
Fakultät für Ingenieurwissenschaften, Informatik und Psychologie

Institut für Datenbanken und Informationssysteme

Bachelorarbeit
im Studiengang Informatik

Konzeption und Realisierung einer
Web-Anwendung zur Unterstützung von
Ärtzen bei der Notfallbehandlung von

Patienten

vorgelegt von

Tobias Müller

Juli 2020

1. Gutachter Prof. Dr. Manfred Reichert
Betreuer: Rüdiger Pryss
Betreuer: Sascha d’Almeida
Betreuer: Philipp Mohr
Betreuer: Marco Schweitzer
Matrikelnummer 903845
Arbeit vorgelegt am: 13.07.2020

ii

Abstract

In the past the manpower in German hospitals has risen and therefore the costs. Furthermore,
many hospitals use incompatible information management systems making the exchange of
data difficult. We look at different approaches to relieve the current healthcare system with the
implementation of e-Health. Our focus is the Estonian healthcare system, as one of the most
advanced in the European Union. Moreover, we look at systems to help first responders and
paramedics as well as systems helping hospital staff with an app. To make our application as
accessible as possible we discuss the benefits and disadvantages of QR Codes and Data Matrix
codes. Based on the insights gained we propose an application combining the approaches. This
application functions as a central database for all medical workers. Our goal was to make
the application as transparent as possible and therefore the patient can see all the documents
about them. We describe how the application could be used by medical staff and doctors too.
Our application provides easy and quick access for medical personnel to the files of patients,
reducing time spend for administrative tasks.

iii

iv

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als
die angegebenen Hilfsmittel verwendet habe. Sinngemäße Übernahmen aus anderen Werken
sind als solche kenntlich gemacht und mit genauer Quellenangabe (auch aus elektronischen
Medien) versehen.

Ulm, den 13.07.2020 Tobias Müller

v

vi

Contents

1 Introduction 1

2 Related Work 5

2.1 Corporate sector . 5
2.2 Hospital solution . 6
2.3 Countrywide solution . 7

3 Background Information 13

3.1 ICD Codes . 13
3.2 PZN . 13
3.3 Code 39 . 14
3.4 Data Matrix . 14
3.5 QR Codes . 15

4 Implementation 17

4.1 User Management . 17
4.2 Medical Files Management . 22
4.3 Mobile . 43
4.4 Security . 44
4.5 Privacy . 46

5 Look and feel 49

6 Use Case 61

7 Conclusion 63

vii

Contents

viii

List of Figures

3.1 Code 39 of "HELLO WORLD" . 14
3.2 Data Matrix of "HELLO WORLD" . 15
3.3 QR Code of "HELLO WORLD" . 15
3.4 "The quick brown fox jumps over the lazy dog" encoded with different codes . . 16

5.1 Welcome screen . 50
5.2 Log in screen . 51
5.3 Top of the register page . 52
5.4 Bottom of the register page . 53
5.5 Welcome screen when logged in . 53
5.6 The toolbar for different roles . 53
5.7 Abbreviations page for doctors . 54
5.8 Allergy index pages . 55
5.9 All allergy CRUD pages . 56
5.10 Datalists for diseases . 57
5.11 Medication index page . 57
5.12 Medication index page for smaller screens . 58
5.13 Medication edit page for computer screens . 58
5.14 Medication edit page for smaller screens . 59

ix

List of Figures

x

Listings

4.1 Register front-end example . 18
4.2 Register back-end excerpt . 19
4.3 Validation of the registration inputs in the Util class 20
4.4 Create a random URL for the user . 21
4.5 Register confirmation page . 21
4.6 Allergy model . 22
4.7 Back-end index page of allergies . 23
4.8 Method to redirect not authorized accesses . 25
4.9 Method to get the user of a file . 25
4.10 Example of the navigation . 26
4.11 Front-end index page heading of allergies . 27
4.12 Search index page of allergies . 27
4.13 Front-end index page of allergies . 27
4.14 Pagination of the allergies index page . 28
4.15 GET handler create allergy . 29
4.16 Method to set all page parameters . 29
4.17 Create new allergy . 30
4.18 Show details of an allergy back-end . 31
4.19 Show details of an allergy front-end . 31
4.20 GET handler edit allergy excerpt . 32
4.21 POST handler edit allergy excerpt part 1 . 32
4.22 Front-end edit allergy excerpt . 33
4.23 POST handler to create a new allergy . 34
4.24 POST handler edit allergy excerpt part 2 . 34
4.25 GET handler to delete an allergy excerpt . 35
4.26 POST handler to delete an allergy . 36
4.27 Upload files . 38
4.28 Download handler . 39
4.29 Creating new disease entry . 40
4.30 Report link on the index page . 41
4.31 Mobile index medication page excerpt . 43
4.32 GET handler allergy detail excerpt . 44
4.33 Authorization for all folders . 45
4.34 Razor encoding example . 45
4.35 Create a random string . 47

xi

Listings

xii

1
Introduction

In 1991 a full-time equivalent of roughly 875 000 people worked in hospitals and took care of
approximately 14 600 000 patients [per][pat]. These numbers have gone up by 6% and 33%
respectively to roughly 930 000 full-time equivalents and approximately 19 400 000 patients in
2018 [per][pat]. The biggest rise in the hospital workers comes from the doctors, because the
complexity of the diseases, medication, and devices has increased. In 1991 more than 95 000
doctors worked in hospitals, this has risen by 72% to more than 164 000 in 2018 and at the
same time the number of persons working in a hospital, which are not doctors has declined
by 2% from 1991 to 2018 [per]. While it is seemingly good that the number of doctors has
risen much more than the number of the patients many doctors still must do extra hours every
week. In 2018 32% of all doctors in Germany worked more than 48 hours per week on a regular
basis [arb]. The costs for hospitals in 1991 was equivalent to 8,7 billion EUR for doctors and
15,6 billion EUR for the nursing service in 2017 [kra], which means both values are adjusted
for inflation and the currency exchange was considered. In 2017 doctors costed 20,4 billion
EUR and the nursing service costed 19,2 billion EUR [kos]. This corresponds to a 134% and
a 23% rise in costs for doctors and the nursing service, respectively. Another problem for the
German health care system is that the German society gets older year by year. In 1991 15% of
the population was 65 or older and this percentage has risen to 19% in 2005 and 22% in 2018
and is expected to rise to 31% in 2060 [alt] respectively. This is important because 46% of the
patients in 2005 where over the age of 65 and in 2018 this group made up 53% of the patients
in the hospitals [ope]. Therefore, with a rising number of old people the number of patients
is expected to rise too. This means even more doctors are needed in the future, which means
that the costs will rise even more. Therefore, we want to investigate a possible way to digitize
the health care system to reduce costs and improve the care for patients.

Since life is getting more and more digitized this trend does not stop in the field of health care.
This has certain advantages and disadvantages some of them we will discuss and address in
this thesis. We worked closely together with doctors who expounded the disadvantages and
shortcomings of the current system, which are described in the following lines. Together we
worked on a system to tackle some of these issues. While working on this new system we used
the feedback from the doctors to create a system that makes the everyday work in a hospital
easier and more time efficient, while reducing complexity.

The current health care system in Germany is almost entirely decentralized, which means that
every hospital has their own records about a patient. The clinical information systems of
different hospitals are often incompatible with each other. This even goes as far as two clinical
information systems from the same developer cannot exchange data with each other, because
the systems were adjusted for the specific needs of these hospitals and within a hospital different
department use incompatible tools or different systems sometimes too. To make the systems

1

Chapter 1 Introduction

compatible plugins are heavily used. This makes it only a temporary solution since with every
software update these plugins could become incompatible. Which leaves two options, either
the plugins do get updated too, which costs money, or the system does not get updated, which
could become a security threat. Because of these problems the information exchange between
hospitals is heavily paper based. For example, if a patient needs to take an x-ray in hospital
A and these files are needed in hospital B, but hospital B cannot access these files, since there
is no central database. In this case the patients must go to hospital A themselves so that the
files can be burned to a CD. The patient then takes this CD to hospital B. As another example
when moving over larger distances one must visit a different family doctor. Since there is no
centralized system the sick person should bring all their reports, passes, vaccination record,
and CDs. Then the doctor must insert all this information in their clinical information system
by hand, which can occupy much time depending on how complex and how much information
there is. This time is missing for patient care. But there is a silver lining. Some data nowadays
can be send digitally from one hospital to the other. Even if it is not much it is a good start to
save time and resources. Especially device passes can be a problem of their own. For instance
the insertion of cardiac pacemakers are a standard procedure nowadays. People who undergo
such a procedure usually get a pass that states that they have metal in their heart (important
when you get an MRI or you fly somewhere). That way multiple operations can result in
multiple metal devices inside a patient’s body. Since there can be multiple pieces of metal
every piece has its own pass. This can sum up to quite a lot of passes. Another problem is
the pass design. For example, the passes for anticoagulatory agents (blood thinners) can have
a different design depending on the exact name of the substance and its manufacturer. This
includes especially the color of the pass. If the passes were color coded by body parts or organs
and had standardized structure much time could be saved, and this would increase the patient’s
compliance and understanding. This lack of standardization is one problem we want to address
with this thesis together with an approach on how to centralize the German system. With a
centralized system the second opinion of a doctor can be made more time efficient, since the
doctor can see which tests were performed on the patient and the results of these tests and do
not have to run these tests again.

In the next chapter Related Work we want to look at things that have been done regarding
digitizing the health care system. Furthermore, we want to analyze the reasons why certain
systems worked and others failed. At the end of this chapter we want to glance at the systems
in other countries and compare some parts to the German system, to discuss which aspects
could be adapted and which are not suitable yet.

Another aspect which we want to look closely at are medication plans. If a patient needs
medication the doctor prescribes the drugs to the patient and hands the patient this medication
plan. This plan states what medication should be taken and the corresponding intake pattern
for each drug. These plans are typically printed with a Data Matrix or a QR Code on them,
which encode the medication and the intake patterns. What and how they encode the data will
be discussed in chapter Background Information as well as ICD Codes, which encode diseases
and are widely used in the medical environment. Moreover, we want to look at different 2D
codes to encode the data, like QR Codes, and compare them to each other. Our focus is usability
improvement and the ability to encode more data in one of these codes. After improving the
usability of these plans the family doctors could save time for writing prescriptions.

2

Afterwards we want to present and discuss our implementation in the chapter Implementation.
First, we want to explain what we did and what problems were addressed doing so. Because
the implementation was planned with a mobile application in mind, we will also discuss the
characteristics and challenges which come with such a system. We want to provide an approach
to solve these issues. Since the software will store highly personal data the requirements for
the software security and the privacy of this data are huge. Therefore, we want to discuss what
can be done and consider what should be done, without restricting the usability too much.

Some pictures of our application are then shown in chapter Look and feel.

In the last chapter Use Case we want to discuss our implementation with a use case and
determine what works well and what does not. Moreover, we want to discuss what can be
improved regarding the insights gained in the previous chapters.

3

Chapter 1 Introduction

4

2
Related Work

In this chapter we want to look at different approaches to digitize medical files and how the
processes in the health care system can be improved. First, we will investigate the solutions
from the corporate sector, then into one solution for hospitals, and at the end of this chapter
into a countrywide solution.

2.1 Corporate sector

In case of an emergency time is of the essence. Many smartphone manufacturers have therefore
implemented an emergency function. This displays general data about the owner of the smart-
phone, if the person entered them first. That includes information like name, blood type, and
phone numbers of emergency contacts. Some private companies offer services where more im-
portant medical data can be accessed quickly. One company of these companies is SOSQR [sos],
which we will investigate a little bit further. The data is stored on a website and is entered
there by the person them self. Then the person can print out a QR Code, which represents a
link to the website with the data. Afterwards the QR Code can be put on a motorcycle helmet,
as a lock screen wallpaper, or simply as a card in the wallet. To access the data in case of an
emergency the paramedic or any other rescuer must scan the QR Code and enter a four-digit
PIN, which is printed near the QR Code. While a paramedic can greatly benefit from more
information to much information could potentially slow down the process. One great advantage
of this system is automatic translation of the saved report. If the person carried such a QR
Code and had an accident while traveling in a foreign country the paramedics could still read
and understand what the person entered in their report. Therefore, getting help can be easier
in countries, where the verbal communication is not good. Since the vocabulary of tourists is
generally not that large, they could benefit the most out of this feature. The functionality of
these services can replace bracelets some people wear to signal paramedics that they are allergic
to certain things like penicillin or nickel, by attaching a QR Code to a bracelet. One minor dis-
advantage this system has is the requirement for an internet connection. There are still places
in Germany which have no mobile internet connection [bre] depending on the internet service
provider and therefore this technology becomes useless. The places with no mobile internet
connection are apprehended by the Federal Network Agency (ger: Bundesnetzagentur) and
displayed on a map to find dead zones and ultimately eradicate them. One possible example is
a hiking trail, especially in forests, where the reception is weak to non-existing and getting help
is exceedingly difficult. When help arrives they could read the QR Code but probably could
not access the web page with the information. But the information can be read on the way to
the hospital when the cell reception is better.

5

Chapter 2 Related Work

Another company is Mercedes Benz [mera] which offers a rescue sticker. These stickers are
put in the fuel filler cap and on the B-pillar of the opposite site. These parts of the car are
statistically nearly undamaged in case of an accident. After scanning the QR Code a rescue cart
for the vehicle is displayed which shows all important information for the rescue. It also guides
the fire department to locate parts of the which could harm the rescue team or the occupants,
like airbags. These cards can be accessed offline which is great when the accident happened in
a dead zone. Furthermore, the cards are displayed in the language of the mobile device [merb]
if this language is available. If the language should not be available English gets automatically
displayed. When using the app these cards can be displayed in 3D or with augmented reality
directly on the vehicle. This makes the rescue process easier and safer, but the paramedics
have to know about these possibilities to search for the QR Code. Why or why not QR Codes
should be used in such situations is discussed later in the section about QR Codes.

2.2 Hospital solution

One study which offers a solution for a hospital is the study by Mersini et al. [MST13]. They
proposed a system based on a smartphone app and QR Codes for in-house use. To implement
the proposed system a central database in the hospital is needed, where the patient’s medical
files can be stored. Therewith the system can unleash its full potential all medical records of the
patients must be available electronically. When a new patient with no electronic health records
comes to the hospital, then a new entry with the patient’s personal information in the database
will be created. These files can include allergies, medication, and diagnoses. Consequently, the
patient’s full history shall be available to make better decisions faster. The system can also
"include updates on the progress of the patient" as well as "sending referrals directly to [...]
laborator[ies]" and the user gets an instant notification in the app as soon as the laboratory
results are available.

They use SQLite in their app to get updates and send updates from or to the server via HTTP
requests. This also allows the app to store some data on the device, which enables offline
working. The personnel can create new records or edit records which are stored while the
device has no connection to the server. When the connection to the server is restored the app
sends the updated or created records to the server. One problem that occurs rather sooner
than later are merging conflicts. This problem is solved by the server, but how the server
accomplishes is not described in their study.

When a patient comes to a doctor the doctor can access the patient’s medical records and
based on the information the doctor can make the diagnose. This diagnose can be added to the
system which then issues a referral with a QR Code, if needed. This referral QR Code can be
send to the patient’s smartphone or tablet. If the patient prefers a non-electronically referral
the QR Code can be printed together with the information it encodes. Therefore, the person
receiving the referral only needs to scan the QR Code to get all necessary information to find
the person in the system.

To ensure the security and privacy of the data every staff member has a role, which allows them
to access certain files and do certain actions. For example, a nurse can update a patient’s vital
signs and check for allergies and the patient’s medication. A doctor can also see the patient’s
laboratory results to consider this for their medical outcome.

6

2.3 Countrywide solution

The proposed system can eliminate the need for handwritten notes, which might get misinter-
preted. Furthermore, some forms can be filled out automatically and records can be accessed
and updated easier as well as vital signs. Altogether the system frees up time from adminis-
trative tasks, that can be used for patient care.

Another system proposed by Pryss et. al. [PMLR15] focuses more on digitizing ward rounds in
hospitals. In their paper they developed an iPad application which assists medical staff during
ward rounds. To develop the app, they first observed the day to day routines in ward rounds
in four different departments to get an initial feeling for the needs of the app. They also asked
doctors and nurses for their feedback to the app, thus an app was developed that was as easy
and fast as the paper-based system used by the medical staff at the time. In contrast Mersini
et. al. did not mention anything like this in their paper. The app developed by Pryss et.
al. lets the medical staff see all the patients in their ward. In this overview all tasks for the
selected patient are displayed with a status indication. Such a task for example could be doing
an X-ray.

When navigating to the patient’s details a different overview is shown. This shows all the pa-
tient’s personal data like date of birth. Furthermore, vital signs and the anamnesis is displayed
like in the system from Mersini et. al. [MST13]. Additionally, the current medication, the
diagnosis, tasks, and the diagnostics are shown.

When examining diagnostics, the medical staff can change the state of the corresponding task
to update it. On the other hand, the staff can easily create a new task on the diagnostics page,
for example to request a new laboratory test. Text templates make the creation of tasks easier
and faster as well as the ability to make a voice recording instead of typing.

After the development they evaluated the staff again with the result that the medical staff was
satisfied with the application. One downside of the application might be that the application
distracts the users from the patient and therefore the communication between staff and patient
gets neglected. Furthermore, the staff wished to access medical reports. But they argue that
the evaluation might not be suitable to be generalized, because the questionnaire was not
designed by an expert, the sample size was relatively small, the participants were interrupted
or distracted by their patients, and persons not directly participating in ward rounds were not
questioned, like laboratory professionals or physical therapists.

2.3 Countrywide solution

Sabes-Figuera et al. conducted a survey among hospitals in Europe for the European Commis-
sion [SFMA+13]. They created a benchmark for the e-Health services in all countries of the
European Union plus Iceland and Norway to compare the countries with each other. But we
will focus on the comparison between Germany and Estonia, since Estonia is one of the most
advanced countries in the European Union regrading digitalization.

