10.1145/350391.350432.

[5] Kevin Brennan et al. A Guide to the Business Analysis Body of Knowledger.
2nd ed. IIBA - International Institute of Business Analysis, 2009. ISBN: 978-0-
9811292-1-1.

[6] Martin C Brown. Getting Started with CouchDB: Extreme Scalability at Your
Fingertips. " O’Reilly Media, Inc.", 2012. ISBN: 978-1-449-30755-4.

[7] Andrea Burattin. “Process Mining Techniques in Business Environments”. In:
volume 207 of Lecture Notes in Business Information Processing. Springer,
2015.

[8] Mario Castro Contreras. Go Design Patterns. Packt Publishing Ltd, 2017.
ISBN: 978-1-78646-620-4.

82

https://doi.org/10.1145/1462571.1462573
https://doi.org/10.1145/1462571.1462573
https://www.bitkom.org/sites/default/files/2020-02/bitkom-pressekonferenz-smartphone-markt-20-02-2020-prasentation_final.pdf
https://www.bitkom.org/sites/default/files/2020-02/bitkom-pressekonferenz-smartphone-markt-20-02-2020-prasentation_final.pdf
https://www.bitkom.org/sites/default/files/2020-02/bitkom-pressekonferenz-smartphone-markt-20-02-2020-prasentation_final.pdf
https://doi.org/10.1145/350391.350432
https://dl.acm.org/doi/10.1145/350391.350432
https://dl.acm.org/doi/10.1145/350391.350432

Bibliography

[9] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. “Semantics and Anal-
ysis of Business Process Models in BPMN”. In: Information and Software
technology 50.12 (2008), pp. 1281–1294. DOI: 10.1016/j.infsof.2008.
02.006. URL: https://doi.org/10.1016/j.infsof.2008.02.006.

[10] Philipp Dörzenbach. “Konzeption und Realisierung einer webbasierten An-
wendung zur systematischen Bewertung medizinischer und psychologischer
Anwendungen”. Bachelor thesis. Ulm University, 2019. URL: http://dbis.
eprints.uni-ulm.de/1797/.

[11] Nicola Dragoni et al. “Microservices: Yesterday, Today, and Tomorrow”. In:
Present and ulterior software engineering. Springer, 2017, pp. 195–216. DOI:
10.1007/978-3-319-67425-4_12. URL: https://doi.org/10.1007/978-
3-319-67425-4_12.

[12] Ben Evans. Java, the Legend: Past, Present, and Future. O’Reilly Media,
2015. ISBN: 978-1491934678.

[13] Ben Evans and David Flanagan. Java in a Nutshell: A Desktop Quick Refer-
ence. 7th ed. O’Reilly Media, 2019. ISBN: 978-1492037255.

[14] Jürgen Galler. Vom Geschäftsprozeßmodell zum Workflow-Modell. Springer-
Verlag, 1997. ISBN: 978-3-322-90848-3. DOI: 10.1007/978-3-322-90847-6.

[15] Camunda Services GmbH. A Workflow Engine for Microservices Orchestra-
tion. https://zeebe.io/. (last accessed: Jun, 19th, 2020). 2020.

[16] Camunda Services GmbH. Microservices and BPM. May 2017. URL: https:
//camunda.com/de/learn/whitepapers/microservices-and-bpm/.

[17] Camunda Services GmbH. Zeebe Documentation. https://docs.zeebe.
io/. (last accessed: Jun, 19th, 2020). 2020.

[18] Jan Gottschick et al. “Microservices”. In: ÖFIT-Trendschau: Öffentliche Infor-
mationstechnologie in der digitalisierten Gesellschaft. Berlin: Kompetenzzen-
trum Öffentliche IT, 2019.

[19] Object Management Group. “Business Process Model and Notation (BPMN)”.
Version 2.0.2. In: OMG Specification, Object Management Group (2014).

