
Ulm University | 89069 Ulm | Germany Faculty of Engineering,
Computer Science
and Psychology
Institute of Databases and
Information Systems

Developing an approach to automate the
building and deployment of configurable
Progressive Web Applications

Master’s thesis at Ulm University

Submitted by:
David Fraas
david.fraas@uni-ulm.de
1008637

Reviewer:
Prof. Dr. Manfred Reichert
Prof. Dr. Rüdiger Pryss

Supervisor:
Michael Stach

2020

Version of December 8, 2020

c© 2020 David Fraas

Satz: PDF-LATEX 2ε

Abstract

The omnipresence of smartphones enables new methods of collecting data for re-
search purposes on a certain research group. One possibility is the use of Ecologi-
cal Momentary Assessments where a person completes assessments in his natural
environment and chronologically close to the event he has to assess. This reduces
the distortion of the research data compared to a retrospective assessment. Com-
bined with Mobile Crowdsensing, where the sensors of the smartphone are used to
collect additional context data, new insights on topics like chronic diseases can be
gained.
However, there is no generic software solution to build and run EMA applications
in combination with Mobile Crowdsensing to collect research data. In this thesis, a
framework to automate the building and deployment process of configurable Pro-
gressive Web Applications (PWAs) is implemented. The thesis examines related
projects to define the functional and non-functional requirements for the implemen-
tation. In the next step, a concept with technological and architectural aspects and
an interface design for the web application are developed. The resulting implemen-
tation of the framework covers the processes of configuring, building and running
the PWA, as well as the functionality of the PWA with notification scheduling, sen-
sor usage and offline access. A comparison between the requirements and the
actual implementation shows that the framework achieved the goal to develop an
approach for building and deploying configurable PWAs.

i

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Subject area . 2
1.3 Outline . 3

2 Fundamentals 4
2.1 Ecological Momentary Assessment 4
2.2 Mobile Crowdsensing . 5
2.3 Progressive Web Applications . 5
2.4 Containerization . 6
2.5 Reverse proxy . 7

3 Related work 9
3.1 Intersession-Online . 9
3.2 TrackYourTinnitus . 10
3.3 Combining MCS and EMA in the healthcare domain 11

4 Requirements 13
4.1 Framework functionality . 14
4.2 PWA functionality . 19
4.3 Non-functional requirements . 23

5 Concept 24
5.1 Browser support . 24
5.2 Components . 25

5.2.1 Server components . 26
5.2.2 Client components . 27

5.3 Web sensors . 27

ii

Contents

5.4 Interface Design for the PWA . 29
5.4.1 Mobile version . 29
5.4.2 Desktop version . 33

6 Implementation 36
6.1 Notification scheduling implementation 36
6.2 Offline access implementation . 38

6.2.1 Offline caching . 38
6.2.2 Offline database . 40

6.3 Sensor implementation . 40
6.3.1 Microphone . 41
6.3.2 Geolocation . 41
6.3.3 Bluetooth . 41
6.3.4 Ambient light sensor . 42

6.4 Builder implementation . 42
6.5 Docker implementation . 43
6.6 Configuration and validation implementation 44

6.6.1 Assessment . 44
6.6.2 Database . 48
6.6.3 Registration . 48
6.6.4 Appearance . 50
6.6.5 SMTP server . 51
6.6.6 Server . 51
6.6.7 Sensor data . 51

6.7 Reverse proxy implementation . 52
6.8 PWA implementation . 53

6.8.1 Frontend . 53
6.8.2 Backend . 59

7 Compliance with Requirements 66
7.1 Framework requirements . 66
7.2 PWA requirements . 67
7.3 Non-functional requirements . 68

8 Summary 69
8.1 Conclusion . 69

iii

Contents

8.2 Future work . 70

Bibliography 72

A Configuration Example 75

B Abbreviations 77

iv

1 Introduction

When it comes to the research of chronic diseases, the correctness of data is impor-
tant to gain insight on the health status of a person. A lot of data can be collected by
patients assessing on their disease. This assessment can be carried out in different
ways. The point in time when the patient is assessed plays a major role.
Stone et al. [1] conducted a study to compare Ecological Momentary Assessment
(EMA) with Retrospective Recall by examining the correspondence between short
term (within 48 hours) retrospective coping reports and momentary reports close
in time to when the stressor occurred. There was a notable difference between
the two research methods. In fact, on average, “30% of the participants failed to
retrospectively report using items they had endorsed on EMA assessments“ [1].
The use of retrospective reports raises the questions whether patients are able to
remember the symptoms of their disease and describe them accurately even after
a certain period of time. Pryss et al. [2] state, that the limited validity in those re-
ports has been shown in several studies and highlight the importance of Ecological
Momentary Assessments because they can be used to prevent the problem of ret-
rospective bias and distortion of medical data.
Mobile devices can be used to carry out these Ecological Momentary Assesssments
and bring them closer to the patients. Additionally, mobile devices offer a range of
built-in sensors that can be used to collect additional data. This paradigm of collect-
ing sensor data from a group of people is called Mobile Crowdsensing (described
in Section 2.2) and can be used to give a context to the patients assessment.

1.1 Problem statement

If a person who works with Ecological Momentary Assessments, for example a
researcher, wants to provide an EMA application with Mobile Crowdsensing to a

1

1 Introduction

group of people, for example patients with a certain disease, he will encounter the
following problem: The implementation of an application for a mobile device (either
native for iOS or Android, or as a web application) will require a certain level of
knowledge in programming because for the development of Ecological Momentary
Assessment (EMA) apps in combination with Mobile Crowdsensing (MCS) there
is no generic software solution. So if the researcher wants his own custom EMA
application he has to:

• learn how to program a mobile application, which will cost a lot of time to get
an acceptable result, or

• pass the programming of the EMA application to one or more programmers
who can implement the application for him, which will cost additional re-
sources.

The goal of this thesis is to develop a software framework that lets, for example a
researcher, generate and run his own EMA application. The framework offers the
following benefits to the researcher:

• no programming knowledge required: The framework does not require any
knowledge in programming.

• customization: The framework provides customization options to give the per-
son who is working with it enough flexibility to create his custom EMA appli-
cation.

• easy entry: The person who will use the framework does not have to spend a
lot of time to read through instructions and installation guides before he can
use it.

• automatic deployment: The framework does not only provide help for the im-
plementation process, but also helps in the deployment process, so the EMA
application is ready to use for the target group.

1.2 Subject area

The software that was developed in the course of this thesis will be referenced as
“framework”. The people that use the framework are not specialists in the tech-

2

1 Introduction

nical domain, like programmers, software developers or computer scientists, but
rather experts in the medical domain who are familiar with Ecological Momentary
Assessment and want to collect data on a certain field of research. In this thesis
a person who uses the framework is referred to as an “expert“. Even though the
framework does not require any programming knowledge, the expert should have
basic knowledge on using a Command Line Interface (CLI) and editing JavaScript
Object Notation (JSON) files.
The EMA application that the expert creates and deploys with the help of the frame-
work will be referred to as the “PWA“. The target group of the PWA is specified by
the expert, however in this thesis we refer to the person who uses the Progressive
Web Application (PWA) by completing assessments as the “end user”.

1.3 Outline

The remaining seven chapters of the thesis are divided as follows: Chapter 2 de-
scribes the fundamentals of the thesis. Chapter 3 is about the related work includ-
ing related projects and papers. In Chapter 4, the functional and non-functional
requirements for the implementation are defined. The concept of the implementa-
tion is shown in Chapter 5. The implementation itself is described in Chapter 6. In
Chapter 7, the requirements that are defined in Chapter 4 will be compared with the
implementation. Chapter 8 is dedicated to the summary of the thesis and includes
possible future work.

3

2 Fundamentals

In this chapter, we go over the fundamentals of Ecological Momentary Assess-
ments and Mobile Crowdsensing, as well as technical fundamentals for developing
a framework, like Progressive Web Applications and containerization.

2.1 Ecological Momentary Assessment

Ecological Momentary Assessment [3] describes a range of research methods that
are characterized by Shiffman et al. [4] with the following features:

• Ecological: The data is collected in real world settings and environments and
thus contributing to ecological validity.

• Momentary: The data is collected in current situations, in order to avoid a bias
associated with retrospective assessments

• Strategic sampling: The timing for the assessments is selected by specific
schemes like occuring events or by random.

• Longitudinal data: Assessment data is collected over a longer period of time
in order to provide insight on how the state varies over time and across situa-
tions.

In conclusion, the main benefit of EMAs is collecting data with the absence of retro-
spective reports, where the subject can have a different bias because of a different
situation, or a period of time lying between the report and the situation the report is
about.

4

2 Fundamentals

2.2 Mobile Crowdsensing

Mobile Crowdsensing [3] is a paradigm where a larger group of people (community)
with mobile devices(e.g., smartphones) that have sensing capabilities (e.g., GPS,
microphone) share and collect data. This data can then be used to gain information
on common interests like healthcare. Unlike normal sensor networks, the main
characteristic of MCS is the human involvement [5]. MCS can be split into two
classes:

• Participatory sensing: The user actively participates in providing sensor data,
for example, by choosing when, how, or what type of data is collected.

• Opportunistic sensing: The user does not have to be active, the data will be
collected in the background, sometimes even without the users acknowledg-
ment.