The availability of inputting and viewing electronic health records is the best in Estonia and
the usage of these features is the second highest. Germany is around the average for availability
and usage. In Estonia, the exchange of health information has the highest availability and the
second highest use, while Germany is below average for both availability and use. The use of
telehealth is below average while the availability is above average in Estonia. Germany is below

7

Chapter 2 Related Work

average for both key figures. Sabes-Figuera et al. conclude that "most healthcare professionals
do integrate these eHealth functionalities in their clinical care routines". This indicates that
the doctors realize how e-Health can benefit their daily routine. All the hospitals from the sur-
vey shared their medical information electronically with external family doctors and specialists
in Estonia. Whereas in Germany this information is not shared by all hospitals, compared to
all countries in the survey the sharing rate with external family doctors is near the average
and the sharing with external specialists is above average. This creates new problems of inter-
changeability between departments, since "54% [of the hospitals using electronic health records]
reported interoperability problems at technical, semantic and/or organisational level". As we
described in Introduction in Germany clinical information systems are often incompatible with
each other even in one hospital with different information systems for different departments.
This circumstance facilitates the interchangeability problem. The patients in Estonia could
access their electronic health records in 75% of all surveyed to a certain degree. In Germany,
no patient could access their data online. Relating to security measures Germany and Estonia
are closer together with Estonia leading in most of the categories compared.

As we have seen in the survey from Sabes-Figuera et al. Estonia is better prepared for e-Health
than Germany. But overall Germany could at least improve its rating from 2010 to 2012 but
it was not as much as Estonia and it is still below average of all 30 countries. Based on these
insights we first want to compare the structure of the health care systems from Estonia and
Germany to discover similarities and differences to be able to compare the technical aspects of
e-Health in both countries after that. Põlluste and Lember [PL16] wrote in their paper about
the development of the Estonian health care system from 1918 to the early 2010s, which is
approximately the time of the conduct of the survey form Sabes-Figuera et al. From 1918 to
1940 the health care system in Estonia was decentralized and the responsibilities for the health
care laid upon the local municipalities. Estonia had three types of hospitals back then. First the
state-owned hospitals, then the municipal hospitals and lastly private hospitals. Sickness funds
were used to finance the health care system, by covering civil servants and employees. After
the second world war was over the Estonian health care system was massively influenced by
the Soviet Union and implemented the Semashko system. This meant, that the responsibility
of the health care system laid on the state. The state was also the employer of the physicians
and the system was entirely funded from the state budget. In towns there were polyclinics
where the primary health care and the specialized doctors all practiced. Since both types of
doctors where available so close together people tented to skip the primary health care doctors
and go straight to the specialized doctors. This led to the point that "certain problems almost
never reached the [public health care] doctor[s]". In comparison Germany was partitioned into
four different zones. These zones became the Federal Republic of Germany and the German
Democratic Republic. Both states had a completely different health care systems.

As written by Hurst [Hur91] the health services were provided by independent and public
health providers in Western Germany. Most of the population was covered by public health
insurance and the remaining parts were covered by private health insurance, which were "mainly
higher income earners". If the income of a person passed a threshold, they could change from
public to private health insurance. These public insurances were mainly funded by payroll
taxes, where half of the amount was paid by the employee and the other half by the employer.
However, the amount is capped. For private insurances dues are paid depending on the gender,
age, and number of children of the insured person. Unlike the Estonian system in Western
Germany small fees were charged for prescriptions, hospital stay, and nonemergency patient

8

2.3 Countrywide solution

transport. On the other hand, the health care systems of Estonia and the German Democratic
Republic were quite similar since both countries were influenced by the Soviet Union. In
Eastern Germany the health care system was also centralized and funded by taxes and the
doctors were salaried and controlled by the state. Moreover, polyclinics were also standard as
well as that all public health services were without charge. But the health care system suffered
from a shortage of physicians in the 1980s. As written by Erices and Gumz [EG14] this was
based mainly on the inadequate planned economy and the hemorrhage of doctors to Western
Germany. The main reasons for doctors to leave were the poor equipment, missing medicine
and medical equipment, physical and mental overload because of the under staffing, and the
low wages. After the reunification the health care system of the western states was almost
completely transferred to the eastern states, for example polyclinics were maintained for five
more years [MMB02].

After the fall of the Soviet Union and regaining independence Estonia began to reform the
health care system. They established a social health insurance, a new system of sickness
funds and divergent from the Semashko system they defined what should be covered by the
health insurance instead of covering all treatments. So, the funding did not come from the
state anymore. As we have seen this is quite like all the public and private health insurances
in Germany. Furthermore, the health care system became decentralized again and now was
based on family medicine. This required the introduction of family doctors. Each of these
family doctors have a patient list, where the patient can register themselves. This way the
patient can choose which family doctor is the first contact for their health-related problems.
The patient lists have roughly 1 600 persons on them and if the patient list exceeds 2 000
persons than the doctor "is expected to hire an assistant doctor" to prevent overburdening
one family doctor. As Põlluste and Lember describe, the family doctors act as a kind of
gatekeeper in the health care system. The family doctors give "advice concerning the prevention
of diseases, takes preventive measures and issues health certificates, certificate of incapacity for
work and prescriptions". Furthermore, they send the person to specialized medical personal
if they can not treat the patient. This is also a big contrast to the Semashko system and
ensures that the specialized doctors get exonerated. In Germany, every person can choose their
family doctor too. Furthermore, they act also as gatekeepers to specialized doctors. To get
an appointment with specialized doctors the patient needs a referral from the family doctor
but specialized doctors can be visited without a referral in case of an emergency. Further on
dentists, ophthalmologists, and gynaecologists can be visit without a referral too [fre]. All
insured persons can access the public health care services without any extra charge. This
includes visiting the family doctor, certificates of incapacity of work, and prescriptions. But
for other documents like the health care certificate, which is needed for a driver’s license, the
patient could have to pay a fee. As discussed before in Germany some services like prescribed
costs a slight fee. We have seen that the health care systems of Estonia and Germany are
similar structured, but the the Estonian healthcare is considerably more advanced in e-Health
than the German healthcare as seen at the beginning of this section. Hence, we want to look
more deeply at the e-Health system of Estonia to see what is possible and has been proved to
work.

Under the name e-estonia [e-e] Estonia has launched a program to digitize among other things
visits to the authorities and health care. The latter is the one we want to examine and consists
of three components: e-health records, e-ambulance, and e-prescription. The e-health records
are health records that integrate "data from Estonia’s different healthcare providers to create

9

Chapter 2 Related Work

a common record every patient can access online". This acts as a central database that can
display the data from different systems in a standard format. Therefore, the e-health records
allows the doctors to access a patient’s full history in just one file. Like the application proposed
by Mersini et al. [MST13] these files can include basic medical results like allergies, medication,
and diagnoses. The system is even capable of providing the doctors with new records or test
results as they are entered, like blood tests or X-ray images. Consequently the waiting time
for test results is reduced to a minimum and more time can be devoted to patient care. To
ensure the integrity of the records, which means that the data stored in such records cannot be
modified unauthorized without noticing it, blockchain technology is used. The blockchain also
logs who accessed the files to prevent misuse of all the highly personal data stored in the system.
Therefore, the logs cannot be manipulated by anybody to cover up their misdemeanor. All
persons can access their own records all the time and this extends to their underage children and
people who gave them access to access them. These records include the doctors visits which can
be reviewed afterwards, the current prescriptions, and a log of all doctors who had accessed their
files. This can all be accessed with their ID-card, which is like the German government-issued
identification card, which gives access to all the e-Estonia features. They also add, that "in
an emergency situation, a doctor can use a patient’s ID code to read time-critical information,
such as blood type, allergies, recent treatments, on-going medication or pregnancy.", which can
benefit the care of the patient greatly. For example if a patient has a penicillin allergy and
the doctors sees this early in the treatment process and can react accordingly. "The system
also compiles data for national statistics, so the ministry can measure health trends, track
epidemics", which can be really helpful to combat the ongoing covid-19 pandemic. This might
be one reason why the number of infected people is much lower with 1 800 [cova] in Estonia
than in Germany with 176 752 [covb] as of 2020-05-21. This results in 0.14% [popb] and
0.21% [popa] of the population infected in Estonia and Germany respectively. But it is still to
early to tell for sure if the lower numbers are due to e-estonia, since many factors matter like the
distribution of population in cities and rural areas. The next component is the e-Ambulance.
This component helps the dispatcher of the emergency service to get time critical information
for the paramedics and within 30 seconds the position of the phone can be detected to send an
ambulance as fast as possible. The dispatcher can use the ID of the patient to get the patient’s
health records. These records are automatically filled in a form which provide basic information
about the patient like age, allergies, and the blood type. This data can then be accessed by the
ambulance on their way to the patient, which ensures that the paramedics can make the right
decisions when arriving at the location. On the way to the hospital the paramedics can assess
the condition of the patient to input this into the health information system. Afterwards the
doctors can automatically access the patient’s medical records, most recent test results, and the
consultations with the family doctor or medical specialists. Therefore, the hospital can prepare
for the patient before the patient arrives at the hospital and doctors can quickly aid them. But
in comparison to the emergency function of smartphones and the QR Code based solution the
data in this system can be accessed on the way to the patient. The eAmbulance system lets the
paramedics read this data on the way to the patient, which saves the paramedics time and the
patient care can begin sooner. The last component is the e-Prescription component. These are
a "centralized paperless system for issuing and handling medical prescriptions", which means
that the doctor can prescribe medicine with an online form. All the patient needs then is to
show the pharmacist the ID-card. Thereby the pharmacist can access the information from the
patient and can issue the medicine. Since the e-Prescription system works with the data from

10

2.3 Countrywide solution

the national health insurance fund the medicine is discounted according the subsides appertain
to the patient. One major benefit is the issuing for repeated prescriptions. Since everything
necessary is available online the patient can contact the doctor digital and the doctor can issue
a repeated prescription quickly in order that the patient can directly go to the pharmacy.

One major problem remaining is the information exchange rate between European countries.
As of 2013 the amount of hospitals that share information with other EU countries is less than
8% [SFMA+13]. To ensure that the system can work across borders in Europe a standardized
format for the data or even an information system is needed. Currently the European Com-
mission is working on a system that allows for such a sharing of health data across countries in
Europe [Ano18]. Depending on the implementation such a system might be the best possible
solution for the EU.

11

Chapter 2 Related Work

12

3
Background Information

In this chapter we want to dive into codes that are used in the medical field and look at why
and what they are used. Thereafter we want to discuss some codes to encode data and compare
them to each other.

3.1 ICD Codes

In 1853 a resolution was passed for a consistent international nomenclature of causes of death
as stated by the DIMDI (German Institute for Medical Documentation and Information) [icdb].
In 1893 the International List of Causes of Death (ILCD) was implemented in North America
and in 1899 it was recommended in Europe to implement the ILCD too. After that in 1900
the first international overhaul conference about the ILCDs were held and the list was declared
mandatory. Thereupon followed four more such conferences. In 1948 the 6. revision conference
were held and the WHO was entrusted with the creation of the International Classification of
Diseases (ICD). Contrary to ILCD the ICD codes encoded not only the causes of death. As
stated by the World Health Organization [whoa][whob] ICD codes encode "diseases, disorders,
injuries and other related health conditions". Since the data format of the codes is standardized
this enables hospitals and countries to share these data with one another. Furthermore, the
codes are consistent over the years, which makes data analysis possible. Therewith health and
death trends can be found, and appropriate actions can be made. Because all member states
of the WHO and the few missing regions probably also use the ICD codes, it is quite safe to
say that ICD codes are used all over the world. For example a doctor in Tokyo can read the
diagnoses done by a German doctor.

In Germany, all doctors and psychotherapists are required to encode their diagnoses with an
ICD-10-GM code [icda]. The GM stands for German Modification, which means that the
international codes are translated to German. Hence the international compatibility is still in
place.

3.2 PZN

In Germany, the PZN (pharmaceutical central number) encodes medication, assistive technol-
ogy, and pharmacy products. The numbers are published by the IFA (information agency for
proprietary medicinal products) [ifa]. The PZN is an eight-digit number, which encodes med-
ication unambiguously based on the denotation, the administration form, and the packaging
size. This number is only valid for Germany, but the German PZN can easily be transformed

13

Chapter 3 Background Information

Figure 3.1: Code 39 of "HELLO WORLD"

to the PPN (Pharmacy Product Number), which is unique worldwide. Therefore, it is sufficient
to only store the PZN instead of the PPN. On the package of medication, the PZN is either
encoded as a Code 39 or in a Data Matrix. Since 2019-02-09 the PZN does not have to be
encoded in Code 39 anymore, instead the Data Matrix is used. The Data Matrix encodes more
than just the PZN, it also encodes the serial number, the batch number, and the expiration
date.

3.3 Code 39

The Code 39 is a linear barcode, which means that the code has only one dimension. As stated,
by Fang et al. [FWL+06] the Code 39 can encode uppercase letters, all digits, and some special
characters like "-" or "." and was invented in 1974. Each character consists of 9 bars with 5 of
them black and 4 white. Three of the black bars are wider than the other black bars, Thus the
name Code 39. The Code 39 has a start, information, and end part. Start and end encode an
asterisk while the information part encodes the representation of the information plus the check
sum. Therefore, the Code 39 has no build in error correction but rather error detection. One
example can be seen in figure 3.1. With the proposed procedure by Fang et al. a rotated Code
39 or a Code 39 with noise can still be read if the asterisks can be found and the noise is not too
high. An extension to the Code 39 is the Full ASCII Code 39 where all ASCII symbols, which
are not part of the Code 39 already, are represented by two Code 39 characters. Furthermore,
the size of a Code 39 grows with the size of the stored information. Therefore, the code can be
as long as you want, but a code which is too long can cause problems when reading it.

3.4 Data Matrix

The Data Matrix is the first two-dimensional code we want to look at. As written by Al-
brecht [Alb12] the Data Matrix was developed in the late 1980s in the USA by Acuity Corpo-
ration and first used in 1994 in Germany. Unlike the Code 39 the Data Matrix has a maximum
number of characters it can encode. While only using numeric characters 3 116 digits can be
encoded. The Data Matrix can encode up to 2 335 alphanumeric characters and 1 556 bytes.
Contrary to Code 39 the Data Matrix has built in error correction. Data Matrix uses the
Reed-Solomon error correction. The smallest Data Matrix has 3 bytes for data and 5 bytes for
error correction. Therefore, up to 2 errors can be corrected. The largest possible Data Matrix
has 1 558 bytes for data and 620 bytes for error correction and can correct up to 310 errors.
One example can be seen in figure 3.2. Besides the square pattern a rectangular pattern is also

14

3.5 QR Codes

Figure 3.2: Data Matrix of "HELLO WORLD"

Figure 3.3: QR Code of "HELLO WORLD"

possible with the same features. One big advantage of the Data Matrix is the possibility to
emboss, laser, or engrave the code into products. Therefore, the Data Matrix becomes perma-
nently associated with the object, which would not be possible by printing. As we learned in
the section about 𝑃𝑍𝑁 that the Data Matrix is replacing the Code 39 on medication, assistive
technology, and pharmacy products. One reason might be the build in error correction and
another may be the compactness of the Data Matrix versus the Code 39. This is illustrated
in figure 3.4. It is also used to encode the medication plan. In this use case it encodes some
personal information like name and birthday and the PZN of the medication with the intake
pattern.

3.5 QR Codes

The second two-dimensional code we want to look at is the QR Code. It was developed in
1994 by DENSO WAVE [qrc]. The goal was to develop a code that can be read as fast as
possible. This problem was solved with the three big square marks, which enables position
detection. Besides the fast reading the QR Code can also be read from any angle. This was
a big advantage versus codes like Data Matrix or Code 39. Although these codes could be
read from different angles as shown by Lin and Lin [LL13]. Since this technique must be
implemented in the readers of these codes the QR Code is still predominant regarding this
feature, because it is built in and every QR Code reader can use it. After the introduction the
code was first used by the Japanese automotive industry, which could improve their efficiency.
Compared to the Data Matrix the QR Code can encode more data. It can encode up to 7 089
numeric, 4 296 alphanumeric, 2 953 bytes, or 1 817 Kanji characters, which is the name of the
Japanese characters. Moreover, a mixture of these types is possible. One example can be seen
in figure 3.3. Contrary to the Data Matrix the QR Code has a variable error correction. The
error correction capability is divided in four level (L, M, Q, H) which can restore 7%, 15%,
25%, or 30% of the codewords, respectively. With more error correction the amount of data
which can be encoded drops. So, the peak numbers presented early can only be reached with
an error correction level L. Furthermore, DENSO WAVE developed new enhancements. The

15

Chapter 3 Background Information

(a) QR Code (b) Data Matrix

(c) Code 39

Figure 3.4: "The quick brown fox jumps over the lazy dog" encoded with different codes

first is the Micro QR Code, which as the name suggest is a smaller version of the QR Code.
The maximum amount of numerical characters a Micro QR Code can encode is 35 while the
smallest QR Code can encode 41. It still can encode alphanumeric, byte, and Kanji characters.
The second one is the iQR Code, which can hold 80% more information than the normal QR
Code. This allows roughly 40 000 characters. By implication this means that the iQR Code
needs less space than the normal QR code and even than the Data Matrix. Like the Data
Matrix the iQR Code can also be presented as a rectangular. Beyond this the iQR Code has an
error correction level S which can restore a code where 50% of the data part is damaged. The
third code is the SQRC which is a QR Code with reading restrictions. It can encode public
and private information. While the public information can be read with any device the private
information can only be read with a device that has the cryptographic key to decode the hidden
information. A user without the key does not see that private information is hidden. The last
code is the Frame QR which is a QR Code with a canvas area, where images or letters can be
inserted, while preserving the features of the QR Code. While these are great additions only
the QR Code and the public SQRC information can be read with a smartphone out of the box.
This is also an advantage versus the Data Matrix and the Code 39 which both can not be read
out of the box by smartphones. In figure 3.4 you can see that the size of the squares in the
Data Matrix are larger than the QR Codes. As previously mentioned, the Code 39 needs the
most space out of these three codes. While encoding the same data the QR Codes need more
space to be readable, but they can encode more data. If everybody is to read the code or a
massive amount of data is to be encoded QR Codes should be chosen. If only little space is
available a Data Matrix should be used.

16

4
Implementation

We decided to use the razor pages form the .NET framework for our implementation, because
the razor pages come with different templates that facilitates building a website. First the
template offered the functionality for account creation. Therefore, we had not to deal with
password handling, which can be quite tricky. Furthermore, it enabled us to publish our
website quickly to test it as we will show in the next chapter where we discuss a Use Case. As
of 2018 the General Data Protection Regulation must be implemented, which the templates
also support.