[20] Christine Hennings and Cornelius Herstatt. Belief Elicitation Study: Identifying
Salient Beliefs of Patients Towards the Use of Mhealth. Tech. rep. Working
Paper, 2019. DOI: 10419/192994. URL: https://doi.org/10419/192994.

83

https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1016/j.infsof.2008.02.006
http://dbis.eprints.uni-ulm.de/1797/
http://dbis.eprints.uni-ulm.de/1797/
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-322-90847-6
https://zeebe.io/
https://camunda.com/de/learn/whitepapers/microservices-and-bpm/
https://camunda.com/de/learn/whitepapers/microservices-and-bpm/
https://docs.zeebe.io/
https://docs.zeebe.io/
https://doi.org/10419/192994
https://doi.org/10419/192994

Bibliography

[21] Bradley Holt. Scaling Couchdb: Replication, Clustering, and Administration. "
O’Reilly Media, Inc.", 2011. ISBN: 978-1-4493-0343-3.

[22] Kevin Kline, Daniel Kline, and Brand Hunt. SQL in a Nutshell: A Desktop
Quick Reference Guide. " O’Reilly Media, Inc.", 2008. ISBN: 9781565927445.

[23] Mehdi Maoui et al. Continuous API Management: Making the Right Decisions
in an Evolving Landscape. O’Reilly Media, Incorporated, 2018. ISBN: 978-
1492043553.

[24] Tom Marrs. Json at Work: Practical Data Integration for the Web. " O’Reilly
Media, Inc.", 2017. ISBN: 978-1449358327.

[25] Russ McKendrick and Scott Gallagher. Mastering Docker: Unlock New Op-
portunities Using Docker’s Most Advanced Features. Packt Publishing Ltd,
2018. ISBN: 978-1789616606.

[26] Ingo Melzer et al. Service-orientierte Architekturen mit Web Services: Konzepte-
Standards-Praxis. 4th ed. Elsevier, Spektrum, Akad. Verlag, 2010. ISBN: 978-
3-8274-2549-2.

[27] I. J. Mojica Ruiz et al. “Examining the Rating System Used in Mobile-App
Stores”. In: IEEE Software 33.6 (2016), pp. 86–92. DOI: 10.1109/MS.2015.
56.

[28] Sam Newman. Building Microservices: Designing Fine-Grained Systems. "O’Reilly
Media, Inc.", 2015. ISBN: 978-1-491-95035-7.

[29] Roy Oberhauser and Sebastian Stigler. “Microflows: Enabling Agile Business
Process Modeling to Orchestrate Semantically-Annotated Microservices”. In:
Proceedings of the Seventh International Symposium on Business Modeling
and Software Design (BMSD 2017). 2017, pp. 19–28. ISBN: 978-989-758-
238-7. DOI: 10.5220/0006527100190028. URL: https://doi.org/10.
5220/0006527100190028.

[30] Facundo Olano et al. Google Play API. https://github.com/facundoolano/
google-play-api. (last accessed: Jun, 19th, 2020). 2020.

[31] Facundo Olano et al. Google Play Scraper. https://github.com/facundoolano/
google-play-scraper. (last accessed: Jun, 19th, 2020). 2020.

84

https://doi.org/10.1109/MS.2015.56
https://doi.org/10.1109/MS.2015.56
https://doi.org/10.5220/0006527100190028
https://doi.org/10.5220/0006527100190028
https://doi.org/10.5220/0006527100190028
https://github.com/facundoolano/google-play-api
https://github.com/facundoolano/google-play-api
https://github.com/facundoolano/google-play-scraper
https://github.com/facundoolano/google-play-scraper

Bibliography

[32] Luc Perkins, Eric Redmond, and Jim Wilson. Seven Databases in Seven
Weeks: A Guide to Modern Databases and the Nosql Movement. Pragmatic
Bookshelf, 2018. ISBN: 978-1680502534.

