
Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

Information Systems xxx (xxxx) xxx

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Enabling runtime flexibility in data-centric and data-driven process
execution engines
Kevin Andrews ∗, Sebastian Steinau, Manfred Reichert
Institute of Databases and Information Systems, Ulm University, Germany

a r t i c l e i n f o

Article history:
Received 14 March 2019
Received in revised form 20 August 2019
Accepted 30 September 2019
Available online xxxx
Recommended by Gottfried Vossen

Keywords:
Business process flexibility
Ad-hoc change
Object-aware processes
Data-centric processes
Data-driven processes

a b s t r a c t

Contemporary process management systems support users during the execution of predefined business
processes. However, when unforeseen situations occur, which are not part of the process model serving
as the template for process execution, contemporary technology is often unable to offer adequate
user support. One solution to this problem is to allow for ad-hoc changes to process models, i.e.,
changes that may be applied on the fly to a running process instance. As opposed to the widespread
activity-centric process modeling paradigm, for which the support of instance-specific ad-hoc changes
is well researched, albeit not properly supported by most commercial process engines, there is no
corresponding support for ad-hoc changes in other process support paradigms, such as artifact-centric
or object-aware process management. This article presents concepts for supporting ad-hoc changes
in data-centric and data-driven processes, and gives insights into the challenges to be tackled when
implementing this kind of process flexibility in the PHILharmonicFlows process execution engine.
We evaluated the concepts by implementing a proof-of-concept prototype and applying it to various
scenarios. The development of advanced flexibility features is highly relevant for data-centric processes,
as the research field is generally perceived as having low maturity compared to activity-centric
processes.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As one of the major advantages of using process management
technology in enterprises, the interactions between users and
IT systems can be adapted quickly when changes to real-world
business processes occur [1]. These adaptations are enabled by
changing the corresponding process models in a process manage-
ment system [2]. In particular, this allows processes to be updated
and improved, supporting more process execution variants not
thought of during initial modeling. However, process models are
often not detailed enough to adequately support each and every
possible process execution variant. Furthermore, process vari-
ants exist that occur so rarely that incorporating all their details
into the process model would increase complexity at low ben-
efit. In these cases, ad-hoc changes to running process instances
become necessary, a topic that has been addressed many times
for activity-centric process management systems [3–6].

1.1. Problem statement

Commonly, data-centric and data-driven process support
paradigms are considered to be more flexible in regards to

∗ Corresponding author.
E-mail address: kevin.andrews@uni-ulm.de (K. Andrews).

process execution than the well-established activity-centric para-
digm [7]. This can be explained with the fact that activity-centric
processes are usually well structured and only offer possibilities
to deviate from a fixed path at gateways or decision points.
Besides that, in activity-centric processes, process activities are
executed in exactly the order predefined by the process mod-
eler. In contrast, data-driven and data-centric process support
paradigms, such as artifact-centric processes [8] or case han-
dling [9], are more flexible, using various mechanisms to define
constraints on which activities are available for execution. Fur-
thermore, as these paradigms are data-driven, the availability
of data drives process execution, instead of the completion of
activities as is the case in activity-centric processes. Note that this
leads to an increased flexibility as the order of activity execution
is largely up to the user, as long as the defined constraints are ad-
hered to. However, even for processes whose execution is based
on these paradigms, the need might arise to perform changes to
these constraints at runtime, constituting ad-hoc changes.

In particular, we chose to extend an existing data-centric
and data-driven process support paradigm, object-aware process
management, with innovative concepts enabling ad-hoc changes.
The necessity of this work was established in the context of
several related projects and industrial case studies. In these
we created multiple object-aware process models in various

https://doi.org/10.1016/j.is.2019.101447
0306-4379/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.is.2019.101447
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://creativecommons.org/licenses/by/4.0/
mailto:kevin.andrews@uni-ulm.de
https://doi.org/10.1016/j.is.2019.101447
http://creativecommons.org/licenses/by/4.0/


Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

2 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

domains, such as intralogistics, e-learning, human resource man-
agement, and healthcare. We identified various scenarios in these
domains, in which ad-hoc changes to processes could offer bene-
fits even when supported by the inherently flexible object-aware
paradigm. In particular, we wanted to create a concept for in-
corporating ad-hoc changes into object-aware processes that is
not only conceptually sound, but actually usable at the opera-
tional level, both from a user and a performance perspective.
Accordingly, our research questions were the following:

RQ1 How can we enable ad-hoc changes to running object-aware
process models at runtime without disruptions?

RQ2 How can we make this feature flexible enough such that it
allows changing every aspect of a process model?

RQ3 How can we make the concept efficient enough that it
can be used for evolving real processes with hundreds or
thousands of instances?

1.2. Contribution

This article offers a fundamental approach for introducing the
concept of ad-hoc process changes at runtime to object-aware
process management [10]. The major contributions are threefold:

1. We provide a detailed set of concepts, algorithms, and im-
plementation details that enable ad-hoc changes to object-
aware processes at run-time.

2. We detail how we leverage the object-aware paradigm
to ensure runtime correctness of ad-hoc changed process
instances, as well as a method to reconstruct a consistent
process state after introducing ad-hoc changes.

3. We suggest additional extensions to the initial ad-hoc
change concept that ensure its performance viability for
scenarios involving changes that affect large numbers of
process instances.

This article provides a significant extension of the work we in-
troduced in [11]. While in [11] we presented an initial concept
for ad-hoc changes in object-aware processes, the evaluation of
the concept had not been completed. In this article, we not only
present a revised and improved version of the initial concept,
which is no longer adversely impacted by the quality of the
process model, but also a thorough evaluation of the original
concept and the presented revisions and extensions. The eval-
uation, which extends our previous work, was completed by
utilizing a proof-of-concept implementation of the concepts in
various scenarios in the course of multiple projects. Further-
more, we conducted performance measurements to quantify the
improvements we introduced while revising and improving the
initial concept. In summary, the new evaluation shows that ad-
hoc changes are not only feasible, but also very useful in various
scenarios.

1.3. Methodology & outline

We approached the solutions to our research questions and
the development of the contribution with the same design-
science based research methodology we have been employing
for the development of the object-aware and data-driven process
engine PHILharmonicFlows, of which Section 2 gives a short
overview required for understanding this work. Section 3
presents the requirements we identified for ad-hoc changes in
the object-aware paradigm. The main contributions of this article,
Sections 4 and 5, are structured along the design-science itera-
tions we went through when developing the concept for ad-hoc
changes. The initial iteration on the idea was developed for the

smallest scope in an object-aware process, i.e., one single object,
and is described in Section 4.1. The concept was validated in a
series of single case mechanism experiments and then extended
to include support for entire process models (cf. Section 4.2).
As the initial idea for supporting entire processes did not func-
tion perfectly in all scenarios, it was extended with additional
algorithms, which we describe in Section 4.3. Further iterations
on the concept concerned performance of the contribution, the
results of which we present in Section 5. A description of multiple
scenarios, in which the contribution was evaluated in terms of
a sophisticated prototypical implementation, can be found in
Section 6. Section 7 discusses related work and Section 8 gives
a short summary and an outlook.

2. Fundamentals

This section provides and overview of the conceptual founda-
tions of object-aware process management, which are crucial for
understanding this work.

2.1. Object-aware process management

PHILharmonicFlows, the object-aware process management
framework we are using as a test-bed for the concepts presented
in this article, has been under development at Ulm University for
many years [12–15]. PHILharmonicFlows takes the idea of a data-
driven and data-centric process management system, enhancing
it with the concepts of objects and object relations. For each
business object present in a real-world business process one such
object exists. As can be seen in Fig. 1, an object consists of data, in
the form of attributes, and a state-based process model describing
the data-driven object lifecycle.

The attributes of the Transfer object (cf. Fig. 1) include Amount,
Date, and Approved. The lifecycle process, in turn, describes the
different states (Initialized, Decision Pending, Approved, and Re-
jected), an instance of a Transfer object may enter during process
execution. Each state comprises one or more steps, each refer-
encing exactly one of the object attributes and enforcing that the
respective attribute is written at runtime. The steps are connected
by transitions, which arrange them in a sequence. The state of the
object changes after all steps in a state are completed, i.e., after
all corresponding attributes are written. Finally, alternative paths
are supported in terms of decision steps, an example of which is
the Approved decision step (cf. Fig. 1).

As PHILharmonicFlows is data-driven, the lifecycle process for
the Transfer object can be understood as follows: The initial state
of a Transfer object after its creation is Initialized. Once a Customer
has entered data for attributes Amount and Date, the object state
changes to Decision Pending, which allows a Checking Account
Manager to input data for Approved. Based on the entered value
for Approved, the state of the Transfer object either changes to
Approved or Rejected. Obviously, this fine-grained approach to
modeling the individual parts of a business process increases
complexity compared to the activity-centric paradigm, where the
minimum granularity of a user action corresponds to one atomic
black-box activity, instead of an individual data attribute.

As a major benefit, the object-aware approach allows for au-
tomated form generation at runtime. This is facilitated by the
lifecycle process of an object, which dictates the attributes to be
filled out before the object may switch to the next state. This
information is combined with a set of read and write permissions,
resulting in a personalized and dynamically created user form.
An example of such a form, derived from the lifecycle process in
Fig. 1, is shown in Fig. 2.

Note that a single object and its resulting forms only con-
stitute one part of a complete PHILharmonicFlows process. To



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 3

Fig. 1. Example object including lifecycle process.

Fig. 2. Example form.

Fig. 3. Design time data model.

allow for more complex executable business processes, many
different objects and users may have to be involved [16]. It is
noteworthy that users are simply special objects in the object-
aware process management concept. The entire set of objects
present in a PHILharmonicFlows process is denoted as the data
model, an example of which is depicted in Fig. 3. Note that this
is a simplified representation of a data model, omitting advanced
concepts such as cardinalities and roles (see [12,14] for details).

In addition to the objects, the data model contains information
about the relations existing between them. A relation constitutes
a logical association between two objects, e.g., a Transfer and
a Checking Account. At runtime, each of the objects may be in-
stantiated many times as so-called object instances. The lifecycle
processes present in the various object instances may then be
executed concurrently at runtime, thereby improving overall sys-
tem performance. Furthermore, the relations can be instantiated
at runtime, e.g., between an instance of a Transfer and a Check-
ing Account, thereby associating the two object instances with
each other. The resulting meta information, expressing that the
Transfer in question belongs to the Checking Account, can be used
to coordinate the processing of the two object instances with

Fig. 4. Data model instance.

each other [12]. Fig. 4 shows an example of a data model instance
executed at runtime.

Finally, complex object coordination is supported as well. The
latter becomes necessary as business processes often consist of
hundreds or thousands of interacting business objects [16,17],
whose concurrent processing needs to be synchronized at certain
states. As objects publicly advertise their state information, the
current state of an object can be utilized as an abstraction for
coordinating its execution with other objects corresponding to
the same business process through a set of constraints, defined
in a separate coordination process. As an example consider a
constraint stating that a Transfer may only change its state to
Approved if there are less than 4 other Transfers already in the
Approved state for one specific Checking Account.

In our current proof-of-concept prototype, the various concep-
tual elements of object-aware processes, i.e., objects, relations,
and coordination processes, are implemented as microservices.
For each object instance, relation instance, or coordination
process instance, one microservice instance is created at run-
time, turning the implementation, PHILharmonicFlows, into a
distributed process management system for object-aware pro-
cesses.

2.2. Process model evolution and ad-hoc changes

As motivated in Section 1, business processes models are
subject to different types of changes. These can be categorized
into deferred process model evolutions, immediate process model
evolutions, and ad-hoc changes [2].



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

4 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Fig. 5. Change granularity levels for activity-centric processes.

Deferred process model evolutions are changes that are intro-
duced by deploying updated process model versions without
applying the changes to already existing process instances. In
essence, a deferred process model evolution simply corresponds
to the introduction of a new process model version, which then
exist in parallel to older versions. Therefore, as existing process
instances remain untouched, as they are executing the (still ex-
isting) older version of the process model, this is a rather trivial
case.

Immediate process model evolutions not only allow for the
process model to be updated, but also try to migrate already
running process model instances to the new model version. In
general, an immediate migration poses significant challenges to
a process management system. Take the migration of process
instances that have already executed parts of the process model
to which changes are made. This poses a significant challenge as
it is hard to ensure process consistency after the change [18].
Immediate process model evolutions are required in use cases
where the running process instances must not continue execution
based on the old process model. As an example consider a faulty
web service call in the process model that has to be fixed for all
running instances.

Finally, ad-hoc changes constitute a special case of immedi-
ate process model evolution in which only one specific running
process model instance has to be changed. This allows users
to deviate from the predefined process in various ways, e.g., to
execute two activities in a different order as originally intended.
Enabling ad-hoc changes reduces the complexity of the process
model as not every single possible variant of process execution
has to be predefined.

In activity-centric process management, there is one central
entity to which all these changes are applied, i.e., the process
model [2]. While evolutionary changes might be applied directly
to the process model all corresponding process instances are de-
rived from, ad-hoc changes are solely applied to a specific process
instance. Each process instance has, at least conceptually, its own
copy of the process model, which can be changed individually.
These two change granularity levels possible in activity-centric
processes are depicted in Fig. 5.

Regarding object-aware process management, these two
change granularity levels exist as well. Specifically, evolutionary
changes may be made to the data model and its objects, whereas
ad-hoc changes may be applied to data model instances and
object instances, analogously to the activity-centric paradigm.
However, considering that additional object instances may be
created at any point during process execution, with only two
levels of granularity, it is not clear what an ad-hoc change to
an object actually constitutes. To ensure that users can express
whether they wish to only change one individual object instance
or all existing and future instances of an object in the data
model instance, a third level of granularity is defined: the object
instance level. The resulting three change granularity levels for
object-aware processes are depicted in Fig. 6.