Our goal was to implement an application that can be used to relive the workload of paramedics,
hospital staff, and doctors in Germany. We wanted to create a centralized database were the
patient’s information could be stored and easily accessed by all medical workers as it is possible
in the Estonian healthcare system. Our idea is to use QR Codes to access this information,
since nearly everybody already has a smartphone capable of scanning QR Codes. After scanning
the QR Code at first an emergency message should be displayed which gives the emergency
responder all critical information about the patient. Quite like the techniques discussed in the
section about the Corporate sector solutions. Razor pages use the Bootstrap Framework and
therefore, the website is quite usable with smaller screen devices. Nonetheless the application
can greatly benefit from a smartphone application. We will discuss theMobile aspects in greater
detail in the following section. Our application is divided in two different parts. The first part
is the identity part where the user accounts with all their information is managed. The second
part is the data part where all medical files are managed.

4.1 User Management

First, we want to talk about the identity part, which was mostly provided by the ASP.NET
Core and adjusted for our needs. The class representing the user is called 𝑀𝑒𝑑𝑖𝑐𝑈𝑠𝑒𝑟 and
inherits from the ASP.NET Core 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦𝑈𝑠𝑒𝑟 class, which provides a basic user with an Id,
a username, email address, and phone number. Furthermore, it provides a field to store the
password hash and a counter for the failed login attempts. Both will be explained more in
detail in the section about Security. Our model adds more personal information about the user
like the name of the user, the users date of birth and place of birth, the sex of the user, and the
profession of the user, which can help in some cases, because some profession benefits certain
diseases. For example, miners have a higher chance for lung diseases, doctors have a higher
risk of infections, and athletes have a higher risk of injuries. Additionally, the health insurance
company and the insurance number are stored in the model to help the doctors with the
accounting process with the health insurances. As we learned in the section about Countrywide

17

Chapter 4 Implementation

solution in Germany every person has a family doctor and therefore this information is also
stored in the model. To identify the family doctor distinctively the name, street, city, and
postal code are stored. Furthermore, the model holds the information about what medical
personal status of the user. This determines the role of the user in the system, like the system
proposed by Mersini et al. [MST13]. The roles are 𝑢𝑠𝑒𝑟, 𝑛𝑜𝑜𝑠, 𝑜𝑜𝑠, and 𝑑𝑜𝑐𝑡𝑜𝑟. Medical personal
without the obligation to secrecy get the role 𝑛𝑜𝑜𝑠 and persons with the obligation of secrecy
therefore, get the role 𝑜𝑜𝑠. In case the user is a doctor the model has also the possibility to add
the lifetime medical number, which every doctor has. Another important field is the Boolean
𝑚𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 field, which indicates if the value in the 𝑚𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 field
is confirmed by the system and therefore also the role of the user. We will see why this field is
important soon. How the roles work is discussed in greater detail in the section about Privacy.
The user also can store a private and public emergency notice like the SOSQR [sos] application
discussed in the Corporate sector section. Finally, the user has an URL that leads to the user’s
data. Hereafter we will call this user URL to avoid confusion with the URL entered in the
browser. With this URL the emergency notices and the medical files can be accessed via the
QR Code. Both the private and the public notice entries are what you see is what you get
editors to enable the user to structure the text with bullet points, use different colors and font
sizes and insert tables. Therefore, the text can be better readable and highlight important
points. On the other hand, to colorful and unstructured texts created by the user can make
the text more difficult to read, which costs more time. We used the free open source editor
TinyMCE [tin].

<div c l a s s="row">
2 <div c l a s s="form−group col−md−6">

<l ab e l asp−f o r=" Input . Medica lPersonal "></labe l >
4 <s e l e c t asp−f o r=" Input . Medica lPersonal " c l a s s="form−c on t r o l ">

@for (i n t x = 0 ; x < Model . r o l e s . GetLength (0) ; x++)
6 {

<opt ion value="@Model . r o l e s [x , 0] ">@Model . r o l e s [x , 1]</ option>
8 }

</s e l e c t >
10 </

span>
</div>

12 . . .
</div>

Listing 4.1: Register front-end example

Displayed in Listing 4.1 is one input field of the form from the register page as an example,
because all other fields are structured similarly. All fields that are semantically similar are
surrounded by a 𝑟𝑜𝑤 class, which is a wrapper for columns. Each row can have up to twelve
columns. As seen in the second line our input field is furthermore enclosed by a 𝑐𝑜𝑙-𝑚𝑑-6
class. This class uses six of the twelve available columns, which corresponds with 50% of the
available space. The parameter 𝑚𝑑 ensures that this rules only applies for medium or larger
sized screens with equal to or greater than 768 pixels. For a semantic group of four entries we
used the classes 𝑐𝑜𝑙-𝑙𝑔-3 𝑐𝑜𝑙-𝑚𝑑-6 for each entry like our example here. This class causes on
larger screens with equal to or greater than 992 pixels that every entry takes up one-fourth of
the available space since every entry needs three of the twelve columns. When the screen is
smaller than 992 pixels but equal to or greater than 768 pixels each of these four entries only

18

4.1 User Management

takes six of the twelve columns and therefore half of the space. If the screen is smaller than 768
pixels every entry in the register form takes up a full row. This ensures that the form uses the
space that is available on larger screens optimal and maintains readability on smaller screens
especially smartphone screens.

pub l i c readonly s t r i n g [] s exe s = Ut i l . U t i l . Pos s ib l eSex ;
2 pub l i c readonly s t r i n g [,] r o l e s = Ut i l . U t i l . A l lRo l e s ;

4 [BindProperty]
pub l i c InputModel Input { get ; s e t ; }

6

pub l i c c l a s s InputModel
8 {

[Required]
10 [DataType (DataType . Text)]

[Display (Name = "Are you medical pe r sona l ?")]
12 pub l i c s t r i n g Medica lPersonal { get ; s e t ; }

. . .
14 }

16 pub l i c async Task<IAct ionResult> OnPostAsync (s t r i n g re turnUr l = nu l l)
{

18 Ut i l . U t i l . Va l i da t eReg i s t e r (Input , ModelState) ;

20 i f (ModelState . I sVa l i d)
{

22 var user = new MedicUser {
Name = Input .Name,

24 UserName = Input . Email ,
Email = Input . Email ,

26 URL = Ut i l . U t i l . GetUniqueRandomUserUrl (_userManager) ,
Medica lPersonal = Input . MedicalPersonal ,

28 MedicalPersonalConf irmed = f a l s e ,
} ;

30 var r e s u l t = await _userManager . CreateAsync (user , Input . Password) ;
var r o l eRe su l t = await _userManager . AddToRoleAsync (user , user .

Medica lPersonal) ;
32 i f (r e s u l t . Succeeded && ro l eRe su l t . Succeeded)

{
34 i f (_userManager . Options . S ignIn . RequireConfirmedAccount)

{
36 re turn RedirectToPage ("Reg i s te rConf i rmat ion " , new { emai l =

Input . Email }) ;
}

38 }
}

40 re turn Page () ;
}

Listing 4.2: Register back-end excerpt

In the back end we need an 𝐼𝑛𝑝𝑢𝑡𝑀𝑜𝑑𝑒𝑙 to store the inserted information from the user, which
can be by the front-end. An excerpt from the model can be seen in listing 4.2 in the lines four
to 14. The 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 tag tells the system that this entry cannot be null and therefore must have
a value, which was inserted by the user. The 𝐷𝑎𝑡𝑎𝑇𝑦𝑝𝑒 tag signals the system which data type
is expected. Besides the text data type date, postal code, HTML, password, phone number,

19

Chapter 4 Implementation

and email are also possible. The password data type hides the input in the password fields, so
that the inserted cannot be read. The 𝐷𝑖𝑠𝑝𝑙𝑎𝑦 tag is used to give the variable a different name
when displayed to the user. Every input entry has the same structure throughout our entire
application. Each entry consists of a label, an input field, and a span, therefore we want to
explain the structure of our example in Listing 4.1. The 𝑎𝑠𝑝-𝑓𝑜𝑟 tag is a Tag Helper provided
by the ASP.NET Core and lets us access variables from the back end. The label displays the
name of the field for the user and to get the name we use the Tag Helper. With the Tag Helper
we can access the 𝐼𝑛𝑝𝑢𝑡 model from the back end and therefore also the variables, which is
𝑀𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 in our case. As we saw in Listing 4.2 the 𝑀𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 variable has a
𝐷𝑖𝑠𝑝𝑙𝑎𝑦 tag with the value "Are you medical personal?". The label is now set to this value. If
we did not specify a name with the 𝐷𝑖𝑠𝑝𝑙𝑎𝑦 tag the variable name would be displayed, which
would be 𝑀𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 in this case. Following the label are either input or select tags to
get the user’s information. In line five to eight of the Listing 4.1 we can see one feature of the
razor pages, which let us use C# code in the HTML document. In these lines we fill the drop-
down list (<select>) from which the user can choose their employment status in the medical
field. The 𝑀𝑜𝑑𝑒𝑙 objects always point to the corresponding back-end class and therewith we
can get all options we want to display to the user. In line two of the back-end code from
Listing 4.2 we get the values form our 𝑈𝑡𝑖𝑙 class. This ensures we always use the same options
on different pages and increases the maintainability. The 𝑟𝑜𝑙𝑒𝑠 array is a two-dimensional array
and stores the names of the roles with their respective display name. As you can see, we used
the 𝑎𝑠𝑝 − 𝑓𝑜𝑟 tag again. This time it tells the application where to store the information
the user provided. In the back end the inserted value is available with the 𝐼𝑛𝑝𝑢𝑡 class and
the variable 𝑀𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙. After sending the form with the HTML POST method the
𝑂𝑛𝑃𝑜𝑠𝑡𝐴𝑠𝑦𝑛𝑐 in the back end gets called. This method is the handler for all POST requests
and an excerpt can be seen in line 16 in Listing 4.2. Before we can save all the information, we
must check if all inserted values are valid. Most of the inputs can be checked by the types of
the variables and is done automatically by the system. For example, the variable which stores
the birth date of the user must be a valid date or a variable with the 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 tag must not be
𝑛𝑢𝑙𝑙. Because the system can only check for syntactical errors we must still check for semantic
errors. In line 18 we call the 𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 function with the 𝐼𝑛𝑝𝑢𝑡 object, that stores all
inserted user values, and the 𝑀𝑜𝑑𝑒𝑙𝑆𝑡𝑎𝑡𝑒 object, which is a dictionary of all variables of the
𝐼𝑛𝑝𝑢𝑡 object and their validation status. This function can be seen in Listing 4.3.

pub l i c s t a t i c void Va l i da t eReg i s t e r (RegisterModel . InputModel inputModel ,
ModelStateDict ionary modelState)

2 {
bool va l idRo l e = f a l s e ;

4

f o r (i n t i = 0 ; i < Al lRo le s . GetLength (0) ; i++)
6 {

i f (inputModel . Medica lPersonal == Al lRo le s [i , 0])
8 {

va l idRo l e = true ;
10 break ;

}
12 }

14 i f (! va l idRo l e)
{

20

4.1 User Management

16 modelState . AddModelError (" Input . Medica lPersonal " , " Please choose one
entry from the l i s t ") ;
}

18 }

Listing 4.3: Validation of the registration inputs in the Util class

The function is straightforward because we only iterate over the 𝐴𝑙𝑙𝑅𝑜𝑙𝑒𝑠 array and check if
the insert role is in this array. If the inserted role is not in the array, we add a new error to
the 𝑀𝑜𝑑𝑒𝑙𝑆𝑡𝑎𝑡𝑒. In line 20 in Listing 4.2 we test if all model values are valid. If this is not
the case we return the page again in line 40. Now the 𝑠𝑝𝑎𝑛 tags display the error message in
line 10 in Listing 4.1, if the key specified with 𝑎𝑠𝑝-𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛-𝑓𝑜𝑟 is not valid. If the model is
valid we can create a new user. We must generate a unique user URL so that we can access
the user’s files later. The code can be seen in Listing 4.4.

pub l i c s t a t i c s t r i n g GetUniqueRandomUserUrl (UserManager<MedicUser> userManager)
2 {

s t r i n g random = GetRandomString () ;
4

whi le (userManager . Users .Where (user => user .URL. Equals (random)) . Count () !=
0)

6 {
random = GetRandomString () ;

8 }
return random ;

10 }

Listing 4.4: Create a random URL for the user

As you can see in line 28 in Listing 4.2, we set the 𝑀𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 variable to
false, since everybody can choose the doctor option. Nevertheless, we assign the user the role
they chose. How we want to handle and check this and how the 𝐺𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑟𝑖𝑛𝑔 function
works is described in greater detail in the section about Privacy. After the user and the user’s
role is created successfully we want to send the user the registration confirmation email. This
can be seen in lines 34 to 37, where we call the 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 page to handle this.
The page can be seen in Listing 4.5. We first check if an email was provided and then if we can
find a user with this email in our database. If both variables contain valid entries, we begin to
build the message of the email. After we built the message, we call the Task 𝐸𝑥𝑒𝑐𝑢𝑡𝑒, which
uses SendGrid to assemble and send the email to the provided address.

pub l i c async Task<IAct ionResult> OnGetAsync (s t r i n g emai l)
2 {

i f (emai l == nu l l)
4 {

return RedirectToPage ("/ Index") ;
6 }

8 var user = await _userManager . FindByEmailAsync (emai l) ;
i f (user == nu l l)

10 {
return NotFound ($"Unable to load user with emai l ’{ emai l } ’ . ") ;

12 }

14 var code = await _userManager . GenerateEmailConfirmationTokenAsync (user) ;

21

Chapter 4 Implementation

code = WebEncoders . Base64UrlEncode (Encoding .UTF8. GetBytes (code)) ;
16 EmailConf irmationUrl = Url . Page (

"/Account/ConfirmEmail " ,
18 pageHandler : nu l l ,

va lue s : new { area = " Id en t i t y " , email , code } ,
20 pro to co l : Request . Scheme) ;

22 Execute (user) .Wait () ;

24 re turn Page () ;
}

Listing 4.5: Register confirmation page

After the user registered and confirmed their email address they can log in and change their
profile any time. This includes everything the user could enter on the register page, except the
lifetime medical number, since this number should not change, and the username. If the medical
personal status changes the 𝑀𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 is set to false again. Now the user
can also add two-factor authentication to their account. To be compliant with the GDPR the
user can download or delete their personal data, but this only includes the information about
the user and not their other files they probably have. Before the application can be released
this must be fixed that all data from the user can be downloaded or deleted. Additionally
the user can display their QR Code which leads to their emergency notice and later to their
files. We decided to use a QR Code because every person and not only medical personal
should be able to access the emergency notice. This is achieved with QR Codes since all
modern smartphone cameras can read QR Codes without any extra applications. They also
offer great error correction which can be helpful in some cases where the code got damaged in
an accident.

4.2 Medical Files Management

The medical file part consists of the four main pages allergies, medication, reports, diseases,
and vaccinations and the two pages ICD-Codes and abbreviations. All main pages plus the
abbreviations page supports all CRUD operations and can display all entries in a list view,
which can be viewed on their index page. All index pages are paginated so that not all entries
are loaded at once. The ICD page only allows for reading access.

First, we want to start with the allergies page, because it is the easiest of the main pages and
all pages are similarly structured. The allergy model can be seen in Listing 4.6.

pub l i c c l a s s A l l e rgy
2 {

pub l i c i n t ID { get ; s e t ; }
4 [Required]

pub l i c s t r i n g UserID { get ; s e t ; }
6

[Required]
8 pub l i c i n t PersonalID { get ; s e t ; }

pub l i c s t r i n g Name { get ; s e t ; }
10

pub l i c s t r i n g Reaction { get ; s e t ; }

22

4.2 Medical Files Management

12

[DataType (DataType . Html)]
14 pub l i c s t r i n g Desc r ip t i on { get ; s e t ; }

16 [Timestamp]
pub l i c byte [] Vers ion { get ; s e t ; }

18 }

Listing 4.6: Allergy model

An Allergy consist of a 𝑁𝑎𝑚𝑒, the severity of the 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛, and a 𝐷𝑒𝑠𝑐𝑝𝑟𝑖𝑝𝑡𝑖𝑜𝑛 for further
information and are provided by the user. The name and the severity are required, while the
description is optional. For the description field we use the same what you see is what you
get editor as on the register page and therefore we must set the data type of the description
to HTML. The severity can be severe, mild, or moderate and we store this information in the
𝑈𝑡𝑖𝑙 class, so that we have a central point to access it. Each severity has a different shape and
color combination on the index page. A red triangle is used for severe, a yellow square is used
for moderate, and a green circle is used for mild cases. This lets the users quicker understand
what severity an allergy has because the user must not read the text. In the case the user
is colorblind or has dyschromatopsia the shapes help these users instead of the colors. The
remaining parameters are only for internal use and can therefore not be entered by the user.
The value 𝐼𝐷 is used internally to store the allergy in the database. The 𝑈𝑠𝑒𝑟𝐼𝐷 is the id of
the user the allergy entry belongs to and the 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷 is the id of the allergy for the user.
We will discuss the need of a separate 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝐼𝐷 in the section about Privacy. The last value
𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 is used later to detect concurrency errors.