2.3 Progressive Web Applications

While normal web apps have a very high reach because they can be used by any-
one with a device that has a modern browser installed, their functionality is limited.
On the other hand, native apps provide high functionality, because they can make
use of all the features that a device offers and work offline, but they are limited to
the operating system that is installed on a device. PWAs [6] can be an alterna-
tive to both, because they are based on well-known web technologies like HTML,
CSS and JavaScript and thus can be used with a browser, but they also provide
extended functionality with APIs that provide, for example, offline accessibility, push
notifications, or home-screen installation.

One main component of PWAs are service workers1. These service workers are
scripts that are running in the background of the browser, separate from the web
page. They enable features like offline functionality, background sync and push
notifications. Figure 2.1 shows the life cycle of a service worker. When a ser-
vice worker is registered in the websites JavaScript, the installation process will be
started in the background when the web application is used for the first time. After

1https://developers.google.com/web/fundamentals/primers/service-workers

5

2 Fundamentals

being installed, a service worker will get activated and fall into an idle state to listen
to fetch and message events. When not in use, a service worker will terminate and
restart (go into idle state) when it is next needed.

Figure 2.1: Life cycle of a service worker

2.4 Containerization

Containerization is a virtualization method of deploying and running software ap-
plications. Instead of running in a virtual machine, application containers run on a
containerization engine that is installed on the host operating system. Each con-
tainer includes all libraries and dependencies it needs to run an application.
Figure 2.2 (left) shows the structure of a virtual machine distribution with the infras-
tructure as the bottom layer and the hypervisor above. The infrastructure usually

6

2 Fundamentals

consists of the hardware that the system is running on (e.g., a server). The hyper-
visor is a software that is installed directly on the infrastructure layer and controls
multiple virtual machines. Each virtual machine has its own guest operating system
and application(s) that run on it.
Figure 2.2 (right) shows the structure of a containerization distribution. Instead of a
hypervisor, a host operating system is installed on the infrastructure. On the host
operating system, a containerization engine is installed. The containerization en-
gine controls the containers that run the applications for the system.

Figure 2.2: The structure of a virtual machine distribution versus the structure of a
containerization distribution

2.5 Reverse proxy

A reverse proxy2 is a (virtual) server that sits in front of one or more origin servers
and redirects incoming requests to these servers. The requests come from clients
(e.g., web browsers) and automatically get forwarded to the corresponding web
server. The main benefits of reverse proxies are:

load balancing: If a website is deployed on a single server and millions of requests
come in at once, it might not be able to handle all of the requests and fail. In order
to prevent a single server from failing, the website can be split onto multiple servers

2https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/

7

2 Fundamentals

and a reverse proxy will distribute incoming requests evenly across these servers
to balance the workload.

protection from cyber attacks: Reverse proxies can protect servers from cyber
attacks like denial-of-service attacks (DoS). Additionally, the origin server does not
have to reveal its IP address which makes it harder to attack directly.

caching: Reverse proxies can cache website data to improve response time and
reduce the workload of the origin server.

encryption: The task of TLS-encryption can be taken over by the reverse proxy
and further reduce the workload of the origin server.

8

3 Related work

This chapter shows related work for applications in the EMA and MCS domain.
Intersession-Online and TrackYourTinnitus both offer native applications for Android
and iOS and give examples when it comes to developing EMA apps. Additionally
Kraft et al. [3] wrote a paper about the combination of EMA and MCS in the health-
care domain and propose recommendations as well as a reference architecture for
developing mobile EMA applications. The thesis does not completely follow these
recommendations but rather use them as inspiration for building a framework for
EMA applications.

3.1 Intersession-Online

Intersession-Online [7] is a project by the research group for psychodynamic psy-
chotherapy research (Arbeitsgruppe Psychodynamische Psychotherapieforschung)
at the university of Klagenfurt in corporation with the Ulm University to examine the
thoughts, feelings and memories that a patient has in between psychotherapy ses-
sions (the so called “intersession processes“). The goal of the project is to collect
data about intersession processes with the help of a smartphone application. The
application is available as a native app for Android and iOS and additionally offers
a website for registration and information purpose. Figure 3.1 shows the Android
Application of the Intersession Online project.

9

3 Related work

Figure 3.1: Screenshots of the Android Intersession App [8]

3.2 TrackYourTinnitus

TrackYourTinnitus (TYT) [9, 10, 11, 12] is a platform to collect data for tinnitus pa-
tients. It was developed by the Tinnitus Research Initiative (TRI) and the Institute of
Database and Information Systems (DBIS) at Ulm University and is available and
maintained since April 2014. TYT consists of a website for registration, a native
iOS application, a native Android application and a central backend where the data
is stored. The mobile applications offer the user assessments about their tinnitus
in the style of an EMA. The user is prompted at random times during the day to
complete his assessment. The questions of the assessment measure the tinnitus
in eight different dimensions, including, for example, perception, loudness and dis-
tress. Additionally, the application measures the background noise in the users en-
vironment when the user is filling out an assignment. Figure 3.2 shows the Android
Application of the TrackYourTinnitus platform.

10

3 Related work

Figure 3.2: Screenshots of the Android TrackYourTinnitus App [13]

3.3 Combining MCS and EMA in the healthcare

domain

Kraft et al. [3] examined the combination of Ecological Momentary Assessment
and Mobile Crowdsensing in the healthcare domain. They analysed the state of
the TrackYourTinnitus project, that is running for over 5 years and compared seven
different EMA apps to derive a set of recommendations when building an application
that combines EMA and MCS in the healthcare domain. These recommentations
include:

User identity: Identify the user by using proper authentication and authorization.
Generic questionnaires: Handle generically defined questionnaires, including one-
time and repeating questionnaires with various input types (e.g., multiple choice,
text input).
Notifications: Prompt the user to complete assessments with a notification sched-
ule that can be edited by the user. The notifications should be either at fixed times
or created randomly by an algorithm.
Sensors and context-awareness: A set of sensor measurements should be de-
fined, in order to record sensor data in the background.

11

3 Related work

Incentive mechanisms: Support the users adherence by including incentive mech-
anisms like feedback, gamification, or social features.
Groups, studies, and HCPs: The ability for the user to join one or more groups,
for example for the representation of studies.
High availability and Performance: Best possible availability of the application
and absence of performance issues.
Offline availability: Ability to use the application without connection to the internet.
Safety, security, and privacy: Presence of a high standard in safety, security and
privacy, including consideration of region-specific regulations, encryption, identifi-
cation of health risks and the existence of a security model for the platform.
Data quality: Compliance with data quality aspects including believability, rele-
vancy, accuracy, interpretability, understandability, accessibility, objectivity, timeli-
ness, completeness and (representational) consistency by using, for example, input
validation.
Data analysis: Existence of data analysis functionality for the researcher, the
healthcare provider and the user to review and analyze answers to questionnaires
and sensor data.
Interoperability: Interoperability with other platforms by implementing common
data exchange format standards, communication protocols and interfaces.

12

4 Requirements

When it comes to defining the requirements for the implementation of the frame-
work, the following aspects should be considered:

• requirements for an EMA application

• requirements for Mobile Crowdsensing

• requirements for automation

According to Shiffman, 2007 [14] and Shiffman et al., 2008 [4] the implementation
of EMA apps on mobile devices require the following functionality :

• Presentation of assessment content (questions and response option) to the
user.

• Management of assessment logic (input validation and branching).

• Recording of time-stamps to determine when an assessment was completed.

• Storing assessment data.

• Management of user notifications (when should an assessment be made ?).

• Prompting the user to complete the assessment.

In order to fulfill the property of a “momentary“ assessment, the EMA app should
be available whenever the user needs it. Therefore, offline support is mandatory,
so that the user can complete his assessment even without a connection to the in-
ternet.
Concerning Mobile Crowdsensing, collecting sensor data requires the EMA app to
have access to a various set of sensors. The availability of sensors depends on the
mobile device that the user owns as well as the software (operating system, inter-
net browser) that runs on the mobile device. EMA apps typically do not focus on
a single type of Mobile Crowdsensing (mentioned in Section 2.2), but instead use

13

4 Requirements

both, participatory sensing and opportunistic sensing, to some extend.
For automation, in order to keep the time and knowledge required by the expert to
develop and run an EMA app at a minimum, the framework should do as much work
as possible automatically. This includes automation in development (e.g., generat-
ing views and database) but also automation in deploying and running an EMA app
(e.g., launching multiple components simultaneously).
Based on the requirements for EMA, MCS and automation, this chapter derives the
functional and non-functional requirements for the implementation. Additionally, the
recommendations from Kraft et al. [3] in Section 3.3 will be taken into considera-
tion for the implementation, however, the implementation will focus on the collection
of data only, therefore data analysis and incentive mechanisms will not be consid-
ered. The functional requirements are split between functions for the framework
and functions for the PWA. A code is assigned to each requirement to refer to them.
Additionally, each requirement has a description and a priority, which is assigned
by using the MoSCoW method [15].

4.1 Framework functionality

The framework is used by the expert to configure, build and run the PWA. The fol-
lowing table shows all functions for the expert when using the framework.