Fig. 6. Change granularity levels for object-aware processes.

It is noteworthy that ad-hoc changes to objects on the data
model instance level are propagated to all existing and future
object instances. For example, if an attribute is added to an object
on the data model instance level, all object instances in the data
model instance will have the new attribute. However, if the same
change is introduced at the object instance level, only the specific
object instance the change is applied to will have the additional
attribute.

Finally, the data model instance level offers support for a more
complete set of change operations. In addition to the changes pos-
sible for object instances, i.e., adding attributes and permissions
as well as editing the lifecycle process, one may also introduce
changes to the data model instance itself, such as adding objects
or relations. More precisely, ad-hoc changes to the data model
instance level allow changing everything that is possible in the
regular modeling environment, i.e., completeness is ensured. On
the other hand, the object instance level is limited to changes
of the conceptual elements local to any one object instance,
e.g., adding a step. Both ad-hoc changes to the data model in-
stance level and the object instance level constitute the focus of
this article.

3. Requirements

This section presents major requirements we elicited regard-
ing the support of ad-hoc changes in object-aware process man-
agement. On one hand, they were derived from the general
requirements for activity-centric processes [2] and adapted as
necessary. On the other, we considered data model change op-
erations in a number of object-aware processes we analyzed
in various domains, such as intralogistics, e-learning, human
resource management, and healthcare [19]. Finally, we developed
an extensive framework for systematically comparing and eval-
uating the capabilities of various data-centric process support
paradigms in the course of which we managed to identify further
requirements [7].

Requirement 1 (Change Atomicity). Existing object instances
should not reflect ad-hoc changes immediately, as individual
changes to an object instance might render it semantically or
syntactically incorrect until other changes are applied as well.
As an example consider the insertion of a single step into a
lifecycle process that has no incoming or outgoing transitions.
Even if the missing transitions were added shortly afterwards,
there would be a time span in which the individual change of
adding a step constitutes a syntactical error in an object lifecycle



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 5

process. Consequently, if this change was introduced to a running
process instance runtime failures would be caused. In general, a
capability must be developed that allows introducing multiple
changes to running process instances in an atomic fashion. In
the example of adding a step, the atomic change would therefore
consist of adding the step and all transitions, ensuring that the
running process instances never enter an incorrect state.

Requirement 2 (Correctness). The changes that may be applied to
object instances should result in a correct process model again,
i.e., the verification criteria applied at design time must apply in
the context of ad-hoc changes as well. Reiterating the previous
example of adding a step to a lifecycle process, the entire atomic
change (i.e., sequence of individual changes) to the running object
instance must result in a correct lifecycle process model again.

Requirement 3 (Runtime Consistency). An object instance must
never enter a lifecycle process state it would not be able to reach
if it were re-executed in an identical fashion after an ad-hoc
change. For example, consider an object-instance with a lifecycle
process that has two states, A and B, with a few steps each.
Assume further that the object instance has completed state A
and is currently in state B. If an ad-hoc change was to add a step
in state A,which the lifecycle process has already progressed past,
it would be inconsistent for the object instance to remain in state
B without having completed the newly required step in state A.
This is due to the fact that newly created object instances could
never progress past the new step without providing data for the
associated attribute. However, the existing object instance would
have already progressed past this point before the ad-hoc change.

Requirement 4 (Model Consistency). When combining ad-hoc
changes to the entire data model instance with prior ad-hoc
changes to individual object instances, conflicting changes need
to be resolved. Consider an object instance with an additional
transition between two steps, added by an ad-hoc change on the
object instance level at runtime. If a process modeler introduced
an additional ad-hoc change at the data model instance level,
e.g., the deletion of one of the steps the additional transition is
connected to, this change to a specific object instance would be
in conflict with the change affecting all existing object instances.

Requirement 5 (Concurrency). Change operations should be ap-
plicable while the corresponding process instance is running,
without hindering the execution of other object instances not
concerned by the changes. Note that this is in contrast to activity-
centric process management, where a single process instance
often corresponds to a single business case. Specifically, we aim
to offer a solution that allows for ad-hoc changes to individ-
ual object instances without affecting the performance of other
object instances. Explicitly excluded from this work, however,
is a broader discussion on concurrent ad-hoc changes of the
same object instance, as this can be trivially solved with locking
mechanisms, i.e., by simply disallowing multiple users to conduct
changes to the same object instance at the same time.

Requirement 6 (Coordination). As object instances can be coordi-
nated with each other based on their current state [16], the state
changes caused by ad-hoc changes need to be handled correctly.
Such state changes may become necessary when required steps
are inserted at earlier points in an object instance lifecycle pro-
cess, as portrayed by the example introduced in the context of
Requirement 3. Furthermore, through the removal of individual
steps from a lifecycle process, the latter may advance to a differ-
ent state as the result of an ad-hoc change. Both cases need to
be handled correctly by the coordination process to ensure that
other object instances react correctly to the changes.

Requirement 7 (Completeness). The set of operations for express-
ing ad-hoc changes need to be complete in the sense that all
aspects of the process model editable at design time should be
editable at runtime as well. This allows for maximum flexibility
when conducting changes, even if the entire set of operations
is not necessary for most business cases. Additional concerns,
such as determining the ideal subset of modeling operations that
should be made available to users at runtime for conducting ad-
hoc changes, are out of the scope of this article, but will be
examined in future work.

Requirement 8 (Algorithmic Performance).Though an ad-hoc
change is an expensive operation, the concept should be reusable
in future work concerning schema evolution, with potentially
large numbers of data model instances receiving ad-hoc changes
from an updated schema version of the data model at the same
time. In general, one may expect that larger data models and their
instances will require more computational efforts to migrate to
ad-hoc changed versions than smaller ones. However, the scaling
should be at most linear in respect to the number of entities
contained in the data model.

4. Ad-hoc changes in object-aware processes

This section presents the fundamental concepts we devel-
oped for enabling ad-hoc changes to instances of object-aware
processes. All concepts have been fully implemented in the PHIL-
harmonicFlows process execution engine.

4.1. Object instance level changes

An ad-hoc change to an object instance can be required by
users for various reasons. As objects consist of multiple attributes,
permissions, and a lifecycle process, a simple ad-hoc change
would be the addition of an attribute as well as a corresponding
lifecycle process step to the object instance at runtime. An ex-
ample is depicted in Fig. 7 by the additional attribute Comment,
and the corresponding step in the Decision Pending state. Note
that this change affects the single object instance depicted in
Fig. 7, not any other existing or future instances of Transfer.
This is due to the fact that changing the template for creating
new Transfer object instances, i.e., the Transfer object (cf. Fig. 1),
remains untouched as the ad-hoc change is only introduced on
the object instance level, but not on the data model instance level.
Such changes to all existing and future instances of an object are
discussed in Section 4.2.

Note that from a user perspective the introduction of this
change would automatically alter the form generated from this
object at runtime. While an unmodified Transfer object instance
would display the form depicted in Fig. 2 to a Checking Account
Manager when the object enters the Decision Pending state. How-
ever, after introducing the ad-hoc change, the instance displays
a slightly different form to the Checking Account Manager (cf.
Fig. 8). This altered form displays an input field for the Comment
attribute and sets it as mandatory, as required by the correspond-
ing step inserted into the Decision Pending state of the Transfer
lifecycle process.

Supporting ad-hoc changes on the object instance level is
accompanied by a number of challenges that need to be tackled in
order to lay the foundation for data model instance level changes.
The following concept solves these challenges in line with the
requirements discussed in Section 3.



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

6 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Fig. 7. Transfer object instance with added Comment attribute and step.

Fig. 8. Dynamically generated form after ad-hoc change.

4.1.1. Change log entries
Fundamental to our concept is the notion of change log entry. A

change log entry represents a change operation that was applied
to some entity that is part of an object-aware data model. We
omit the definition of a data model in this article (see [12]
instead) as, for the intent of the presented concept, the data
model merely serves as a container for the other conceptual
elements present in an object-aware process model, e.g., objects
and relations.

Definition 1 (Change Log Entry). A tuple L = (S,A,P,T) is called
change log entry if the following holds:

• S, the source of the log entry, corresponds to any object-
aware entity (e.g. object, relation, and coordination process)
• A is a modeling action that was applied to S (e.g. AddAt-

tribute)
• P is a set of parameters with which A was applied to S
• T is the logical timestamp of the modeling action

For each modeling action completed by a user when creating
or changing a data model, one such log entry is created. The sum
of these log entries constitutes the change log of a data model.
Example 1 shows a concrete change log entry for the creation of
a new string attribute, Comment, in the Transfer object.

Example 1 (Change Log Entry).

l14 =

⎧⎪⎪⎨⎪⎪⎩
S object : Transfer
A AddAttribute
P [name : "Comment", type : String]
T 14

The logical timestamp T of l14 holds value 14, signifying that
it is the 14th change to the data model. Specifically, tracking
the logical timestamp of modeling actions across the entire data
model becomes necessary to allow sorting them in the original
order across the various objects they are attached to. Note that
this becomes necessary when reconstructing data models from

their change logs. Reconstruction can be used for fairly trivial
tasks, such as creating an identical copy of a data model by
replaying its change log (i.e, repeating each modeling action step
by step), but also for more complex use cases related to changes,
as the ones discussed in this article.

4.1.2. Log-defined object instances
The availability of change logs allows viewing an object-aware

data model and the objects it contains from a new perspec-
tive, i.e., as the result of the application of all modeling actions
recorded in the change log. Note that this perspective may be
applied to both the data model instances and the object instances,
as all individual instances are based on their models, which can
be recreated by repeating the modeling actions contained in the
change log entries.

In object-aware process management, an object instance is not
merely defined by the attributes and lifecycle process model of
the object it was instantiated from, but also by the data values
present for each attribute at a given point in time during the
processing of the object instance, i.e., the execution of its lifecycle
process. This can be explained by the fact that object-aware
processes are inherently data-driven (cf. Section 2), meaning that
the execution progress (i.e., the state) of each object is defined by
its attribute values and that the current states of the individual
objects are used by the coordination process to determine the
execution progress of the entire data model instance.

Taking this into account, we can offer an alternate definition
of an object instance, which deviates from the one found in litera-
ture on object-aware process management [10]. In particular, the
previous definition focused on the actual object-aware entities
that comprise the object, such as attributes, attribute values,
permissions, and all entities of the object lifecycle process.

Definition 2 (Log-defined Object Instance). A tuple O = (log, data)
is called log-defined object instance if the following holds:

• log is a sequence of change log entries L (cf. Definition 1)
• data is a mapping of object attributes to values

As O.log contains log entries with logical timestamps, recre-
ating the sequence of actions (with their corresponding parame-
ters) necessary to create O in its current state is trivial.
Furthermore, once the object has been created from the logs, it
becomes possible to assign to each attribute a its value O.data[a].
In essence, this entire procedure allows serializing an object
instance in a running data model instance to its equivalent log-
defined object instance, and then to recreate an identical copy
of the original instance. However, this makes little sense, as the
point of ad-hoc changes to object instances is not to create identi-
cal object instance copies, but to change existing object instances.



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 7

Still, there are several reasons for considering the serialization
and deserialization of objects to and from logs as a fundamental
building block for our concept.

4.1.3. Introducing ad-hoc changes
In the following, we view all object instances as a log-defined

ones, i.e., under the premise that an object instance is merely the
result of the sequence of modeling actions necessary to create
the object it was instantiated from, as well as the data values
that were supplied for its attributes. This way, it becomes clear
that any additional log entry not present in the log entries of
the original object would indicate that the object instance was
changed in an ad-hoc fashion. Combining the fact that we can
create copies of object instances using their log-defined form with
the ad-hoc addition of new log entries, we can create ad-hoc
changed copies of objects instead of identical ones. An abstract
view of the procedure, which is related to Example 1 (i.e., adding
a Comment attribute to the Transfer instance Transfer#77#TEMP)
is shown in Fig. 9.

Note that some extra steps involving the temporary Trans-
fer#77#TEMP object instance (cf. Fig. 9) become necessary. These
steps shall support some of the requirements introduced in
Section 3. According to Requirement 1 atomicity of multiple
changes has to be ensured, as individual changes might render
an already running object instance in an incorrect state according
to the syntactic and semantic correctness criteria of object-aware
process management [13]. This means that semantically related
changes must be completed in an atomic fashion assuming that
they result in a semantically correct object (cf. Requirement 2).
Note that both requirements necessitate the creation of a tempo-
rary copy of the object instance (cf. Fig. 9, Marking (1)). To this
end, we utilize log replaying to create the copies.

The temporary object instance copy is editable. In the PHIL-
harmonicFlows implementation of object-aware process man-
agement, for example, we allow editing the underlying lifecycle
process model in the modeling environment. After the tempo-
rary object instance is edited and its correctness is verified, the
changes applied to it can be propagated to the original ‘‘live’’
object instance in an atomic fashion. To be more precise, the
change log entries created during editing (cf. Fig. 9, Marking (2))
constitute the delta of the ad-hoc change, i.e, the differences
between the original object instance and the ad-hoc changed one.
To express this difference formally, we introduce log delta ∆

between two instances of the same object.