All medical file pages inherit from a base class 𝑀𝑒𝑑𝑖𝑐𝑃𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙, which inherits form the
𝑃𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙 class provided by the .NET CORE. The 𝑀𝑒𝑑𝑖𝑐𝑃𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙 has only three proper-
ties. The first is a Boolean variable 𝑂𝑤𝑛𝑃𝑎𝑔𝑒 indicating if the current page is the page of the
user or the page of another user. The second variable 𝑈𝑠𝑒𝑟𝑂𝑓𝑃𝑎𝑔𝑒 is a representation of the
user whom the page belongs to. The last variable 𝑀𝑒𝑑𝑖𝑐𝑈𝑟𝑙 is the string of the user URL. In
Listing 4.7 we can see the back end implementation of the index page of the allergy files.

pub l i c s t r i n g NameSort { get ; s e t ; }
2 pub l i c s t r i n g Cur r en tF i l t e r { get ; s e t ; }
pub l i c s t r i n g CurrentSort { get ; s e t ; }

4 pub l i c bool I sDoctor { get ; s e t ; }
pub l i c PaginatedList<Al lergy> Al l e rgy { get ; s e t ; }

6

pub l i c async Task OnGetAsync (s t r i n g ur l , s t r i n g sortOrder , s t r i n g f i l t e r , s t r i n g
search , i n t ? pageIndex)

8 {
i f (User . I s InRo l e (" doctor "))

10 {
IsDoctor = true ;

12 }

14 i f (u r l == nu l l)
{

16 OwnPage = true ;
}

18 e l s e
{

23

Chapter 4 Implementation

20 s t r i n g userHasNoPermission = Ut i l . U t i l . GetHandler (User , _userManager , "
A l l e r g i e s " , ur l , " doctor " , " oos ") ;

22 i f (userHasNoPermission != nu l l)
{

24 u r l = nu l l ;
OwnPage = true ;

26 }
e l s e

28 {
OwnPage = f a l s e ;

30 }
}

32

MedicUrl = u r l ;
34

CurrentSort = sortOrder ;
36 NameSort = s t r i n g . IsNullOrEmpty (sortOrder) ? "name_desc" : "" ;

38 i f (s earch != nu l l)
{

40 pageIndex = 1 ;
}

42 e l s e
{

44 search = f i l t e r ;
}

46

Cur r en tF i l t e r = search ;
48

UserOfPage = Ut i l . U t i l . GetUserOfFi le (_userManager , ur l , User) ;
50

IQueryable<Al lergy> a l l e r g i e s = from a in _context . A l l e r g i e s
52 where a . UserID == UserOfPage . Id

s e l e c t a ;
54

i f (! s t r i n g . IsNullOrEmpty (search))
56 {

a l l e r g i e s = a l l e r g i e s .Where (a => a .Name . Contains (search)) ;
58 }

60 a l l e r g i e s = sortOrder switch
{

62 "name_desc" => a l l e r g i e s . OrderByDescending (a => a .Name) ,
_ => a l l e r g i e s . OrderBy (a => a .Name)

64 } ;

66 a l l e r g i e s = a l l e r g i e s . OrderByDescending (a => a . Reaction) ;

68 Al l e rgy = await PaginatedList<Al lergy >.CreateAsync (a l l e r g i e s . AsNoTracking () ,
pageIndex ?? 1) ;

}

Listing 4.7: Back-end index page of allergies

The index page has only one GET handler in line seven. All the parameters in handler func-
tion take the value from the query part of a URL. When calling the page with the query

24

4.2 Medical Files Management

/𝐴𝑙𝑙𝑒𝑟𝑔𝑖𝑒𝑠?𝑢𝑟𝑙=12345 the variable 𝑢𝑟𝑙 in the back end has the value 12345. After calling the
function we first set all page parameter. Since a doctor can create, edit, view, and delete an
entry and a user with obligation of secrecy can only view the entry we have check if the user
is a doctor. This is done in lines nine to twelve. After that we want to check if the user wants
to see their own page or the page of another user. We first check if a user URL is provided in
lines 14 to 17 and if this is not the case, we know that the user wants to call their own page.
If a user URL was provided by the user, we first must check if the user is authorized to see the
page. This procedure was outsourced to the 𝐺𝑒𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟 function because we must do this on
every page. The code can be seen in Listing 4.8.

pub l i c s t a t i c s t r i n g GetHandler (C la imsPr inc ipa l user , UserManager<MedicUser>
userManager , s t r i n g pageName , s t r i n g ur l , params s t r i n g [] r o l e s)

2 {
i f (user == nu l l)

4 {
return "/ Index" ;

6 }

8 MedicUser medicUser = GetUserOfFi le (userManager , nu l l , use r) ;

10 i f (u r l != nu l l)
{

12 i f (! HasUserOneOfTheseRoles (medicUser , user , r o l e s))
{

14 re turn $"/{pageName}/ Index" ;
}

16

Ut i l . Url = u r l ;
18 }

20 re turn nu l l ;
}

Listing 4.8: Method to redirect not authorized accesses

The 𝐺𝑒𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟 function returns either a string of the page where we will redirect a user
without the necessary authorization or null if the user is authorized to see the page. If there is
no logged in user we want to redirect the user to the main index page. After that we want to get
the user of the accessed file. The implementation of the function can be seen in Listing 4.9.

pub l i c s t a t i c MedicUser GetUserOfFi le (UserManager<MedicUser> userManager , s t r i n g
ur l , C la imsPr inc ipa l c la imedUser)

2 {
i f (u r l != nu l l)

4 {
IQueryable<MedicUser> user = userManager . Users .Where (user => user .URL ==

ur l) ;
6

i f (user . Count () == 1)
8 {

return user . F i r s tOrDefau l t () ;
10 }

e l s e
12 {

return GetUserById (userManager , c la imedUser) ;

25

Chapter 4 Implementation

14 }
}

16 e l s e
{

18 re turn GetUserById (userManager , c la imedUser) ;
}

20 }

Listing 4.9: Method to get the user of a file

We first check if a user URL is provided. If none is provided, we use the 𝐺𝑒𝑡𝑈𝑠𝑒𝑟𝐵𝑦𝐼𝑑 function
to get the user calling the page. If a user URL is provided, we first check if a user with this user
URL exists and if we find one user with this user URL, we can return the user. There should
always be only one user if the provided user URL is valid, since we check that the assigned user
URL is unique in the registration process (see Listing 4.4). If we find no user with the user
URL we return the user calling the page. We handle both cases that no or a wrong user URL
is provided the same way. Then we can continue in Listing 4.8. We again check if a user URL
was provided. If a user URL was provided, we check if the user has a role that authorizes them
to access the page and that the role is confirmed by checking if 𝑀𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑
is true. Should this not be the case we want to redirect the user to their medical file page.
When the user has a role that authorizes them to access the page, we save the user URL and
return 𝑛𝑢𝑙𝑙 to indicate that the user is authorized. We do the same if the user wants to access
their own files. When for example a doctor is working on a patient’s files, we must save the
user URL therewith the doctor can navigate through the patient’s files. This can be seen in
Listing 4.10.

@{
2 s t r i n g u r l = Ut i l . U t i l . Url ;
}

4 <l i c l a s s="nav−item">
<a c l a s s="nav−l i n k text−dark" asp−area="" asp−page="/ A l l e r g i e s / Index" asp−
route−u r l="@url">A l l e r g i e s / In to l e r anc e s

6 </ l i >

Listing 4.10: Example of the navigation

When the doctor clicks on the link the 𝑎𝑠𝑝-𝑟𝑜𝑢𝑡-𝑢𝑟𝑙 sets the URL query 𝑢𝑟𝑙 to the value stored
in @𝑢𝑟𝑙. If we would not do this the doctor would always access their own files.

Now we can continue in Listing 4.7. We store the user URL, the current sort order, and the sort
order for the allergy name in page parameters. If the 𝑠𝑒𝑎𝑟𝑐ℎ parameter is empty, we set it to
the value of the 𝑓𝑖𝑙𝑡𝑒𝑟 value. Otherwise we set the 𝑝𝑎𝑔𝑒𝐼𝑛𝑑𝑒𝑥 to 1, to start at page one of the
allergy list. After that we save the 𝑠𝑒𝑎𝑟𝑐ℎ value in the page parameter 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹 𝑖𝑡𝑙𝑒𝑟. Next,
we want to know the user of this page. This is done by the 𝐺𝑒𝑡𝑈𝑠𝑒𝑟𝑂𝑓𝐹𝑖𝑙𝑒 explained earlier
in Listing 4.9. With this information we can retrieve all the allergies from the user. The query
can be seen in lines 51 to 53. Then we want to apply the search string to filter the allergies, if
a search string is provided. See lines 55 to 58 for that. Then we sort the remaining allergies in
lines 60 to 64. Depending on the value stored in 𝑠𝑜𝑟𝑡𝑂𝑟𝑑𝑒𝑟 either ascending or descending by
name. Finally, we sort all allergies by their severity, thus all allergies are always presented from
severe to mild. Depending on 𝑠𝑜𝑟𝑡𝑂𝑟𝑑𝑒𝑟 all severe allergies are sorted ascending or descending.
This also applies to moderate and mild allergies. Finally, we created the paginated allergy list
with the code provided by Microsoft [RAa].

26

4.2 Medical Files Management

Now we can use all this to build the index page. Depending on the 𝑂𝑤𝑛𝑃𝑎𝑔𝑒 variable we
display a slightly different heading as seen in Listing 4.11.

@if (Model .OwnPage)
2 {

<h1>Your A l l e r g i e s / In to l e r anc e s </h1>
4 }
e l s e

6 {
<h1>A l l e r g i e s / I n t o l e r an c e s o f @Model . UserOfPage .Name</h1>

8 }

Listing 4.11: Front-end index page heading of allergies

This makes it obvious if a doctor is accessing their own files or the files of a patient. Next, we
see the search function in Listing 4.12.

<form asp−page=" . / Index" method=" get ">
2 <p>

Al l e rgy : <input type=" text " name=" search " value="@Model . Cur r en tF i l t e r "
/>

4 <input type="submit" value="Search " c l a s s="btn btn−primary" /> |
<a asp−page=" . / Index">Back to f u l l l i s t

6 </p>
</form>

Listing 4.12: Search index page of allergies

This form uses the GET method for the 𝑎𝑠𝑝-𝑝𝑎𝑔𝑒 "./𝐼𝑛𝑑𝑒𝑥" and therefore points to the back
end GET handler function in line seven in Listing 4.7. If the user already searched for an
allergy it is displayed in the input field. We use the value that is stored in the 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹 𝑖𝑙𝑡𝑒𝑟
variable, that we set in the back end. If the user clicks on the link to go back to the full list
the page is called without any query parameters and this also resets the sort order as we will
see later.

The Listing 4.13 only shows the column with the name of the allergy. Normally the index page
also shows the severity, but since it has a similar structure as the name, we do not show it here.
The remark is not shown on the index page, since it is not as important as the other two values
and can require much space.

<tab l e c l a s s=" tab l e ">
2 <thead>

<tr>
4 <th>

<a asp−page=" . / Index" asp−route−sortOrder="@Model . NameSort" asp−
route− f i l t e r="@Model . Cur r en tF i l t e r ">

6 @Html . DisplayNameFor (model => model . A l l e rgy [0] . Name)

8 </th>
</tr>

10 </thead>
<tbody>

12 @foreach (var item in Model . A l l e rgy)
{

14 <tr>
<td>

27

Chapter 4 Implementation

16 @Html . DisplayFor (modelItem => item .Name)
</td>

18 <td>
@if (Model . MedicUrl != nu l l)

20 {
@if (Model . I sDoctor)

22 {
<a asp−page=" . / Edit " asp−route−u r l="@Model . MedicUrl"

asp−route−id="@item . PersonalID">Edit @(" | ")
24 <a asp−page=" . / De t a i l s " asp−route−u r l="@Model .

MedicUrl" asp−route−id="@item . PersonalID"> Deta i l s @(" | ")
<a asp−page=" . / Delete " asp−route−u r l="@Model .

MedicUrl" asp−route−id="@item . PersonalID">Delete
26 }

e l s e
28 {

<a asp−page=" . / De t a i l s " asp−route−u r l="@Model .
MedicUrl" asp−route−id="@item . PersonalID"> Deta i l s

30 }
}

32 e l s e
{

34 <a asp−page=" . / Edit " asp−route−id="@item . PersonalID">
Edit @(" | ")

<a asp−page=" . / De t a i l s " asp−route−id="@item . PersonalID">
Deta i l s @(" | ")

36 <a asp−page=" . / Delete " asp−route−id="@item . PersonalID">
Delete

}
38 </td>

</tr>
40 }

</tbody>
42 </table>

Listing 4.13: Front-end index page of allergies

As we can see in lines five to seven when clicking on the header of the name field the page is
called again with the value of 𝑁𝑎𝑚𝑒𝑆𝑜𝑟𝑡 and the value of 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐹 𝑖𝑙𝑡𝑒𝑟 as query parameters
for 𝑠𝑜𝑟𝑡𝑂𝑟𝑑𝑒𝑟 and 𝑓𝑖𝑙𝑡𝑒𝑟, respectively. In the body of the table we display the values for all
allergies provided by the back end. In lines 19 to 37 we print what the user can do with these
files depending if it is their file or what role they have. A doctor and the user of the file both
can edit, delete, and view the details of the file. A user with the 𝑜𝑜𝑠 role can only view the
details of the file. All other users get redirected to their own files as we saw in lines 20 to 30 in
Listing 4.7. The values 𝑎𝑠𝑝-𝑟𝑜𝑢𝑡𝑒-𝑖𝑑 and 𝑎𝑠𝑝-𝑟𝑜𝑢𝑡𝑒-𝑢𝑟𝑙 set the URL query of 𝑖𝑑 and 𝑢𝑟𝑙, which
are needed to retrieve the users file. How this works will be described later.

Listing 4.14 shows how the pagination works. The Listing shows only the button for the next
page, since the button for the previous page works similarly.

@{
2 var nextDisabled = ! Model . A l l e rgy . HasNextPage ? " d i s ab l ed " : "" ;
}

4

<a asp−page=" . / Index"
6 asp−route−sortOrder="@Model . CurrentSort "

28

4.2 Medical Files Management

asp−route−pageIndex="@(Model . A l l e rgy . PageIndex + 1) "
8 asp−route− f i l t e r="@Model . Cur r en tF i l t e r "

c l a s s="btn btn−primary @nextDisabled">
10 Next

Listing 4.14: Pagination of the allergies index page

First, we must check if we can display a next page. By clicking the button, we increment the
𝑃𝑎𝑔𝑒𝐼𝑛𝑑𝑒𝑥 by one to display the next page. We also must forward the current sort order
and filter, so that it is still the same on the next page. With the class we can control if the
button can be clicked or not. If 𝑛𝑒𝑥𝑡𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑑=𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑑 the button gets disabled and can not
be clicked anymore.

But before we can list any entry, we must create them first. On the index page is a create new
button, which when pressed calls the create page of an allergy. The code of the GET handler
is displayed in Listing 4.15.

pub l i c IAct ionResu l t OnGet(s t r i n g ur l , s t r i n g name , s t r i n g reac t i on , s t r i n g
d e s c r i p t i o n)

2 {
s t r i n g r e d i r e c t = Ut i l . U t i l . GetHandler (User , _userManager , " A l l e r g i e s " , ur l ,
" doctor ") ;

4 i f (r e d i r e c t != nu l l)
{

6 re turn RedirectToPage (r e d i r e c t) ;
}

8

Ut i l . U t i l . SetPageParameter (r ed i r e c t , ur l , _userManager , User , t h i s) ;
10

Al l e rgy = new Al l e rgy () ;
12 Ut i l . U t i l . SetAl lergyCreateParameter (Al lergy , name , r eac t i on , d e s c r i p t i o n) ;

14 re turn Page () ;
}

Listing 4.15: GET handler create allergy

The GET handler can be called with a user URL and all the possible parameters of an allergy
entry. We first check if the user calling the page is authorized to do so in line three with the
𝐺𝑒𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟 function as seen before in Listing 4.8. If we should redirect the user, we redirect
them in line six to the specified page. Otherwise we can continue to build the page. Then we
call the 𝑆𝑒𝑡𝑃𝑎𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 function, which can be seen in Listing 4.16.

pub l i c s t a t i c void SetPageParameter (s t r i n g r ed i r e c t , s t r i n g ur l , UserManager<
MedicUser> userManager , C la imsPr inc ipa l user , MedicPageModel pageModel)

2 {
i f (r e d i r e c t == nu l l && ur l == nu l l)

4 {
pageModel .OwnPage = true ;

6 }
e l s e

8 {
pageModel . MedicUrl = u r l ;

10 pageModel .OwnPage = f a l s e ;
}

29

Chapter 4 Implementation

12

pageModel . UserOfPage = GetUserOfFi le (userManager , ur l , use r) ;
14 }

Listing 4.16: Method to set all page parameters

This function sets all the page parameter inherited from the 𝑀𝑒𝑑𝑖𝑐𝑀𝑜𝑑𝑒𝑙𝑃𝑎𝑔𝑒 class. Next, we
create a new 𝐴𝑙𝑙𝑒𝑟𝑔𝑦 object to store the user’s inputs and if some values are already provided
with the GET request we set them in line twelve. The used function only sets all allergy
properties with the provided values. Then we can deliver the page to the user.

The user can now fill out the form. For the severity we use a drop-down list, which is filled by
the severity values stored in the 𝑈𝑡𝑖𝑙 class. After the user pressed submit the POST handler
in Listing 4.17 is called.

pub l i c async Task<IAct ionResult> OnPostAsync (s t r i n g u r l)
2 {

s t r i n g r e d i r e c t = Ut i l . U t i l . GetHandler (User , _userManager , " A l l e r g i e s " , ur l ,
" doctor ") ;

4 i f (r e d i r e c t != nu l l)
{

6 re turn RedirectToPage (r e d i r e c t) ;
}

8

Ut i l . U t i l . SetPageParameter (r e d i r e c t , ur l , _userManager , User , t h i s) ;
10

Al l e rgy . UserID = UserOfPage . Id ;
12 ModelState . Remove("Al l e rgy . UserID") ;

14 IQueryable<Al lergy> a l l e r g i e s = from a in _context . A l l e r g i e s
where a . UserID == UserOfPage . Id

16 orderby a . PersonalID descending
s e l e c t a ;

18 Al l e rgy . PersonalID = a l l e r g i e s . Count () == 0 ? 1 : a l l e r g i e s . F i r s tOrDe fau l t ()
. PersonalID + 1 ;

20 Ut i l . U t i l . Va l i da t eA l l e rgy (Al lergy , ModelState) ;
i f (! ModelState . I sVa l i d)

22 {
return Page () ;

24 }

26 _context . A l l e r g i e s .Add(Al l e rgy) ;
await _context . SaveChangesAsync () ;

28

re turn RedirectToPage (" . / Index" , new { u r l }) ;
30 }

Listing 4.17: Create new allergy

The beginning is the same as the GET handler except the POST handler only takes the user
URL from the call. We first check if the user sending the POST request is authorized to do so.
If the user should not be authorized, we redirect them to the page provided by the 𝐺𝑒𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟
function. Then we can set all page parameters and set the 𝑈𝑠𝑒𝑟𝐼𝐷 of the allergy because this
could not be provided by the user, because there is no field for the 𝑈𝑠𝑒𝑟𝐼𝐷 in the form Next

30

4.2 Medical Files Management

we must remove the 𝑈𝑠𝑒𝑟𝐼𝐷 entry from the 𝑀𝑜𝑑𝑒𝑙𝑆𝑡𝑎𝑡𝑒, which is false since the 𝑈𝑠𝑒𝑟𝐼𝐷 was
not provided in the form send by the user although it is required for a valid allergy. Then we
fetch all the allergies the user has and sort them by the 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷 descending. We now can
give the newly created allergy a 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷, which is unique for the user. Depending on the
quantity of allergies the user has it is either one or the largest 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷+1. The only value
we must check is the severity value and is done by checking if the value is in the array with
the reactions stored in the 𝑈𝑡𝑖𝑙 class. The other two values only must be checked if they are
syntactically correct, which is done by the system. Should the model not be valid we return the
page again for the user to fix the errors. Now we can save a new allergy in line 26 and 27. After
we successfully stored the new allergy the user is redirected to the index page of the allergies.
To stay on the same user, we forward the user URL, otherwise a doctor would need to enter
the user URL of the patient again. Now we can call the edit, delete, and display page displayed
in Listing 4.13 on the index page. As you can see, we always forward the 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷 of the
entry and in case the user is working on the files of another user we must forward the user
URL.