Code Function Priority
Configuration

F01 Configure assessment MUST

F02 Configure database MUST

F03 Configure registration MUST

F04 Configure appearance COULD

F05 Configure server MUST

F06 Configure SMTP SHOULD

F07 Configure sensordata MUST

Deployment

F08 Build PWA MUST

F09 Run PWA MUST

14

4 Requirements

Figure 4.1: Use cases for configuring an assessment

F01 (Configure assessment): The expert can add an assessment, which contains
questions for the end user to answer and an assessment logic, which controls the
flow of the assessment (order of questions). The assessment can either be added
directly to the configuration or an assessment endpoint can be specified, which then
imports the assessment from an external source.

Figure 4.2: Use cases for configuring a database

F02 (Configure database): In order to store the data collected by the end user, the
expert can add a database connection. The expert can either let the database be
configured and created automatically, or add a custom database connection.

15

4 Requirements

Figure 4.3: Use cases for configuring a registration

F03 (Configure registration): The expert can decide whether the end user is re-
quired to register an account or use the PWA without an account. Additionally, the
expert can define one or more registration inputs (e.g., age, name) that are associ-
ated with the end user in order to get additional information on the end user.

Figure 4.4: Use cases for configuring an appearance

F04 (Configure appearance): The expert can change the appearance of the PWA
by adding a name, a logo and colors. Additionally he can specify a welcome mes-
sage that is shown to the end user when he visits the PWA for the first time.

16

4 Requirements

Figure 4.5: Use cases for configuring a server

F05 (Configure server): The Expert has to specify the domain and the ip address
of the server where the framework is installed on. Additionally he has to provide
an email address which is used to generate the certificate for a secure HTTPS
connection.

Figure 4.6: Use cases for configuring a SMTP server

F06 (Configure SMTP server): If the expert wants to use his own SMTP host for
sending emails from the server, he can add a custom SMTP connection.

17

4 Requirements

Figure 4.7: Use cases for configuring sensordata

F07 (Configure sensordata): The expert can add one or more sensor measure-
ments that collect data from the end users device.

Figure 4.8: Use cases for building the PWA

F08 (Build PWA): This function starts the build process. Before the PWA can be
build, the configuration is checked for errors (validate configuration). If there are no
errors, the files for the PWA are generated.

18

4 Requirements

Figure 4.9: Use cases for running the PWA

F09 (Run PWA): When the expert runs the PWA, first, the containers are generated
with the files from the previous build process (see F08: Build PWA). Afterwards, the
web server and the reverse proxy will be run, and depending on the configuration,
the database and SMTP server will be run.

4.2 PWA functionality

The PWA is used by the end user for account management and assessment related
functions. The following table shows all functions for the end user when using the
PWA.

19

4 Requirements

Code Function Priority
P01 Create account SHOULD

P02 Authorization SHOULD

P03 Reset password COULD

P04 Delete account COULD

P05 Edit notification schedule MUST

P06 Send notification MUST

P07 Start assessment MUST

P08 Do assessment MUST

P09 Complete assessment MUST

Figure 4.10: Use cases for the account management of the PWA

P01 (Create account): The end user can create an account to persistently store
his assessment data on the server. The expert can decide if this step is mandatory
and if the user will need an account to use the PWA, or if he can use it without an
account.

P02 (Login): If the end user is not logged in, he can log in, which automatically
loads his data from the server.

P03 (Reset password): The end user can reset his password by submitting his
email address which sends an email to that email address with a link to a reset
page where he can choose a new password.

20

4 Requirements

P04 (Delete account): The end user can delete his account with all associated
assessment data.

P05 (Edit notification schedule): The end user can decide when and how the
PWA sends a notification. This can be either randomized or at fixed times.

P06 (Send notification): The PWA sends out a notification to the end user prompt-
ing him to do his assignment.

P07 (Start assessment): The end user can start a new assessment. If the expert
has enabled the bluetooth sensor in the configuration, the end user has to choose
a bluetooth device where the MCS data will be recorded.

P08 (Do assessment): The end user can go through the assessment by answering
questions.

P09 (Complete assessment): When the end user completes an assessment, the
assessment and the sensor data is stored. If the end user is logged in and the
end users device is connected to the internet, the data will be stored on the server,
otherwise it will be stored on the device.

21

4 Requirements

Figure 4.11: Use cases for the PWA

22

4 Requirements

4.3 Non-functional requirements

Besides the functional requirements, the framework and PWA have additional re-
quirements which cannot be described as functions. These non-functional require-
ments are shown in the following table.

Code Requirement Priority
NF1 Reliability MUST

NF2 Responsive design SHOULD

NF3 Robustness SHOULD

NF4 User friendliness SHOULD

NF5 Documentation COULD

NF1 (Reliability): The PWA and the framework have to be reliable under any cir-
cumstances. Therefore, the user should be able to rely on the software in any
situation.

NF2 (Robustness): The PWA and the framework should be able to detect errors
like false user input and handle them accordingly by automatically correcting the
error or displaying the error to the user.

NF3 (Responsive design): The PWA should be displayable on any device screen,
including any screen size from a smartphone display to a desktop monitor. There-
fore, the PWA has to adapt its user interface according to the screen size.

NF4 (User friendliness): From the perspective of the end user, the PWA should
be easy to use and understand, because he wants to use the PWA on a daily basis
and not waste time on learning how to use the PWA.

NF5 (Documentation): The framework should provide a documentation for the
expert.

23

5 Concept

In this chapter, the concept of the software is explained. It includes the browser
support, components and their relations and the interface design for the PWA.

5.1 Browser support

This section will compare different browsers for their compatibility with the features
of the PWA. Because the PWA is implemented with the focus on mobile users,
this comparison only includes mobile browsers. According to statcounter.com [16],
99,39% of browser usage in Europe in the last 12 month is split between Google
Chrome, iOS Safari, Samsung Internet, Mozilla Firefox, Opera, UC Browser and
Android Browser, therefore the comparison focuses on these seven browsers. Ad-
ditionally, the comparison distinguishes between Android and iOS browsers, since
the availability of some features also depends on the operating system that the end
user uses, even when the browser can be the same on both systems (e.g., Google
Chrome for Android versus Google Chrome for iOS). The comparison includes the
following features:

• Service workers

• Notification API

• IndexedDB

• Web Bluetooth

• Geolocation API

• Sensor API

• MediaStream

24

5 Concept

Google Chrome Samsung Internet Mozilla Firefox
Service workers [17] • • •
Notification API [18] • • •
IndexedDB [19] • • •
Web Bluetooth [20] • • •
Geolocation API [21] • • •
Sensor API [22] • • •
MediaStream API [23] • • •
• = supported, • = not supported, • = no information

Table 5.1: Browser feature support (part 1)

UC Browser Android Browser Safari iOS Opera
Service worker [17] • • • •
Notification API [18] • • • •
IndexedDB [19] • • • •
Web Bluetooth [20] • • • •
Geolocation API [21] • • • •
Sensor API [22] • • • •
MediaStream API [23] • • • •
• = supported, • = not supported, • = no information

Table 5.2: Browser feature support (part 2)

Table 5.1 and Table 5.2 show the supported features for each of the previously men-
tioned browsers. As a conclusion, Google Chrome and Samsung Internet both sup-
port all features. Since Google Chrome has a bigger user base with 62.36% [16],
the implementation will focus on this browser.

5.2 Components

The software is split into the server components and client components. The
overview for all components is shown in Figure 5.1.

25

5 Concept

Figure 5.1: Components of the system

5.2.1 Server components

PWA framework: The PWA framework is installed on the server and contains all
files to generate the containers that are used to deploy the PWA.

Configuration file: The configuration is edited by the expert and contains all the in-
formation about the PWA, for example, assessment questions, sensor configuration
and database connection.

Builder: The builder script will be run by the expert after the configuration process
is done. The builder reads the information from the configuration file and then runs
the validator, before building the docker-compose script.

Validator: The validator script is used by the builder to check for errors in the
configuration file.

Docker compose: The docker-compose script can run multiple containers at once.
After the building process, the expert can run this script to build the container im-

26

5 Concept

ages and run all required containers simultaneously.

Reverse proxy: The reverse proxy automatically adds the TLS-certificate for en-
crypted communication between the server and the client over HTTPS. Additionally,
it defines subdomains for the web server and the database and redirect incoming
requests on these subdomains from the client to the web server and database.

Web server: The web server processes incoming requests and returns all neces-
sary files to display the PWA on the end users device.

Database: The database stores the user information and assessment data of the
end user.

SMTP server: The SMTP server is used to send out E-Mails to the end user when
he wants to register an account or forgets his password.

5.2.2 Client components

PWA: The PWA is installed on the end users device and communicates with the
local database, the service worker and the server.

Local database: The local database on the end users device stores assessments
when the user does not have an account, or if the client is not connected to the
internet. When the end user is logging in, or the client is connecting to the internet,
all data on the local database is synchronized with the servers database.

Service Worker: The Service Worker is loading the cached website data if the
client is offline. It also sends out the notification according to the notification sched-
ule that is stored in the local database.

5.3 Web sensors

Modern browsers offer a wide array of sensors that can be accessed from a website.
The sensordata can be accessed over an API (provided the device has that sensor
built in). The following sensors are currently1 available:

1As of December 8, 2020

27

5 Concept

Bluetooth API: The Web Bluetooth API2 provides an interface to connect to Blue-
tooth Low Energy peripherals and communicate with them. It relies on the Generic
Attribute Profile (GATT) protocol.

Geolocation API: The Geolocation API3 can be used to get the current location of
the end users device. Additionally, the speed and the direction where the device is
heading can be tracked.