Definition 3 (Log Delta ∆). A sequence ⟨ln, . . . , lm⟩ of change log
entries is called the log delta ∆ between O#i and O#j if the
following holds:

• li is a change log entry ∀i = n . . .m
• O#i and O#j are log-defined object instances of the same

object O
• O#i.log and O#j.log are the change log entries of O#i and

O#j
• ⟨ln, . . . , lm⟩ ≡ O#i∆O#j ≡ (O#i.log \ O#j.log) ∪ (O#j.log\

O#i.log)

In the example from Fig. 9 (after the ad-hoc change has
been completed), Transfer#21∆Transfer#77 = ⟨l14, l15, l16⟩ holds,
i.e., the structural difference between the unchanged instance and
the ad-hoc changed instance is determined by the actions logged
in l14, l15, and l16. As previously stated, editing the temporary copy
allows for the support of Requirement 1, as the original object
instance stays untouched until the ad-hoc change is completed.
Furthermore, before completing the second copy operation (cf.
Fig. 9, Marking (3)), the entire set of applied changes can be
verified using static model verification before the ad-hoc changes

Algorithm 1: Creating ad-hoc changed object instance

Require: O.log,O.data ▷ log entries and data of log-defined object
instance O

1: Otemp ← new
2: for all l in O.log do ▷ copy O by change log replay
3: Otemp.replayChangeLog(l)
4: end for
5: allowediting(Otemp) ▷ log(Otemp) altered via changes in

modeling tool
6: if modelVerificationErrors(Otemp) = 0 then ▷ ensure change is

valid
7: Oadhoc ← new
8: for all l in log(Otemp) do ▷ copy Otemp by change log replay
9: Oadhoc .replayChangeLog(l)

10: end for
11: for all d in O.data do ▷ insert attribute values from O
12: Oadhoc .changeAttributeValue(d) ▷ each value advances

the lifecycle
13: end for
14: delete(Otemp)
15: delete(O)
16: O← Oadhoc
17: end if

go ‘‘live’’, i.e., Requirement 2 is met. Finally, after completing this
second copy operation, two Transfer#77 object instances exist:
the original (i.e., unchanged) instance and the one copied from
temporary instance Transfer#77#TEMP. In fact, the latter still
exists. As shown in Fig. 9, Marking (4), these extra copies need to
be deleted, which causes the ad-hoc changed instance to become
part of the running process, replacing the unchanged instance in
one atomic operation.

Algorithm 1 describes the concept in pseudo code. Note that
the allowediting() function mentioned in Line 5 simply allows
editing the temporary object instance copy in the regular PHIL-
harmonicFlows modeling environment.

The algorithm pauses execution until the user has modeled
the ad-hoc change and continues execution at Line 6 once the
user signals that the ad-hoc changes should be propagated to
the ‘‘live’’ object instance. Note that the lifecycle process of all
object instances is data-driven, i.e., the lifecycle process advances
automatically when providing values to the attributes referenced
in lifecycle steps. Thus, the lifecycle process gets re-executed
instantly after copying and changing the attribute values of the
copy, based on the lifecycle process itself and the current data val-
ues assigned to the attributes (cf. Line 12). After the re-execution
is complete, object instance O is hot-swapped with the new object
instance Oadhoc , minimizing disruptions, in line with research
question RQ1. Note that re-execution is necessary to support
Requirement 3.

4.1.4. Ensuring runtime consistency
As Requirement 3 states, all processes need to be runtime con-

sistent at all times. For object instances that have progressed to a
particular state, this would usually mean that inserting required
data input steps in earlier states would not be possible as the
object instance could not have reached its current state after
the change. However, by enforcing re-execution, our approach
ensures that object instances always have a consistent runtime
state. In detail, if changes are introduced that require data input
in states prior to the one the original object is currently in, the ad-
hoc changed object simply executes all steps up until the newly
inserted step (which requires data currently not present). Here,



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

8 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Fig. 9. Creating ad-hoc changed object instance.

the lifecycle process stops execution until a user has entered the
newly required data value. Once this is done, the remaining data
imported from the original object instance is used to execute the
lifecycle process to the state it was in before the ad-hoc changes
were introduced. The fine-grained rules for lifecycle execution
established in [13] and the data-driven execution approach in
general support this flexible style of instant and consistent re-
execution. Further note that simple re-executability is one major
advantage object-aware processes have over activity-centric pro-
cesses in regards to ad-hoc changes as this ensures that the
process is always in a consistent state.

Example 2 (Implicit Ad-Hoc Changes to Generated Forms). The
form in Fig. 2 was generated from an unchanged Transfer object
instance. In turn, Fig. 8 shows the updated form immediately
after applying ad-hoc changes that introduce a Comment attribute
and the corresponding lifecycle step. As the Comment attribute is
now required before the Approved attribute, in line with the ad-
hoc changes to the lifecycle process, the form generated for the
Decision Pending state updates accordingly.

Note that the capability of adding or changing form logic is
innovative not just for a process management system, but even
for more specialized information systems, such as ERP or CRM
systems. Even the simple example of adding a single field at run-
time and marking it as required is an incredible headache in
most contemporary information systems. Considering more ad-
vanced examples, such as inserting entirely new states or chang-
ing permissions and, therefore, the flow of data between the
information system and its users at run-time, the concept consti-
tutes a considerable step forward towards a dynamically evolving
information system based on the object-aware process support
paradigm.

The scope of changes possible with this initial concept is lim-
ited to modeling elements that are directly attached to individual
object instances, i.e., steps, states, and transitions in the lifecycle
process as well as attributes and permissions. However, expand-
ing upon the presented concept by additionally enabling ad-hoc
changes at the data model instance level removes this restriction.
Finally, due to the large number of possible object instances
in one single data model instance at runtime, performing ad-
hoc changes on individual object instances might be too time
consuming for users to be a feasible approach.

4.2. Data model instance level changes

After presenting the concept for introducing ad-hoc changes to
individual object instances, we move on to the more challenging
task of applying ad-hoc changes at the data model instance level.
Note that this allows performing ad-hoc change operations on
any part of a data model instance, i.e., the relations, the co-
ordination processes, and the objects themselves. As explained
in Section 2, changes applied at the data model instance level
do not propagate to the deployed data model. In consequence,
the changes applied to one data model instance do not affect
other data model instances created from the same deployed data
model. However, ad-hoc changes on the data model instance
level constitute an evolutionary change, as they propagate to all
existing and future object instances present in the given data
model instance (cf. Fig. 6). Two core aspects are crucial to enable
ad-hoc changes to data model instances:

1. The data model instance has to be ad-hoc editable and
changeable without affecting the deployed data model it
was instantiated from.

2. Changes made to objects must propagate to all correspond-
ing object instances. This poses additional challenges if
some of the object instances have prior individual ad-hoc
changes applied (cf. Requirement 4).

As explained in the context of Definition 1, all modeling actions
performed on a data model are recorded in the change log.
However, change log entries may not only be used to create a log-
defined view on an individual object instance (cf. Definition 2),
but also on an entire data model instance, including all contained
objects, relations, and coordination processes. Note that there is
a fundamental difference between the log-defined view of an
object instance and the one of a data model instance. As the data
model instance itself does not hold any data, its execution state is
defined by the data of its object instances as well as the execution
state of the coordination process. This, in turn, solely depends on
the relations that exist between the object instances and their
current states [16]. On a side note, the log-defined views on
relations and coordination processes that belong to a data model
instance merely consist of change log entries. As they have no
associated data of their own, their trivial definitions are omitted.

Definition 4 (Log-defined Data Model Instance). A tuple M = (log,
objs, rels, coords) is called log-defined data model instance if:



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 9

• log is a sequence of change log entries L (cf. Definition 1)
• objs is a set of log-defined object instances O (cf.

Definition 2)
• rels ⊆ objs × objs is a set of log-defined relation instances

between objects
• coords is a set of log-defined coordination process instances

The log-defined view of the data model instance allows cre-
ating a temporary copy. Analogously to ad-hoc changes at the
object instance level, this copy is used to meet Requirement 1,
as incomplete ad-hoc changes are not applied to the ‘‘live’’ data
model instance the users are working on. Additionally, it allows
for a full scale static model verification, a prerequisite to meet
Requirement 2.

The following reuses parts of the running example, the addi-
tion of a Comment attribute as well as a corresponding step to
the Transfer object. However, the change is now applied to the
entire Transfer object and, in consequence, all associated Transfer
object instances. Furthermore, we extend the example with the
ad-hoc addition of a new object, Foreclosure, to the data model
instance. Adding a new object is possible on the data model
instance level as all changes that are possible at design time may
be incorporated into a data model instance at runtime as well
(cf. Requirement 7). The entire process of applying these ad-hoc
changes to a data model instance is shown in Fig. 10.

The basic idea for incorporating ad-hoc changes to the data
model instance level is the same as for the object instance level.
However, there is a fundamental difference, as the data model
itself is not ‘‘executed’’ like the lifecycle process of an object
instance. This means that re-execution does not apply to the
data model instance itself, but only to the affected object in-
stances. Instead, we determine the log delta (cf. Definition 3)
between the original and the temporary data model instance.
Obviously, DataModelInstance#1∆DataModelInstance#1#TEMP =
⟨l14, l15, l16, l17⟩, i.e., we can use the log delta to identify the log
entries created by the user when editing the temporary data
model instance and prepare them for distribution to all affected
object instances (cf. Fig. 10, Marking (2)).

Due to the editing of a copy of the data model instance,
which includes all object instances, the concept further meets
Requirement 4. To be more precise, during editing, a user can be
warned by the modeling user interface that the change he or she
wants to apply to an object is in conflict with a previously applied
ad-hoc change on one of the existing object instances. Once a
user has finished editing the temporary data model instance, the
changes described in the log entries are applied to the original
data model instance (cf. Fig. 10, Marking (3)).

Finally, the existing object instances have to be migrated to
their updated objects. Regarding the modified running example
this means that both Transfer instances must have the Comment
attribute added. This process is depicted in Fig. 10, Markings
(4)–(6). Note that this procedure is almost analogous to the one
incorporating ad-hoc changes to individual object instances (cf.
Section 4.1). In fact, the ad-hoc changes applied to the object in-
stances are the evolutionary changes propagated from the objects
to their respective instances. In summary, the presented concept
allows for ad-hoc changes to running process instances supported
by the object-aware paradigm. While the examples focus on ad-
hoc changes to objects and individual object instances, in the
current prototype (cf. Section 6.1) the concept is implemented
with support for ad-hoc changes to relations and coordination
processes as well. Therefore, the concept can be utilized to change
every aspect of a process model (cf. research question RQ2).

4.3. Interdependent ad-hoc changes

As emphasized in Section 4.2, ad-hoc changes may not only
be applied to objects. In particular, the relations and coordina-
tion processes present in an object-aware process instance are
designed to produce the same kind of change logs as objects when
modeling them. Therefore, moving away from the illustrative
examples presented so far, a log-defined data model instance (cf.
Definition 4) not only consists of its own logs, but also logs for
contained objects, relations, and coordination processes.

The reason for relations having their own set of logs can
be found in the permission system employed by object-aware
process management (cf. [14]). In a nutshell, object-aware pro-
cess management employs an RBAC (Role Based Access Control)
approach. In RBAC, permissions are not assigned to users directly,
but grouped into roles instead, which reduces administrative
overhead. In object-aware process management, simple scenarios
for granting such roles at runtime, e.g. granting role Checking
Account Manager with respect to an object instance representing
an employee and having an attribute Department with value
Account Management, are supported. More advanced scenarios,
such as granting roles based on object relations at runtime, are
covered as well. Note that this flexible approach has a drawback,
which we identified when developing the ad-hoc change concept
for data model instances.

Example 3 (Side Effects caused by Relation-based Roles). Consider
granting role Checking Account Manager not based on an attribute,
but instead to any Employee object having a relation to a Customer
(cf. Fig. 4). The role is then granted on a per-relation basis. Regard-
ing the example depicted in Fig. 4, the Checking Account Manager
role is granted to Employee1 for Customer1 and Customer2 only
because he has a direct relation to them. In consequence, ad-
hoc changes to any of the involved objects may have side-effects
on the Checking Account Manager role configured in the rela-
tion between the objects Employee and Customer at design time.
Consider the deletion of an attribute as an ad-hoc change to
the Customer object. As a data model instance level change, this
would delete the attribute from all existing Customer instances,
as well as future ones. However, if the Checking Account Manager
role grants a permission to write the deleted attribute, runtime
errors might occur if the role or the permission is not updated.

The same considerations apply to coordination processes.
Though not the main focus of this article, the coordination process
is a fundamental element of an object-aware process, as it allows
defining and controlling constraints between object instances
based on their current states.

Example 4 (Side Effects caused by Coordination Constraints). A sim-
ple coordination constraint could be that only 4 Transfer objects
related to the same Checking Account may be in state Approved
at the same time. As is the case with relations, ad-hoc changes
to objects may have side-effects on the coordination process
instances that continuously monitor all running object instances
and enforce their defined constraints. An obvious example would
be an ad-hoc change deleting the Approved state from the Transfer
object, as the coordination process relies on this state at runtime.

Initially, the ad-hoc change concept relied on the PHILharmon-
icFlows modeling tool to ensure that interdependent changes,
as illustrated in Examples 3 and 4, are properly reflected in the
relations and coordination processes belonging to a data model
instance. In the same way, correctness is enforced when design-
ing the initial process model with the modeling tool. However,
this approach uses a static analysis of the data model with a set of



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

10 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Fig. 10. Creating an ad-hoc changed data model instance.

modeling rules that are hard-coded into the modeling tool. Conse-
quently, it is not adequate for covering possible future scenarios
in which ad-hoc changes need to be propagated from one data
model to another without any user interaction, e.g. in the context
of a schema evolution. To cope with this issue, we developed
Algorithm 2 which detects ad-hoc changes that adversely affect
other entities of the object-aware process instance in question
and fixes them. For the algorithm to work, the definition of a
change log entry (cf. Definition 1) has to be extended to include
the necessary meta information for log interdependence analysis.
The extended definition (cf. Definition 5) includes the category of
the modeling action applied by the log entry (Create, Update, or
Delete) as well as the affected entity.

