Context-Aware Querying and Injection of Process
Fragments in Process-Aware Information Systems

Klaus Kammerer
Institute of Databases and
Information Systems
Ulm University, Germany
klaus.kammerer @uni-ulm.de

Abstract—Cyber-physical systems (CPS) are often customized
to meet customer needs and, hence, exhibit a large number
of hard-/software configuration variants. Consequently, the pro-
cesses deployed on a CPS need to be configured to the respective
CPS variant. This includes both configuration at design time
(i.e., before deploying the implemented processes on the CPS)
and runtime configuration taking the current context of the
CPS into account. Such runtime process configuration is by far
not trivial, e.g., alternative process fragments may have to be
selected at certain points during process execution of which one
fragment is then dynamically applied to the process at hand.
Contemporary approaches focus on the design time configuration
of processes, while neglecting runtime configuration to cope with
process variability. In this paper, a generic approach enabling
context-aware process configuration at runtime is presented.
With the Process Query Language process fragments can be
flexibly selected from a process repository, and then be dynam-
ically injected into running process instances depending on the
respective contextual situations. The latter can be automatically
derived from context factors, e.g., sensor data or configuration
parameters of the given CPS. Altogether, the presented approach
allows for a flexible configuration and late composition of process
instances at runtime, as required in many application domains
and scenarios.

Index Terms—context-awareness, process injection, dynamic
process change

I. INTRODUCTION

In Industry 4.0 and mass customization scenarios, the
management of cyber-physical processes is a mainstay for
successful companies [1]. The involved processes are exposed
to a multitude of external and internal factors, which vary
from scenario to scenario [2]. One prerequisite to cope with
this variability is the flexible support of process variants. The
latter are managed by either integrating all possible variants
into one model (i.e. single-model approach) or by storing
each process variant in a dedicated process model (i.e. multi-
model approach) [3]. Moreover, process variants need to be
managed throughout the process lifecycle by a process-aware
information system. For example, if the state of a cyber-
physical system (e.g., a production machine) changes due to
an exceptional situation [4], running process instances have to
be adapted accordingly. In general, such behavioral changes,
which often cannot be foreseen at the start of a process
instance, can be categorized into ad-hoc changes, which occur
unexpectedly and pose the peculiarity that the affected process

Riidiger Pryss
Institute of Clinical Epidemiology
and Biometry
University of Wiirzburg, Germany
ruediger.pryss @uni-wuerzburg.de

Manfred Reichert
Institute of Databases and
Information Systems
Ulm University, Germany
manfred.reichert @uni-ulm.de

parts are not known in advance, and late modeling which is
predictable to a certain degree (i.e., the region concerned by
the structural change is known, but it is not known whether
further changes become necessary) [5]. As example consider
a production machine line, for which maintenance processes
are defined based on standard operating procedures (SOPs)
and maintenance instructions. Due to the current status of
a particular machine, however, the required tasks and their
sequence, i.e., the process steps to be performed by a service
technician, cannot be defined in advance for all potential
scenarios, i.e., further changes might become necessary.

To provide support in such scenarios, the context-aware
process injection approach (CaPI), which we introduced in
[6], is enhanced to enable dynamic process configurations
and changes as well. CaPI manages the injection of process
fragments into running processes based on a set of rules [6].
Note that such approach is pursued by related works as well
[7-9]. However, in large-scale scenarios as faced by CPS, a
rule-based approach for selecting the process fragments to be
injected is often not feasible. In this paper, we enhance CaPI
with the declarative process query language PQL [10]. It is
shown that PQL enables the selection of process fragments
from a process repository, followed by their injection into a
running process. This allows for dynamic process extensions
in changing situations in particular, and offers a powerful way
to model and manage process variants in dynamic environ-
ments in general. Based on a sophisticated proof-of-concept
prototype, the feasibility of the approach is demonstrated
and performance measurements are provided. Experimental
results show that the retrieval of process fragments with PQL
can be efficiently accomplished, even if a large number of
PQL queries are executed. Although the approach is inspired
by Industry 4.0 scenarios and cyber-physical processes [11],
it may be applied to handle process variants in dynamic
environments in general.

Sect. II introduces PQL fundamentals, while Sect. III in-
troduces the Context-aware Process Execution (CaPE) frame-
work for modeling and executing cyber-physical processes. In
Sect. IV, the concepts for context-specific process adaptations
as well as dynamic selections of process fragments based on
PQL are described. Sect. V presents experimental results and
Sect. VI discusses related work. Finally, Sect. VII provides a

summary and an outlook on future work.

II. PROCESS QUERYING WITH THE PQL LANGUAGE

The Process Query Language (PQL) is a query language
that allows describing process model properties, process model
abstractions, and process model changes in a declarative way
[10]. PQL statements may be applied to a single process model
or to a collection of process models with common properties.
In general, PQL enables the selection of process instances as
well as the creation of process model abstractions. Declarative
descriptions of any selection, abstraction, or change of a
process model (collection) are denoted as PQL requests. A
PQL request, in turn, consists of two sections: the selection
section specifies an expression for selecting the respective
process models, whereas the modification section defines the
abstractions and changes to be applied to the selected process
models. This paper focuses on the selection of process models.