MediaDevices interface: The MediaDevices interface4 provides access to the mi-
crophone and the camera of a device. It can also be used for screen sharing.

Sensor API: The Web Sensor API5 provides access to the accelerometer, gyro-
scope and magnetometer, which can be used to determine the absolute (in relation
to the Earth’s reference coordinate system) or relative (without relation to the Earth’s
reference coordinate system) orientation of the device for example. Additionally, it
provides access to the ambient light sensor to measure the luminosity in the area
around the device.

The thesis will focus on a fixed set of sensors, therefore not all sensors will be
included in the implementation. The following sensors will be included in the imple-
mentation:

• Microphone (MediaDevices interface): For recording background noise or
other audio while the end user completes his assignment.

• Location, speed (Geolocation API): For recording the location and speed of
the end user.

• Bluetooth: Let the end user connect to a bluetooth device (e.g., to record the
heart rate with a corresponding bluetooth peripheral).

• Ambient light sensor (Sensor API): To record the luminosity.

2https://developer.mozilla.org/en-US/docs/Web/API/Web_Bluetooth_API
3https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API
4https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices
5https://developer.mozilla.org/en-US/docs/Web/API/Sensor_APIs

28

5 Concept

5.4 Interface Design for the PWA

Even though the PWA will focus on the end user with a mobile device, it will also
be available for end users with other devices. For the PWA to be accessible on
any device with a browser while still providing a user friendly interface, the interface
of the PWA has to adjust to different screen sizes. This is accomplished by using
a responsive design. This section will go over two versions of the interface: the
mobile version for smartphones and the desktop version for bigger screens. Even
though only two screen sizes are shown, the interface can adapt to any screen size.

5.4.1 Mobile version

The mobile version has a single column layout with an expandable navigation menu
to use minimal space. Figure 5.2 (left) shows the navigation bar with the logo and
the name of the PWA at the top of the page (1), the assessment content in the
middle (2) and the navigation between the assessment question at the bottom (3).
Figure 5.6 (right) shows the navigation menu (5) that can be collapsed and extended
by using the menu button (4).

29

5 Concept

Figure 5.2: Wireframe for the mobile interface in assessment view

The statistics view (see Figure 5.3) has an assessment selector (6) on the top that
toggles the list for all assessments (8) that were completed, ordered by date (newest
first). When the end user selects an assessment from the list, the content of the
assessment with all questions and answers is displayed (7).

30

5 Concept

Figure 5.3: Wireframe for the mobile interface in statistics view

The settings menu (see Figure 5.3) consists of the notification type selector (9)
where the user can switch between random and custom notifications. If the notifica-
tion type “random“ is selected, the end user can choose the number of notifications
per day (10) as well as the notification times for every day of the week (11). If the
notification type is “custom“, he can choose the notification times (12) and add (13)
or delete (14) additional notification times. The notification settings can be saved
by pressing the save button (15) or discarded by closing the settings menu (16).
Figure 5.5 shows the input form for the login (left) and the registration (right).

31

5 Concept

Figure 5.4: Wireframe for the mobile interface in settings menu view

32

5 Concept

Figure 5.5: Wireframe for the mobile interface in login menu view

5.4.2 Desktop version

The desktop version of the user interface is similar to the mobile interface, with the
exception that it uses the wider screen size to display more content without having
to hide information. Figure 5.6 shows the assessment view with the navigation bar
on top that uses icons only.

33

5 Concept

Figure 5.6: Wireframe for the desktop interface in assessment view

The statistics view (see Figure 5.7) displays the assessment list and the assess-
ment content next to each other in contrast to the expandable assessment list in
mobile view.

34

5 Concept

Figure 5.7: Wireframe for the desktop interface in statistics view

35

6 Implementation

In this chapter the implementation of the framework will be explained.

6.1 Notification scheduling implementation

The PWA will frequently remind the end user to complete his assessments. The
notifications will we displayed with the help of the Notification API 1. They can be
scheduled in two different ways:

Random: The times for the notification will be picked randomly in a given period
of time. The end user can pick the number of notifications and the time period for
every day of the week in which the notifications can appear.

Fixed: The notification times will have a fixed time. The end user can decide when
and how often he wants the notifications to appear on a daily basis.

The notification schedule is stored as a document in the local database of the end
users device. Figure 6.1 shows the process of scheduling notifications. This pro-
cess is carried out by the service worker and it is started whenever one of the
following events occur:

• the end user logs in

• an assessment is completed

• the page is reloaded

First, the service worker checks if there is a notification schedule stored in the local
database. If not, a new notification schedule is created. If there is a notification

1https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API

36

6 Implementation

Figure 6.1: Notification scheduling flowchart

37

6 Implementation

schedule in the local database, the service worker then checks if there are any
pending notification times. This only includes date times that lie in the future, any
notification times that are in the past are ignored. If there are any pending notifica-
tion times, the notification timer will be set and the process is completed. If there
are no pending notification times or a new notification schedule was created, the
service worker will create a set of notification times based on the notification type
and sets the notification timer afterwards.

Figure 6.2 shows the algorithm for the function that generates notification times if
the end user chose the notification type “random“. The number of iterations equals
the number of notifications that the end user selected (in the algorithm called “set“).
The start- and end-time equal the first and last time of the day when a notification
can be sent and also can be selected by the end-user. The function returns an array
of date times.

6.2 Offline access implementation

Service workers make it possible to use websites and web applications offline by
storing web files in the cache of the browser. Additionally, modern browsers provide
local databases to persistently store website data on the client side. This section
describes the implementation of the offline availability for the PWA and the local
database.

6.2.1 Offline caching

The caching of website data is implemented with the help of Workbox2 in the service
worker script. Workbox is a JavaScript library that provides packages for routing and
strategies. These packages are used to determine if and how the service worker
should react to an incoming request from the PWA. The following strategies are
used in the PWA:

• NetworkFirst: The service worker will first try to fetch the resource from the
network. If the resource could not be fetched, the service worker will fall back

2https://developers.google.com/web/tools/workbox

38

6 Implementation

Figure 6.2: Notification time randomization process

39

6 Implementation

to the resource that is stored in the cache.

• CacheFirst: The service worker will first try to fetch the resource from the
cache and will fall back to the network if the resource could not be fetched.

The usage of a caching strategy is implemented by registering a route with the
registerRoute() function. The route is defined by using a regular expression that
includes all files of a type (e.g., all files that end with “.js“) and assigning the caching
strategy to that route (e.g., NetworkFirst).

6.2.2 Offline database

The offline mode for the database is implemented with the help of the JavaScript
library pouchDB3. PouchDB can synchronize between the local database and the
database on the server to ensure data integrity. It uses the indexedDB API4 that
modern browsers provide to store data on the end users device. Whenever an
end user wants to store an assessment, the PWA checks if the user is online and
logged in. If this is the case, the data will be stored on the server database and
immediately synchronized with the local database. If the end user is offline, the
data will be stored on the local database instead and will be synchronized with the
server database as soon as the end users device connects to the internet. If the
expert allowed the end user to use the PWA without an account (see Section 6.6.3),
the assessment data will be stored on the local database only. If the end user then
creates an account and logs in, the assessment data on the local database will be
transferred to the server database.

6.3 Sensor implementation

The expert can define what sensor data should be recorded when the end user is
completing an assessment. All sensors require the permission of the end user. This
permission can be given by accepting the popup which appears when the end user
starts an assessment for the first time.

3https://pouchdb.com/
4https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

40

6 Implementation

6.3.1 Microphone

The expert can set a limit for the time the audio will be recorded per assessment
session. The maximum time limit is five minutes. This limit is given due to the
storage capacity that the server database and local database have to avoid unnec-
essary data spam. The recording of the audio starts as soon as the end user starts
a new assessment and accepts the permission popup. The recording of the audio
will stop when one of the following events occur:

• The time limit that the expert has set has been reached

• The audio recording reaches five minutes

• The end user finishes the assessment

If the PWA is put in the background because the end user opens another tab or
switches between applications on his device, the recording will be paused. The
recording will be resumed as soon as the PWA is focused again. The audio file will
be stored as a binary large object (BLOB) in the database.

6.3.2 Geolocation

The location of the end user can be recorded continuously throughout the assess-
ment, at the start or at the end of the assessment. If the location is recorded contin-
uously, the data that is stored with the assessment includes the first tracked position
when the end user starts a new assessment, the last tracked position when the end
user finishes his assessment as well as the speed and direction where the end user
is heading. Otherwise, only the location at the start or the end will be stored with
the assessment data.

6.3.3 Bluetooth

The expert has to specify a Generic Attribute Profile (GATT)5 service that is later
used to filter the list of nearby Bluetooth devices that the end user can choose from.
The end user is prompted to select a Bluetooth device with the GATT service when

5https://www.bluetooth.com/specifications/gatt/

41

6 Implementation

he starts a new assessment. The data from the Bluetooth service can be recorded
continuously throughout the assessment, at the start or the end of the assessment.

6.3.4 Ambient light sensor

To record the brightness around the end user, the ambient light sensor can be set
by the expert to either measure once at the start, at the end of the assessment or
measure an average value over the time of the assessment.