Definition 5 (Extended Change Log Entry). A tuple L = (S,A,C,E,P,T)
is called extended change log entry when:

• S is the source of the log entry, corresponding to any object-
aware entity (e.g. object, relation, or coordination process)
• A is a modeling action that may be applied to S
• C is the category of A with C ∈ {Create,Update,Delete}
• E is an entity within S (e.g. state, step, attribute, permission)

affected by A with E ∈ S
• P is a set of parameters with which A was applied to S
• T is the logical timestamp of the modeling action

Additional meta information has to be generated by all mod-
eling actions to be able to detect interdependencies between log
entries. In essence, in any log-defined data model instance, there
are multiple sets of extended change log entries (cf. Definition 4).

• One log for the data model itself, containing log entries for
high-level actions (e.g. creating new objects or relations).
• One log per object present in the data model, containing

log entries that describe the modeling of the object and its
lifecycle process (e.g., adding steps or attributes).
• One log per relation present in the data model, containing

log entries describing the modeling of the relation (e.g., as-
signing relation-based roles).
• One log per coordination process present in the data model,

containing log entries that describe the modeling of the

coordination process (e.g., configuring coordination con-
straints for interdependent objects).

As an example consider the data model for the PHoodle
E-Learning Platform1 (cf. Section 6.2), one of the real-world data
models we use for testing our concepts. This data model consists
of 7 different objects, 10 relations, and 1 coordination process.
Consequently, in this example, 19 logs with a total of 479 change
log entries need to be analyzed for interdependencies in order to
prevent inconsistent changes to objects, relations, or coordination
processes when conducting ad-hoc changes to the data model
instance at runtime.

Considering that an ad-hoc change can be understood as the
log delta between the logs before and after an ad-hoc change
(cf. Definition 3), the necessary algorithmic work boils down to
analyzing whether any of the new log entries, which are part
of the ad-hoc change, have interdependencies with any of the
existing log entries. Note that, with the metadata available from
the extended change logs, this constitutes an inexpensive task
from a computational point of view. The basic idea of finding
and removing interdependencies between logs is captured in
Algorithm 2. In essence, the algorithm tries to find Delete log
entries and to remove other log entries relying on the deleted
entity.

In detail, one must loop over the log entries ∆.log introduced
by the ad-hoc change, and for each log entry L∆

∈ ∆.log with
category L∆.C = Delete, loop over the logs present in data model
instance M, i.e., M.log, M.objs, M.rels, and M.coords (cf. Algorithm
2, Lines 4–5). While looping, one must remove all logs entries
LM ∈ M with category LM .C = Update and the entity affected
by the deletion, L∆.E, in their parameter set LM .P (cf. Lines 6–10).
Effectively, this deletes all change log entries that ever altered an
existing entity to rely on the now deleted entity. The results of
this algorithm are pruned log-based objects, relations, and coordi-
nation processes, which are guaranteed to not reveal any runtime
problems after introducing the ad-hoc changes and rebuilding the
data model instance from the logs. Effectively, all dependencies

1 The download links for the log-based representation of this data model,
along with others, can be found in the footnotes of Section 6.4.



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 11

Algorithm 2: Fixing log interdependency issues

Require: ∆.log,M ▷ ad-hoc change log and log-defined data model
instance M

1: allLogs[] ← M.logs ∪M.objs ∪M.rels ∪M.coords ▷ simple looping
later on

2: affectedEntities[] ← new ▷ set of entities that will have to be rebuilt
later

3: for all l∆ in ∆.log do
4: if l∆.C = Delete then
5: for all lM in allLogs do ▷ find entries affected by ad-hoc delete
6: if lM .C = Update then
7: for all p in lM .P do ▷ loop over parameters
8: if p = l∆.E then ▷ parameter is entity deleted by l∆
9: affectedEntities[].add(lM .S) ▷ log source needs

rebuild
10: delete(lM )
11: end if
12: end for
13: end if
14: end for
15: end if
16: end for
17: for all entity in affectedEntities[] do ▷

entity ∈ M.objs ∪M.rels ∪M.coords
18: entityInstances[] ← getInstances(entity) ▷ get all instances of

entity
19: for all instance in entityInstances[] do
20: delete(instance)
21: instance← new
22: for all l in entity.log do ▷ affected entries are no longer present
23: instance.replayChangeLog(l) ▷ rebuild the instance from logs
24: end for
25: end for
26: end for

on objects deleted by the log representing the ad-hoc change are
deleted in the other logs representing the pre-existing entities in
the data model. Algorithm 2 summarizes the entire procedure.

Obviously, the extension to our definition of log entries as
well as the development of Algorithm 2 and the other concepts
described in this section created significant efforts. However,
these concepts do not merely serve the purpose of having a clean
and automated way of fixing inconsistent ad-hoc changes on the
fly. Instead, the concepts presented in this section are reused to
a large extent to improve the performance of the entire ad-hoc
change concept. In particular, the additional meta information
provided by the extended log definitions can be utilized in a
modified version of Algorithm 2 to prune logs in order to reduce
the number of steps necessary for creating temporary copies of
objects and data models, a concept which is explained in detail
in Section 5.1.

5. Performance considerations

In Section 4.3, we examined one class of problems that might
arise when performing ad-hoc changes to entities of a data model
instance at runtime and not properly adapting other entities
to those changes. To cope with this challenge, we developed
Algorithm 2, which prunes logs in order to remove log entries
that cause dependencies on entities removed by ad-hoc changes.
The pruned log is then used to recreate instances of those enti-
ties having no dependency on the entity deleted by the ad-hoc
change. Note that this works for any log-based entity present in
an object-aware data model, including objects and relations.

Detecting log interdependencies is not the only goal of the
developed algorithm, which can be extended to enable far more

general log pruning. In general, performance is a critical factor
in process management systems, an issue that was investigated
in related works on activity-centric process engines [20–22]. Note
that performance considerations are even more crucial for object-
aware processes, as the granularity at which interactions with
the process engine occur is much more fine-grained compared
to activity-centric engines. Obviously, the performance of the ad-
hoc change concept presented in Section 4 relies on the change
log entries that are created when modeling an object-aware data
model. To be more precise, the speed at which the change oper-
ations can be performed scales linearly with the number of log
entries created for the data model at design time. In essence, to
adhere to Requirement 8 (i.e., ensuring that the performance of
the concept is sufficient for applying it in the context of large-
scale schema evolutions), the number of log entries should be
minimal. Note that there is no way to ensure that process model-
ers do not complete modeling actions they redo differently later
on. This is simply impossible as the creation of a process model
constitutes an iterative procedure to some extent, assuming that
neither the process modeler nor the requirements for the model
are ‘‘perfect’’.

When analyzing the logs of object-aware process models cre-
ated by students with the PHILharmonicFlows modeling tool [23],
we could show that, on average, every third modeling operation
was undone by some means later on.2 While this might be
a symptom of the paradigm shift away from activity-centric
to object-aware process modeling, it points out the problem
at hand: The performance of the concepts presented in this
paper does not depend on the size of the final data model,
but on the size of the modeling log. Obviously, this contradicts
Requirement 8 as it leads to longer turnaround times for many
procedures involved in the core concepts of this article, such as
creating temporary copies of objects and rebuilding entities from
their log-based representations. To remedy this, we extended our
concept with several performance optimizing techniques revolv-
ing around the logs and their usage during copy and replay opera-
tions at runtime. This ensures that our concept is efficient enough
for evolving real-world processes with many instances (cf. re-
search question RQ3). The following sections present concepts for
log pruning, log grouping, and log parallelization.

5.1. Log pruning

Log pruning is indispensable to improve the performance of
the ad-hoc change concept. It ensures that log entries which
have no effect on the resulting data model are pruned from the
log. The general idea for log pruning is the same as for iden-
tifying and fixing log interdependencies when applying ad-hoc
delete operations (cf. Section 4.3). Furthermore, the idea relies
on the extended change log notion from Definition 5. Regarding
Algorithm 2, it becomes evident that pruning a log entry from
a log prevents the corresponding modeling action the log entry
would complete during log replay from being introduced to the
model. Using this knowledge, one can optimize a log through
pruning.

We identified two cases in which pruning can be used to this
end. First, the simple case of pruning Update log entries made
obsolete by later Update log entries, and, second, pruning log
entries that are made obsolete by later Delete logs. An example
of the former is changing the display name of an attribute, and
then changing it later for whatever purpose. This would cause
two extended change log entries, as shown in Example 5, to be
created during modeling. Obviously, the first log entry, i.e., l23, is
deprecated by l37.

2 Links to a selection of these logs can be found in the footnotes in
Section 6.4.



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

12 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Example 5 (Renaming Twice).

l23 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S object : Transfer

A SetAttributeDisplayName

C Update

E AmountAttribute

P [attribute : AmountAttribute,

name : ‘‘Transferred Amount ’’]

T 23

l37 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S object : Transfer

A SetAttributeDisplayName

C Update

E AmountAttribute

P [attribute : AmountAttribute,

name : ‘‘Amount Transferred’’]

T 37

Generally, we can define two pruning rules as follows:

Rule 1 (Pruning Update Logs). If multiple log entries exist with
category C = Update as well as same modeling action A and
affected entity E, only keep the one with the largest timestamp T.

Regarding Example 5, this means that l23 is pruned from the
log. As all Updatemodeling actions necessary in object-aware pro-
cesses can be structured in this idempotent way, Rule 1 may ap-
ply to anything from label updates to permissions or coordination
conditions.

Rule 2 (Pruning Delete Logs). If a Delete log entry is found that
deletes an entity, prune the Create log entry responsible for the
creation of said entity.

The benefits of Rule 2 are manifold: not only the Create log
entry itself can be pruned from the log, but all subsequent Update
log entries that modified the created entity as well. Furthermore,
the Delete log entry itself may be pruned from the log. Finally,
with the Create log entry not present in the log anymore, any
other log entries with interdependencies on the now deleted
entity can be pruned as well, in a cascading fashion. Note that
such cascading pruning might delete a large number of log entries
recursively in certain scenarios, leading to massive reductions in
log sizes and, therefore, reductions in the number of modeling
actions needed to rebuild the entities contained in the log. This
has been especially true for some of our real-world applications
of the pruning algorithm, as Delete pruning can recursively prune
entire objects that were created in many steps but then deleted
later on (cf. Section 6.4). Example 6 shows a simple log with
a sequence of entries that can be pruned by the log pruning
algorithm.

Example 6 (Object Deletion).

l57 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S object : Transfer

A AddAttribute

C Create

E CommentAttribute

P [name : ‘‘Comment"]

T 57

l58 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S object : Transfer

A SetAttributeDisplayName

C Update

E CommentAttribute

P [attribute : CommentAttribute,

name : ‘‘Manager Comment"]

T 58

l59 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S relation : CustomerToEmployee

A AddAttributeWritePermission

C Create

E CommentWrite

P [attribute : CommentAttribute,

state : Decision Pending]

T 59

l60 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S object : Transfer

A AddStep

C Create

E CommentStep

P [attribute : CommentAttribute,

state : Decision Pending]

T 60

l61 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S relation : CustomerToEmployee

A AddPermissionToRole

C Create

E AccountManagerRole

P [permission : CommentWrite,

role : AccountManager]

T 61

l82 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S object : Transfer

A DeleteAttribute

C Delete

E CommentAttribute

P [attribute : CommentAttribute]

T 82

Algorithm 3: Complete log pruning algorithm

Require: logEntries[] ▷ logs to prune, e.g. from data model and ad-hoc
changes

1: for all logEntry in logEntries[] do
2: logEntriesToPrune[] ← new
3: if logEntry.C = Delete then ▷ prune logs dependent on this delete
4: for all logEntry2 in logEntries[] do ▷ double for loop
5: if logEntry.E = logEntry2.E or logEntry.E ∈ logEntry2.P then
6: logEntriesToPrune[].add(logEntry2)
7: end if
8: end for
9: else if logEntry.C = Update then ▷ prune logs overridden by this

update
10: for all logEntry2 in logEntries[] do ▷ double for loop
11: if logEntry.E = logEntry2.E and logEntry.A = logEntry2.A

then
12: if logEntry.T > logEntry2.T then ▷ same E and A, lower

T
13: logEntriesToPrune[].add(logEntry2)
14: end if
15: end if
16: end for
17: end if
18: for all logEntryToPrune in logEntriesToPrune[] do
19: if logEntryToPrune.C = Create then ▷ check for pruned creates
20: deleteLogEntry← new
21: deleteLogEntry.C ← Delete
22: deleteLogEntry.E ← logEntryToPrune.E
23: logEntries[].add(deleteLogEntry) ▷ add "fake" delete→

cascade
24: end if
25: end for
26: logEntries[] ← logEntries[] − logEntriesToPrune[]
27: end for
28: return logEntries[]

Basically, with the meta information provided by the extended
log entries shown in Example 6, the pruning algorithm identifies
l82 as a Delete log entry. Furthermore, in l82.E, the Comment
attribute is identified as the entity affected by the deletion. By
searching through all other log entries present in the data model
instance M, i.e., M.log, M.objs, M.rels, and M.coords, and pruning all
log entries with l.E = CommentAttribute or CommentAttribute ∈
l.P , several other log entries (i.e., l57, l58, l59, and l60) may be
pruned from the logs as well.