We will first talk about the detail page, which is shown in Listing 4.18.

pub l i c async Task<IAct ionResult> OnGetAsync (i n t ? id , s t r i n g u r l)
2 {

i f (id == nu l l)
4 {

return RedirectToPage ("/NotFound" , new { model = " a l l e r g y " , errorMessage
= "Please s e l e c t an a l l e r g y with an id . " }) ;

6 }

8 Al l e rgy = await _context . A l l e r g i e s . FirstOrDefaultAsync (m => m. PersonalID ==
id && m. UserID == UserOfPage . Id) ;

10 i f (A l l e rgy == nu l l)
{

12 re turn RedirectToPage ("/NotFound" , new { model = " a l l e r g y " , errorMessage
= $"There was no a l l e r g y found with the id : { id }" }) ;
}

14

re turn Page () ;
16 }

Listing 4.18: Show details of an allergy back-end

The GET handler has both the personal 𝑖𝑑 and the user URL as parameters. If no personal
𝑖𝑑 was provided we redirect the user calling the page we redirect the user to an error page.
Otherwise we again use the 𝐺𝑒𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟 and 𝑆𝑒𝑡𝑃𝑎𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 functions to check if the user
is authorized and set all the page parameters if this is true. Both functions are not displayed in
the Listing because they have the same structure as in Listing 4.15. Then we can retrieve the
allergy from the database with the aid of the 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷 of the allergy and the 𝑈𝑠𝑒𝑟𝐼𝐷. If
we cannot find an allergy we also redirect the user to an error page. This most likely happens
when the 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷 is wrong because the user entered it manually. If everything is correct
we can return the page which displays the allergy and because we declared the description as
HTML, the description text is formatted correctly as HTML text. The user then can either go
back to the full list or edit this entry as seen in Listing 4.19.

31

Chapter 4 Implementation

<div>
2 <a asp−page=" . / Edit " asp−route−u r l="@Model . MedicUrl" asp−route−id="@Model .

A l l e rgy . PersonalID">Edit |
<a asp−page=" . / Index" asp−route−u r l="@Model . MedicUrl">Back to List

4 </div>

Listing 4.19: Show details of an allergy front-end

After clicking the edit button, the GET handler of the edit page is called. The structure of
the handler is the same as the GET handler of the details page as seen before in Listing 4.18
including the authorization check and the call of the 𝑆𝑒𝑡𝑃𝑎𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 function. The only
difference in this handler are the two lines displayed in Listing 4.20.

HttpContext . Se s s i on . Set Int32 ("Al l e rgy . ID" , A l l e rgy . ID) ;
2 HttpContext . Se s s i on . Set ("Al l e rgy . Vers ion " , A l l e rgy . Vers ion) ;

Listing 4.20: GET handler edit allergy excerpt

These two lines are inserted right above the return of the page. Here we store the 𝐼𝐷 and the
𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 of the allergy the user wants to edit in the session and therefore in the server. The
details are discussed in the section about Security. The front-end looks like the front-end of the
create page. After the user saves the edited entry the POST handler is called, which is shown
in Listing 4.21. The first lines are excluded since they are the same as the lines three to twelve
in the POST handler of the create page in Listing 4.17.

pub l i c async Task<IAct ionResult> OnPostAsync (s t r i n g u r l)
2 {

i n t ? id = HttpContext . Se s s i on . GetInt32 ("Al l e rgy . ID") ;
4

Ut i l . U t i l . Va l i da t eA l l e rgy (Al lergy , ModelState) ;
6

i f (! ModelState . I sVa l i d)
8 {

return Page () ;
10 }

12 i f (! id . HasValue)
{

14 re turn RedirectToPage (" . / Index" , new { u r l }) ;
}

16

var AllergyToUpdate = _context . A l l e r g i e s . F i r s tOrDe fau l t (x => x . ID == id .
Value) ;

18

i f (AllergyToUpdate == nu l l)
20 {

return HandleDeletedAl lergy () ;
22 }

24 _context . Entry (AllergyToUpdate) . Property ("Vers ion ") . Or ig ina lVa lue =
HttpContext . Se s s i on . Get ("Al l e rgy . Vers ion ") ;

26 i f (await TryUpdateModelAsync<Al lergy >(AllergyToUpdate , " Al l e rgy " , x => x . ID
, x => x . UserID , x => x . PersonalID , x => x .Name, x => x . Reaction , x => x .
Desc r ip t i on))
{

32

4.2 Medical Files Management

28 t ry
{

30 await _context . SaveChangesAsync () ;

32 HttpContext . Se s s i on . Remove("Al l e rgy . ID") ;
HttpContext . Se s s i on . Remove("Al l e rgy . Vers ion ") ;

34

re turn RedirectToPage (" . / Index" , new { u r l }) ;
36 }

catch (DbUpdateConcurrencyException ex)
38 {

var except ionEntry = ex . Ent r i e s . S i ng l e () ;
40 var c l i e n tVa lu e s = (Al l e rgy) except ionEntry . Ent ity ;

var databaseEntry = except ionEntry . GetDatabaseValues () ;
42

i f (databaseEntry == nu l l)
44 {

ModelState . AddModelError (s t r i n g . Empty , "Unable to save . The
a l l e r g y was de l e t ed by another user . ") ;

46 }

48 var dbValues = (Al l e rgy) databaseEntry . ToObject () ;
SetDbErrorMessage (dbValues , c l i en tVa lue s , _context) ;

50

ModelState . Remove("Al l e rgy . Vers ion ") ;
52 HttpContext . Se s s i on . Set ("Al l e rgy . Vers ion " , (byte []) dbValues . Vers ion)

;
}

54 }

56 re turn Page () ;
}

Listing 4.21: POST handler edit allergy excerpt part 1

In the third line retrieve the 𝑖𝑑 of the allergy stored in the session. Should the session be
expired the edited values get discarded and the user gets redirected to the index page as shown
in lines 12 to 15. The user has currently ten minutes time to enter all changes before the session
expires. This should be plenty of time to edit an entry. Nevertheless, a system which does not
discard all changes would be more user friendly. We know the user URL and the 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷
and could call the edit page again and forward the entries of the edited allergy, so that the user
can continue editing. Additionally, a timer could be added showing the user how much time is
left. In the best cast the timer and therefore the session time reset every time the user clicks
something or presses a key. After retrieving the 𝑖𝑑 we check if the edited allergy model is valid
in lines five to ten. This is the same as in the POST handler of the create page in Listing 4.17.
Now we try to retrieve the allergy from the database by its 𝑖𝑑 in line 17. Afterwards we check if
the allergy were deleted before we could save the changes in lines 19 to 22. If the system could
not retrieve an allergy it was deleted by another user and we call the 𝐻𝑎𝑛𝑑𝑙𝑒𝐷𝑒𝑙𝑒𝑡𝑒𝑑𝐴𝑙𝑙𝑒𝑟𝑔𝑦
function. The function adds an error to the 𝑀𝑜𝑑𝑒𝑙𝑆𝑡𝑎𝑡𝑒 telling the user the edited allergy was
deleted, sets the 𝐼𝑠𝐷𝑒𝑙𝑒𝑡𝑒𝑑 page parameter to true, and returns the page with all the changes
the user made. Now that the 𝐼𝑠𝐷𝑒𝑙𝑒𝑡𝑒𝑑 page parameter is true the page does show a create as
new button instead of the save button. This can be seen in Listing 4.22.

<div c l a s s="form−group">

33

Chapter 4 Implementation

2 <input type="submit" value="Create as new" c l a s s="btn btn−primary" asp−page−
handler="New" asp−route−u r l="@Model . MedicUrl" />

</div>

Listing 4.22: Front-end edit allergy excerpt

The 𝑎𝑠𝑝-𝑝𝑎𝑔𝑒-ℎ𝑎𝑛𝑑𝑙𝑒𝑟 attribute specifies the handler in the back end. This button now calls
the 𝑛𝑒𝑤 POST handler as seen in Listing 4.23 instead of the normal POST handler.

pub l i c async Task<IAct ionResult> OnPostNewAsync (s t r i n g u r l)
2 {

return RedirectToPage (" . / Create " , new { ur l , A l l e rgy .Name, Al l e rgy . Reaction ,
A l l e rgy . Desc r ip t i on }) ;

4 }

Listing 4.23: POST handler to create a new allergy

In this POST handler we check if the user is authorized the same way as in all the other
functions. If the user is authorized, we redirect them to the create page and forward all allergy
values and the user URL to stay on the same user. Now we can use the forwarded allergy
values to fill the fields in the create page, so that the user can save the allergy again. The
remaining part of the normal POST handler after the retrieval of the allergy from the database
is displayed in Listing 4.24.

pub l i c async Task<IAct ionResult> OnPostAsync (s t r i n g u r l)
2 {

_context . Entry (AllergyToUpdate) . Property ("Vers ion ") . Or ig ina lVa lue =
HttpContext . Se s s i on . Get ("Al l e rgy . Vers ion ") ;

4

i f (await TryUpdateModelAsync<Al lergy >(AllergyToUpdate , " Al l e rgy " , x => x . ID
, x => x . UserID , x => x . PersonalID , x => x .Name, x => x . Reaction , x => x .
Desc r ip t i on))

6 {
try

8 {
await _context . SaveChangesAsync () ;

10

HttpContext . Se s s i on . Remove("Al l e rgy . ID") ;
12 HttpContext . Se s s i on . Remove("Al l e rgy . Vers ion ") ;

14 re turn RedirectToPage (" . / Index" , new { u r l }) ;
}

16 catch (DbUpdateConcurrencyException ex)
{

18 var except ionEntry = ex . Ent r i e s . S i ng l e () ;
var c l i e n tVa l u e s = (Al l e rgy) except ionEntry . Ent ity ;

20 var databaseEntry = except ionEntry . GetDatabaseValues () ;

22 i f (databaseEntry == nu l l)
{

24 ModelState . AddModelError (s t r i n g . Empty , "Unable to save . The
a l l e r g y was de l e t ed by another user . ") ;

}
26

var dbValues = (Al l e rgy) databaseEntry . ToObject () ;
28 SetDbErrorMessage (dbValues , c l i en tVa lue s , _context) ;

34

4.2 Medical Files Management

30 ModelState . Remove("Al l e rgy . Vers ion ") ;
HttpContext . Se s s i on . Set ("Al l e rgy . Vers ion " , (byte []) dbValues . Vers ion)

;
32 }

}
34

re turn Page () ;
36 }

Listing 4.24: POST handler edit allergy excerpt part 2

After we checked if the allergy was deleted from the database we now must check if the entry
was altered by another user before the current user saved the changes. Before we can do that
we must set the original value of the 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 property and therefore we retrieve the version
information from the current session. In line five we try to update the allergy from the database
with the new values edited by the user. If this succeeds, we run into the try-catch block. Here
we try to save the changes of the allergy and if everything goes well, we can remove the session
entries for the 𝐼𝐷 and the 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 and redirect the user to the index page. It can happen that
another user has changed and saved the entry before the current user could save their changes
and then the 𝑆𝑎𝑣𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝐴𝑠𝑦𝑛𝑐 function throws a concurrency exception. In this case we
retrieve the allergy object the current user wants to save and the allergy that is stored in the
database. Now we check again if the entry was deleted and display the error message to the
user and afterwards we can cast the allergy from the database to an allergy object. Then we
use the 𝑆𝑒𝑡𝐷𝑏𝐸𝑟𝑟𝑜𝑟𝑀𝑒𝑠𝑠𝑎𝑔𝑒 function in line 28 to set all error messages. This function checks
which entries of the allergy are changed and displays an error message with the changed values,
if this is the case. Next, we must remove the old 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 value in the session and replace it
with the 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 value from the database. This works like a GET call without discarding all
the changes made by the user. Finally, we return the page to the user. Now the user can see
which values have changed and what the new values are. The user can now decide what values
to use and save the edited entry again.

Another page which the concurrency must be checked is the delete page. The GET handler
can be seen in Listing 4.25.

pub l i c async Task<IAct ionResult> OnGetAsync (i n t ? id , s t r i n g ur l , bool ?
concurrencyError)

2 {
i f (id == nu l l)

4 {
return RedirectToPage ("/NotFound" , new { model = " a l l e r g y " , errorMessage

= "Please s e l e c t an a l l e r g y with an id . " }) ;
6 }

8 s t r i n g r e d i r e c t = Ut i l . U t i l . GetHandler (User , _userManager , " A l l e r g i e s " , ur l ,
" doctor ") ;
i f (r e d i r e c t != nu l l)

10 {
return RedirectToPage (r e d i r e c t) ;

12 }

14 Ut i l . U t i l . SetPageParameter (r ed i r e c t , ur l , _userManager , User , t h i s) ;

35

Chapter 4 Implementation

16 Al l e rgy = await _context . A l l e r g i e s . FirstOrDefaultAsync (m => m. PersonalID ==
id && m. UserID == UserOfPage . Id) ;
i f (A l l e rgy == nu l l)

18 {
return RedirectToPage ("/NotFound" , new { model = " a l l e r g y " , errorMessage

= $"There was no a l l e r g y found with the id : { id }" }) ;
20 }

22 i f (concurrencyError . GetValueOrDefault ())
{

24 ConcurrencyErrorMessage = "The record you attempted to d e l e t e "
+ "was modi f i ed by another user a f t e r you s e l e c t e d d e l e t e . "

26 + "The d e l e t e opera t i on was cance l ed and the cur rent va lue s in the "
+ "database have been d i sp layed . I f you s t i l l want to d e l e t e t h i s "

28 + " record , c l i c k the Delete button again . " ;
}

30

HttpContext . Se s s i on . Set ("Al l e rgy . Vers ion " , A l l e rgy . Vers ion) ;
32

re turn Page () ;
34 }

Listing 4.25: GET handler to delete an allergy excerpt

The GET handler is like the GET handler of the detail page as shown in Listing 4.18. We first
check if an 𝑖𝑑 was provided and redirect the user to an error page if no 𝑖𝑑 was provided. Then
we check if the user is authorized and redirect them if this is not the case. Differently from
the details page we only call the 𝐺𝑒𝑡𝑈𝑠𝑒𝑟𝑂𝑓𝐹𝑖𝑙𝑒 function displayed in Listing 4.9 instead of
the 𝑆𝑒𝑡𝑃𝑎𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 function. With this information we can retrieve the allergy from the
database to display it to the user. We will explain the lines 22 to 29 later. Then we save the
𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 for the concurrency check later and return the page. After the user pressed the delete
button the POST handler in Listing 4.26 is called.

pub l i c async Task<IAct ionResult> OnPostAsync (i n t ? id , s t r i n g u r l)
2 {

s t r i n g r e d i r e c t = Ut i l . U t i l . GetHandler (User , _userManager , " A l l e r g i e s " , ur l ,
" doctor ") ;

4

i f (r e d i r e c t != nu l l)
6 {

return RedirectToPage (r e d i r e c t) ;
8 }

10 i f (id == nu l l)
{

12 re turn RedirectToPage ("/NotFound" , new { model = " a l l e r g y " , errorMessage
= "Please s e l e c t an a l l e r g y with an id . " }) ;
}

14

MedicUser user = Ut i l . U t i l . GetUserOfFi le (_userManager , ur l , User) ;
16

t ry
18 {

Al l e rgy = await _context . A l l e r g i e s . AsNoTracking () . FirstOrDefaultAsync (m
=> m. PersonalID == id && m. UserID == user . Id) ;

20

36

4.2 Medical Files Management

i f (await _context . A l l e r g i e s . AnyAsync (m => m. PersonalID == id && m.
UserID == user . Id))

22 {
Al l e rgy . Vers ion = HttpContext . Se s s i on . Get ("Al l e rgy . Vers ion ") ;

24 _context . A l l e r g i e s . Remove(Al l e rgy) ;
await _context . SaveChangesAsync () ;

26 HttpContext . Se s s i on . Remove("Al l e rgy . Vers ion ") ;
}

28

re turn RedirectToPage (" . / Index" , new { u r l }) ;
30 }

catch (DbUpdateConcurrencyException)
32 {

return RedirectToPage ($" . / Delete " , new { ur l , concurrencyError = true ,
id }) ;

34 }
}

Listing 4.26: POST handler to delete an allergy

As always, we first check if the user is authorized to access the page and then we check if an
𝑖𝑑 was provided. Like the GET handler we only need to call the 𝐺𝑒𝑡𝑈𝑠𝑒𝑟𝑂𝑓𝐹𝑖𝑙𝑒 function,
because we only need the user of this file. Next, we try to delete the allergy entry and to do
this we first need to retrieve the allergy entry from the database by the 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷 and the
𝐼𝑑 of the user. If we could find the allergy in the database, we retrieve the 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 information
from the session and pass this value to the allergy. Then we try to delete the allergy from the
database and save the changes. If everything works, we can remove the 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 information
from the session. Finally, we can redirect the user to the allergy index page. This is also done
when no allergy was found in the database. If we encounter a concurrency error while saving
the changes we redirect the user to the same delete page while forwarding the user URL, the
𝑖𝑑, and the 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦𝐸𝑟𝑟𝑜𝑟 set to true. Now the lines 22 to 29 in Listing 4.25 come into
effect. The user now sees the error message and the new values of the allergy entry. If the user
decides to delete the file nonetheless the user can press the delete button again.