6.4 Builder implementation

The builder is a node.js script that creates all files to run the PWA. Before the build-
ing process can start, the configuration of the PWA is checked for errors with the
help of the validator. If the configuration does not have any errors, the building pro-
cess will start. Otherwise, the errors will be displayed to the expert and the builder
will exit.
The files that will be generated in the building process are based on templates. The
data that is coming from the configuration file will be edited by escaping special
coding characters (e.g., “<“ for HTML-markup) to prevent unwanted behaviour that
can result in bugs in the PWA. The builder reads the template file and replaces a
set of placeholder strings before saving the document as new file. The following
files are created in the building process:

• Database Dockerfile

• docker-compose.yml

• index.js (web server)

• webmanifest

• service-worker.js

• HTML and CSS files

If the expert did not specify an external database connection, the builder generates
random admin credentials for the database. The credentials consist of a ten char-
acter long random string for the username and the password and will be stored as

42

6 Implementation

environment variables in the database Dockerfile.
The expert can place a logo in the template folder that will then be edited and saved
in four different sizes. The different sizes cover the following browser requirements:

• 192x192 pixel, 512x512 pixel for the webmanifest when the end user installs
the PWA on his device

• 180x180 pixel for iOS Safaris “add to homescreen“ feature

• 32x32 pixel for the default favicon in any modern browser

6.5 Docker implementation

The PWA framework uses Docker as containerization engine. Docker offers a tool
called docker-compose which can be used to run multi-container applications like
the PWA. Depending on the experts configuration, the PWA can contain two to four
containers. The containers include the reverse proxy, the web server, the database
and the SMTP server. The reverse proxy and the web server containers will always
be included in the docker-compose, while the database and SMTP server contain-
ers can be excluded if the expert decides to use an external database or SMTP
server that he can specify in the configuration.
Docker-compose uses Dockerfiles to build container images, which can then be run
as containers. These Dockerfiles use container images from dockerhub6 as base
images, and build their own images on top of it.
The Dockerfile for the web server uses node as the base image and copies all PWA
files, including the files that were created in the build process, into a directory in
the web server container. Afterwards, all node packages for the web server will be
installed in the container. When all packages are installed, the web server is started
by running the node index.js command which starts the express.js application.
The Dockerfile for the database uses couchdb as base image and sets the admin
credentials that were previously generated in the build process as environmental
variables. The database configuration that was also created in the build process is
then copied into a directory in the database container.
Figure 6.3 shows the sequence of events when running the docker-compose file.

6https://hub.docker.com/

43

6 Implementation

After building the container images, the database and SMTP server containers will
be started (provided that no external database or SMTP server have been speci-
fied). When these containers are running, the web server will be started and will
then authorize itself for the database and the SMTP server via access credentials.
In the last step, the reverse proxy container will be started and the PWA is accessi-
ble for the end user.

6.6 Configuration and validation implementation

The expert can configure the PWA by editing the configuration file. Appendix A
shows an example for a valid PWA configuration file. The configuration can be split
into these parts:

• Assessment configuration

• Database configuration

• Registration configuration

• Appearance configuration

• SMTP configuration

• Server configuration

• Sensor data configuration

The following sections will explain each configuration and the validation that will be
checked by the validator in the build process.

6.6.1 Assessment

The expert can choose between specifying the assessment with all related ques-
tions in the configuration file, or provide an external assessment endpoint URL from
where the assessment can be imported. In both cases, the assessment must have
the given structure that is shown in Figure 6.4. If the assessment is imported from
an external endpoint, the endpoint must provide the assessment in JSON format.

44

6 Implementation

Figure 6.3: Flowchart for running the PWA

45

6 Implementation

Figure 6.4: Class representation of the assessment configuration

46

6 Implementation

An assessment consists of one or more questions. Every question has a title and
a type. The title allows the expert to use custom HTML markup to embed additional
media, for example images and videos. There are three different question types:
multiple choice questions, text input questions and range input questions.

• Multiple choice questions who have two or more answers that the end user
can choose from. Additionally, multiple choice questions have the attributes
minanswers and maxanswers. minanswers defines the minimum number of
answers that the end user has to select to be able to move on to the next
question. maxanswers defines the maximum number of answers that the end
user can select. Every answer has a title and an optional nextQuestion
attribute that defines which question comes next when the answer is the only
one that is selected by the end user. This gives the expert the possibility to
control the flow of the assessment by creating followup questions depending
on the answers of the end user.

• Range input questions that let the end user select a number in a range that
is specified by the expert. This can be used, for example, to let the end user
assess the intensity of a symptom on a scale of 1 to 10. The range selector
has the attributes min and max to define the range of the scale as integers.
Additionally, the expert can set the attributes minLabel and maxLabel to add
a label to the minimum and maximum value of the range selector (e.g., “bad“
and “good“).

• Text input questions that let the end user write an answer in text form. The
attribute required can be set to true if the expert wants the end user to give
an answer before moving on to the next question. The inputType defines the
type of answer that the end user can give. This includes numbers, dates (e.g.,
“10.10.2020“), datetimes (e.g.,“1.10.2020 20:14“) and times (e.g., “19:30“).
The input will be validated before the user can move on to the next question
and display an error if the end user entered an invalid value. The attribute
placeholder can be used to give the end user additional information on the
text input.

Listing 6.1 shows an example for the assessment configuration including four ques-
tions with three different question types.

47

6 Implementation

6.6.2 Database

The database attribute type specifies whether the database that stores all the user
and assessment data will be created in the build process and run as a container on
the server (type = auto), or if the PWA will use an external database
(type = custom). If an external database is used, the expert has to provide a
database URL (databaseUrl) and user credentials (user and password). The user
must have the rights to add, edit and delete users. Similar to the internal database
(see Section 6.8.2), the external database must be a CouchDB database with the
same configuration. The validator checks if the provided database URL and admin
credentials are valid by sending a login request to the external database. If the
external database can not be reached or the credentials are incorrect, an error
message will be displayed to the expert.

6.6.3 Registration

With the required attribute, the expert can specify whether the end user needs an
account. If required is set to true, the user is forced to register an account before
he can use the PWA. If it is set to false, the end user can use the PWA without an
account and the data will be stored on the local database on the end users device
instead of on the servers database.
The registration form can be extended by adding additional input fields with the
userInfo list. The list consists of one or more user information objects. Each ob-
ject has a label and an optional required attribute which specifies if the end user
must fill out the input field. An input field can also have a type. The valid types
include numbers, dates, datetimes and times, similar to the input type in a text input
question (see Subsection 6.6.1) and an additional type for email addresses
(type = email). Listing 6.2 shows an example for a registration configuration with a
user information where the end user has to enter his age as a number.

48

6 Implementation

1 "assessment": {
2 "questions":[
3 { "type": "MULTIPLE_CHOICE",
4 "title": "This is the first question",
5 "minanswers": 1,
6 "maxanswers":1,
7 "answers":[
8 {
9 "text": "this is the first answer",

10 "nextQuestion": 2
11 },
12 {
13 "text": "this is the second answer"
14 },
15 {
16 "text": "this is the third answer"
17 }
18]
19 },
20 { "type": 1,
21 "title": "<h3>This is the second question with an embedded
22 video </h3 ><iframe width =\"420\" height =\"315\"
23 src =\" http ://url.to.video/\">
24 </iframe >",
25 "minanswers": 1,
26 "maxanswers":1,
27 "answers":[
28 {
29 "text": "this is the first answer",
30 "nextQuestion": 2
31 },
32 {
33 "text": "this is the second answer"
34 },
35 {
36 "text": "this is the third answer"
37 }
38]
39 },
40 { "type": 2,
41 "title": "this is the third question with a slider",
42 "min":1,
43 "max":10
44 },
45 { "type": 3,
46 "required":true ,
47 "title": "this is the fourth question with text input",
48 "placeholder":"placeholder text"
49 }
50]
51 }

Listing 6.1: Example for a assessment configuration

49

6 Implementation

1 "registration": {
2 "required": false ,
3 "userInfo":[
4 {
5 "label": "Age",
6 "required": true ,
7 "type":"number"
8 }
9]

10 }

Listing 6.2: Example for a registration configuration

6.6.4 Appearance

The appearance of the PWA can be edited by adding a logo, specifying two colors, a
name for the PWA as well as a welcome message and a notification message. Edit-
ing other design parameters like layout and typography are not included to prevent
the expert from affecting the user friendliness (e.g., by decreasing the font size).
The name of the PWA is used in the navigation bar, the website title and in the
webmanifest (e.g., for displaying the name on startup screens) and is limited to a
length of 50 characters.
The two colors of the PWA can be specified with the attributes mainColor and
secondaryColor. The main color is primarily used for the background of the PWA
while the secondary color is used for buttons and navigation elements. Both colors
must be specified as six digit hex color codes (e.g., #1337ff), otherwise the valida-
tor will throw an error.
The logo of the PWA is not specified in the configuration file, instead the expert
places the logo in form of a JPEG, PNG or BMP file in the logo folder of the frame-
work. The logo should come in square format with equal width and height of at least
512 pixels to avoid image distortion and blur after the scaling process in the builder.
Similar to the name of the PWA, the logo is used in the navigation bar, the website
title and in the webmanifest. The welcome message (welcomeMessage) is shown to
the end user when he visits the PWA for the first time and can contain custom HTML
markup. The notification message (notificationMessage) is shown in the notifica-
tion for the end user. Listing 6.3 shows an example for an appearance configuration.