To ensure that there are no more log entries left that depend
on any of the pruned log entries, we have to repeat the pruning
for any pruned Create logs in a cascading fashion. In Example 6,
pruning l82 causes l57 to be pruned, which, in turn, causes l58,
l59, and l60 to be also pruned, as these log entries have the
Comment attribute in their parameter list. Note that l61 is not
pruned, as it has no ‘‘direct’’ interdependence with l82, neither
via l61.E nor l61.P . To ensure pruning of l61, it becomes necessary
to re-apply the pruning algorithm as if a Delete log entry for
the Comment Write permission (l59) exists as well. If we insert a
Delete log entry for each pruned Create log entry, re-applying the
pruning algorithm will prune all log entries directly dependent
on previously pruned log entries. Applying this logic recursively
ensures that all directly or indirectly dependent log entries are
pruned. Algorithm 3 summarizes the pruning of Update and Delete
logs entries.

5.2. Log grouping

Another large impact on performance, which we identified
when testing the ad-hoc change concept, is the way the log



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 13

replay itself is conducted. As stated, we use logical timestamps to
ensure that log entries are replayed in the exact order the process
modeler created them at design time. While in certain situations
this is required due to log interdependencies, it is also possible
to modify Algorithm 2 to find groups of log entries that are not
dependent on each other.

Example 7 (Groupable Logs). Consider two groups of log entries,
G1 and G2, that are created at design time by modeling, for
instance, two separate states and their steps. If the log entries in
G1 and G2 have no interdependencies, it does not matter which
group is replayed first. Theoretically, G1 and G2 could even be
replayed simultaneously. Obviously, the log entrieswithin a group
still have to be executed in sequence.

A concrete case in which logs are groupable as presented in
Example 7 is given by the log entries from Example 6. The six log
entries show interdependencies we can analyze with Algorithm 2.
From the result we can derive the following groups of log entries:
G1 = ⟨l57, l58, l60⟩, G2 = ⟨l59, l61⟩, and G3 = ⟨l82⟩. In essence,
G1 creates an attribute, sets its name, and creates a step for
the attribute in the object lifecycle process. G2 then creates a
permission for the attribute and assigns it to a role. Finally, G3
deletes the attribute that, when applying the pruning algorithm,
would delete all the other logs. Clearly, the order of the groups
cannot be changed, as G2 and G3 rely on the attribute created
by the log entries in G1. However, through this grouping and re-
ordering of the individual log entries, the groups may be replayed
en-bloc to the entities they affect. In terms of the proof-of-
concept implementation of this concept, we utilize the fact that
all log entries in a group have the same source and, therefore,
may be replayed to a copy of that source in one single call.

Regarding our current implementation of object-aware pro-
cess management, PHILharmonicFlows, all modeling and log
replay actions are completed by making calls to the various
microservices that represent the entities present in a data model
(e.g. objects or relations). Grouping the log entries before re-
playing them to the microservices reduces the communication
overhead of replaying logs considerably (cf. Section 6.4). As log
grouping only offers such a large benefit due to the nature of
our implementation, which is completely distributed, we chose
to omit the grouping algorithm from this article.

5.3. Log parallelization

To maximize the effects of the log pruning and grouping
concepts (cf. Sections 5.1 and 5.2) log parallelization was im-
plemented. This critical performance optimization allows for the
log groups to be replayed in parallel. Clearly, at design time,
the modeling actions were completed step-by-step by a process
modeler. However the modeling actions can be re-organized in
an optimal way through pruning and grouping, allowing for the
parallelized replay of independent log groups. To be more precise,
a log-based data model with pruned log sets grouped into M.log,
M.objs, M.rels, and M.coords must be created using the pruning
and grouping concepts. The maximum possible parallelization can
then be achieved by first replaying the M.log sequence, which
invokes the create operations for all the objects and relations.
Once these exist, all log sequence groups for objects, relations,
and coordination processes, as described in M.objs, M.rels, and
M.coords, may be replayed in parallel.

Again, while this is a vast improvement over replaying the
logs sequentially, one by one, we recognize that the benefits of
parallelized log replay are mostly due to the distributed nature
of our engine (cf. Fig. 12). Nonetheless, this allows our engine
and, by extension, our concept, to support ad-hoc changes to
large numbers of object instances in parallel (cf. research question
RQ3).

Fig. 11. Evaluation structure.

6. Evaluation

This section thoroughly evaluates the concepts for ad-hoc
changes to object aware processes (i.e., objects and data mod-
els) presented in Section 4. Furthermore, we provide an exten-
sive evaluation of the additional techniques we developed (cf.
Section 5) to improve the overall performance of conducting ad-
hoc changes at runtime. The goal of these evaluations, which
provide a major addition to our previous work [11] is to show that
ad-hoc changes to object-aware processes are not only feasible
according to the research questions presented in this article (cf.
Section 1.1), but also mature enough for being implemented and
utilized in various scenarios.

The evaluation of the concepts is split into four sections (cf.
Fig. 11). Section 6.1 presents our proof-of-concept implementa-
tion, PHILharmonicFlows, including a technical overview of the
process engine, a concrete example of an ad-hoc change in our
tooling, and a discussion on how the implementation meets the
requirements set forth in Section 3. In Section 6.2 we present a
case study in which we employed ad-hoc changes to the data
model of an e-learning platform. Section 6.3, in turn, deals with
a case study involving both human resources and service robots.
In this study we investigated the need for ad-hoc changes and
used them to demonstrate two solutions for flexible intralogistics.
Finally, Section 6.4 presents a single-case mechanism experiment
evaluating the performance of the concept to try and quantify
the fulfillment of research question RQ3 and Requirement 8 in
particular. The goals of this evaluation are to

• show examples of scenarios in which ad-hoc changes can
be introduced to increase process flexibility in ways not
otherwise possible without causing disruptions to process
flow (cf. research question RQ1).
• show that the proof-of-concept implementation, including

underlying concepts, are mature and flexible enough to
allow for their usage in a real-world scenario (cf. research
question RQ2).
• show that the concepts, with the additions presented in

Section 5, are not only usable, but also scalable for utilization
in larger scenarios. (cf. research question RQ3)

6.1. Proof-of-concept implementation

All concepts presented in this article were implemented in the
PHILharmonicFlows proof-of-concept prototype, which we are
currently utilizing and evaluating in a number of real-world sce-
narios, two of which are discussed in more detail in Sections 6.2
and 6.3. Section 6.1.1 presents a technical overview on how the
concept for ad-hoc changes is realized in our implementation.
Section 6.1.2 presents an example of the steps necessary for a user
to introduce a typical ad-hoc change to an object instance in the
provided tools. Finally, Section 6.1.3 discusses the requirements



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

14 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Fig. 12. PHILharmonicFlows implementation architecture.

for ad-hoc changes set forth in this article and shows how they
are supported by the implementation. This evaluation demon-
strates the integration of the concept into a real process engine
implementation and shows that it is usable through a simple
graphical user interface.

6.1.1. Implementation overview
The various conceptual elements of object-aware processes,

i.e., objects, relations, and coordination processes, are imple-
mented as microservices according to the actor concurrency
model [24], turning PHILharmonicFlows into a distributed process
management system. For each object instance, relation instance,
and coordination process instance one microservice instance is
present at runtime. Each microservice only holds the data rep-
resenting the attributes of its object instance. Furthermore, the
microservice only executes the lifecycle of the object instance it
is assigned to. The only information visible outside the individual
microservices is the current ‘‘state’’ of the object, which is used
by the microservice representing the coordination process to
properly coordinate the object instances’ interactions with each
other. As previously stated, the implementation employs the actor
concurrency model, which enforces that only one thread can be
active in any microservice at a time. This keeps the issues, which
would usually arise from the coordination of this large amount
of concurrently executing lifecycle processes, minimal. Further-
more, representing each conceptual element as a microservice
allows for an implementation close to the conceptual ideas of
object-aware process management.

To support our microservice architecture, we chose the open
source Service Fabric3 framework. Note that many of the con-
cepts presented in Section 4 are implemented almost exactly as
presented due to the utilization of the microservice architecture.
This tight coupling of concepts and implementation helps us in
verifying that the presented algorithms and techniques function
well when integrating them into a process engine. In particular,

3 https://github.com/Microsoft/service-fabric-services-and-actors-dotnet.

the distributed architecture plays a major role in ensuring that
ad-hoc changes scale well (cf. RQ3). This is due to the fact that
the operations of an ad-hoc change, such as creating temporary
copies and re-executing lifecycles, can be performed in parallel
without a bottleneck. An overview on the implementation archi-
tecture of the PHILharmonicFlows process engine and tooling is
given in Fig. 12.

The example from Section 4.2 (cf. Fig. 10), an ad-hoc change to
the data model instance DataModelInstance#1, is a good illustra-
tion of the high overlap of concept and implementation. Clearly,
the concept contains many steps in which data, especially log
entries, are transferred between object instances. This commu-
nication between object instances during ad-hoc changes takes
place exactly as described between their respective microservice
instances in the engine and can even be monitored in real-time
through our monitoring tool.

To be more precise, in PHILharmonicFlows (cf. Fig. 12), an
ad-hoc change, such as the one shown in Fig. 10, is triggered
by the PHILharmonicFlows modeling tool. The modeling tool
can use the provided REST interface to communicate with the
cluster hosting the microservices and request the creation of
an ad-hoc editable copy of data model DataModelInstance#1.
Service Fabric routes the request to the microservice instance
representing DataModelInstance#1, which, in turn, contacts the
Data Model Actor Service (cf. Fig. 12), causing the instantiation
of a new microservice, DataModelInstance#1#TEMP . After com-
pleting this step, all log entries present in DataModelInstance#1
are pruned (cf. Section 5.1), grouped (cf. Section 5.2), and trans-
ferred to the microservice representing the data model instance
copy. Here, they are replayed in parallel (cf. Section 5.3), causing
DataModelInstance#1#TEMP to become an exact copy of
DataModelInstance#1.

The modeling tool can now be used to edit the temporary
copy of the data model. Each modeling operation causes the
modeling tool to send a change log entry to the microservice
of DataModelInstance#1#TEMP . When the user chooses to trigger
the actual ad-hoc change, all newly created log entries present

https://github.com/Microsoft/service-fabric-services-and-actors-dotnet


Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 15

in DataModelInstance#1#TEMP are pruned, grouped, transferred
to DataModelInstance#1, and replayed there. If any of the log
entries contained in the ad-hoc change do not affect the data
model itself, but instead one of the contained objects, they are
forwarded to all microservices representing instances of that
object. Effectively, this ensures that ad-hoc changes to objects
conducted on the data model level are propagated to all instances
of those objects. Finally, if any object instances were affected by
the ad-hoc change, their corresponding microservices trigger re-
execution of the contained lifecycle processes, thereby ensuring
process consistency across the entire data model instance. Ob-
viously, this entire procedure, as it is currently implemented in
PHILharmonicFlows, mirrors the concept presented in Section 4.2.

6.1.2. Ad-hoc changes from a user perspective
This section gives a short overview of the user perspective

on an ad-hoc change to a data model from the human resources
domain that supports the process of reviewing job applications.
Example 8 shows a typical ad-hoc change that might be intro-
duced to an object. The execution monitoring view of one of the
object instances that would be affected by this change is shown
in Fig. 13.

Example 8 (Ad-Hoc Insertion). After applicants have submitted
job applications to a company they must go through a review-
ing procedure. Assume that it is decided to additionally give
managers the opportunity to comment on each job application
review before a detailed applicant assessment is conducted. As
it is unclear whether this change to the data model will improve
the review quality significantly or just increase turnaround times,
the change is not incorporated into the base data model, but only
into already existing Review objects as an ad-hoc change.

To realize the ad-hoc change described in Example 8, one
must insert a new state in the Review object, e.g. Manager Review,
as well as an attribute and a corresponding step Comment in
this new state, and connect transitions to the predecessor and
successor states. To facilitate this, the proof-of-concept prototype
offers an Edit Model button in the runtime view (cf. Fig. 13), which
creates an ad-hoc editable copy of the object instance according
to Algorithm 1. Furthermore, it opens the PHILharmonicFlows
modeling tool and displays the temporary copy. Hence, the object
may be manipulated and changed in exactly the same way as if it
were the initial modeling for a new object at design time. As all
modeling operations are permitted and every modeling operation
creates a change log entry that is applied to the live object
instance when changes are propagated, all modeling operations
are valid ad-hoc changes. In essence, any aspect of the process
model may be ad-hoc changed, ensuring that Requirement 7
holds and answering RQ2. Note that our goal is to demonstrate
technical feasibility of the approach through the implementation.
Improving usability and comprehension for end user interactions
is outside the scope of this article.

Fig. 14 shows the modeling tool after the new state, step,
attribute, and transitions have been added to the lifecycle model
of the Review. While the user is editing this temporary copy of the
object, ad-hoc change log entries are created for each modeling
action the user completes. Once all changes are modeled, the user
may propagate the changes introduced to the Review object to
one or more of the currently running Review object instances,
depending on the respective change scenario. Before the actual
propagation is done, the log entries are pruned and grouped
(cf. Section 5). This ensures that the ad-hoc changes actually
propagated to the running object instances become as minimal as
possible. Note that even in this small example it might occur that
the user unintentionally added a wrong transition and deleted it
afterwards, or renamed the new state twice. With log pruning,

this ‘‘extra’’ work is ignored when replaying the ad-hoc change
log to the object instances. The result of the ad-hoc change to the
running instance from Fig. 13 can be seen in Fig. 15.