The explanation for all the other pages is shorter since they are like the allergy pages. The
vaccination page is like the allergy page. Vaccinations also have an 𝐼𝐷, 𝑈𝑠𝑒𝑟𝐼𝐷, 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷,
𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛, and 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 field. These are used to store and retrieve the vaccination to and from
the database as well as handling concurrency errors. Furthermore they have a 𝑛𝑎𝑚𝑒, 𝑎𝑔𝑒𝑛𝑡,
a Boolean 𝑟𝑒𝑓𝑟𝑒𝑠ℎ field indicating if the vaccination must be refreshed, a 𝑅𝑒𝑓𝑟𝑒𝑠ℎ𝑈𝑛𝑡𝑖𝑙 date
when the vaccination must be refreshed, and four fields to identify the family doctor giving the
vaccine, which are 𝑛𝑎𝑚𝑒, 𝑠𝑡𝑟𝑒𝑒𝑡, 𝑐𝑖𝑡𝑦, and 𝑝𝑜𝑠𝑡𝑎𝑙𝑐𝑜𝑑𝑒. The edit and create pages check that
either both the refresh checkbox is checked and a 𝑅𝑒𝑓𝑟𝑒𝑠ℎ𝑈𝑛𝑡𝑖𝑙 date are provided or neither of
these two are selected. Otherwise the back end would return an error message, so that the user
can decide if the vaccination needs to be refreshed or not. When creating a new vaccination
entry, the fields for the family doctor are filled automatically with the values stored by the user.
On the index page the vaccinations are displayed on a paginated list and can either be sorted
by name or by the 𝑅𝑒𝑓𝑟𝑒𝑠ℎ𝑈𝑛𝑡𝑖𝑙 date. The user can also search the vaccinations for a specific
agent or vaccine name.

The ICD Code page only has an index and a details page. The index page shows all ICD
with the corresponding name in a paginated list. Both the codes and the names can be sorted

37

Chapter 4 Implementation

ascending and descending. When changing the sort order the old gets overridden. It is also
possible to search for a specific ICD Code either by the code itself or the name it encodes.

The next page are the abbreviations. These let the doctors store abbreviations for an ICD
Code so that they can use the abbreviation instead of the ICD Code when entering diseases.
For storing to and retrieving from the database we need an 𝐼𝐷, 𝑈𝑠𝑒𝑟𝐼𝐷, 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷, and
a 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 to check for concurrency errors. We also need two string fields 𝐴𝑏𝑏𝑟 and 𝐶𝑜𝑑𝑒 to
store the abbreviation with the corresponding ICD Code. On the index page a paginated list
is shown, where the doctor can sort the entries either by the code of the abbreviation. They
also, can search for entries by their code or name. When creating or editing an abbreviation
the doctor can choose the code from a drop-down list and after posting the new or edited entry
the system checks if the entered code is a valid ICD Code.

The next page is the report page, where health reports can be saved. Each report has an 𝐼𝐷,
𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷, 𝑈𝑠𝑒𝑟𝐼𝐷, and 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 as all the other files. Furthermore, a report has a 𝑇𝑖𝑡𝑙𝑒,
𝑆𝑢𝑏𝑗𝑒𝑐𝑡, 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝐷𝑜𝑐𝑡𝑜𝑟𝑁𝑎𝑚𝑒, 𝐷𝑎𝑡𝑒, and 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 attributes. The 𝐷𝑎𝑡𝑒
attribute is filled out automatically with the current date the user creates the report. The user
can also add and upload multiple files to the report. The code can be seen in Listing 4.27.

f o r each (var fo rmFi l e in Fi leUpload . FormFiles)
2 {

var formFileContent =
4 await F i l eHe lp e r s . ProcessFormFile<BufferedMult ip leFi leUploadDb >(

formFi le , ModelState , _permittedExtensions ,
6 _f i l e S i z eL im i t) ;

8 i f (! ModelState . I sVa l i d)
{

10 Result = "Please c o r r e c t the form . " ;
r e turn Page () ;

12 }

14 var f i l e = new MedicFi le ()
{

16 UserID = UserOfPage . Id ,
PersonalID = pe r s ona l I dF i l e s ,

18 ReportID = Report . PersonalID ,
Content = formFileContent ,

20 UntrustedName = formFi l e . FileName ,
Note = FileUpload . Note ,

22 S i z e = formFi l e . Length ,
UploadDT = DateTime .UtcNow

24 } ;

26 p e r s ona l I dF i l e s++;
_context . MedicFi l e s .Add(f i l e) ;

28 }

Listing 4.27: Upload files

If the user uploads one or more files we iterate over each of the files and process its content.
Should some inputs be invalid we return the page again so that the user can fix the errors. If
everything is correct we create a new file. We need the 𝑈𝑠𝑒𝑟𝐼𝐷, a 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷, 𝑅𝑒𝑝𝑜𝑟𝑡𝐼𝐷 to
link the file to the report it was uploaded to, 𝐶𝑜𝑛𝑡𝑒𝑛𝑡, 𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝑒𝑑𝑁𝑎𝑚𝑒, 𝑁𝑜𝑡𝑒, 𝑆𝑖𝑧𝑒, and the

38

4.2 Medical Files Management

upload date. The 𝐼𝐷 is created by the system. Some more details are discussed in the section
Security. Then we increment the personal id, which is used for the next file. Finally, we can
save the file and after all uploaded files are correctly saved, we can save the report itself. When
editing a report new files can be upload and the stored files can be downloaded or deleted. The
download handler can be seen in Listing 4.28.

pub l i c async Task<IAct ionResult> OnGetDownloadAsync (i n t ? id , s t r i n g u r l)
2 {

i f (id == nu l l)
4 {

return NotFound () ;
6 }

8 s t r i n g r e d i r e c t = Ut i l . U t i l . GetHandler (User , _userManager , "Reports " , ur l , "
doctor " , " oos ") ;

10 i f (r e d i r e c t != nu l l)
{

12 re turn RedirectToPage (r e d i r e c t) ;
}

14

Ut i l . U t i l . SetPageParameter (r ed i r e c t , ur l , _userManager , User , t h i s) ;
16

var r eque s t edF i l e = _context . MedicFi l e s . S ing l eOrDefau l t (x => x . PersonalID ==
id && x . UserID == UserOfPage . Id) ;

18

i f (r e que s t edF i l e == nu l l)
20 {

return Page () ;
22 }

24 var stream = new MemoryStream(r eque s t edF i l e . Content) ;

26 re turn F i l e (stream , MediaTypeNames . App l i ca t ion . Octet , WebUtil ity . HtmlEncode (
r eque s t edF i l e . UntrustedName)) ;

}

Listing 4.28: Download handler

In this handler we do the same things as in the other edit GET handler. We first check if the
forwarded 𝑖𝑑 is valid, then if the user is authorized to download the file and finally, we set the
page parameter. Thus, we can retrieve the file from the database and if we find a file, we can
open a stream and send the file to the user. The user can also delete the file. After pressing
the delete button the user gets redirected to a page where the user must confirm the deletion.
Both deleting and downloading a file can be done on the details and delete page of a report
too. When deleting a report all files affiliated to the report get deleted too, to leave no files
without a report. If this would not be done it could happen that a report that has the same
𝑃𝑒𝑟𝑠𝑜𝑛𝑙𝐼𝐷 as the deleted shows the files that were left in the database. To ensure that all files
are deleted after the report is deleted, we first delete all files before we remove the report from
the database. The reports can be sorted by the date and searched by the subject.

With this report page we give the medical staff access to medical reports as they wanted it
from the application by Pryss et. al. [PMLR15].

39

Chapter 4 Implementation

The next page is the diseases page. A disease has an 𝐼𝐷, 𝑈𝑠𝑒𝑟𝐼𝐷, 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷, and a 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛
attribute as all the other pages. Furthermore, it has a 𝐶𝑜𝑑𝑒 (the ICD Code), 𝑁𝑎𝑚𝑒, 𝑆𝑖𝑛𝑐𝑒𝐷𝑎𝑡𝑒,
𝑈𝑛𝑡𝑖𝑙𝐷𝑎𝑡𝑒, 𝐸𝑛𝑑𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ, 𝐸𝑛𝑑𝑒𝑑𝐴𝑡, 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝐼𝐷𝑅𝑒𝑝𝑜𝑟𝑡, 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝐵𝑦, 𝑅𝑒𝑙𝑎𝑝𝑠𝑒,
and 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 field. When creating or editing a disease the 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 can have the
values unknown, lifetime, and until date. If the user chooses the until date, then the 𝑈𝑛𝑡𝑖𝑙𝐷𝑎𝑡𝑒
field must have a value. In the other two cases the 𝑈𝑛𝑡𝑖𝑙𝐷𝑎𝑡𝑒 field must be empty. If this
disease is a relapse the doctor can check the 𝑅𝑒𝑙𝑎𝑝𝑠𝑒 checkbox to indicate this and saving time
writing this down. If something is inserted in the 𝐸𝑛𝑑𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ field the disease must have
a 𝐸𝑛𝑑𝑒𝑑𝐴𝑡 date and if only one of these fields has a value the back end returns an error to the
user. It is also possible that both fields are empty. The 𝐼𝐷𝑅𝑒𝑝𝑜𝑟𝑡 field is filled by a drop-down
list, which displays all reports from the user from newer to older. From this list the user has
to choose one report to link the disease with this report. A doctor can enter the name, an
abbreviation, or the ICD Code of the disease. They can choose from a 𝑑𝑎𝑡𝑎𝑙𝑖𝑠𝑡 for the codes
and the names. Both lists are sorted alphabetically, but the list for the names additionally
shows the abbreviations of the doctor at the top of the list. If the doctor enters a name from
the list and an ICD Code that do not match an error gets returned, but if the doctor enters a
name not from the list and a valid ICD Code, this name and code combination is stored as a
new abbreviation. After the user pressed the create button the POST handler gets called. The
beginning is the same as in every other page. We first check if the user is authorized and then
set the page parameters. The Listing 4.29 shows the new part which handles the ICD Code
and name.

i f (Di sease . Code != nu l l)
2 {

Disease . Code = Disease . Code . ToUpper () ;
4 }

6 Ut i l . U t i l . Va l ida teDi s ea se (Disease , ModelState , r epor t s , codes , names ,
abb r ev i a t i on s) ;

8 i f (! ModelState . I sVa l i d)
{

10 re turn Page () ;
}

12

MedicUser currentUser = Ut i l . U t i l . GetUserOfFi le (_userManager , nu l l , User) ;
14

i f (Di sease . Code == nu l l)
16 {

Disease .Name = Disease .Name . ToLower () ;
18 Disease . Code = Ut i l . U t i l . CheckIfNameHasACode (names , abbrev ia t i ons , Di sease .

Name) ;
Disease .Name = codes . Find (c => c . ICDCode == Disease . Code) .Name ;

20 }
e l s e

22 {
i f (Di sease .Name != nu l l && User . I s InRo l e (" doctor ") && currentUser .
MedicalPersonalConf irmed && ! names .Any(x => Disease .Name == x .Name) && !
abbr ev i a t i on s .Any(x => Disease .Name == x . Abbr))

24 {
IQueryable<Abbreviat ion> abbrev i a t i on s = from a in _context .

Abbrev iat ions

40

4.2 Medical Files Management

26 where a . UserID == currentUser .
Id

orderby a . PersonalID descending
28 s e l e c t a ;

30 i n t abbrev iat ionPersona l ID = abbrev i a t i on s . Count () == 0 ? 1 :
abb r ev i a t i on s . F i r s tOrDefau l t () . PersonalID + 1 ;

32 Abbreviat ion abbrev ia t i on = new Abbreviat ion
{

34 UserID = medicUser . Id ,
Abbr = Disease .Name,

36 Code = Disease . Code ,
PersonalID = abbrev iat ionPersona l ID

38 } ;

40 _context . Abbrev iat ions .Add(abbrev ia t i on) ;
}

42 Disease .Name = codes . Find (c => c . ICDCode == Disease . Code) .Name ;
}

Listing 4.29: Creating new disease entry

First, we check if a code was provided therewith, we can cast the code to an uppercase string.
We do this to make the code comparable in the 𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝐷𝑖𝑠𝑒𝑎𝑠𝑒 function. Otherwise the
user would get an error message if the code contained lowercase characters, since all the stored
ICD Codes only have uppercase characters. The 𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝐷𝑖𝑠𝑒𝑎𝑠𝑒 function also checks if the
user entered a valid name/abbreviation without a code, a valid code without a name, a valid
code and a valid name/abbreviation that encode the same disease, or a valid code with a
name not in the stored in the database as abbreviation or a name from the ICD Codes. If
the entered disease is valid we can continue and retrieve the user currently creating or editing
the disease. We then check if a code was provided and if this is not the case, we change
the name to all lowercase characters to make it comparable. At this point we can be sure
that the user entered a name, since we tested that with the 𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝐷𝑖𝑠𝑒𝑎𝑠𝑒 function in
line 6. The 𝐶ℎ𝑒𝑐𝑘𝐼𝑓𝑁𝑎𝑚𝑒𝐻𝑎𝑠𝐴𝐶𝑜𝑑𝑒 function in line 18 returns null if the there is no ICD
Code for the entered name and if there is an ICD Code the code gets returned. We can be
sure, that the 𝐶ℎ𝑒𝑐𝑘𝐼𝑓𝑁𝑎𝑚𝑒𝐻𝑎𝑠𝐴𝐶𝑜𝑑𝑒 function returns a valid code, because otherwise the
𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝐷𝑖𝑠𝑒𝑎𝑠𝑒 function would return an error and we would not reach line 18. Then we use
this code to set the name to the correct name of the ICD Code. If a code was provided, we
check if we must create a new abbreviation. We can only create a new abbreviation if the user
entered something in the name field, that is not already a valid name or an abbreviation of the
user. Furthermore, we must check if the user is a confirmed doctor and if all these requirements
are fulfilled we can create a new abbreviation and add it to the database. At the end we get the
correct name from the ICD Code and write it to the 𝑁𝑎𝑚𝑒 attribute. Afterwards we can add
the new disease in the database and save all changes. On the index page the user can sort and
search the entries by name and code like on the code page. The stored id value in 𝐼𝐷𝑅𝑒𝑝𝑜𝑟𝑡
is used to create a link to the report like in Listing 4.30.

@if (Model . MedicUrl == nu l l)
2 {

<a hr e f="/Reports / De t a i l s ? id=@Html . DisplayFor (modelItem => item . IDReport) ">
Report

41

Chapter 4 Implementation

4 }
e l s e

6 {
<a hr e f="/Reports / De t a i l s /@Model . MedicUrl ? id=@Html . DisplayFor (modelItem =>
item . IDReport) ">Report

8 }

Listing 4.30: Report link on the index page

We always set the 𝑀𝑒𝑑𝑖𝑐𝑈𝑟𝑙 to the forwarded user URL in the GET handler, therefore we can
first check if the user is working on other user’s files by checking if the 𝑀𝑒𝑑𝑖𝑐𝑈𝑟𝑙 has a value.
If the field has a value we must include it in the link, otherwise the user would call their own
report with an id that might not exist.

The last page is the medication page. A medication also has an 𝐼𝐷, 𝑈𝑠𝑒𝑟𝐼𝐷, 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐼𝐷,
and a 𝑉 𝑒𝑟𝑠𝑖𝑜𝑛 attribute. The remaining attributes are: 𝑁𝑎𝑚𝑒, 𝐴𝑔𝑒𝑛𝑡, 𝑃𝑍𝑁 , 𝑆𝑖𝑛𝑐𝑒𝐷𝑎𝑡𝑒,
𝑈𝑛𝑡𝑖𝑙𝐷𝑎𝑡𝑒, 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝐷𝑜𝑠𝑒, 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑆𝑦𝑠𝑡𝑒𝑚, 𝑀𝑜𝑟𝑛𝑖𝑛𝑔, 𝑁𝑜𝑜𝑛, 𝐸𝑣𝑒𝑛𝑖𝑛𝑔, 𝑁𝑖𝑔ℎ𝑡,
𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒, and 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛. The 𝑃𝑍𝑁 encodes both the name and the agent of the medica-
tion as well as some other values as we learned in the section about the PZN. It would therefore
be sufficient to only provide the PZN while creating a new medication entry, but since we found
no publicly available database for PZNs the user must enter a name, agent, and the PZN every
time. The 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 can have the values unknown, lifetime, and until date like on
the disease page when creating or editing a medication. Furthermore, the 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
and the 𝑈𝑛𝑡𝑖𝑙𝐷𝑎𝑡𝑒 must match the same way as on the disease page. This means an until date
must be selected if the "untilDate" option is selected. In the other cases no until date may be
selected. The 𝐷𝑜𝑠𝑒 is a string value, so that inputs like "10mg" or "10ml" are possible. The
𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑆𝑦𝑠𝑡𝑒𝑚 is by default filled with "oral" since it is the most common method. If the
user needs to enter something different they can choose from a drop-down list. The user can
select the options "normal", "slightly important", "important", "quite important", and "very
important" in the importance field. In the system these values are stored as numbers from 1
to 5, where 1 represents "normal". 𝑀𝑜𝑟𝑛𝑖𝑛𝑔, 𝑁𝑜𝑜𝑛, 𝐸𝑣𝑒𝑛𝑖𝑛𝑔, and 𝑁𝑖𝑔ℎ𝑡 represent the intake
pattern. On the index page all entries can be sorted by the agent and the since date. When
sorting by agent the medication entries are sorted descending by their importance after sorting
them by the agent, so that more important medication is always above less important medica-
tion. One unique feature of the medication page is the ability to copy an already existing entry.
When the user clicks the copy button the copy page gets called, which is basically an edit page,
where the 𝑁𝑎𝑚𝑒, 𝐴𝑔𝑒𝑛𝑡, 𝑃𝑍𝑁 , and 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 are emptied. After pressing the save button
the edited medication entry gets saved as a new one. Another unique feature is the QR Code
that encodes the medication to act like a medication plan. Currently the PZN, the until date,
and the intake pattern separated by a comma is encoded. If the until date is null or an entry for
an intake pattern is 0 an empty string is displayed instead of null or 0, respectively. We encode
all medication that have a since date in the past and with an until date that is either null or
in the present or future. The date is represented as "YYYYMMDD". We decided to use a QR
Code instead of a Data Matrix, which is currently widely used on medication plans, because
the QR Code allows us to store more information and space is not an issue. If no personal
information like the name should be encoded it is sufficient to only use numerical characters
to encode the medication plan. We know that the PZN is an eight-digit number, the date can
also represented as an eight-digit number in the pattern "YYYYMMDD" and each intake is
a number between 0 and 9. If no date is provided, we could use for example eight zeros to

42

4.3 Mobile

indicate that, without changing the length of the string. Therefore, we only need 20 digits to
encode a medication. This would us allow to encode over 300 medication with a QR Code with
the weakest error correction. The average patient does not need to take so much medication
and therefore, we can add personal information at the beginning of the encoded text. Even if
1 000 characters are used for the personal information, we could encode 42 medication with the
highest error correction [qrc], which should be enough. Compared to the current Data Matrix
encoding the medication plan our solution offers more information, since in the current solution
no until date is provided.