50

6 Implementation

1 "appearance":{
2 "name": "Testname PWA",
3 "mainColor":"#184 a6e",
4 "secondaryColor" : "#7da468",
5 "welcomeMessage": "<h3 >This is a custom welcome message for the PWA which
6 can be edited in the configuration </h3><h4 style =\" color :#d33\">
7 Custom style is also possible </h4 >",
8 "notificationMessage": "Notification message to prompt the user for
9 his assessment"

10 }

Listing 6.3: Example for a appearance configuration

6.6.5 SMTP server

Similar to the database configuration, the expert can provide an external SMTP
server that will be used to send emails. If the expert wants to use an external SMTP
server, he has to set the type to custom and specify a host URL (hostUrl) and
user credentials (user and password), otherwise he can set the type to auto.

6.6.6 Server

In the server configuration, the expert has to provide basic information about the
server that the framework is running on. This includes the IP address (ipAddress),
the server domain (domain) and the email address that is used to generate the TLS
certificate for the server (certificateEmailAddress) with the certificate authority
Let’s Encrypt.

6.6.7 Sensor data

In the sensor data configuration the expert can specify one or more sensors.
Figure 6.5 shows the structure of the sensor data configuration as a class diagram.
With the sensortype attribute, the expert defines the type of the sensor, including:
microphone, geolocation, lux or bluetooth. If the type is microphone, the expert can
set the maximum length of the recording with optional attribute maxLength. This at-
tribute must be a value between 0:01 and 5:00, which equals the recording time in
minutes.
For the geolocation, lux and bluetooth sensor, the attribute captureTime can be

51

6 Implementation

set, which is used to specify the point in time when the data will be recorded. This
attribute can have the values start, end and continuous. The bluetooth sensor
has an additional attribute called service that consists of a valid bluetooth UUID7.
Listing 6.4 shows an example for a sensordata configuration with a microphone
sensor that records for ten seconds.

1 "sensordata":{[
2 {
3 "sensor":"microphone",
4 "maxLength":"0:10"
5 }
6]
7 }

Listing 6.4: Example for a sensordata configuration

Figure 6.5: Class representation of the sensor data configuration

6.7 Reverse proxy implementation

For the reverse proxy, the framework uses Traefik8. It is used to assign subdomains
for the web server and database and automatically generate TLS certificates for a

7https://www.bluetooth.com/specifications/assigned-numbers/service-discovery/
8https://doc.traefik.io/traefik/

52

6 Implementation

secure connection over HTTPS. Traefik is configured in the docker-compose file.
The ports where the reverse proxy listens for incoming traffic are called
“EntryPoints“. There are two EntryPoints defined for the reverse proxy: “web“ with
the port number 443 for secure traffic over HTTPS, and “webinsecure“ with the port
number 80 for traffic over HTTP. Since the PWA will run exclusively over HTTPS,
the EntryPoint for HTTP traffic with the port number 80 is only there to redirect the
end user to the secure EntryPoint with the port number 443.
For automatically generating a TLS certificate, Traefik uses a CertificateResolver.
The CertificateResolver defines the type of challenge for generating and renewing
ACME certificates (in this case a TLS challenge), the email address that is required
to generate certificates (specified by the expert in the configuration file), the name of
the folder where the certificate will be stored inside the container and the EntryPoint
that is used for the HTTPS connection (EntryPoint “web“ with the port 443).
After configuring the CertificateResolver, the web server and database container
have to be connected to the reverse proxy. This also happens in the
docker-compose file with the help of labels. The labels associate the container
with the CertificateResolver and the HTTPS EntryPoint, and define a subdomain
for each of the containers. The subdomains for the web server and the database
are“pwa.domain.xy“ and “db.domain.xy“, where “domain.xy“ is the domain of the
server that the expert specified in the configuration file.

6.8 PWA implementation

When the build process is completed and all containers are running, the end user
can access the PWA over the generated subdomain (see Section 6.7). The PWA
can be split into two main parts: The frontend, where the content is presented and
the end user interaction takes place, and the backend, where the requests from the
end user get handled and the data is stored.

6.8.1 Frontend

In this thesis, the frontend refers to all components that operate on the client side
(the device of the end user). This includes the PWA, the service worker and the lo-

53

6 Implementation

cal database. While the service worker (see Section 6.2.1) and the local database
(see Section 6.2.2) are described in a separate section, this section focuses on the
PWA by going into detail on the user interface and frontend functionality with the
help of screenshots from the final implementation.
The PWA uses basic web technologies like HTML, CSS and JavaScript in combi-
nation with the frameworks Bootstrap9 and jQuery10. Bootstrap is a CSS framework
and it is used for the responsive design for the PWA, while jQuery is a JavaScript
framework that helps implementing the frontend functionality with DOM manipula-
tion.
The configuration that is used for the PWA in the screenshots can be found in Ap-
pendix A, with the exception of Figure 6.6, where the screenshot shows two alter-
native configurations for the registration (see Section 6.6.3).

Figure 6.6: The startpage of the PWA

Figure 6.6 shows the welcome screen when the end user visits the PWA for the
first time with a required registration on the left, and an optional registration on the

9https://getbootstrap.com/
10https://jquery.com/

54

6 Implementation

right, where the end user can skip the registration by pressing the “Continue without
Registration“ button. The text above the buttons shows the welcome message that
the expert can define.

Figure 6.7: The login and registration view of the PWA

Figure 6.7 (left) shows the login form, where the end user can enter his email ad-
dress and password to authenticate himself. The screenshot on the right side of
the Figure shows the registration form where the end user has to enter his email
address and password that he wants to use for the PWA. In the “repeat Password“
input, the end user has to enter the password a second time to prevent typing er-
rors. Additionally, a required input field (marked with an asterisk) called “Age“ has
to be filled out by the end user before he can complete the registration.

55

6 Implementation

Figure 6.8: The question view with different multiple choice questions

Figure 6.9: The question view with range question and text input question

56

6 Implementation

Figure 6.8 (left) shows a multiple choice question with the question text and three
answer options with the second answer currently selected. The possibility to use
custom HTML markup in the question text lets the expert embed images or videos
as shown in Figure 6.8 (right). The range question type shown in
Figure 6.9 (left) lets the end user select a value between one and ten and the text
input question shown in Figure 6.9 (right) lets the end user enter a custom answer
in the provided input field.

Figure 6.10: The settings view of the PWA

Figure 6.10 shows the settings view where the end user can choose between the
notification modes “Custom“ and “Random“. The screenshot on the left shows the
custom notification time list and the one on the right shows the settings menu for the
random notification times with the number selector and the weekly schedule below.

57

6 Implementation

Figure 6.11: The statistics view of the PWA

The statistics view in Figure 6.11 shows a completed assessment with all questions
and answers given by the end user. The screenshot on the left additionally shows
the extended navigation menu and the extended assessment selector where the
end user selects an assessment to display.

58

6 Implementation

Figure 6.12: The password reset page of the PWA

Figure 6.12 (left) shows the password recovery form where the end user can send a
request to reset the password of his account by providing his email address. Figure
6.12 (right) shows the reset page that the user can access by opening the link that
is sent to his email address after he requested a password reset.

6.8.2 Backend

In this thesis, the backend refers to the components on the server that handle the
requests from the end user and store the data persistently. This includes the web
server and the database. In some functions, the frontend directly communicates
with the database without interference of the web server (e.g., authentication). The
web server is implemented as an express.js11 node application and is responsible
for the following tasks:

• serve website data (e.g., HTML, CSS and JavaScript files)

11https://expressjs.com/

59

6 Implementation

• validate user and assessment data

• generate password reset tokens and send them via emails over the SMTP
server

The database is implemented with the document-based database distribution
CouchDB12. With the combination of CouchDB and the frontend JavaScript library
pouchDB, the database on the server can be synchronized with the database on
the end users device (see Section 6.2.2). The database consists of an account
database where all user documents are stored and an additional per-user database
for every account in order to store assessment data separately for every end user.
The database is responsible for the following tasks:

• provide assessment data

• store user and assessment data

• create user databases

• authentication (session handling)

Figure 6.13 shows the process when the end user completes an assessment and
wants to store it on the database of the server. The PWA sends a request to the
web server with the assessment and the authentication token. Even though the
frontend validates the assessment data, it will be validated again on the web server.
This step is necessary to prevent faulty assessment data that can be injected over
the REST interface of the web server. If the assessment data is correct, the web
server sends a request to the database to store the assessment. The database
validates the authentication token before storing the assessment and returning a
success message to the web server, which will then send a success message to
the PWA.
The authentication for the PWA is handled by the database. Figure 6.14 shows
the sequence of the login process where the end user enters his username and
password that are sent to the database. The database validates the login data and
if the login data is correct, the database generates an authentication token and
returns it to the PWA. The PWA then automatically sends another request with the
authentication token to get the assessment data of the end user from the database.

12https://couchdb.apache.org/

60

6 Implementation

Figure 6.13: Sequence diagram of the assessment storing process

Figure 6.14: Sequence diagram of the login process

61

6 Implementation

Figure 6.15: Sequence diagram of the registration process

Figure 6.15 shows the registration process. When the end user wants to create a
new account, the PWA sends the registration data including email, password and
additional user information to the web server. The web server then validates the
registration data before forwarding it to the database. The database then checks
if the user already exists. If this is not the case, the database creates a new user
document and a per-user database where the assessment data will be stored before
returning a success response to the web server, which is then again forwarded to
the PWA.