Fig. 1 illustrates the processing of a PQL request, which
is triggered by an authorized user sending a PQL request
to the PQL interpreter (Step (D). Then, all process models
that match the predicates specified in the selection section of
the PQL request are selected and retrieved from the process
repository (Step (2)). Moreover, PQL enables the modification
of the selected process models (Step (3)) and their abstractions
(Step (4))—the latter two steps are not considered in this
paper. Finally, all selected process models are presented to
the user (Step (5)). An example of a PQL request is depicted
in Listing 1.

1 MATCH al:ACTIVITY-[:ET_ Control]->a2:ACTIVITY

2 —[:ET_Control]->a3:ACTIVITY
3 RETURN a3

Listing 1. Example PQL Request

Line 1 refers to the selection of all process models with a path
(i.e., a sequence of edges with type ET_Control) containing
activities al, a2, and a3. Note that al, a2, and a3 are only
variables (i.e. placeholders), i.e., the PQL request searches
for all process models comprising any sequence consisting
of three activities (cf. Lines 1+2) and returns only direct
successors of a2 (cf. Line 3). Consider the example shown
in Fig. 2. When applying the PQL request to it, activity G
is returned as the only possible match. Interested readers can
find more information on PQL in [10].

III. CONTEXT-AWARE PROCESS EXECUTION

To support cyber-physical processes, the Context-aware Pro-
cess Execution (CaPE) framework was developed. It enables
the runtime integration of sensor data on physical objects (e.g.,
machines) and the creation of a semantic network to man-
age data that may influence the execution of cyber-physical
processes, e.g., the physical structure and runtime states of a
machine. Data of the semantic network allows evolving loosely
coupled processes based on context-specific process injections
[6]. The CaPE Framework comprises three technical pillars:
CaPE Sensor, CaPE Context, and CaPE Process (cf. Fig. 3).

CaPE Sensor provides features for connecting sensors,
acquiring raw sensor data, transforming and normalizing the

sensor data, and analyzing, storing, and forwarding the derived
events from the sensor data. CaPE Context, in turn, was
specifically developed with the requirements of cyber-physical
systems (CPS) in mind. A semantic network is used to map
the physical structure of a CPS to a digital shadow [11]. CaPE
Context allows for a standardized representation of a CPS. In
particular, the state of a CPS is represented independent from
the respective communication and data structures.

CaPE Process enables runtime process flexibility based
on context-aware process injections [6]. The key objective of
CaPl is to ease the modeling of a collection of process variants
(i.e. a process family) at design time and to enable context-
aware process variant configuration during runtime. In essence,
by taking the current context of a process (e.g., the runtime
state of a machine) into account, CaPI enables the context-
driven injection (i.e., insertion) of process fragments into a
lean base process in a controlled manner.

We illustrate the CaPE approach along a production-process
run on a production machine. First, required production data
is received and the production steps and their order are deter-
mined. Following this, raw materials are prepared, the actual
production process is performed, and the machine is manually
cleaned (cf. base process in Fig. 4g). Production machines
usually require specific format parts to manufacture a product
(e.g., injection molds are needed to produce plastic parts).
The following situation might occur during process execution
(cf. Fig. 4e): by evaluating context factors CF1 and CF2 (cf.
Fig. 4a), mapping rules (cf. Fig. 4c) determine whether a
required format part is missing. If this is the case, contex-
tual situation CS_FormatPartsMissing becomes activated (cf.
Fig. 4e). When reaching extension area FAI (cf. Fig. 4h)
process fragment “PF_OrderFormPrts” is inserted into the base
process instance (cf. Fig. 4fj). Another situation that might
occur recalibrates a machine if the machine configuration does
not meet the production specifications (cf. Fig. 4).

During process execution, context factors are used to de-
termine whether pre-specified contextual situations have oc-
curred. If this applies, process fragments are inserted based
on predefined injection specifications linked to the respective
contextual situation.

Following the separation of concerns principle, the base
process model solely contains the decisions (i.e., branches
and gateways) and activities common to all variants of the
process. In particular, these activities need to be known at build
time and must not be changed during runtime. By contrast,
extension areas represent the dynamic (i.e. varying) parts of
the process. Accordingly, process modelers may first focus on
the modeling of the predictable parts of the base process and
its extension areas, and then add the varying process fragments
to this extension areas. The latter enables context-specific
injections of process fragments into the base process at runtime
based on well-defined injection specifications. Moreover, an
extension area allows for the dynamic injection of any number
of same or different process fragments organized in parallel.
In turn, contextual situations are defined through conditions
expressed in first-order logic, referring to process parameters

MATCH n1-->n2

Process Model 1 WHERE n1.name=C, n2.name=F :PQL Request <
* SET DELETE(n(name=A)), AGGREGATE(
O~a+¢ N ae®) .) -
MATCH n:ACTIVITY (assignedUser=Peter))
S :
Process Model 2 (D *} * Process Model 2 Process Model 2
® — b Process O — b5
O & &+0O N\ | Moder 2| [_ |O—— 0| |5\ O €O
& 2 g @ Aoplicationof |
@ @ ® i [
Process Model n (%) o 5 Process Model n 2 Process Model n } Matching Patterns i
rocess
- J-(F* (e ‘ Changes on ‘
O+)+E3~E-0 Model n O (D) EO O-@+e3-0 } Process Models }
Process Repository PQL Interpreter | *assignedUser=Peter ‘

Fig. 1. Processing a PQL Request

Example of a
Matching Process Model

7 N\ N —
MATCH al:ACTIVITY-[:ET_Control]-> a2: ACTIVITV-[:ET_Control]-> a3:ACTIVITY

Fig. 2. PQL Request Determining a Sequence of three Activities

Production Machine

Sensor

Events

—>

Events

—

CaPE Sensor
CaPE Context
CaPE Process

2
)

Po

Y Raw Data

Industrial Data Bus

Fig. 3. Overview of the CaPE Framework

as well as data objects of the base process model. Process
parameters may be linked to external factors (e.g. availability
of a resource) that influence the concrete process injection
chosen. When injecting process fragments, CaPI also takes
care of the data mapping, i.e., data objects of an injected
process fragment are automatically connected to existing data
objects of the base process.