6.1.3. Discussion
This section offers a discussion on how well the proof-of-

concept prototype covers the requirements set forth in Section 3
and whether the research questions posed in Section 1.1 are
answered. As Section 6.1.2 has just shown how it is possible for
users to employ ad-hoc changes to an object instance, we begin
our discussion with a quick overview over which requirements
had to be fulfilled by the engine to enable support of the example
from Section 6.1.2. This overview is intended to help understand-
ing which parts of the implementation assist in fulfilling each of
the requirements and is followed by a more general examination
of the requirements. The ad-hoc change introduced in Example 8

• was atomic and applied in one transaction (Requirement 1).
This is enabled on the conceptual side through the creation
of temporary object instance copies which are then hot-
swapped into the live data model instance once the user
has completed the ad-hoc changes (cf. Algorithm 1). On
the implementation side, the use of individual microservices
for each object instance, which can exist independently of
others, helps ensure that an ad-hoc change to one object
instance does not affect other object instances, which is an
integral part of answering research question RQ1.
• used a selection of all available modeling operations

(Requirement 7).
As modeling operations are translated to log entries by the
implementation, any modeling operation supported by the
modeling tool can be applied as an ad-hoc change to an
object instance or data model instance as well. In essence,
using the logs generated by modeling operations in this way
instead of defining a set of specific valid ‘‘change opera-
tions’’, like many related approaches do answers research
question RQ2.
• was ensured to be correct (Requirements 2 and 4).

As a static model verification of a changed process model
may be performed by the modeling tool before changes are
propagated to a live object instance, the modeling tool can
prevent syntactical or semantic errors in the same way as it
is possible for a newly created model.
• was ensured to be minimal (Requirement 8).

The log pruning algorithm (cf. Algorithm 3) ensures that cre-
ating the temporary copies of data model instances, which
can be edited in the modeling tool, is faster. Furthermore,
it can also prune mistakes made when modeling the actual
ad-hoc changes before they are propagated to a potentially
large number of running object instances. Without the prun-
ing algorithm in place, a change which is revised several
times before it is actually propagated would cause the pro-
cess engine to perform unnecessary steps as there would
be a large number of unnecessary log entries, which is why
pruning the logs is an essential part of answering RQ3.
• was runtime-consistent and coordinatable by the coordination

process (Requirements 3 and 6).
This is ensured by the re-execution, which we enforce as
part of the actual ad-hoc change propagation to live object
instances (cf. Algorithm 1). As shown in Example 8, af-
fected object instances require the new mandatory attribute
Comment. The re-execution of each affected object instance
halts at the exact point at which the new attribute is re-
quired. This even applies to instances, such as the one shown
in Fig. 15, which have already executed beyond the point
where the corresponding step was inserted. While this can



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

16 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Fig. 13. Lifecycle process of a review object without ad-hoc changes (the box indicates where the ad-hoc changes from Fig. 14 will occur).

Fig. 14. Modeling tool with ad-hoc changed lifecycle (cf. Fig. 13).

Fig. 15. Review object with ad-hoc added state Manager Review.

potentially cause an object instance to be in a different state
than before the ad-hoc change, it ensures that the object

remains consistent with the changed process model, and, by
extension, with any coordination processes.



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 17

• offered the possibility of continued execution of all other object
instances (Requirement 5).
As the user was editing the model of a copy of the Re-
view object, existing instances of the Review object could
continue execution normally until the moment in which
the changes were propagated. Clearly, this is another large
contribution to answering RQ1 by minimizing disruptions,
as the alternatives, such as blocking all review object in-
stances while the user is editing the underlying process
model, would be disruptive to the process flow. Further-
more, through the usage of the actor concurrency model (cf.
Section 6.1.1), the actual time span in which the changes are
propagated to the live object instances is ensured to lock out
all users from the object instances, as only one thread may
be active in a microservice at any given time. However, the
implementation handles this gracefully, as interactions with
individual microservices are queued and continue as normal
afterwards. Therefore, from a user perspective, opening the
generated form for an object instance, which is currently
being hot-swapped for an ad-hoc changed version, just looks
like a minor user interface lag as their request is queued to
execute after the changes are propagated.

Of course, a single example is not sufficient to confirm that all
requirements are met by the concept and its implementation.
Thus, we must examine some of them in greater detail.

In Section 4, we have already shown how the developed solu-
tion meets Requirements 1–4, i.e., change atomicity, correctness,
runtime consistency, and model consistency.

As discussed in Section 6.1.1, we chose a fully distributed
microservice-based implementation architecture for the PHILhar-
monicFlows process engine. This allows us to cover
Requirement 5, i.e., we can ensure that the migration of multiple
object instances in response to an ad-hoc change of a data model
instance can be accomplished in parallel and independently of
the execution of other objects. In this context, log grouping
(cf. Section 5.2) and log parallelization (cf. Section 5.3) allows
processing copy and log replay operations concurrently. As these
operations form the basis of the concept for ad-hoc changes,
the ability to execute them on separate microservices provides
support for Requirement 5, i.e., concurrency.

As an ad-hoc change to a data model instance may cause
changes to a large number of object instances, this also causes
their re-execution based on the updated lifecycle processes. As
set out by Requirement 6, object instances need to be coordinated
properly when introducing an ad-hoc change. Thus, it is essential
to ensure that changed object instances are coordinated by their
respective coordination processes. If this was not the case, they
might leave the data model instance itself in an inconsistent state.
When the lifecycle processes of the affected object instances are
re-executed in the course of an ad-hoc change, they continuously
change their states. As a response, the coordination process in-
stance they are assigned to determines the overall execution state
of the data model instance, thereby ensuring that Requirement 6
is met. While this necessary communication impacts performance
of the developed concept, it is largely due to the distributed ar-
chitecture as the microservices representing the object instances
affected by the ad-hoc change have to communicate with the
microservices representing the coordination processes.

Requirement 7, i.e., having the complete set of modeling op-
erations available for use in ad-hoc changes, is supported in the
implementation through the use of the same PHILharmonicFlows
modeling tool, which is also employed when creating new data
models at design time. It creates the change log entries, on which
the ad-hoc change concept relies for any modeling action the user
takes, as long as it is syntactically correct.

Finally, concerning Requirement 8, i.e., ensuring sufficient
algorithmic performance independently of the actual implemen-
tation and hardware, the log pruning algorithm ensures that
no unnecessary logs are replayed when conducting an ad-hoc
change. However, in our concrete implementation, we also uti-
lize the log grouping and parallelization concepts (cf. Section 5)
in combination with the microservice architecture to ensure
scalability for large deployments.

6.2. Case study: E-learning-platform

A sophisticated scenario we evaluated in practice was the
inclusion of ad-hoc changes into the data model of an e-learning
platform called PHoodle,4 which we implemented using a PHIL-
harmonicFlows data model. This evaluation shows that ad-hoc
changes have practical applications and can be utilized to rectify
modeling errors at runtime, even in production scenarios.

PHoodle is currently being used by us in one of our lectures
to research how well the complexity of an object-aware process
management system can be hidden from end-users and what
problems arise with completely generic software in real-world
environments. Furthermore, as the platform is used instead of
the regular Moodle e-learning platform the university provides,
it will help us evaluate whether an entirely generic and model-
based approach to creating software, such as PHILharmonicFlows,
is viable from an end-user perspective. The platform is entirely
powered by an object-aware data model, a download link to
which can be found in Section 6.4. The online front-end is fully
generic in respect to the data model instances it allows interac-
tion with and is entirely end-user oriented. To be more precise,
it contains exactly one line of code specific to the e-learning
platform functionality: the entity ID of the object-aware data
model to connect to on the PHILharmonicFlows server. Fig. 16
shows a typical PHoodle menu as it is displayed to a lecture
supervisor after logging in and selecting a lecture. Note that the
entire user interface is generated from the information available
in a single object instance, and is completely tailored to the user
viewing the object instance at runtime.

While the web user interface does not support the model-
based ad-hoc changes discussed in Section 6.1 directly, ad-hoc
changes are supported by connecting our modeling tool to the
same data model instance on the PHILharmonicFlows server that
powers PHoodle at runtime. Indeed, we were forced to make
use of this possibility during a pilot study. Due to an incorrectly
modeled permission, students with the tutor role in one lecture
could edit the properties of exercise sheets for other lectures in
which they were only attendees. We successfully utilized the ad-
hoc change mechanism to correct the error while the system was
running, keeping all user data intact. The correctly functioning
form from the perspective of a student is shown in Fig. 17.

The screenshots from Figs. 16 and 17 were made on the live
system, but on a demonstration data set to remain GDPR compli-
ant. Note that such an ad-hoc change is by far more difficult to
realize, if supported at all, in contemporary enterprise resource
planning (ERP) systems due to the multiple application layers
affected. The generic approach utilized by PHILharmonicFlows
ensures that changes to a data model are reflected in the per-
sistence layer, logic layer, and presentation layer of the modeled
application immediately.

Finally, the deployment of the PHoodle data model in the
course of a lecture has allowed us to gather performance data
from ad-hoc changes to a real-world data model instance. The
instance in question ran for a full semester (exactly 100 days)
and consists of 136 users (students, supervisors and tutors). It

4 https://phoodle.dbis.info.

https://phoodle.dbis.info


Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

18 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Fig. 16. PHoodle — Supervisor overview.

Fig. 17. PHoodle — Exercise object.

logged over 40,000 user interactions and currently consists of
2898 microservices representing 848 object instances, 1542 rela-
tion instances, 5 coordination processes, and 503 uploaded files. A
worst-case scenario ad-hoc change (i.e. the change affects all ob-
ject instances) to this large data model instance takes, on average,
4.916 ms, of which only 157 ms are utilized for re-executing all
affected 848 object instances.

6.3. Case study: service robot logistics

The ad-hoc change concept presented in this article has been
further evaluated in multiple intralogistics scenarios in the course
of a large project.5 This evaluation shows that ad-hoc changes

5 http://zafh-intralogistik.de.

can be applied to highly automated processes involving complex
external systems, such as service robots. In the scenarios, service
robots and humans are directed by PHILharmonicFlows while
conducting various types of commissioning processes. For the
scenarios to function with real robots, we created a worklist-
like interface for robots to interact with PHILharmonicFlows.
Specifically, the forms generated for object instances were made
available for machine consumption on a specially designed socket
interface. Introducing this abstraction layer enables us to treat
compatible robots as users in PHILharmonicFlows. This allows us
to present them with worklists, which they use to commission
or transport products (cf. Fig. 18). To support the scenarios, we
created a data model consisting of Employee, Transport Robot,
Commission Robot, Transport, Commission, and Product (cf. Fig. 19).
Basically, an instance of the Product object contains all the meta

http://zafh-intralogistik.de


Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 19

Fig. 18. Screenshot of a video demonstrating collaboration between robots and humans (BPMN based views on the involved PHILharmonicFlows objects overlaid for
simplicity).

Fig. 19. Intralogistics data model.

information, such as description and shelve location, which a
robot or human needs to commission a product from a shelve. The
three kinds of workers, i.e., humans, transport robots, and com-
mission robots, are each represented by their own object. This
becomes necessary as the commission robots have picking arms,
and entirely different functions than transport robots. Finally,
the Transport and Commission objects represent a transporting or
commissioning job. For example, at runtime, a Transport object
related to a Product object and an Employee object creates a new
worklist entry for a human worker. Conversely, if the Transport
object is related to a Product and a Transport Robot instead, a
worklist entry is created for one of the transport robots. In either
case, the created worklist entry contains the information needed
to carry the real-world product described in the Product object
instance to wherever the Transport object instance dictates. This
in itself allows for flexible execution of simple intralogistics based
processes. For example, the decision whether the transporting job
is completed by a human or a robot can depend on the attributes
of the Product object instance attached to the Transport object
instance in question.

The following video showcases some of the scenarios evalu-
ated:

https://www.youtube.com/watch?v=UtO1Dc1B3Cs
In particular, Scenario 2 (at 3:25 in the above video) show-

cases an ad-hoc change in which the Commission object has a
new state with some steps added. The change constitutes an
additional process step for the human employee in which he is

instructed to add an extra item, a promotional flyer, to the already
commissioned box after one of the robots delivers it to him.
The benefits of being able to incorporate ad-hoc changes such as
this to existing processes, without having to reconfigure robots
or update task lists for human workers, are immense. As the
changes are model-based, and use the same tooling for humans
and robots, turnaround times for implementing changes is low
compared to existing solutions.

6.4. Performance measurements

As known from literature, sufficient performance and scala-
bility are crucial success factors for any process-aware informa-
tion system. Therefore, we have considered performance aspects
throughout the entire development of the concepts presented in
this article. The ad-hoc change concept (cf. Section 4) relies on
two core aspects: log replay and re-execution of lifecycle processes.
On one hand, log replay is used to create temporary copies
of entities, such as objects and data models, and to propagate
ad-hoc changes back from the temporary copies to their live
counterparts. On the other, re-execution ensures that lifecycle
processes are always consistent and coordinated properly in the
context of a data model instance. Section 6.4.1 examines our
previous work on the performance of lifecycle execution, whereas
Section 6.4.2 provides measurements on the performance of the
copy operation conducted using log replay.

6.4.1. Previous work on scalability and performance measurement
As both performance and scalability are crucial aspects, we de-

veloped the PHILharmonicFlows process engine from the ground
up to be highly scalable and fully distributed through the use of
microservices. We published implementation details as well as
the results of our single-case mechanism experiments on scala-
bility and performance in [25].