[33] Aaron Ploetz et al. Seven Nosql Databases in a Week: Get up and Run-
ning With the Fundamentals and Functionalities of Seven of the Most Popular
Nosql Databases. Packt Publishing Ltd, 2018. ISBN: 978-1787127142.

[34] Pethuru Raj and Ganesh Chandra Deka. A Deep Dive into NoSQL Databases:
The Use Cases and Applications. Academic Press, 2018. ISBN: 978-0-12-
813786-4.

[35] Ramda. Practical functional Javascript. https://github.com/Ramda/ramda.
(last accessed: Jun, 19th, 2020). Dec. 2019.

[36] Mario Scheliga. CouchDB kurz & gut. O’Reilly Germany, 2010. ISBN: 978-3-
89721-559-7.

[37] Vincent Smith. Go Web Scraping Quick Start Guide: Implement the Power
of Go to Scrape and Crawl Data From the Web. Packt Publishing Ltd, 2019.
ISBN: 978-1789615708.

[38] Michael Stach et al. “Mobile Health App Database - A Repository for Quality
Ratings of mHealth Apps”. In: 33rd IEEE CBMS International Symposium
on Computer-Based Medical Systems (CBMS). Rochester, MN, USA: IEEE
Computer Society Press, July 2020.

[39] Michael Stach et al. “Technical Challenges of a Mobile Application Supporting
Intersession Processes in Psychotherapy”. In: The 17th International Con-
ference on Mobile Systems and Pervasive Computing (MobiSPC). Procedia
Computer Science. Leuven, Belgium: Elsevier Science, Aug. 2020.

[40] Michael Stach et al. “Towards a Beacon-based Situational Prioritization Frame-
work for Process-Aware Information Systems”. In: Procedia Computer Sci-
ence 134 (2018), pp. 153 –160. ISSN: 1877-0509. DOI: https://doi.org/
10.1016/j.procs.2018.07.156. URL: http://www.sciencedirect.com/
science/article/pii/S1877050918311190.

[41] Mihalis Tsoukalos. Mastering Go: Create Golang Production Applications Us-
ing Network Libraries, Concurrency, Machine Learning, and Advanced Data
Structures. Packt Publishing Ltd, 2019. ISBN: 978-1838559335.

85

https://github.com/Ramda/ramda
https://doi.org/https://doi.org/10.1016/j.procs.2018.07.156
https://doi.org/https://doi.org/10.1016/j.procs.2018.07.156
http://www.sciencedirect.com/science/article/pii/S1877050918311190
http://www.sciencedirect.com/science/article/pii/S1877050918311190

Name: Jörn Hofschlaeger Matrikelnummer: 791591

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Jörn Hofschlaeger

	Introduction
	Motivation
	Problem Analysis
	Contribution
	Outline

	Fundamentals
	Mobile Health App Database
	Databases
	Relational Databases
	Non-Relational Databases

	Microservices and their Orchestration
	Distributed Architecture
	Choreography and Orchestration
	Building Workflows

	Retrieve Data From App Stores
	Using an API
	Using a Scraper

	Requirement Analysis
	Functional Requirements
	Account
	Search
	App
	Review
	Analysis

	Non-Functional Requirements

	Concept
	Microservice Orchestration
	Zeebe
	Zeebe Client

	Database
	CouchDB
	Fauxton and API

	User Interface

	Implementation
	Google Play Scraper
	Fixing the Google Play Scraper
	RESTful API

	Workflows and Microservices
	Implementing the Play Scraper
	Implementing the Persistence Layer
	Implementing Database Search
	Implementing Database Updates
	Implementing Ratings
	Implementing Metadata Analysis

	User Interface
	User Login
	Searching and Adding Apps to Database
	Show Saved Apps
	Update Apps
	Rate Apps
	Analysis of Metadata

	Compliance with Requirements
	Functional Requirements
	Non-Functional Requirements

	Conclusion and Future Work
	Conclusion
	Future Work

	Software Used and Its Versions
	Bibliography