Altogether, CaPI enables dynamic configurations and
changes of varying processes in a controlled way during
runtime. By solely enabling insertions of process fragments,
CaPI allows process modelers to focus on the commonalities
of all variants (base process) as well as the varying process
parts, instead of creating a single complex process model that
captures all variants. Process modelers may directly integrate
contextual data with the modeling of variants. For this purpose,
external context factors may be abstracted through process
parameters. CaPlI is able to cope with context-driven runtime
injections based on the late evaluation of contextual parameters
when reaching predefined extension areas. Moreover, a consis-
tent data flow between the newly injected process fragments
and the base process is ensured.

IV. CONTEXT-AWARE SELECTION OF PROCESS
FRAGMENTS WITH CAPE AND PQL

To utilize context for appropriately evolving a process, on
one hand, contextual factors need to be made available to
the process. On the other, the required actions need to be
modeled. CaPE Process distinguishes between two types of
actions: (1) the change of a process execution state, e.g., by
starting or stopping a process instance, and (2) the adaptation
of the schema of a process instance. Context factors as well
as the two change types are introduced below.

A. Context Factors

The major artifact of CaPE Process is the Context-aware
Process Family (CPF), which consists of a base process model,
process parameters (cf. Sect. III), change specifications (cf.
Sect. IV-C and IV-D), and context factors that describe external
context. Context factors shall express the contextual situations
and serve as an immutable interface to the respective process
context. Context factors can be regarded as data objects having
a type and a value. The latter are set, for example, when
receiving specific events.

Definition 1 (Context Factor): A context factor is defined
as a tuple C = (t,v,vq), where:

o tis the type (i.e., Boolean, Integer, Float, Double, String,

Complex, or user-defined) of the context factor.
o v is the value of the context factor corresponding to .
e vy is the default value initially set for v.

Context factors decouple the mapping of contextual situa-
tions from the modeling of a Context-aware Process Family
(CPF). Consequently, a modeled CPF needs not be changed
if a context model changes. During CPF execution, context
factors are mapped to process parameters based on mapping
rules. When reaching an extension area, process parameters
are checked against conditions defined in contextual situations,
which are explained in the following.

B. Context Evaluation with Contextual Situations

A process variant may rely on a set of occurring contextual
situations based on the combination of process parameters,
i.e. their current values. Contextual situations are defined
by conditions expressed in a first-order logic relying on the
set of process parameters. Contextual situations can have

Context Factor
ProductionData

ol

‘Mapping Rule IF (CF2 != CF1.Requirements)
THEN formatPartsMissing = “true”

Context Factor
AvailableFormatParts

Context Factor
MachineConfig
[(¢ d

b Process Parameter PP formatPartsMissing
= (“true*, “false”, BOOLEAN)

Contextual Situation CS_FormatPartsMissing
Condition: PP_formatPartsMissing = ‘true”

©

Contextual Situation CS_MachineConfigSpecMismatch

Condition: PP_productionDataSpecs !=CF3
T

Injection Specification IS1
If CS_FormatPartsMissing is present at EAl1_ProductionPrep:
Inject Process Fragment PF_OrderFormPrts inline sequential f

Injection Specification 1s2 If ..
If CS_MachineConfigSpecMismatch is present at EA2 MachinePrep:
Inject Process Fragment PF_ReconfMachine inline sequential

@

At A2:] ®
Retrieve Production Schedule

Data Production Order J Extension Area
EAl_ProductionPrep

Base Process

EA2_MachinePrep

A3-1: A3-2:
Order

Format Parts

Order Raw
Materials

Process Fragment PF OrderMaterials| |Process Fragment PF OrderFormPrts

A4: A6:
Prepare Raw iy .
. Perform Production Clean Machlne
Materials Extension Area

A5-1: A5-2:
Replace Format

Parts

Reconfigure
Machine

Process Fragment PF ReconfMachine | |Process Fragment PF ReplFormatPrts

Fig. 4. Illustration of a Context-aware Process Family

different states, i.e., watched, accepted, triggered,
finished, and rejected (cf. Fig. 5). When executing a
CPF, first of all, contextual situations are assigned to state
watched. If a condition is evaluated to t rue (e.g., changing
the value of a context factor to which this refers), state
accepted is set for the contextual situation. In this state,
all change specifications defined for a contextual situation are
applied to the base process. Two types of change specifications
are distinguished: Execution specifications allow creating new
process instances or changing the execution state of a running
one (cf. Sect. IV-C). In turn, injection specifications define the
process fragments to be injected into extension areas based on
a PQL query (cf. Sect. IV-D). Execution specifications are
executed immediately when a situation becomes activated. In
turn, injection specifications are executed when an extension
area referring to the injection is reached during process execu-
tion, i.e., when setting the state of the contextual situation to
triggered. In the latter case, the predefined injections are
applied, and the contextual situation enters state finished.
A contextual situation may be set to state rejected at any
time, either manually or when it turns out that the associated
evaluation condition can never evaluate to true. Change
specifications are assigned priorities to determine the execution
order at the presence of multiple change specifications. Hence,
a specification with a higher defined priority is executed prior
to one with a lower priority.