A short summary of the results presented in [25] is given to
demonstrate why the presented measurements (cf. Section 6.4.2)
are focused on the copy operation. In essence, we conducted
experiments on different data model instances with different

https://www.youtube.com/watch?v=UtO1Dc1B3Cs


Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

20 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Table 1
Data model statistics.
Data model # # Entries #Entries Achieved
name entities unpruned pruned reduction

Recruitment Totals 32 3880 1550 60%
Data Model 1 109 31 72%
Objects 11 3413 1372 60%
Relations 15 37 19 49%
Coordinations 5 321 128 60%

Employee Totals 45 6573 3066 53%
Self-Service Data Model 1 50 44 12%

Objects 21 5992 2642 56%
Relations 21 122 70 43%
Coordinations 2 409 310 24%

E-Learning Totals 21 487 479 2%
Platform Data Model 1 20 20 0%

Objects 9 317 317 0%
Relations 10 123 115 7%
Coordinations 1 27 27 0%

combinations of objects with up to 11,110 instances and mea-
sured the time it took to execute their lifecycles processes. The
confidence interval for the execution of the most complex ex-
periment was [6.6–8.4] s. The experiment concurrently executed
the lifecycle processes of all 11,110 object instances from start
to finish, involving a total of over 20,000 microservices at the
same time. The corresponding result with the same mix of ob-
jects, but only involving 1,110 object instances was [0.4–0.5] s.
Furthermore, we noted perfectly linear scaling of the execution
times with the number of steps present in the lifecycle processes.
Therefore, we consider the re-execution times of object instances
a very minor factor in the context of the ad-hoc change concept.
This is supported by our measurement results from conducting
ad-hoc changes to the real-world data model instance presented
in Section 6.2, in which it was shown that even in the absolute
worst case, i.e., that every single object instance in the entire data
model instance is affected by an ad-hoc change, the actual re-
execution only takes on average 157 ms for a large data model
instance of almost 3000 microservices. In consequence, we chose
to focus our efforts on optimizing the copy operation.

6.4.2. Measuring the effectiveness and performance of log replay and
copy operations

This section presents the results of performance measure-
ments we conducted while evaluating our concept with respect to
research question RQ3, which shall investigate how the concept
can be made efficient enough to be able to handle large num-
bers of ad-hoc change operations concurrently. In particular, the
goal is to assess whether the optimizations and extensions pre-
sented in Section 5 improve the speed of ad-hoc copy operations
significantly.

The time it takes to rebuild an entity from its log-based rep-
resentation depends on the number of steps a process modeler
applied when creating the entity at design time (cf. Section 5).
This performance issue, which we alleviated through log pruning,
has a large impact on the time it takes to create temporary
copies of data model instances as well as replay changes from the
temporary instances back to the original instance—two core ideas
of our concept for ad-hoc changes (cf. Section 4.2). This section
further examines this aspect and provides measurement results
for copy operations on three different data models. The three
real-world data sets used for the measurements are complete
object-aware data models, that we modeled in three different
case studies.

The Recruitment data model is a typical human resources
application, supporting the process of hiring new employees and

reviewing their applications; this data model was already pre-
sented in Section 6.1.2. The Employee Self-Service data model,
in turn, is a portal for employees to perform common tasks
such as putting in vacation requests or managing their contact
information. Both models were created by students as projects
and are not in real-world use. However, they offer insights into
the benefits that log pruning offers for models that were created
with many errors, redos and redundancies. Finally, the E-Learning
Platform model (cf. Section 6.2) was not created using our regular
modeling tools, but instead manually, as an almost perfectly
pruned log file in JSON format. This became necessary to test
the performance impact of the pruning algorithm itself when
applying it to optimized logs (cf. Table 2).

The three data models are available for download in their log-
based form from Mendeley Data.6 We supply them once in their
original form after exporting them from the modeling tool, and
once in their pruned form after running Algorithm 3. Table 1 gives
insights into the models as well as their complexity in terms of
the number of entities present in the model (cf. Col. Entities),
as well as the number of log entries before (cf. Col. Unpruned)
and after (cf. Col. Pruned) executing the log pruning algorithm.
Furthermore, we calculated the reduction in log size that log
pruning algorithm achieves (cf. Col. Reduction).

We chose the copy operation of a running data model in-
stance as a benchmark to demonstrate the performance improve-
ments that can be achieved based on the concepts presented in
Section 5. We repeated the measurements with different com-
binations of the three log replay optimization algorithms (i.e. log
pruning, log grouping, and log parallelization) to show the effects
they have, individually and in combination, on the time it takes to
complete copy operations of entire data model instances at run-
time. Note that log parallelization may only be applied to grouped
and pruned logs—otherwise, the correct order of concurrently
executed modeling operations cannot be ensured while replaying
the logs.

In general, measuring the performance of a distributed soft-
ware system is a non-trivial task, as there are a large number
of factors, such as random network delays or network optimiza-
tion algorithms, which are out of the control of the application
programmer, but can influence measurement results. Therefore,
we adopted the algorithm presented in [26], Annex A, to ensure
mathematically sound confidence intervals for our results. More
specifically, this algorithm describes a method for determining
whether a measurement was run often enough to be at least 95%
confident in a given confidence interval, which we require to have
a width of at most 10% of the maximum value measured. Table 2
depicts the results of our measurements for each optimization
algorithm introduced in this paper (cf. Col. Optimization) along
with the amount of runs (cf. Col. Runs) that were necessary to
achieve over 95% confidence (cf. Col. Confidence) in the measured
confidence interval (cf. Col. Confidence Interval).

The results from Table 2 show that the performance optimiza-
tions introduced in Section 5 have a major impact on the time
it takes to create temporary copies of data models using the log
replay method. As these copy operations are a core pillar of the
ad-hoc change concept and absolutely necessary for ensuring that
it meets Requirements 1, 2 and 4, the performance increase is
considered to be very valuable. This is especially true for our
future work on schema evolution.

However, the copy operations we measured in this experiment
are only half of the computational work that accompanies an ad-
hoc change, as we laid out in Section 4 (cf. Algorithm 1, Lines
7–10). The other half is the data-driven re-execution of the object
instances after the ad-hoc changes are applied (cf. Algorithm 1,

6 https://data.mendeley.com/datasets/9nym9xykvs/1.

https://data.mendeley.com/datasets/9nym9xykvs/1


Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 21

Table 2
Measurement results.
Data Model Log Confidence interval Confidence Runs
name optimization milliseconds 1− α n

Recruitment Unoptimized [23517–24415] ms 96,88% 6
Group [1963–2060] ms 96,14% 12
Prune [6890–7029] ms 96,88% 6
Prune/Group [1536–1570] ms 96,88% 6
Prune/Group/Parallelize [1242–1292] ms 96,09% 8

Employee Unoptimized [44210–45206] ms 96,88% 6
Self-Service Group [3746–3916] ms 96,88% 6

Prune [13542–14216] ms 96,88% 6
Prune/Group [3280–3579] ms 96,88% 6
Prune/Group/Parallelize [2606–2678] ms 96,88% 6

E-Learning Unoptimized [1448–1546] ms 96,88% 6
Platform Group [632–693] ms 96,88% 6

Prune [1459–1527] ms 96,88% 6
Prune/Group [687–732] ms 96,14% 11
Prune/Group/Parallelize [406–438] ms 96,88% 6

Lines 11–13). In terms of a data-driven process engine, however,
this is no different than a regular execution of the corresponding
lifecycle processes, in which all data values are supplied at the
same time. We explicitly chose not to conduct measurements for
these execution times in the context of this article, as we already
completed such measurements in previous work [25].

While the performance gains from grouping and paralleliza-
tion of logs are substantial, they are very specific to our current
implementation architecture using distributed microservices. This
is due to the fact that microservices can handle parallelized
workflows very well, as they do not have central bottlenecks,
such as a database. However, they perform sub-optimally when
there is a large communication overhead, such as the one in-
troduced if logs are not grouped and, therefore, re-played one
by one. This causes a large number of remote procedure calls
between cluster nodes. Therefore, the important thing to note is
the effectiveness of the log pruning algorithm, as it offers benefits
irrespective of the implementation architecture. Comparing the
results for the Recruitment data model (cf. Table 1), where the
pruning algorithm reduced the log size by an average of 60%,
we can see a superlinear reduction in measurement time of 71%
between unoptimized logs and pruned logs in Table 2. This can
be explained with the fact that in the Recruitment data model
an unusually large number, 72%, of computationally expensive
modeling operations, such as creating new relations, could be
pruned from the data model logs. This just shows how important
log pruning is in the context of ad-hoc changes, as these gains
are independent of the implementation architecture or hardware
capabilities.

Finally, consider the E-Learning Platform results for unopti-
mized vs pruned logs. As stated previously, the corresponding
data model was created without using the PHILharmonicFlows
modeling tools, but instead by directly creating a log file in JSON
format. This allowed us to craft the data model with almost
no unnecessary log entries for modeling actions that would be
pruned (cf. Table 1). We utilize this model as a benchmark to
determine how much impact the pruning algorithm itself has on
the total execution time. The pruning algorithm has almost the
same algorithmic complexity, not dependent on whether or not
it actually prunes any logs. In consequence, this shows that the
overhead introduced by the algorithm itself is entirely negligible,
as it is within the confidence interval for both measurements.

7. Related work

As the maturity of the data-centric process support paradigm
is generally considered as low compared to activity-centric ap-
proaches, both execution concepts and execution engines are

rare. Consequently, to the best of our knowledge, directly re-
lated work, i.e., data-centric approaches offering flexibility in
terms of ad-hoc changes to running process instances, is virtually
non-existent.

Note that other data-centric approaches like artifact-centric
business processes [27] or case handling [9] already offer a high
level of flexibility during process execution, which is to be ex-
pected due to the largely declarative modeling nature [28]. The
tooling support for case handling (i.e. FLOWer [9]), for instance,
offers ad-hoc flexibility in terms of skip or redo capabilities. As a
drawback, this flexibility is restricted to control-flow aspects.

The DEZ-Flow engine [29], built upon the artifact-centric ap-
proach, allows defining declarative rules, which allow for ad-hoc
changes to running instances at predefined points. While these
rules are editable at runtime, the approach itself does not cover
every possible deviation from the standard process as the process
model remains unchanged.

Declarative process modeling approaches offer a similar built-
in flexibility compared to data-centric approaches. Instead of
requiring designers to specify how the process shall be executed,
they only have to state what shall be done during process ex-
ecution. With declarative approaches ad-hoc changes become
less frequent. However, ad-hoc changes still can be an issue
(e.g., a constraint might have to be violated for a particular
instance due to an unforeseen situation). Further, constraints
themselves may evolve over time, which raises the challenge of
propagating changes to ongoing instances. A declarative process
support approach, DECLARE, which enables ad-hoc changes is
presented in [30]. Thereby, a change is defined by adding con-
straints, deleting constraints or updating the constraint set of a
particular process instance or process type. However, DECLARE
neglects the data perspective as well as performance and scala-
bility issues. Another notable declarative approach, which allows
for a more complete approach, is provided by DCRGraphs [31].
This activity-centric approach enables ad-hoc changes through
DCRGraph adaptations, but does not allow for changes at that
fine-grained level as supported in PHILharmonicFlows.

COREPRO [17] supports the assembly of products from product
components, as it is commonplace in (automotive) engineering.
In particular, this requires the adaptation and coordination of
large process structures, represented by individual data objects.
Adaptation is accomplished directly to running instances, and
changes leading to an inconsistent process state are prevented.

Research on model changes in Adaptive Case Management
(ACM) is presented in [32]. Specifically, the conduction of change
operations is examined to determine their impact on a given
Guard-State-Milestone (GSM) model. However, the paper is lim-
ited in respect to aspects for adapting running process instances.



Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

22 K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx

Agile BPM [33] is supported by the Fujitsu Interstage BPM
Process Manager. In Agile BPM, users may assign simple tasks to
other users in a completely ad-hoc fashion with a concept entitled
dynamic tasking. A dynamic task constitutes a short task descrip-
tion text, with some additional meta-information, e.g. who it shall
be assigned to and by when the task shall be completed. Users
may create such tasks on the fly, assign them to other users, and
monitor their completion. The capabilities of the dynamic tasking
system are limited to small tasks that can be described textually,
and cannot involve complex data flow or external systems as is
the case for PHILharmonicFlows.

There are many approaches to process flexibility in activity-
centric BPM, but their ad-hoc change support is limited to chang-
ing entire activities (e.g. moving or skipping an activity7) as
opposed to the fine-grained support PHILharmonicFlows offers.
Additionally, activity-centric ad-hoc change concepts do not al-
low for the migration of all existing process instances, as they
can not be re-executed in the integrated fashion presented in this
work. This frequently leads to scenarios where running process
instances are simply not migratable for certain changes [2,34–36].

Finally, activity-centric approaches exist that apply log replay
in the context of ad-hoc changes [37]. [38] presents an activity-
centric approach that enables case-based ad-hoc adaptation of
running process instances. The approach employs process adap-
tation cases that record adaptation episodes from the past. The
recorded changes (i.e., logs) can then be automatically transferred
to a new process instance being in a similar situation of change.
The case-based adaptation method uses the so-called anchor
mapping algorithm to identify the parts of the target process
where to apply the changes, and log replay is used to introduce
the change to this process. A comparable approach enabling case-
and log-based ad-hoc adaptations is CBRFlow [39].

8. Summary and outlook

The concepts presented in this article allow for a multitude
of ad-hoc changes to object-aware process instances, both to
individual object instances and entire data model instances. The
concepts were designed in a way that allows for their use in
a microservice-based process engine, PHILharmonicFlows, uti-
lized by us as a proof-of-concept for the presented concepts
in multiple scenarios. As object-aware process management has
an inherently tight integration between process logic and data,
this proof-of-concept has capabilities that go far beyond those of
ad-hoc changes in activity-centric approaches.