Figure 6.16 shows the process when the end user wants to reset his password.
This process consists of two parts, in the first part the email address of the account
is send to the web server, which in return sends a request to the database to check
if an account with that email address is registered. If this is the case, the web server
generates a reset token and a timestamp when the token was created. Both token

62

6 Implementation

and timestamp are stored in the database. Afterwards, the reset token is sent to the
email address that was provided by the end user.
In the second part of the process, a request by the user to change the password is
sent from the PWA to the web server. This request includes the new password and
the reset token. The web server checks if the new password meets all password
requirements. If the new password is valid, the web server requests the timestamp
that is associated with the token from the database. If the token is valid (meaning
the timestamp is not older than ten minutes) the password will be updated in the
user document of the database and the timestamp of the token will be reset, so the
password can not be changed a second time with the same token.

Figure 6.17 shows the process when the end user wants to delete his account. The
PWA directly sends a request to delete the account to the database. The database
then deletes the user related database before deleting the user data in the users
document. Afterwards the database sends a success response to the PWA, which
then in return deletes all user cookies and the local database.

63

6 Implementation

Figure 6.16: Sequence diagram of the password reset process

64

6 Implementation

Figure 6.17: Sequence diagram of the account deletion process

65

7 Compliance with Requirements

In this chapter, the compliance of the framework requirements, PWA requirements
and non-functional requirements with the implementation is checked. The measure-
ment of the compliance for the framework requirements and PWA requirements de-
pend on the implementation only, while the non-functional requirements also take
the architecture into consideration. The following five levels are used to measure
the compliance:
(5) The requirement was fully met.
(4) The requirement was met sufficiently.
(3) The requirement was met partially.
(2) The requirement was met insufficiently.
(1) The requirement was not met.

7.1 Framework requirements

The table below shows level of compliance for the framework requirements that
have been defined in Section 4.1.

66

7 Compliance with Requirements

Code Function Priority Fulfilled
Configuration

F01 Configure assessment MUST 5

F02 Configure database MUST 5

F03 Configure registration MUST 5

F04 Configure appearance COULD 5

F05 Configure server MUST 5

F06 Configure SMTP SHOULD 4

F07 Configure sensordata MUST 4

Deployment

F08 Build PWA MUST 5

F09 Run PWA MUST 4

7.2 PWA requirements

The table below shows level of compliance for the PWA requirements that have
been defined in Section 4.2.The function to reset the password of the end user
(P03: Reset password) and the function to delete the account (P04: Delete ac-
count) were met partially or not met because of time reasons.

Code Function Priority Fulfilled
P01 Create account SHOULD 4

P02 Authorization SHOULD 5

P03 Reset password COULD 3

P04 Delete account COULD 1

P05 Edit notification schedule MUST 4

P06 Send notification MUST 4

P07 Start assessment MUST 5

P08 Do assessment MUST 5

P09 Complete assessment MUST 5

67

7 Compliance with Requirements

7.3 Non-functional requirements

The table below shows level of compliance for the PWA requirements that have
been defined in Section 4.3. The robustness (NF4) was met insufficiently, because
the implementation process did not include software tests, therefore, the ability to
cope with errors and erroneous input can not be guaranteed.

Code Requirement Priority Fulfilled
NF1 Reliability MUST 4

NF2 Responsive design SHOULD 4

NF3 Robustness SHOULD 2

NF4 User friendliness SHOULD 4

NF5 Documentation COULD 5

68

8 Summary

This chapter consists of the conclusion which sums up the thesis, and the future
work.

8.1 Conclusion

In this thesis, a framework for developing and deploying EMA apps was developed.
The goal was to give an expert the possibility to create his own EMA application
as Progressive Web Application to collect data from a certain group of users with
additional environmental data that is collected by the sensors on the end users de-
vice (Mobile Crowdsensing). Furthermore, the expert is able to use the framework
without any programming knowledge, and the framework does most of the work in
building and running the PWA, so the expert can focus on configuration and does
not have to worry about how to make the EMA application accessible for the end
users.
The framework takes the configuration of the expert as input and builds software
containers. These software containers include the reverse proxy (implemented with
traefik) that is used for secure connection via HTTPS, which is required by some
frontend APIs that are used in the PWA and creating subdomains for the other con-
tainers to be reachable. The second container is the web server, which provides
the PWA data for the end user. The third and fourth containers which include the
database and the SMTP server are optional, because the expert can decide to use
his own database or SMTP server. The database container consists of a CouchDB
instance, which stores the incoming data as JSON documents.
For the PWA that is used by the end user, a user interface with focus on mobile
devices was developed. The framework uses template files that are completed with

69

8 Summary

the configuration data from the expert to generate the PWA which is used to an-
swer assessment questions, record sensor data and remind the user to complete
assessments. The PWA uses service workers and PouchDB to enable offline us-
age. Additionally, it uses APIs to collect sensor data and send notifications to the
end user. The sensor data can be the geolocation of the user, the noise around
the user (recorded with the microphone of the device), the brightness in the users
environment, or any data that is coming from a bluetooth device which can be con-
nected to the PWA. The end user can decide whether he wants to get notified at
random times or at fixed times by the PWA to complete an assessment.
All in all, the developed framework is suitable to generate a PWA to collect data
from end users.

8.2 Future work

The focus of the PWA that is generated by the framework was to collect data from
an end user with the requirement that the end user actually completes assessments
frequently. This is not always the case, since the end user is not always motivated
to complete an assessment. Therefore the future work focuses on incentive mecha-
nisms that keep the end user motivated. As stated by Kraft et al. [3], these incentive
mechanisms can be feedback, gamification or social features. The PWA already
provides feedback to the end user by displaying the history of all completed assess-
ments in the PWA (see Figure 6.11), however, this can be expanded with graphs
and charts for a better representation of the collected data, or even chat bots that
give instant feedback by analysing the answers of the end user. For gamification,
a reward system with achievements for completing a total amount of assessments,
or completing a streak of assessments for a certain number of days can be imple-
mented. Another feature for gamification is a leader board, which displays the end
users with the most completed assessments. A third incentive mechanism is the
implementation of social features, for example, user profiles and sharing functions.
Additionally, the registration process can be completed with social logins, for exam-
ple with the help of OpenID1.
Another topic that was mentioned by Kraft et al. [3] is the data analysis by the ex-

1https://openid.net

70

8 Summary

pert. This could include a web application for the expert, that displays the collected
data from the database with charts and diagrams to compare the data from differ-
ent end users. Additionally, the expert should be able to export the collected data
in common formats like CSV or PDF.

71

Bibliography

[1] Arthur A. Stone, Joseph E. Schwartz, John M. Neale, Saul Shiffman,
Christine A. Marco, Mary Hickcox, Jean Paty, Laura S. Porter, and Laura J.
Cruise. “A comparison of coping assessed by Ecological Momentary
Assessment and retrospective recall.” In: Journal of Personality and Social
Psychology 74.6 (1998), pp. 1670–1680. ISSN: 0022-3514. DOI: 10.1037/
/0022- 3514.74.6.1670. URL: https://pubmed.ncbi.nlm.nih.gov/
9654765/.

[2] Rüdiger Pryss, Thomas Probst, · Winfried Schlee, Johannes Schobel, · Berthold
Langguth, Patrick Neff, Myra Spiliopoulou, Manfred Reichert, Winfried Schlee,
and Berthold Langguth. “Prospective crowdsensing versus retrospective
ratings of tinnitus variability and tinnitus-stress associations based on the
TrackYourTinnitus mobile platform”. In: International Journal of Data Science
and Analytics 8 (2019), pp. 327–338. DOI: 10.1007/s41060-018-0111-4.
URL: https://doi.org/10.1007/s41060-018-0111-4.

[3] Robin Kraft, Winfried Schlee, Michael Stach, Manfred Reichert, Berthold Langguth,
Harald Baumeister, Thomas Probst, Ronny Hannemann, and Rüdiger Pryss.
“Combining Mobile Crowdsensing and Ecological Momentary Assessments
in the Healthcare Domain”. In: Frontiers in Neuroscience 14 (Feb. 2020),
p. 164. URL: http://dbis.eprints.uni-ulm.de/1879/.

[4] Saul Shiffman, Arthur A Stone, and Michael R Hufford. “Ecological
Momentary Assessment”. In: Annu. Rev. Clin. Psychol. 4 (2008), pp. 1–32.

[5] Huadong Ma, Dong Zhao, and Peiyan Yuan. “Opportunities in Mobile
Crowdsensing”. In: IEEE Communications Magazine 52.8 (2014), pp. 29–35.

[6] Andreas Biørn-Hansen, Tim A. Majchrzak, and Tor-Morten Grønli
. “Progressive Web Apps: The Possible Web-native Unifier for Mobile
Development”. In: Jan. 2017, pp. 344–351. DOI: 10.5220/0006353703440351.

72

https://doi.org/10.1037//0022-3514.74.6.1670
https://doi.org/10.1037//0022-3514.74.6.1670
https://pubmed.ncbi.nlm.nih.gov/9654765/
https://pubmed.ncbi.nlm.nih.gov/9654765/
https://doi.org/10.1007/s41060-018-0111-4
https://doi.org/10.1007/s41060-018-0111-4
http://dbis.eprints.uni-ulm.de/1879/
https://doi.org/10.5220/0006353703440351

Bibliography

[7] Michael Stach, Carsten Vogel, Thorsten-Christian Gablonski, Sylke Andreas,
Thomas Probst, Manfred Reichert, Marc Schickler, and Rüdiger Pryss.
Technical Challenges of a Mobile Application Supporting Intersession
Processes in Psychotherapy. Tech. rep. URL: https://www.sciencedirect.
com/science/article/pii/S187705092031718X.