ContextualSituationStates J

[ManualReject ||
EvaluationCondition == false at any time

RejectCS()
rejected

[EvaluationCondition == false]

[Adaptation finished]
FinishCS()

[Process
finished]

[Process started] /
()

o

[Process
finished]

watched

[EvaluationCondition == true] s
AcceptCS(),

accepted reached) | triggered
P Trigger 99

Adaptation()

CS = ContextualSituation

Fig. 5. UML State Diagram of Contextual Situation States

C. Modifying Process States with Execution Specifications

The execution state of a process instance may be adjusted if
a contextual situation is in state act ivated. Corresponding
execution specifications can be defined for contextual situa-
tions, and start new process instances or suspend, abort, or
terminate running process instances as well as resume sus-
pended process instances. When aborting a process instance,
a pre-specified compensation process is executed. Finally, a
termination leads to an immediate stop of an instance without
compensation.

Execution specifications include various parameters. Execu-
tionType expresses the kind of instance change (i.e., START,
SUSPEND, RESUME, ABORT, TERMINATE), and Execu-
tionQuery specifies the PQL query to be executed. Moreover,
Parameter Singleton defines whether only exactly one instance
of a process model may be running (Singleton = ’true’). In this
case no further instance is started. ExecutionRate defines the
number of instances that may be started and ExecutionTrigger
the point in time at which ExecutionSpecification shall be
applied, e.g., immediately or deferred by a timer. If multiple
process models are selected in a PQL query, QueryStrategy
is used to specify whether the execution specification is to
be applied to all selected models (‘multiple’), only to the last
updated model (’single_newest’), the process model with the
highest priority defined in its attributes (’single_prio’), or a
manually selected process model (’single_manual’).

Example 1 (Instantiation of an Order Process within
a Production Process): Fig. 6 shows the example of
a CPF that starts an order process if signs of wear
and tear are detected on a machine part. The wearing
status is represented by context factor “CF1” (cf. Fig. 6a)
and the context mapping defines a process parameter
“PP_wearalert”, which is set to true if the value of
“CF1” is ’true’ (cf. Figs. 6b-d). Contextual situation
“CS_WearingPartOrder” defines conditions setting the

contextual situation to accepted if the value of process
parameter “PP_wearAlert” is set to true (cf. Fig. 6e).
If the contextual situation becomes activated, execution
specification “ES_1" is applied by starting exactly one
instance of the newest process model (cf. parameters
Singleton and QueryStrategy) selected by PQL query
“PQ_1" (cf. Fig. 6f). In the example, PQL query “PQ_1"
is executed on a process repository (cf. Fig. 6g) returning
the newest process model including “Order Part BallBear-
ing” (cf. Fig. 6h) in its name.

D. Context-aware Extensions with Injection Specifications

Injection specifications allow adding a process fragment to
an extension area of a base process in a given contextual
situation (cf. green elements in Fig. 6). An injection is based
on three components: a contextual situation, an injection
specification, and a PQL query.

An injection specification is assigned to a contextual situa-
tion. It describes the possible injections of a process model in
terms of change operations and refers to the extension area to
which the injection shall be applied. Finally, InjectionQuery
defines the PQL query for retrieving the process to be in-
jected from a process repository. QueryStrategy determines
whether all process fragments selected by the PQL query
are injected (multiple), or only the newest (single_newest),
the most prioritized (single_prio), or whether one is to be
selected manually (single_manual, cf. Sect. IV-C). Parameter
InjectionType defines how a process fragment is inserted into
an extension area, i.e., inline or as sub-process. Parameter
InjectionPattern denotes whether a process fragment is in-
jected in parallel or sequentially into the respective extension
area. Furthermore, InjectionRate denotes whether a process
fragment is injected once or multiple times into the extension
area. Finally, InjectionTrigger determines the point in time an
injection shall be triggered. In general, injection specifications
and PQL queries may be used by several Contextual Situations
within a CPF.

Example 2 (Injection of a Printer Installation Process
Fragment): Fig. 6 shows the CPF of a production
process running on a machine, in which a decision
is made based on context factor “DeviceStatus” (cf.
Fig. 6a). Specifically, it is decided whether to install and
calibrate a printer, which is required for a production
run. The contextual situation “CS_PrinterRequired” will
be triggered if the production specifications require a
printer (cf. Fig. 6i). When reaching Extension Area
EA1_ProductionPrep (cf. Fig. 6l), the injection spec-
ification IS_1 is evaluated (cf. Fig. 6j). In turn, this
triggers the execution of PQL query PQ_2 (cf. Fig. 6k)
returning all processes from the repository that contain
activity “Install Printer printerName” directly succeeded
by activity “Calibrate Printer printerName”. Note that
“printerName” is a process parameter being replaced
by the real name of the printer. In this example, “In-
stall_and_Calibrate_Printer_Delcol” is inserted into the

extension area of the running base process (cf. Fig. 6m).
Note that a process fragment may contain extension areas
and react to contextual situations as well (cf. Fig. 6n).