In regards to the research questions, we are confident that we
have answered all of them with the concept and the extensions
presented in this article. In particular, the feasibility of a solution
in which ad-hoc changes are enabled (RQ1) is mainly answered
by the creation of copies of the ‘‘live’’ object instances that allow
for further interactions with the object instances while ad-hoc
changes are being prepared. The flexibility and usability of the
proposed solution (RQ2) on the other hand is answered through
our use of modeling operation logs. These are applied to the
models underlying the object instances or data model instances
the change operation are applied to, instead of the more common
approach of defining a set of predefined valid change operations.
Combining this with our re-execution mechanism ensures that
any possible modeling operation is a valid ad-hoc change as well.
Finally, the scalability of the proposed solution (RQ3) is answered
through our improvements of the initial concept by pruning the
logs the concept heavily relies upon, reducing the necessary steps

7 For an overview on characteristic activity-centric change patterns, we refer
interested readers to Chapter 2 of [2].

to copy and re-execute an ad-hoc changed object or data model
instance.

Having presented the optimizations we developed on top of
the key parts of the ad-hoc change concept we intend to further
address the remaining issues concerning the performance of the
developed solution. However, we first have to elicit the exact
requirements companies are facing in respect to performance and
scalability of ad-hoc changes as well as an adequate test setup
for change scalability on a much larger scale, i.e., with potentially
hundreds of users interacting with a data model while it is being
changed. This will be accomplished in conjunction with further
research on the topic of data model schema evolution, including
all attached data model instances as well as their object instances.
Note that this is where performance might become an issue.
Furthermore, while we have not yet measured the time ad-hoc
changes take in very large real-world data model instances, we
can improve the speed through horizontal scalability utilizing the
microservice architecture of PHILharmonicFlows.

Finally, even though this article presents a concept for al-
lowing ad-hoc changes to all conceptual elements present in
an object-aware process, we will conduct further research to
determine which ad-hoc change operations are actually needed
from the user perspective. Furthermore, the results of the PHoo-
dle study (cf. Section 6.2) will provide valuable insights into
the usability of generic process management approaches from
an end-user perspective, especially in direct comparison with
purpose-built software solutions.

While the presented solution might not be evaluated for us-
ability in larger scale real-world business applications, we have
employed it successfully to a number of scenarios with our proof-
of-concept implementation. Additionally, it is important to note
that the actual implementation of such advanced concepts is
crucial as a proof-of-concept for the entire field of data-centric
BPM, as the availability of tooling is central to increasing maturity
and awareness [7].

Declaration of competing interest

The authors confirm that there are no known conflicts of in-
terest associated with this publication and there has been no sig-
nificant financial support for this work that could have influenced
its outcome.

Acknowledgments

This work is part of the ZAFH Intralogistik, funded by the Eu-
ropean Regional Development Fund and the Ministry of Science,
Research and the Arts of Baden-Württemberg, Germany (F.No.
32-7545.24-17/3/1)

References

[1] M. Weske, Business process management architectures, in: Business
Process Management, Springer, 2012, pp. 333–371.

[2] M. Reichert, B. Weber, Enabling Flexibility in Process-aware Information
Systems: Challenges, Methods, Technologies, Springer, 2012.

[3] M. Reichert, P. Dadam, ADEPT flex-supporting dynamic changes of
workflows without losing control, J. Intell. Inf. Syst. 10 (2) (1998) 93–129.

[4] R. Müller, U. Greiner, E. Rahm, Agentwork: a workflow system supporting
rule-based workflow adaptation, Data Knowl. Eng. 51 (2) (2004) 223–256.

[5] G. Vossen, M. Weske, The WASA2 object-oriented workflow management
system, in: SIGMOD Conf., 1999, pp. 587–589.

[6] M. De Leoni, M. Mecella, G. De Giacomo, Highly dynamic adaptation in
process management systems through execution monitoring, in: Int Conf
on Business Process Management, Springer, 2007, pp. 182–197.

[7] S. Steinau, A. Marrella, K. Andrews, F. Leotta, M. Mecella, M. Reichert,
DALEC: a framework for the systematic evaluation of data-centric ap-
proaches to process management software, Softw. Syst. Model. 18 (4)
(2019) 2679–2716.

http://refhub.elsevier.com/S0306-4379(19)30499-5/sb1
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb1
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb1
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb2
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb2
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb2
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb3
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb3
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb3
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb4
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb4
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb4
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb6
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb6
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb6
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb6
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb6
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb7
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb7
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb7
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb7
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb7
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb7
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb7


Please cite this article as: K. Andrews, S. Steinau and M. Reichert, Enabling runtime flexibility in data-centric and data-driven process execution engines, Information
Systems (2019) 101447, https://doi.org/10.1016/j.is.2019.101447.

K. Andrews, S. Steinau and M. Reichert / Information Systems xxx (xxxx) xxx 23

[8] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F.T. Heath, S. Hobson, M.
Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, Introducing the guard-
stage-milestone approach for specifying business entity lifecycles, in: Int
Workshop on Web Services and Formal Methods, 2010, pp. 1–24.

[9] W.M.P. van der Aalst, M. Weske, D. Grünbauer, CaSe handling: a new
paradigm for business process support, Data Knowl. Eng. 53 (2) (2005)
129–162.

[10] V. Künzle, M. Reichert, Philharmonicflows: towards a framework for
object-aware process management, J. Softw. Maintenance Evol. Res.
Practice 23 (4) (2011) 205–244.

[11] K. Andrews, S. Steinau, M. Reichert, Enabling ad-hoc changes to object-
aware processes, in: 22nd Int Enterprise Distributed Object Computing
Conf, EDOC, IEEE, 2018, pp. 85–94.

[12] S. Steinau, K. Andrews, M. Reichert, The relational process structure,
in: 30th Int Conf on Advanced Information Systems Engineering, CAiSE,
Springer, 2018, pp. 53–67.

[13] V. Künzle, Object-aware process management (Ph.D. thesis), Ulm
University, 2013.

[14] K. Andrews, S. Steinau, M. Reichert, Enabling fine-grained access control
in flexible distributed object-aware process management systems, in:
21st Int Enterprise Distributed Object Computing Conf, EDOC, IEEE, 2017,
pp. 143–152.

[15] K. Andrews, S. Steinau, M. Reichert, Enabling process variants and versions
in distributed object-aware process management systems, in: Forum of the
30th Int Conf on Advanced Information Systems Engineering, CAiSE Forum,
2018, pp. 1–15.

[16] S. Steinau, V. Künzle, K. Andrews, M. Reichert, Coordinating business
processes using semantic relationships, in: 19th IEEE Conf on Business
Informatics, CBI, 2017, pp. 143–152.

[17] D. Müller, M. Reichert, J. Herbst, Flexibility of data-driven process
structures, in: BPM’06 Int Workshops, Workshop on Dynamic Process
Management, DPM, Springer, 2006, pp. 181–192.

[18] W. Song, X. Ma, H.-A. Jacobsen, Instance migration validity for dynamic
evolution of data-aware processes, IEEE Trans. Softw. Eng. (2018) (early
access).

[19] C.M. Chiao, V. Künzle, M. Reichert, Object-aware process support in
healthcare information systems: requirements, conceptual framework and
examples, Int. J. Adv. Life Sci. 5 (1 & 2) (2013) 11–26.

[20] V. Ferme, A. Ivanchikj, C. Pautasso, A framework for benchmarking BPMN
2.0 workflow management systems, in: Int Conf on Business Process
Management, BPM, Springer, 2016, pp. 251–259.

[21] V. Ferme, M. Skouradaki, A. Ivanchikj, C. Pautasso, F. Leymann, Performance
comparison between BPMN 2.0 workflow management systems ver-
sions, in: Enterprise, Business-Process and Information Systems Modeling,
Springer, 2017, pp. 103–118.

[22] M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, A. van Hoorn, Micro-
benchmarking BPMN 2.0 workflow management systems with workflow
patterns, in: Int Conf on Advanced Information Systems Engineering, CAiSE,
Springer, 2016, pp. 67–82.

[23] S. Steinau, K. Andrews, M. Reichert, A modeling tool for PHILharmon-
icFlows objects and lifecycle processes, in: Proceedings of the BPM Demo
Session, BPMD, 2017.

[24] G. Agha, C. Hewitt, Concurrent programming using actors: Exploiting large-
scale parallelism, in: Int Conf on Foundations of Software Technology and
Theoretical Computer Science, Springer, 1985, pp. 19–41.

[25] K. Andrews, S. Steinau, M. Reichert, Engineering a highly scalable object-
aware process management engine using distributed microservices, in:
26th Int Conf on Cooperative Inf Sys, CoopIS, Springer, 2018, pp. 80–97.

[26] J.-Y. Le Boudec, Performance evaluation of computer systems, EPFL Press,
2010.

[27] D. Cohn, R. Hull, Business artifacts: A data-centric approach to modeling
business operations and processes, IEEE Data Eng. Bull. 32 (3) (2009) 3–9.

[28] W.M.P. van der Aalst, M. Pesic, H. Schonenberg, Declarative workflows:
Balancing between flexibility and support, Comput. Sci. Res. Dev. 23 (2)
(2009) 99–113.

[29] W. Xu, J. Su, Z. Yan, J. Yang, L. Zhang, An artifact-centric approach to
dynamic modification of workflow execution, in: Proc. 19th Int Conf on
Cooperative Information Systems, CooplS, Springer, 2011, pp. 256–273.

[30] M. Pesic, H. Schonenberg, N. Sidorova, W.M.P. van der Aalst, Constraint-
based workflow models: change made easy, in: Proc. 15th Int Conf on
Cooperative Information Systems, CooplS, 2007, pp. 77–94.

[31] T.T. Hildebrandt, Flexible, adaptable, and compliant business systems with
dynamic condition response graphs, in: Int Workshop on Formal Methods
for Analysis of Business Systems, 2016, pp. 1.

[32] R. Eshuis, R. Hull, M. Yi, Property preservation in adaptive case manage-
ment, in: Int Conf on Service-Oriented Computing, ICSOC, Springer, 2015,
pp. 285–302.

[33] K. Swenson, Taming the Unpredictable: Real World Adaptive Case Man-
agement: Case Studies and Practical Guidance, Future Strategies Inc.,
2011.

[34] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, W.M.P. van der Aalst,
Process flexibility: A survey of contemporary approaches, in: Advances in
Enterprise Engineering I, Springer, 2008, pp. 16–30.

[35] S. Rinderle, Schema evolution in process management systems (Ph.D.
thesis), Ulm University, 2004.

[36] B. Weber, M. Reichert, J. Mendling, H.A. Reijers, Refactoring large process
model repositories, Comput. Ind. 62 (5) (2011) 467–486.

[37] S. Rinderle, M. Reichert, M. Jurisch, U. Kreher, On representing, purging,
and utilizing change logs in process management systems, in: International
Conference on Business Process Management, Springer, 2006, pp. 241–256.

[38] M. Minor, R. Bergmann, S. Görg, Case-based adaptation of workflows, Inf.
Syst. 40 (2014) 142–152.

[39] B. Weber, W. Wild, R. Breu, CBRFlow: enabling adaptive workflow man-
agement through conversational case-based reasoning, in: Advances in
Case-Based Reasoning (ECCBR) 2004, 2004, pp. 434–448.

http://refhub.elsevier.com/S0306-4379(19)30499-5/sb9
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb9
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb9
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb9
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb9
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb10
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb10
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb10
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb10
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb10
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb11
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb11
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb11
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb11
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb11
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb12
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb12
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb12
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb12
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb12
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb13
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb13
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb13
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb14
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb14
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb14
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb14
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb14
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb14
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb14
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb17
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb17
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb17
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb17
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb17
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb18
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb18
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb18
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb18
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb18
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb19
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb19
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb19
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb19
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb19
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb20
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb20
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb20
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb20
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb20
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb21
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb21
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb21
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb21
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb21
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb21
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb21
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb22
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb22
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb22
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb22
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb22
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb22
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb22
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb24
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb24
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb24
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb24
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb24
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb25
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb25
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb25
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb25
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb25
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb26
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb26
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb26
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb27
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb27
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb27
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb28
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb28
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb28
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb28
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb28
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb29
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb29
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb29
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb29
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb29
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb32
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb32
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb32
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb32
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb32
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb33
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb33
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb33
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb33
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb33
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb34
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb34
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb34
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb34
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb34
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb35
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb35
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb35
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb36
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb36
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb36
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb37
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb37
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb37
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb37
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb37
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb38
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb38
http://refhub.elsevier.com/S0306-4379(19)30499-5/sb38

	Enabling runtime flexibility in data-centric and data-driven process execution engines
	Introduction
	Problem statement
	Contribution
	Methodology & outline

	Fundamentals
	Object-aware process management
	Process model evolution and ad-hoc changes

	Requirements
	Ad-hoc changes in object-aware processes
	Object instance level changes
	Change log entries
	Log-defined object instances
	Introducing ad-hoc changes
	Ensuring runtime consistency

	Data model instance level changes
	Interdependent ad-hoc changes

	Performance considerations
	Log pruning
	Log grouping
	Log parallelization

	Evaluation
	Proof-of-concept implementation
	Implementation overview
	Ad-hoc changes from a user perspective
	Discussion

	Case study: E-learning-platform
	Case study: service robot logistics
	Performance measurements
	Previous work on scalability and performance measurement
	Measuring the effectiveness and performance of log replay and copy operations


	Related work
	Summary and outlook
	Declaration of competing interest
	Acknowledgments
	References