4.3 Mobile

A mobile application enables the hospital staff to access the patient’s files at the patient rather
than a stationary computer. This solution minimizes travel distances, since the staff can go
directly from patient to patient without needing to go to a stationary computer. Our application
provides this mobility. With an ordinary smartphone every staff member can quickly scan the
QR Code to obtain the patients files and because we are using the responsive design framework
Bootstrap for our website, the web pages are rendered in a small screen friendly way. For
example when the header row has not enough space all entries collapse into a burger menu to
avoid overflows or line breaks. As seen in the section about User Management we use a different
number of columns depending on the screen size. On smaller screens each input field gets the
full row, so that the presentation of the data is as clear as on larger screens. One problem the
Bootstrap framework could not solve were the index pages of the medical files. Most of the
index pages already display many information from each entry in a table, which needs space
that is not available on smaller screens, because the table cannot be wrapped to the next line
as input fields can be. We fixed this problem as shown in Listing 4.31.

<th c l a s s="d−sm−none d−lg−tab le−c e l l ">
2 @Html . DisplayNameFor (model => model . Medication [0] . Unti lDate)
</th>

4 <th c l a s s="d−lg−none">
ac t i v e

6 </th>

8 <td c l a s s="d−sm−none d−lg−tab le−c e l l ">
@Html . DisplayFor (modelItem => item . Unti lDate)

10 </td>
@if (item . Unti lDate . HasValue && item . Unti lDate < DateTime .Now)

12 {
<td c l a s s="d−lg−none">Yes</td>

14 }
e l s e

16 {
<td c l a s s="d−lg−none">No</td>

18 }
<td>

Listing 4.31: Mobile index medication page excerpt

The Listing shows an excerpt from the medication index page with only two values. The top
part shows the table header and the bottom part shows the corresponding data part. The

43

Chapter 4 Implementation

column for the 𝑈𝑛𝑡𝑖𝑙𝐷𝑎𝑡𝑒 is only displayed when the screen is larger and when the screen
is smaller it is not displayed to save space. In comparison the new 𝑎𝑐𝑡𝑖𝑣𝑒 column is hidden
on larger screens and only shown on smaller screens. This 𝑎𝑐𝑡𝑖𝑣𝑒 column replaces the three
columns 𝑈𝑛𝑡𝑖𝑙𝐷𝑎𝑡𝑒, 𝑆𝑖𝑛𝑐𝑒𝐷𝑎𝑡𝑒, and 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, which saves a great amount of space.
Some other columns are hidden without a replacement. Thus, we can shrink the width of the
table to a minimum, so that it does not overflow in the landscape mode of a smartphone. The
web page should therefore be used in landscape mode, since the table still overflows in the
portrait mode.

One drawback here is that the data always gets sent regardless of whether the user uses a desktop
computer or a smartphone. With an app solution this overhead of data can be omitted. An
app does not need the CSS and JavaScript files, which would save additional bandwidth. This
would benefit especially users on the go like paramedics. The app should feature a build-in
QR Code scanner to quickly open the patient’s files. Furthermore, it would be great if the user
could adjust where the app redirects the user to. For example, instead of showing the user
the emergency message every time the QR Code gets scanned the app shows an overview of
all medical files or goes directly to a specific file like diseases. Furthermore, the proposal of
Mersini et al. [MST13] can be used to extend the app with a database. This database could
store the files of the last patients a doctor looked up, so that if the connection to the central
database is lost the doctor can still work. It would also be possible to edit or create an entry
and later upload it to the central database when the connection is restored.

4.4 Security

Our application stores highly private information and these should be protected as effectively
as possible because a central database is a more lucrative target than multiple smaller de-
centralized databases. The Open Web Application Security Project [owa] (short: OWASP) is
a project dedicated to improve the security of software. OWASP issues the OWASP Top
Ten every year, which are the top 10 security risks for web application like our applica-
tion. We want to show some of these security risks and how we handled them in our ap-
plication. The first security risk are injections. The most common example are SQL in-
jections, where the attacker sends a manipulated value to the server and executed by the
SQL server. With this attack the attacker could download the whole database or manip-
ulate/delete entries. In our application we only use LINQ to access the database. LINQ
prevents a SQL injection by turning the user input into parameter values and therefore pre-
venting the malicious commands from running [ste]. Furthermore, the URL query parame-
ters are escaped. A call to /Allergies/Details?id=’or‘1’=’1 is transformed to /Allergies/De-
tails?id=%E2%80%99or%E2%80%981%E2%80%99=%E2%80%991. The GET handler shown
in Listing 4.32 expects an integer value and in this call 𝑖𝑑 would be 𝑛𝑢𝑙𝑙 and no database access
is executed.

pub l i c async Task<IAct ionResult> OnGetAsync (i n t ? id , s t r i n g u r l)
2 {

i f (id == nu l l)
4 {

return RedirectToPage ("/NotFound" , new { model = " a l l e r g y " , errorMessage
= "Please s e l e c t an a l l e r g y with an id . " }) ;

6 }

44

4.4 Security

}

Listing 4.32: GET handler allergy detail excerpt

The second security risk is a broken authentication, where the attacker gets control over an
account in the system. Accounts of doctors would be the main target of an attacker, because
these accounts have the most access. One way of getting the access to the accounts of users
are brute force attacks, where attacker tries many passwords and hoping one guess is correct.
Brute force attacks are prevented by the system by locking the account after 5 false password
attempts for 5 minutes, which is the standard setting from the .NET CORE. This system could
be abused to deny the service to a user, if the attacker knows the email address of the user.
The .NET CORE takes care of salting and hashing the passwords too. Furthermore, the user
can add a two-factor authentication and is enforced to use a strong password. This is done by
forcing the user to use at least one uppercase and one lowercase character as well as one digit,
one special character, and at least six characters. This is the default set by the .NET CORE.

Next is the broken access control risk, where an attacker can access files, they are not authorized
to do so. To prevent this, we only let user access files in the system if they are logged in, which
can be seen in Listing 4.33.

s e r v i c e s . AddRazorPages () . AddRazorPagesOptions (opt ions =>
2 {

opt ions . Conventions . Author izeFolder ("/Abbrev iat ions ") ;
4 opt ions . Conventions . Author izeFolder ("/ A l l e r g i e s ") ;

opt ions . Conventions . Author izeFolder ("/Codes") ;
6 opt ions . Conventions . Author izeFolder ("/Di s ea s e s ") ;

opt ions . Conventions . Author izeFolder ("/Medicat ions ") ;
8 opt ions . Conventions . Author izeFolder ("/Reports ") ;

opt ions . Conventions . Author izeFolder ("/Vacc inat ions ") ;
10 }) ;

Listing 4.33: Authorization for all folders

This enables us to log every access and attribute this to a user in the system. Furthermore we
always check if a user is authorized to see a file, when the user calls a page, and return the
appropriate page. This is done with the function 𝐺𝑒𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟 (Listing 4.8). Every handler first
calls the 𝐺𝑒𝑡𝐻𝑎𝑛𝑑𝑙𝑒𝑟 to determine if the user is authorized and if this is not the case, they get
redirected to their index page.

Cross-site scripting is another security risk. Here the attacker uploads malicious code to a
website and when a user visits this website the code gets executed in the browser of the user.
Razor automatically encodes all the output from variables [RAb] and escapes the information
when the variable is accessed by the "@" symbol in an HTML context. This prevents the
browser to interpret user inputs as scripts. The used method can be seen in Listing 4.34 from
the details page of the allergy page.

@Html . DisplayFor (model => model . A l l e rgy . Desc r ip t i on)

Listing 4.34: Razor encoding example

The last security risk we want to discuss is insufficient logging and monitoring, to quickly
detect suspicious changes on the website. Currently only account creations are logged, which
is inadequate for the data we want to store. The application should log every access to files

45

Chapter 4 Implementation

to find suspicious behavior early, which lets us act earlier and may prevent damage to the
system. Furthermore, a blockchain solution as discussed in Countrywide solution should be
implemented to make tampering the log nearly impossible.

Currently all the files uploaded to the system are only scanned for their file ending. In the
release version the files should be scanned by an anti-virus or anti-malware API to protect the
users downloading these files from malware.

4.5 Privacy

Another aspect besides security is privacy. In our application every user can see their own files,
user with an obligation of secrecy can view the files of other users, and doctors can view, edit,
delete, and create new files of other users. As mentioned in the previous section we always
check just after the page is called in the HTML handlers if the user is authorized to do the
action they want to do. This ensures that only persons which are authorized can see the files of
another user. Depending on the role of the user different pages are delivered. For example, if an
user with the 𝑜𝑜𝑠 role calls another user’s files the application returns the index pages without
the edit, create, and delete button. Nonetheless we still must check if the user is authorized to
prevent an attacker from accessing the files, by directly calling the HTML handler.

The biggest issue here is how we can ensure that the user is eligible to the role they chose in the
registration process. This is the reason we added the 𝑚𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 field and
set it to false in the registration process. To solve this problem, we need another role called
𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑟. The users with these roles would be able to set the 𝑚𝑒𝑑𝑖𝑐𝑎𝑙𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑
of other users to true. This could be done in two possible ways. The first one would be a
video identification where the user must present the verifier documents that can prove the user
is eligible for the claimed role. This procedure would be like the video identification when
applying for a new bank account or mobile phone contract. Another possible solution could
be a verifier in the hospital. This would be a selected group of people which would act similar
to the personnel in a post office. The administrators of the system then must verify the users
with the 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑟 role. The first solution can easily be outsourced and would save the hospitals
time and money.

As we have seen we created a unique user URL in the registration process in Listing 4.4. The
code to generate the random string can be seen in Listing 4.35. After creating the GUID we
must replace the "/" and "+" characters. The "/" must be replaces otherwise it would be
interpreted as a part of the path of a user URL and the "+" must be replaced else it would be
interpreted as a space and the user URL could not be interpreted correctly. The string created
by the GUID structure always ends with two "=", therefore we remove these characters, since
they do not increase the number of different user URLs. Altogether the 𝐺𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑡𝑟𝑖𝑛𝑔
function returns a string with 22 characters. With all upper and lower-case characters, all ten
digits, and the two special characters "-" and "_" we get (26 + 26 + 10 + 2)22 = 5.44 · 1039
different user URLs. Even if all the roughly 8 billion people currently on earth would have
an account on this application the chance that a new user URL would collide with one of the
others is extremely small with a probability of just 1.46 · 10−30. But it still could happen
and therefore, we check if the new generated user URL is already in our system with the
𝐺𝑒𝑡𝑈𝑛𝑖𝑞𝑢𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑈𝑠𝑒𝑟𝑈𝑟𝑙 function. An attacker could always guess all user URLs just by

46

4.5 Privacy

try and error. To slow the attacker, we could count the accesses from an IP address and block
the address when the accesses exceed a threshold in a certain amount of time. If the attacker
knows this mechanism the attacker could still use a botnet to test all possible user URLs. This
would result in higher costs for our server since the server must store all the blocked IP addresses
and could result in users not be able to access the service, because they were unwittingly part
of the botnet. The costs outweigh the possible privacy benefits and because of that we do
not want to implement such a feature. Nonetheless it is still like searching for the needle in a
haystack, since the number of possible user URLs is so huge. An easy method to make this
more difficult we deliver for every possible user URL, the same empty page except if the user
explicitly entered a public emergency message. This is the only indicator that a user URL is
used by a person. We do not expect that every user uses this feature and therefore some empty
pages belong to real users. Then again if the attacker could get access to an account, which can
read the private notices, the attacker could probably find more valid user URLs, since the user
is more likely to enter some private note that can only be seen by authorized personal rather
than the public note, which can be read by everybody. Furthermore, we plan to implement
that the user can change the user URL and therefore the QR Code every time. This would be
helpful in case the user lost their QR Code and want to prevent that anybody not authorized
could read their data.

pub l i c s t a t i c s t r i n g GetRandomString ()
2 {

Guid guid = Guid . NewGuid () ;
4 re turn Convert . ToBase64String (guid . ToByteArray ()) . Replace ("/" , "−") .

Replace ("+" , "_") . Replace ("=" , "") ;
}

Listing 4.35: Create a random string

An additional feature could be to limit the accesses of users with roles that can see other users
files. This would it make harder for an attacker with access to an account that can read other
user’s files to guess user URLs. It would slow down an attacker making it easier to detect them
and react with counter measurements.

Beierle et. al. [BTA+20] developed a privacy model for mobile data applications to protect
the user’s privacy as much as possible. They developed an android app to collect "smartphone
sensor and usage data as well as applies standardized psychological questionnaires to the user."
for their survey about personality traits and what permissions the user give the application.
With their app they also tested their privacy model which consists of nine measures. One
measure is asking the user for consent and explaining what data is collected and how the
data is used. This is typically done by agreeing to a privacy policy, which is missing in our
application and should be added. But they also found that the users in average only spend
10 seconds "reading" the privacy policy. The second measure is to let the users view their
own data which is collected by the system. This is already implemented in our system since
everybody can see all files assigned to their profile. If a doctor creates a new entry for the
user, the user can see the entry. The next measure is an opt-out option for the user from
the application. In our application the user can easily delete their account. When deleting
the account all files stored for the user are also deleted which leaves no personal information
about the user in our database. Another measure is the utilization of the permission system of
the smartphone operating system. The only permission a smartphone app implementing our

47

Chapter 4 Implementation

solution would need is access to the camera to scan the QR Code of a patient. The last of
their proposed measures that can be implemented in our system is secured transfer of data.
Our current application uses HTTP/2 and TLS, therefore the traffic between the client and
server is encrypted and the highly private information of users are protected in transfer. In a
smartphone app the traffic should also be encrypted. The remaining three measures can not be
implemented in a smartphone app or in our current application because they would make our
application unusable. One of these three measures are random identifiers which should prevent
linking the data with personal details. But linking the entries of a user to the user’s personal
details is exactly what we must do. Otherwise the medical personal could never find the patients
files in the system. The second measure we cannot implement is data anonymization, where the
compiled data is anonymized and then send to the server. This cannot be done for the same
reason as the previous measure. The last of these measures is the ability to identify individual
users without linking their collected data. Since in our application the user is linked with their
data this measure cannot be implemented too.

One way to increase the trust in the software would be to make it open source. Then everybody
could see what the application does and what not with the data stored. Furthermore privacy
and security experts could check the software to find vulnerabilities, which otherwise would not
be found and could be exploited by an attacker. As a result, the application would become
more secure and private.

48

5
Look and feel

Following the implementation, we now want to look how the website is presented to the user.

Figure 5.1 shows the index page if the user is not logged in.

The log in page is shown in figure 5.2. Besides the email and password fields the user can
choose that the browser remembers the log in so that the user does not have to log back in
when visiting the page again. In case the user forgot their password, they can reset it here to
as well as resending their email confirmation since a confirmed email is required to log in. If
the user does not have an account yet and want to register themselves, they get redirected to
the register page shown in figure 5.3 and figure 5.4.

After the user logged in the index pages looks like figure 5.5.

In case the user is logged in as a doctor they can see the toolbar shown in figure 5.6a. Otherwise
they see the toolbar shown in figure 5.6b.

Only doctors can access the abbreviation page shown in figure 5.7. The figure shows the
paginated list of abbreviation entries of the doctor with the ability to search for abbreviations
or ICD Codes and sort for either the abbreviation or the code.

Figure 5.8 shows the allergy index page when called by the patient in figure 5.8a and by the
doctor in figure 5.8b. Both parts show the color and shape coding for the severity of the reaction
to an allergy.

Figure 5.9 shows all the CRUD operation pages for allergies. The create page shows a drop-
down list with the three possible reactions as well as the what you see is what you get editor
used in our application. The edit page shows the abilities to format text with this editor and
both the details and the delete page show how this is displayed.

The figure 5.10 shows both datalists for diseases. Figure 5.10a a shows the list for the ICD
Codes. By including both the name of the disease and the ICD Code the user can search for
the right code by entering the code or the name. Figure 5.10b shows the list for the names
and the abbreviations. Both the abbreviations and the names are sorted alphabetically. The
abbreviations are displayed before the names.

Figure 5.11 shows the index page for medication with the QR Code encoding all current med-
ication.

Figure 5.12 shows the same index page for smaller screens which displays far less information
to prevent overflowing. The figure also shows that the toolbar collapsed to a burger menu to
save space.

49

Chapter 5 Look and feel

Figure 5.1: Welcome screen

50

Figure 5.2: Log in screen

51

Chapter 5 Look and feel

Figure 5.3: Top of the register page

52

Figure 5.4: Bottom of the register page

Figure 5.5: Welcome screen when logged in

(a) Toolbar for normal user

(b) Toolbar for doctors

Figure 5.6: The toolbar for different roles

53

Chapter 5 Look and feel

Figure 5.7: Abbreviations page for doctors

Figure 5.13 shows the edit page for medication on a large screen. Here the fields have enough
space that four of them can fit in one row.

Figure 5.14 shows the same edit page but for smaller screens. Here every field has their own
row to increase usability on smaller screens.