V. EVALUATION

Motivation. In practice, a process repository may contain
thousands of process models. Thus, it is crucial that PQL
queries can be executed efficiently even on large process repos-
itories. Compared to single-model approaches, the presented
approach requires additional runtime, as process models are
dynamically assembled at runtime. To demonstrate the perfor-
mance of PQL-based injections, we developed a sophisticated
prototype, that allows retrieving process fragments from a
process repository with a PQL query and adding them to an
extension area of a CPF. To be more precise, a PQL query is
required for each injection specification.

Data Set. To evaluate the performance of the PQL query
processes, we use process models from the process model
matching contest (PMMC) dataset [12]. The latter contains
process models and different variants manually created from
them. We use the heavy revision data set that comprises 150
process models, where all process activity labels are rephrased
to ease the search for keywords. The data set includes process
models stemming from various domains: administration (27),
booking (10), insurance (3), manufacturing (7), medicine (11),
order processing (50), quality assurance (7), support & service
(13), and academia (15). Due to quality problems and dupli-
cates, we removed 7 process models from the data set. The
process models following the single-model approach are man-
ually split up by us into base process models and associated
process fragments. We integrate those process elements into
a base process that are common to all variants of a process.
Process elements not common to all variants are shifted into
separate process fragments. Furthermore, contextual situations
and PQL-based injection specifications are created for every
variant. We excluded 3 process models that feature no execu-
tion variants, i.e., they neither contain exclusive gateways nor
do they show any variability. All other process models remain
in the data that we use for our performance measurements
experiments.

Prototype. The prototype architecture comprises the CPF
execution component CaPE Process, a PQL interpretation
component, and a Neo4j database (cf. Fig. 7). The already
existing prototype that implements CaPlI is extended with the
PQL query processor [13]. Process models enacted by CaPE
Process are stored in a Neo4j database—activities, gateways
and data elements are stored as Neo4j nodes and process
control flows as Neo4j edges. The Neo4j database serves as
an in-memory index structure based on which efficient queries
can be performed with the Cypher Query Language (CQL).
When a contextual situation becomes activated, the PQL query
of an injection/execution specification is translated by the
interpretation component into a CQL expression and executed
in Neo4j. Any CQL query returns a set of process models for
which appropriate process fragments from the CaPE repository

Context Factor
WearingStatus

©

Mapping Rule IF (CF1
ITHEN

Contextual Situation CS_WearingPartOrder e
Condition: PP_wearAlert = ‘true”, Dependencies: [(ES_1, priority = 0)]

Context Factor
DeviceStatus

Context Mapping

[
Process Parameter PP wearAlert
= (“true”, “false”, BOOLEAN)

(b)

Contextual Situation CS_PrinterRequired @
Condition: PP_ProdSpecs != CF2.Devices,Deps:[(IS_1, priority=0)]

r |

Execution Specification ES_1

)

ExecutionType: START Singleton : true
ExecutionQuery: PQ 1 ExecutionRate: single
QueryStrategy : single newest ExecutionTrigger: true (immediately)

Injection Specification IS 1

InjectionType: inline @
ExecutionAreas: [Eal_productionprep] InjectionPattern: sequential
InjectionQuery: PQ 2 InjectionRate: single

QueryStrategy: single newest InjectionTrigger: true (immediately)

PQL Query PQ 1
Query: MATCH (pl:PROCESSMODEL)

©)

PQL Query PQ 2

Query: MATCH (nl:ACTIVITY)-[*]->(n2:ACTIVITY)
WHERE nl.name ~= "Install Printer ${PP_PrinterName}"
AND n2.name ~= "Calibrate Printer ${PP_PrinterName}"

®

WHERE pl.name ~= "Order Part ${CFl.PartName}"
At: A2:

Retrieve Production Schedule] F(D T

>
Data Production Order J Extension Area
EAL P):oduct.lonPrep

Base Process

Prepare Raw
Materials

Ad:

Extension Area
EA2 MachinePrep

Extension Area EA3 Calibrate Printer

AB:
Perform Production Clean Machme]_’O

"Delco1"

Install Base Install Printer
Printer Plate "Delco1"

h
O Arrange
Customer Disassemble
Send Order Service Machine
Appointment
Process Order Part BallBearing

Process Install and Calibrate Printer Delcol

Fig. 6. Example of Change Specifications with PQL

1 CaPE Process Framework

REST API

Adaptation Manager

Context Manager PQL Query Processor

Context Factor Repository Process Graph Repository (Neo4j)

T AristaFlow BPM Suite
: REST API

Change Operations Execution Manager / Runtime Environment

Process
Repository

Process
Manager

Activity
i | Repository

Data
Manager

OrgModel
Manager

Resource
Manager

Fig. 7. CaPE Process Architecture

can be selected and, for example, be injected into an extension
area.

PQL Query Definition. Various PQL queries are specified
for the performance measurements. On one hand, simple
queries are used for 18 injection specifications, i.e. the latter
are simply selected based on an exact match of the label of a
process fragment (cf. Listing 2). On the other, more complex
PQL queries are defined for 25 further injection specifications
(cf. Listing 3). 10 PQL queries include a search with variable
path length between the individual nodes, i.e., these nodes
need not be direct successors.