[8] DBIS Uni Ulm. Intersession-Online. visited on 2020-11-30. URL: https://
play.google.com/store/apps/details?id=de.intersession_online.
intersession_online.

[9] Thomas Probst, Rüdiger Pryss, Berthold Langguth, and Winfried Schlee.
“Emotional states as mediators between tinnitus loudness and tinnitus
distress in daily life: Results from the TrackYourTinnitus application”. In:
Scientific Reports 6 (Feb. 2016). URL: http://dbis.eprints.uni-ulm.de/
1396/.

[10] Rüdiger Pryss, Winfried Schlee, Berthold Langguth, and Manfred Reichert.
“Mobile Crowdsensing Services for Tinnitus Assessment and Patient
Feedback”. In: 6th IEEE International Conference on AI & Mobile Services
(IEEE AIMS 2017). IEEE Computer Society Press, June 2017, pp. 22–29.
URL: http://dbis.eprints.uni-ulm.de/1521/.

[11] Thomas Probst, Rüdiger Pryss, Berthold Langguth, and Winfried Schlee.
“Emotion dynamics and tinnitus: Daily life data from the "TrackYourTinnitus"
application”. In: Scientific Reports 6.31166 (2016). URL: http : / / dbis .
eprints.uni-ulm.de/1718/.

[12] Robin Kraft, Michael Stach, Manfred Reichert, Winfried Schlee, Thomas Probst,
Berthold Langguth, Marc Schickler, Harald Baumeister, and Rüdiger Pryss.
“Comprehensive insights into the TrackYourTinnitus database”. In: 17th
International Conference on Mobile Systems and Pervasive Computing
(MobiSPC). Procedia Computer Science 175. Elsevier, May 2020, pp. 28–35.
URL: http://dbis.eprints.uni-ulm.de/1955/.

[13] TRI Initiative in cooperation with UKW Würzburg. Track Your Tinnitus. visited
on 2020-11-30. URL: https://play.google.com/store/apps/details?
id=com.jochenherrmann.trackyourtinnitus.

73

https://www.sciencedirect.com/science/article/pii/S187705092031718X
https://www.sciencedirect.com/science/article/pii/S187705092031718X
https://play.google.com/store/apps/details?id=de.intersession_online.intersession_online
https://play.google.com/store/apps/details?id=de.intersession_online.intersession_online
https://play.google.com/store/apps/details?id=de.intersession_online.intersession_online
http://dbis.eprints.uni-ulm.de/1396/
http://dbis.eprints.uni-ulm.de/1396/
http://dbis.eprints.uni-ulm.de/1521/
http://dbis.eprints.uni-ulm.de/1718/
http://dbis.eprints.uni-ulm.de/1718/
http://dbis.eprints.uni-ulm.de/1955/
https://play.google.com/store/apps/details?id=com.jochenherrmann.trackyourtinnitus
https://play.google.com/store/apps/details?id=com.jochenherrmann.trackyourtinnitus

Bibliography

[14] Saul Shiffman. “Designing Protocols for Ecological Momentary Assessment”.
In: The science of real-time data capture: Self-reports in health research
(2007), pp. 27–53.

[15] Kevin Brennan et al. A Guide to the Business Analysis Body of Knowledger.
Iiba, 2009.

[16] Statcounter.com. Mobile Browser Market Share Europe StatCounter Global
Stats. visited on 2020-11-29. URL: https://gs.statcounter.com/browser-
market-share/mobile/europe/#monthly-201910-202010-bar.

[17] Jake Archibald. Is service worker ready? visited on 2020-11-28. URL: https:
//jakearchibald.github.io/isserviceworkerready/.

[18] caniuse.com. Can I use notification? visited on 2020-11-28. URL: https://
caniuse.com/?search=notification.

[19] caniuse.com. Can I use IndexedDB? visited on 2020-11-28. URL: https :
//caniuse.com/indexeddb.

[20] caniuse.com. Can I use Web Bluetooth? visited on 2020-11-28. URL: https:
//caniuse.com/web-bluetooth.

[21] caniuse.com. Can I use Geolocation? visited on 2020-11-28. URL: https:
//caniuse.com/geolocation.

[22] developer.mozilla.org. Sensor APIs - Web APIs | MDN. visited on 2020-11-28.
URL: https://developer.mozilla.org/en-US/docs/Web/API/Sensor_
APIs.

[23] developer.mozilla.org. MediaStream Recording API - Web APIs | MDN.
visited on 2020-11-28. URL: https://developer.mozilla.org/en-US/
docs/Web/API/MediaStream_Recording_API.

74

https://gs.statcounter.com/browser-market-share/mobile/europe/#monthly-201910-202010-bar
https://gs.statcounter.com/browser-market-share/mobile/europe/#monthly-201910-202010-bar
https://jakearchibald.github.io/isserviceworkerready/
https://jakearchibald.github.io/isserviceworkerready/
https://caniuse.com/?search=notification
https://caniuse.com/?search=notification
https://caniuse.com/indexeddb
https://caniuse.com/indexeddb
https://caniuse.com/web-bluetooth
https://caniuse.com/web-bluetooth
https://caniuse.com/geolocation
https://caniuse.com/geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Sensor_APIs
https://developer.mozilla.org/en-US/docs/Web/API/Sensor_APIs
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API

A Configuration Example

1 "assessment": {
2 "questions":[
3 {
4 "type": "MULTIPLE_CHOICE",
5 "title": "This is the first question",
6 "minanswers": 1,
7 "maxanswers":1,
8 "answers":[
9 {

10 "text": "this is the first answer",
11 "nextQuestion": 2
12 },
13 {
14 "text": "this is the second answer"
15 },
16 {
17 "text": "this is the third answer"
18 }
19]
20 },
21 {
22 "type": 1,
23 "title": "<h3>This is the second question with an embedded
24 video </h3 ><iframe width =\"420\" height =\"315\"
25 src =\" http ://url.to.video/">
26 </iframe >",
27 "minanswers": 1,
28 "maxanswers":1,
29 "answers":[
30 {
31 "text": "this is the first answer",
32 "nextQuestion": 2
33 },
34 {
35 "text": "this is the second answer"
36 },
37 {
38 "text": "this is the third answer"
39 }
40]
41 },
42 {

75

A Configuration Example

43 "type": 2,
44 "title": "this is the third question with a slider",
45 "min":1,
46 "max":10
47 },
48 {
49 "type": 3,
50 "required":true ,
51 "title": "this is the fourth question with text input",
52 "placeholder":"placeholder text"
53 }
54]
55 },
56 "database":{
57 "type":"auto"
58 },
59 "registration": {
60 "required": false ,
61 "userInfo":[
62 {
63 "label": "Age",
64 "required": true ,
65 "type":"number"
66 }
67]
68 },
69 "appearance":{
70 "name": "Testname PWA",
71 "mainColor":"#184 a6e",
72 "secondaryColor" : "#7da468",
73 "welcomeMessage": "<h3 >This is a custom welcome message for the PWA which
74 can be edited in the configuration </h3><h4 style =\"color :#d33\">Custom
75 style is also possible </h4>",
76 "notificationMessage": "Notification message to prompt the user for
77 his assessment"
78 },
79 "smtp":{
80 "type":"auto"
81 },
82 {
83 "server":{
84 "domain":"pwatest.de",
85 "ip":"123.456.789",
86 "certificateEmailAddress":"test@email.de"
87 },
88 "sensordata":{[
89 {
90 "sensor":"microphone",
91 "maxLength":"0:10"
92 }
93]
94 }

76

B Abbreviations

CLI Command Line Interface

EMA Ecological Momentary Assessment

GATT Generic Attribute Profile

JSON JavaScript Object Notation

MCS Mobile Crowdsensing

PWA Progressive Web Application

77

	Introduction
	Problem statement
	Subject area
	Outline

	Fundamentals
	Ecological Momentary Assessment
	Mobile Crowdsensing
	Progressive Web Applications
	Containerization
	Reverse proxy

	Related work
	Intersession-Online
	TrackYourTinnitus
	Combining MCS and EMA in the healthcare domain

	Requirements
	Framework functionality
	PWA functionality
	Non-functional requirements

	Concept
	Browser support
	Components
	Server components
	Client components

	Web sensors
	Interface Design for the PWA
	Mobile version
	Desktop version

	Implementation
	Notification scheduling implementation
	Offline access implementation
	Offline caching
	Offline database

	Sensor implementation
	Microphone
	Geolocation
	Bluetooth
	Ambient light sensor

	Builder implementation
	Docker implementation
	Configuration and validation implementation
	Assessment
	Database
	Registration
	Appearance
	SMTP server
	Server
	Sensor data

	Reverse proxy implementation
	PWA implementation
	Frontend
	Backend

	Compliance with Requirements
	Framework requirements
	PWA requirements
	Non-functional requirements

	Summary
	Conclusion
	Future work

	Bibliography
	Configuration Example
	Abbreviations