54

(a) Allergy index page

(b) Allergy index page of a patient viewed by a doctor

Figure 5.8: Allergy index pages

55

Chapter 5 Look and feel

(a) Allergy create page

(b) Allergy edit page

(c) Allergy details page

(d) Allergy delete page

Figure 5.9: All allergy CRUD pages

56

(a) Datalist for the ICD Codes

(b) Datalist for abbreviations and disease names

Figure 5.10: Datalists for diseases

Figure 5.11: Medication index page

57

Chapter 5 Look and feel

Figure 5.12: Medication index page for smaller screens

Figure 5.13: Medication edit page for computer screens

58

Figure 5.14: Medication edit page for smaller screens

59

Chapter 5 Look and feel

60

6
Use Case

In this chapter we want to discuss two different use cases of our application and evaluate
changes that could improve the application. All cases require that the persons involved use the
application.

The first use case is an emergency. The injured person could carry their QR Code on a bracelet,
as a wallpaper on their mobile phone, or printed on a card. After the first responder arrived
at the injured person and calling for help, the first responder can search for the QR Code and
scan it. After scanning the code, the website opens and shows the emergency message of the
injured person, if the person entered something. In case the injured person entered something
the first responder can use the information provided to take better care of the injured. After the
paramedics arrived, they also scan the QR Code of the injured person, now patient. They also
view the emergency message the first responder has seen and the private emergency message.
This provides the paramedics more and more detailed information about the patient. Then
the paramedics can go to the allergy tab to check if the patient has some allergies that could
interfere the treatment. Furthermore, the paramedic could check the patients reports tab to see
if the patient had an operation, which could be one for the emergency. In the medication tab
they can check for medication the patient is taking or did take recently. With this information
the paramedics can avoid giving drugs that would result in a negative interdependencies with
the medication taken by the patient. The paramedics can also check the disease tab to find
diseases the patient might have. The patient could have haemophilia, a disease that prevents
the body of a person to make blood clots to stop bleeding. With this information the paramedics
could quickly tend the patients bleeding wounds to prevent worse. The more information the
paramedics have, the better they can tend the patient. If the patient needs to be transported
to the hospital, the hospital staff there can scan the QR Code again to view the full medical
history of the patient. The doctor treating the patient can easily access all files of the patient
and can add new entries to the patient’s files. Therefore, the next doctor can see this entry in
the patient’s files.

The second use case is a patient which has to see a different doctor, because they are referred
to a specialized doctor by their family doctor, moved to a different city, or had to go to the
emergency room. With our application the patient must not remember all their diseases,
medications, or accidents. They can show the doctor their QR Code, which the doctor scans to
access all files of the patient. In this case the patient cannot forget to mention a disease they
have, a medication they take, or reports from doctors. Furthermore, the doctor can decide what
is important for them to know about the patient. In case the patient was referred by another
doctor the current doctor can see what the last doctor did and therefore not do it again. This
saves the doctor time and resources.

61

Chapter 6 Use Case

While testing the application we ran into some inconveniences that should be fixed before
the software is released. The first problem are the emergency messages. For paramedics, the
emergency page should display way more information, so that the paramedic does not have
to cycle through all files to search for important files. Therefore, the emergency page should
display allergies, current medication, and important diseases on top of the page. This can then
be followed by the private and the public notice. Furthermore, every time the emergency page
gets loaded a unique random id should be generated. This id could then be provided by the first
responder to the person in the emergency call center. With this id the call center agent could
look up the person having an accident and send the user URL to the paramedic team. This
enables the paramedic team to access the patient’s files before they arrive at the patient. It
would work like the e-Ambulance system in Estonia discussed in the section about Countrywide
solution. In addition, the user should decide which page opens when they scan the QR Code
with the user URL. Therewith a doctor who is more interested in the reports does not see the
emergency page every time they scan a new code. To increase the usability more languages
should be supported. On the create page for vaccination the system should not fill out the fields
for the doctor with the patient’s family doctor credentials. The user could get the vaccine by a
doctor which is not the user’s family doctor. For this case it would be better if the system takes
the information from the doctor entering a new vaccine. But before we can do this, we must add
the possibility for a doctor to add this information to their profile. In the reports the subject
should be renamed to organ, to allow better sorting and filtering for doctors. A cardiologist for
example is mostly interested in reports regarding the heart. To make accessing the files of a
patient easier the system should store the last accessed patients of a doctor. Hence the doctor
must not scan the QR Code of the patient every time they want to access the files. This could
be provided in the future with the missing logging feature. To create more transparency for the
user a list with all the persons who accessed the user’s files should be provided. Furthermore,
on all edit pages should be a timer indicating how much time is left before the session ends and
the changes must be saved. To make the creating of the abbreviations easier for doctors there
should be a preset with common diseases often used by the doctor of a medical specialty. This
could either integrated in the registration process or the authorization process. We should also
implement text templates for easier and faster creation or editing a file, like in the solution by
Pryss et. al. [PMLR15]. The last feature that should be reconsidered are the roles and their
authorization. A user should not be able to edit or delete their own files that were created by
a doctor, which would sophisticate the patients medical history. It could be possible to append
information to an entry, to provide additional information like a medical journal. Furthermore
nurses and paramedics should get the authorization to add health parameters to the patient’s
files like in the proposed application by Mersini et al. [MST13].

62

7
Conclusion

With these improvements our application can solve the problems introduced in the Introduction.
Our application provides an easy and fast access to a patient’s medical files for the entire hospital
staff. Because we use QR Codes to access these files every staff member can access these files
conveniently with their smartphone. Furthermore, all files are digital, therefore misreading
because of bad handwriting is a thing of the past. But in software solution, like ours, typing
errors and transposed digits could be entered. While the former is rather uncritical the latter
mistake can have serious consequences for instance with the medication dosage. With easing
the administrative tasks doctors and the medical staff must do the personnel saves time. The
saved time can be used for tending patients and / or to reduce the extra hours many currently
must do. Furthermore, the personnel expenses of the hospital and therefore for the healthcare
system can be lowered or stopped from rising. As Pryss et. al. [PMLR15] have shown medical
staff wants to use such an application if and only if the application is easier and faster to use
than the current paper-based system. With our application patients can view their files every
time they want, making the healthcare system more transparent for patients. For patients it
would be easier to change doctor too, either because of moving or by referral to a specialized
doctor. To complete the application the e-Prescription from Estonia could be integrated as
well. Gaining the trust of the users is crucial as we have seen with the corona tracing app of
the RKI. If users trust the system and see the added value, they will use the application. If
nobody wants to use the application, because of privacy concerns, the benefits of the proposed
application would be minimally. Therefore, the application should be open source.

63

Chapter 7 Conclusion

64

Bibliography

[Alb12] Richard Albrecht. DataMatrix - Mein Produkt bekommt eine Identität. Unglaube
Identech, 2012. accessed 2020-05-31.

[alt] Altersaufbau der Bevölkerung Deutschlands. https://www.destatis.de/DE/

Service/Statistik-Visualisiert/bevoelkerungspyramide-d.html. accessed
2020-05-16.

[Ano18] Anonymous. Communication on enabling the digital transformation of
health and care in the Digital Single Market; empowering citizens and
building a healthier society. https://ec.europa.eu/digital-single-

market/en/news/communication-enabling-digital-transformation-health-

and-care-digital-single-market-empowering, April 2018. accessed 2020-05-
28.

[arb] Ein Drittel der Ärztinnen und Ärzte arbeitete 2018 mehr als 48 Stunden pro
Woche. https://www.destatis.de/DE/Presse/Pressemitteilungen/2020/04/

PD20_N019_231.html. accessed 2020-05-17.

[bre] Machen Sie jetzt Ihre Breitbandmessung! https://breitbandmessung.de/. ac-
cessed 2020-05-23.

[BTA+20] Felix Beierle, Vinh Thuy Tran, Mathias Allemand, Patrick Neff, Winfried Schlee,
Thomas Probst, Johannes Zimmermann, and Rüdiger Pryss. What data are smart-
phone users willing to share with researchers? Journal of Ambient Intelligence and
Humanized Computing, 11(6):2277–2289, June 2020.

[cova] Information about Coronavirus disease COVID-19 | Government installation pro-
file. https://www.terviseamet.ee/en/covid19. accessed 2020-05-21.

[covb] RKI - Coronavirus SARS-CoV-2 - COVID-19: Fallzahlen in Deutsch-
land und weltweit. https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_

Coronavirus/Fallzahlen.html. 2020-05-21.

[e-e] Healthcare. https://e-estonia.com/solutions/healthcare/. accessed 2020-
07-13.

[EG14] Rainer Erices and Antje Gumz. Ddr-gesundheitswesen: Die versorgungslage war
überaus kritisch. Deutsches Ärzteblatt, 111:A–348 / B, 03 2014.

[fre] Freie Arztwahl. https://www.bundesgesundheitsministerium.de/themen/

krankenversicherung/grundprinzipien/freie-arztwahl.html. accessed 2020-
05-27.

[FWL+06] X. Fang, F. Wu, B. Luo, H. Zhao, and P. Wang. Automatic recognition of
noisy code-39 barcode. In 16th International Conference on Artificial Reality and
Telexistence–Workshops (ICAT’06), pages 79–82, 2006.

[Hur91] J. W. Hurst. Reform of health care in Germany. Health Care Financing Review,
12(3):73–86, 1991.

65

https://www.destatis.de/DE/Service/Statistik-Visualisiert/bevoelkerungspyramide-d.html
https://www.destatis.de/DE/Service/Statistik-Visualisiert/bevoelkerungspyramide-d.html
https://ec.europa.eu/digital-single-market/en/news/communication-enabling-digital-transformation-health-and-care-digital-single-market-empowering
https://ec.europa.eu/digital-single-market/en/news/communication-enabling-digital-transformation-health-and-care-digital-single-market-empowering
https://ec.europa.eu/digital-single-market/en/news/communication-enabling-digital-transformation-health-and-care-digital-single-market-empowering
https://www.destatis.de/DE/Presse/Pressemitteilungen/2020/04/PD20_N019_231.html
https://www.destatis.de/DE/Presse/Pressemitteilungen/2020/04/PD20_N019_231.html
https://breitbandmessung.de/
https://www.terviseamet.ee/en/covid19
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html
https://e-estonia.com/solutions/healthcare/
https://www.bundesgesundheitsministerium.de/themen/krankenversicherung/grundprinzipien/freie-arztwahl.html
https://www.bundesgesundheitsministerium.de/themen/krankenversicherung/grundprinzipien/freie-arztwahl.html

Bibliography

[icda] ICD-10-GM. https://www.dimdi.de/dynamic/de/klassifikationen/icd/icd-
10-gm/. accessed 2020-05-29.

[icdb] ILCD bis ICD-10. https://www.dimdi.de/dynamic/de/klassifikationen/icd/
icd-10-who/historie/ilcd-bis-icd-10/. accessed 2020-05-29.

[ifa] IFA GmbH, Informationsstelle für Arzneispezialitäten. https://www.ifaffm.de/
de/ifa-codingsystem.html. accessed 2020-05-29.

[kos] Kostennachweis der Krankenhäuser - Fachserie 12 Reihe 6.3 -
2017. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/

Gesundheit/Krankenhaeuser/Publikationen/Downloads-Krankenhaeuser/

kostennachweis-krankenhaeuser-2120630177004.html. accessed 2020-05-17.

[kra] Krankenhäuser. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/

Gesundheit/Krankenhaeuser/_inhalt.html. accessed 2020-05-17.

[LL13] Daw-Tung Lin and Chin-Lin Lin. Automatic location for multi-symbology
and multiple 1d and 2d barcodes. Journal of Marine Science and Technology,
21(6):663–668, 2013.

[mera] Mercedes-Benz Unfall- & Pannenhilfe. https://www.mercedes-benz.de/

passengercars/service-finance/roadside-and-accident-assistance.html.
accessed 2020-05-23.

[merb] The rescue sticker from Mercedes-Benz. https://www.mercedes-benz.com/

en/vehicles/service-parts/the-rescue-sticker-from-mercedes-benz/. ac-
cessed 2020-05-23.

[MMB02] Elias Mossialos, Martin McKee, and Rita Baeten, editors. The impact of EU law
on health care systems. Number no. 39 in Work & society. P.I.E.-Peter Lang,
Bruxelles ; New York, 2002.

[MST13] P. Mersini, E. Sakkopoulos, and A. Tsakalidis. Appification of hospital healthcare
and data management using qrcodes. In IISA 2013, pages 1–6, 2013.

[ope] Operationen und Prozeduren der vollstationären Patientinnen und Patien-
ten in Krankenhäusern (4-Steller) - 2018. https://www.destatis.de/DE/

Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Publikationen/

Downloads-Krankenhaeuser/operationen-prozeduren-5231401187014.html.
accessed 2020-05-16.

[owa] OWASP Top Ten Web Application Security Risks | OWASP. https://owasp.

org/www-project-top-ten/. accessed 2020-06-20.

[pat] Einrichtungen, Betten und Patientenbewegung. https://www.destatis.de/

DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/gd-

krankenhaeuser-jahre.html. accessed 2020-05-16.

[per] Ärztliches und nichtärztliches Personal in Krankenhäusern. https://www.

destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/

Tabellen/personal-krankenhaeuser-jahre.html. accessed 2020-05-16.

[PL16] Kaja Polluste and Margus Lember. Primary health care in estonia. Family
Medicine & Primary Care Review, (1):74–77, 2016.

66

https://www.dimdi.de/dynamic/de/klassifikationen/icd/icd-10-gm/
https://www.dimdi.de/dynamic/de/klassifikationen/icd/icd-10-gm/
https://www.dimdi.de/dynamic/de/klassifikationen/icd/icd-10-who/historie/ilcd-bis-icd-10/
https://www.dimdi.de/dynamic/de/klassifikationen/icd/icd-10-who/historie/ilcd-bis-icd-10/
https://www.ifaffm.de/de/ifa-codingsystem.html
https://www.ifaffm.de/de/ifa-codingsystem.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Publikationen/Downloads-Krankenhaeuser/kostennachweis-krankenhaeuser-2120630177004.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Publikationen/Downloads-Krankenhaeuser/kostennachweis-krankenhaeuser-2120630177004.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Publikationen/Downloads-Krankenhaeuser/kostennachweis-krankenhaeuser-2120630177004.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/_inhalt.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/_inhalt.html
https://www.mercedes-benz.de/passengercars/service-finance/roadside-and-accident-assistance.html
https://www.mercedes-benz.de/passengercars/service-finance/roadside-and-accident-assistance.html
https://www.mercedes-benz.com/en/vehicles/service-parts/the-rescue-sticker-from-mercedes-benz/
https://www.mercedes-benz.com/en/vehicles/service-parts/the-rescue-sticker-from-mercedes-benz/
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Publikationen/Downloads-Krankenhaeuser/operationen-prozeduren-5231401187014.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Publikationen/Downloads-Krankenhaeuser/operationen-prozeduren-5231401187014.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Publikationen/Downloads-Krankenhaeuser/operationen-prozeduren-5231401187014.html
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/gd-krankenhaeuser-jahre.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/gd-krankenhaeuser-jahre.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/gd-krankenhaeuser-jahre.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/personal-krankenhaeuser-jahre.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/personal-krankenhaeuser-jahre.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/Tabellen/personal-krankenhaeuser-jahre.html

Bibliography

[PMLR15] Rüdiger Pryss, Nicolas Mundbrod, David Langer, and Manfred Reichert. Sup-
porting medical ward rounds through mobile task and process management. In-
formation Systems and e-Business Management, 13(1):107–146, February 2015.

[popa] Bevölkerungsstand. https://www.destatis.de/DE/Themen/Gesellschaft-

Umwelt/Bevoelkerung/Bevoelkerungsstand/Tabellen/zensus-geschlecht-

staatsangehoerigkeit-2019.html. accessed 2020-05-21.

[popb] Population at beginning of year - Statistics Estonia. https://www.stat.ee/stat-
population-at-beginning-of-year. accessed 2020-05-21.

[qrc] QRcode.com|DENSO WAVE. https://www.qrcode.com/en/. accessed 2020-05-
31.

[RAa] Rick-Anderson. Part 3, Razor Pages with EF Core in ASP.NET Core - Sort, Filter,
Paging. https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/sort-
filter-page. accessed 2020-07-13.

[RAb] Rick-Anderson. Prevent Cross-Site Scripting (XSS) in ASP.NET Core.
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-

scripting. accessed 2020-06-20.

[SFMA+13] Ramon Sabes-Figuera, Ioannis Maghiros, Fabienne Abadie, Europäische Kommis-
sion, and Gemeinsame Forschungsstelle. European hospital survey. Publ. Off.
of the Europ. Union, Luxembourg, 2013. OCLC: 931535822, accessed 2020-05-23.

[sos] SOS App | Get Help and Be Safe | Emergency App. http://www.sos-qr.com/.
accessed 2020-05-23.

[ste] stevestein. Frequently Asked Questions - ADO.NET. https://docs.microsoft.
com/en-us/dotnet/framework/data/adonet/sql/linq/frequently-asked-

questions. accessed 2020-06-20.

[tin] The Most AdvancedWYSIWYGHTML Editor | Trusted Rich Text Editor. https:
//www.tiny.cloud/. accessed 2020-07-13.

[whoa] WHO | International Classification of Diseases, 11th Revision (ICD-11). http://
www.who.int/classifications/icd/en/. Publisher: World Health Organization,
accessed 2020-05-29.

[whob] WHO | International Classification of Diseases (ICD) Revision. http://www.who.
int/classifications/icd/revision/icd11faq/en/. Publisher: World Health
Organization, accessed 2020-05-29.

67

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/Tabellen/zensus-geschlecht-staatsangehoerigkeit-2019.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/Tabellen/zensus-geschlecht-staatsangehoerigkeit-2019.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/Tabellen/zensus-geschlecht-staatsangehoerigkeit-2019.html
https://www.stat.ee/stat-population-at-beginning-of-year
https://www.stat.ee/stat-population-at-beginning-of-year
https://www.qrcode.com/en/
https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/sort-filter-page
https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/sort-filter-page
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
http://www.sos-qr.com/
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/frequently-asked-questions
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/frequently-asked-questions
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/frequently-asked-questions
https://www.tiny.cloud/
https://www.tiny.cloud/
http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/revision/icd11faq/en/
http://www.who.int/classifications/icd/revision/icd11faq/en/

	Introduction
	Related Work
	Corporate sector
	Hospital solution
	Countrywide solution

	Background Information
	ICD Codes
	PZN
	Code 39
	Data Matrix
	QR Codes

	Implementation
	User Management
	Medical Files Management
	Mobile
	Security
	Privacy

	Look and feel
	Use Case
	Conclusion