1 MATCH a:ProcessModel
2 WHERE a.name=" (pll)payment receipt processl1010 (HR)"

Listing 2. PQL Exact Match Query Example

After conducting performance measurements with 140 pro-
cess models, we duplicate them to a total of 648, 1193,
11003, 16453, and 21903 models and extend all identifiers and
designators with a random UUID suffix to avoid collisions.

| MATCH al:ACTIVITY-[:ET_Control]->a2:ACTIVITY

2 —[:ET_Control]->a3:ACTIVITY

3 WHERE not (al-[:ET_Control]->a3) AND al.name CONTAINS

4 "send feedback" AND a3.name CONTAINS "determine feedback"

Listing 3. PQL Control Flow Query Example

Results. The Neo4j database contained 3231 nodes (one
per process model, activity, or gateway) and 13366 edges.
Two process fragments are selected for 30 base processes
in 62.5% of the process instances, and exactly one process
fragment for 37.5% of the process instances. After 20 runs
on a standard laptop with 16GB RAM and an Intel 17-
6700HQ, the average selection time of the exact model name
PQL queries is less than 2.446ms, whereas PQL queries
with control flow selections take on average 4.72ms. After
model duplication, the subsequent execution of the control
flow based PQL queries takes 15.43ms (648 models), 23.99ms
(1193 models), 201.56ms (11003 models), 310.30ms (16453
models), 404.81ms (21903 models) on average for 20 runs (cf.
Fig. 8). Execution time of exact matching PQL queries takes
2.22ms (648 models), 2.15ms (1193 models), 2.33ms (11003
models), 1.91ms (16453 models), and 1.87ms (21903 models).

Discussion. Execution time of exact matching PQL queries
remains below 2.33ms, which is enabled by node label in-
dexes in Neo4j. Furthermore, execution time of control flow
based PQL queries increases linearly with the number of
nodes stored in the database. PQL execution time remains
at 404.81ms for a process repository size of 21009 process
models, which allows for a fast injection of process fragments
even for larger process repositories. Performance measure-
ments with CQL and Neo4j show similar results [14].

Threats to validity include the total number of process
fragments injected and the total number of process models
stored in the database. If many injection specifications are

defined for a base process, selection time increases. Further-
more, a Spring Data Neo4j implementation is used [15]-the
measurements include PQL interpretation time, transmission
delay between Spring implementation and Neo4j database,
database query, and Spring Data object-relational mapper
conversion time. No optimizations except Btree indexes on
node IDs and node labels were performed.

450
400
E 350
(]
£ 300
= 250
s
= 200
o
2150
w
2100
[¢]
a 50

0 -4 Py o o °
0 5000 10000 15000 20000
Number of Process Models in Database

25000

-@-Exact Matching Query Control Flow Query

Fig. 8. PQL Query Duration for different Process Repository Sizes

In summary:

o The declarative language PQL is used for the dynamic
selection of the process fragments to be injected into
running processes.

« A proof-of-concept prototype enables the practical use of
PQL.

o Experimental results show that the PQL-based retrieval
of process fragments from a process repository can be
accomplished in an efficient manner.

The limitations of the approach are as follows:

o The approach allows retrieving process fragments that
may be added to an extension area of a process, where pa-
rameter InjectionStrategy determines the permitted quan-
tity and the selection strategy of selected fragments
(cf. Sect. IV-D). However, further sophisticated selection
strategies are missing.

o If no suitable process fragments can be retrieved for a
PQL query, selection must be accomplished manually.

VI. RELATED WORK

Several approaches for coping with process variability
based on late selection and dynamic process changes exist.
Overviews of methods enabling process variability can be
found in [3,16,17].

Worklets present a rule-based approach enabling late pro-
cess fragment selection [7]. Each activity of a process is
associated with a set of process fragments out of which one is
selected at runtime based on the evaluation of complex rules.
Similarly, [18] proposes a goal-based late selection approach,
which defines alternative activities for different Quality of
Service process goals. At runtime, one of the alternatives is
automatically selected, according to the actual goals of the
process.

Various approaches for the late selection of activity imple-
mentations exist [19-21]. These allow dynamically selecting
suitable services from a service repository when executing

activities. Moreover, the dynamic assignment of resources in
a distributed grid execution environment is described in [22].
The approach allows for the dynamic selection and linkage
of web services to activities of a process instance. Thereby,
web service calls are selected without changing the schema
of a process instance rather than allowing for injections of
process fragments. Other approaches for dynamically assign-
ing resources in distributed environments can be found in
[23,24]. [25] deals with data-aware interactions of distributed
and collaborative workflows.

[26] proposes an object-oriented process modeling language
that enables the event-driven selection of process components
during runtime. In turn, [27] proposes automated workflow
adaptions based on case-based reasoning. The core concept is
a powerful approach to automatically evaluate the execution
point in time of workflow changes. As opposed to CaPI, no
pre-specified extension areas exist for process instances, but
the time of a change may be expressed with rules. Process
instance changes are defined in terms of change operations
instead of adding pre-specified process fragments. PHILhar-
monicFlows enables ad-hoc changes to data-centric processes
and provides a scalable and flexible approach for this [28,29].

An extension of late selection is late modeling: instead of
choosing from a set of predefined process fragments or activity
implementations, fragments themselves may be dynamically
modeled or composed during runtime, e.g., Pockets of Flex-
ibility [30] allow modeling loosely specified processes, in
which placeholder activities are replaced by process fragments
at runtime. There also exist language-based approaches [31],
which follow different goals than our work. Due to the
late selection of process fragments and multi-model process
compositions, our approach is able to consider every process
fragment as a self-contained process.

[32] proposes a framework to conceive process querying
methods and gives an overview of existing languages. The
framework describes methods and concepts for managing large
process repositories, including the optimization of queries
(’prepare”), the optimal execution of queries (“execute”), the
formalization and simulation of queries (“model, simulate,
record and correlate”), and the interpretation of query results
("interpret”). Many query languages are based on structural
descriptions, including BP-QL [33], BPMN-Q [34], FNet
[35], process matching [36], DMQL [37] and PQL [10].
The BPMN-Q framework stores process models in relational
databases [38]. BPMN-Q queries can be modeled graphically
and then converted into SQL scripts using a query processor.
However, BPMN-Q queries cannot be executed as efficiently
on graph-based process models as in the CaPE approach. PQL
is based on the Cypher Query Language for querying graph
databases and, thus, enables efficient querying. Note that PQL
is the only query language that allows for changes to process
models.

VII. SUMMARY & OUTLOOK

In the physical world, the integration of different systems
and the support of cyber-physical processes are both crucial.

The CaPE framework allows integrating sensor data into
cyber-physical systems and building a semantic network used
to map the physical structure of a CPS to a digital shadow.
The concept of context-aware process injections (CaPI) was
introduced to evolve the modeling and execution of context-
driven processes. Additionally, concepts were presented that
enable changing runtime states of process instances in a
context-aware manner. The modular concept supports the
modeling and execution of process variants, which are required
in many cyber-physical systems. By linking CaPI with PQL,
process fragments can be selected from process reposito-
ries and dynamically injected into running process instances.
This allows for a flexible modeling and late composition of
process instances at runtime. In future work, we evaluate
and optimize context-aware modeling of process families.
Especially, this includes the correct modeling of context-aware
process families. Furthermore, a user study investigating PQL
comprehensibility is planned.

REFERENCES

[1] B. Hoppenstedt et al., “Techniques and Emerging Trends for State of
the Art Equipment Maintenance Systems—A Bibliometric Analysis,”
Applied Sciences, vol. 8, no. 6, p. 916, 2018.

[2] K. Kammerer et al., “Anomaly Detections for Manufacturing Systems
Based on Sensor Data—Insights into Two Challenging Real-World
Production Settings,” Sensors, vol. 19, no. 24, p. 5370, 2019.

[3] A. Hallerbach, T. Bauer, and M. Reichert, “Configuration and Man-
agement of Process Variants,” in International Handbook on Business
Process Management. Springer, 2010, pp. 237-255.

, “Managing Process Variants in the Process Lifecycle,” in 10th
Int’l Conf on Enterprise Inf Sys (ICEIS 2008), 2008, pp. 154-161.

[5] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies. Springer,
2012.

[6] N. Mundbrod, G. Grambow, J. Kolb, and M. Reichert, “Context-Aware
Process Injection: Enhancing Process Flexibility by Late Extension of
Process Instances,” in 23rd Int’l Conf on Coop Inf Sys (CooplS 2015),
ser. LNCS, no. 9415. Springer, 2015, pp. 127-145.

[71 M. Adams, A. H. Ter Hofstede, D. Edmond, and W. M. Van Der Aalst,
“Worklets: A Service-oriented Implementation of Dynamic Flexibility in
Workflows,” in Int’l Conf ”On the Move to Meaningful Internet Systems”
(OTM 2006). Springer, 2006, pp. 291-308.

[8] C. Ayora, V. Torres, B. Weber, M. Reichert, and V. Pelechano, “VIVACE:
A Framework for the Systematic Evaluation of Variability Support in
Process-aware Information Systems,” Information and Software Tech-
nology, vol. 57, pp. 248-276, 2015.

[9]1 A. Murguzur, X. De Carlos, S. Trujillo, and G. Sagardui, “Context-aware

[4]

Staged Configuration of Process Variants@Runtime,” in 26th Int’l Conf

Advanced Inf Sys Engineering. Springer, 2014, pp. 241-255.

K. Kammerer, J. Kolb, and M. Reichert, “PQL-A Descriptive Language
for Querying, Abstracting and Changing Process Models,” in Enterprise,
Business-Process and Information Systems Modeling. Springer, 2015,
pp- 135-150.

K. Kammerer, R. Pryss, K. Sommer, and M. Reichert, “Towards Context-
aware Process Guidance in Cyber-Physical Systems with Augmented
Reality,” in 4th Int’l Workshop on Requirements Engineering for Self-
Adaptive, Collaborative, and Cyber Physical Systems (RESACS’IS8).
IEEE Computer Society Press, 2018, pp. 44-51.

G. Antunes, M. Bakhshandeh, J. Borbinha, J. Cardoso, S. Dadashnia,
C. Di Francescomarino, M. Dragoni, P. Fettke, A. Gal, C. Ghidini et al.,
“The Process Model Matching Contest 2015,” GI-Edition: Lecture Notes
in Informatics., vol. 248, pp. 127-155, 2015.

K. Kammerer, N. Mundbrod, and M. Reichert, “Demonstrating Context-
aware Process Injection with the CaPI Tool,” in BPM Demo Session
2017, co-located with 15th Int’l Conf Business Process Management.
CEUR Workshop Proceedings, no. 1920. CEUR-WS.org, 2017.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

F. Holzschuher and R. Peinl, “Performance of Graph Query Languages:
Comparison of Cypher, Gremlin and Native Access in Neo4j,” in Joint
EDBT/ICDT 2013 Workshops, 2013, pp. 195-204.

M. Hunger and O. Gierke, Good Relationships: The Spring Data Neo4j
Guide Book. C4Media, 2012.

A. Hallerbach, T. Bauer, and M. Reichert, “Capturing Variability in
Business Process Models: The Provop Approach,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 22, no. 6-7,
pp. 519-546, 2010.

B. Aysolmaz, D. M. Schunselaar, H. A. Reijers, and A. Yaldiz, “Select-
ing a Process Variant Modeling Approach: Guidelines and Application,”
Software & Systems Modeling, vol. 18, no. 2, pp. 1155-1178, 2019.

J. Klingemann, “Controlled Flexibility in Workflow Management,” in
12th Int’l Conf on Advanced Inf Sys Engineering, 2000, pp. 126-141.
R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Constraint Driven
Web Service Composition in METEOR-S,” in [EEE Int’l Conf on
Services Computing 2004 (SCC 2004), 2004, pp. 23-30.

G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “A Framework
for QoS-aware Binding and Re-binding of Composite Web Services,”
Journal of Systems and Software, vol. 81, no. 10, pp. 1754-1769, 2008.
F. Casati and M.-C. Shan, “Dynamic and Adaptive Composition of E-
Services,” Information Systems, vol. 26, no. 3, pp. 143-163, 2001.

S. Coppens, R. Verborgh, E. Mannens, and R. Van de Walle, “A
Semantic Workflow Engine Powered by Grid Reasoning,” in IEEE Int’l
Conf on Pervasive Comp and Comm Workshops, 2014, pp. 460—465.
R. Pryss, M. Reichert, M. Schickler, and T. Bauer, “Context-based
Assignment and Execution of Human-centric Mobile Services,” in [EEE
Int’l Conference on Mobile Services (MS 2016), 2016, pp. 119-126.
C. Cabanillas, D. Knuplesch, M. Resinas, M. Reichert, J. Mendling, and
A. Ruiz-Cortes, “Ralph: A graphical notation for resource assignments in
business processes,” in 27th Int’l Conf on Advanced Inf Sys Engineering,
ser. LNCS, no. 9097. Springer, 2015, pp. 53-68.

D. Knuplesch, R. Pryss, and M. Reichert, “Data-aware Interaction in
Distributed and Collaborative Workflows: Modeling, Semantics, Cor-
rectness,” in 8th Int’l Conf on Collab Comp (CollaborateCom 2012).
IEEE, 2012, pp. 223-232.

R. Seiger, C. Keller, F. Niebling, and T. Schlegel, “Modelling Complex
and Flexible Processes for Smart Cyber-physical Environments,” Journal
of Computational Science, vol. 10, pp. 137-148, 2015.

M. Minor, R. Bergmann, S. Gorg, and K. Walter, “Towards Case-based
Adaptation of Workflows,” in 18th Int’l Conference on Case-Based
Reasoning (ICCBR 2010). Springer, 2010, pp. 421-435.

K. Andrews, S. Steinau, and M. Reichert, “Enabling Runtime Flexibility
in Data-Centric and Data-Driven Process Execution Engines,” Informa-
tion Systems, p. 101447, 2019.

V. Kiinzle and M. Reichert, “PHILharmonicFlows: Towards a Frame-
work for Object-aware Process Management,” Journal of Software
Maintenance and Evolution, vol. 23, no. 4, pp. 205-244, 2011.

S. W. Sadiq, M. E. Orlowska, and W. Sadiq, “Specification and Val-
idation of Process Constraints for Flexible Workflows,” Information
Systems, vol. 30, no. 5, pp. 349-378, 2005.

D. Knuplesch and M. Reichert, “A Visual Language for Modeling
Multiple Perspectives of Business Process Compliance Rules,” Software
& Systems Modeling, vol. 16, no. 3, pp. 715-736, 2017.

A. Polyvyanyy, C. Ouyang, A. Barros, and W. M. van der Aalst, “Process
Querying: Enabling Business Intelligence through Query-based Process
Analytics,” Decision Support Systems, vol. 100, pp. 41-56, 2017.

C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo, “Querying business
processes with BP-QL,” Inf Sys, vol. 33, no. 6, pp. 477-507, 2008.

A. Awad, “BPMN-Q: A Language to Query Business Processes,”
Enterprise Modelling and Information Systems Architectures—Concepts
and Applications, 2007.

Z. Yan, R. Dijkman, and P. Grefen, “FNet: An Index for Advanced
Business Process Querying,” in 10th Int’l Conference on Business
Process Management (BPM 2012). Springer, 2012, pp. 246-261.

J. Zhu and H. K. Pung, “Process Matching: A Structural Approach for
Business Process Search,” in Computation World, 2009, pp. 227-232.
P. Delfmann, D. Breuker, M. Matzner, and J. Becker, “Supporting
Information Systems Analysis through Conceptual Model Query—the
Diagramed Model Query Language (DMQL),” Communications of the
Association for Information Systems, vol. 37, no. 1, p. 24, 2015.

S. Sakr and A. Awad, “A Framework for Querying Graph-Based
Business Process Models,” in 19th Int’l Conference on World Wide Web
(WWW 2010). ACM, 2010, p. 1297-1300.

