
A Formal Framework for

Adaptive Access Control Models

Stefanie Rinderle1 and Manfred Reichert2

1 Department Databases and Information Systems, University of Ulm, Germany
stefanie.rinderle@uni-ulm.de

2 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

Abstract. For several reasons enterprises are frequently subject to orga-
nizational change. Respective adaptations may concern business
processes, but also other components of an enterprise architecture. In
particular, changes of organizational structures often become necessary.
The information about organizational entities and their relationships is
maintained in organizational models. Therefore the quick and correct
adaptation of these models is fundamental to adequately cope with or-
ganizational changes. However, model changes alone are not sufficient to
guarantee consistency. Since organizational models also provide the basis
for defining access rules (e.g., actor assignments in workflow management
systems or access rules in document-centered applications) this informa-
tion has to be adapted accordingly (e.g., to avoid dangling references or
non-resolvable actor assignments). Current approaches do not adequately
address this problem, which often leads to security gaps and delayed
change implementation.In this paper we introduce a formal framework
for the controlled evolution of organizational models and related access
rules. Firstly, we introduce a set of operators with well-defined seman-
tics for defining and changing organizational models. Secondly, we show
how to define access rules based on such models. In this context we
also define a notion of correctness for access rules. Thirdly, we present
a formal framework for the (semi-automated) adaptation of access rules
when the underlying organizational model is changed by exploiting the
semantics of the applied changes. Altogether the presented approach
provides an important contribution for realizing adaptive access control
frameworks.

1 Introduction

Enterprise information systems comprise a variety of application and system
components. Important tasks to be accomplished include the support of busi-
ness processes, the management of enterprise documents, and the integration
of enterprise applications. For the implementation of respective system services
different middleware exists, including workflow management technology, doc-
ument management systems, and tools for enterprise application integration
[1,2,3].

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IX, LNCS 4601, pp. 82–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Formal Framework for Adaptive Access Control Models 83

1.1 Problem Description

Controlled access to its application services as well as to the application ob-
jects managed by them (e.g., business processes, documents, resources, or ap-
plication systems) constitutes an important task for any information system
(IS) [4,5,6,7,8]. This results in a large number of access rules covering different
system aspects and user privileges [9]. Usually, these access rules have to be
frequently adapted due to changes of organizational structures [10,11,12]. Such
changes become necessary, for instance, when an organizational unit is split into
two sub-units, two existing units are joined to a new one, a group of users is
reassigned to a new organizational unit, or simply an employee leaves the organi-
zation.1 As a consequence, access rules whose definition refers to organizational
entities may have to be modified as well. We denote the ability of an enterprise
IS to adapt access rules after organizational model changes as adaptive access
control.

Typically, information about organizational entities (e.g., organizational units,
roles, and users) and the relations between them (e.g., assignment of a user to a
role, hierarchical relations between organizational units) is kept in an organiza-
tional model. Based on such a model, access rights and user privileges (e.g., actor
assignments in workflow systems or access rules in document-centered applica-
tions) can be defined (cf. Fig. 1). Consequently, when organizational changes oc-
cur, both the organizational model and related access rules have to be adapted
in a correct and consistent manner. The focus of this paper is on the correct
handling of the evolution of organizational models and related access rules.

Another problem arises from the fact that the (middleware) components used
to build the application services of information systems often maintain their own
organizational model and security component; i.e., the information about orga-
nizational entities and their relations as well as the access rules based on them
may be scattered over different system components. On the one hand this has led
to functional redundancy, on the other hand (heterogeneous) information about
organizational structures is kept redundantly in different security components.
The latter very often results in inconsistencies, high costs for system maintain-
ability, and inflexibility when dealing with organizational change. In this paper,
however, we abstain from issues related to this heterogeneity problem.

The correct evolution of an organizational model is only one side of the coin
when dealing with organizational changes; the other one is to correctly and
efficiently adapt the access rules whose definition is based on this organizational
model. Note that in large environments hundreds up to thousands of access
rules may exist, each of them capturing different privileges of the IS. This, in
turn, makes it a hard job for the system administrator to quickly and correctly
adapt access rules to model changes. Current approaches do not sufficiently
deal with this issue. They neither exploit the semantics of the applied model
changes nor do they provide automated support for adaptating access rules and
for migrating them to the changed organizational model. In practice, this often
leads to problems like non-resolvable actor assignments, unauthorized access
1 For respective results from one of our case studies in the clinical domain see [10].

84 S. Rinderle and M. Reichert

OU = medical clinic

OU = administrationOU = treatment area

A = Dr. Smith A = Black A = Hunter

R = internist R = secretary

is subordinated is subordinated

belongs tobelongs to

R = assistant

belongs to

has

R = staff

has

specializesspecializes

has

a) Organizational Model OM: b) Access Rules on OM:

AR1 Role=‘staff’ (+)
AR2 OrgUnit=‘treatment area’
AR3 (Role=’secretary’) OR

(Role=’assistant’)
AR4 NOT(OrgUnit=’medical clinic’(+))

Valid Actor Sets:

AR1: {Dr. Smith, Black, Hunter, Jones}
AR2: {Dr. Smith, Black}
AR3: {Black, Hunter, Jones}
AR4: {Jones}

specializes

OU: OrgUnit A: Actor R: Role

A = Jones

has

Fig. 1. Organizational Model and Related Access Rules (simplified)

to documents, or inconsistent user worklists. Assume, for example, that two
organizational units are joined to make the enterprise more efficient (cf. Fig. 3).
If this change is performed in an uncontrolled manner, orphaned (dangling)
references may result; i.e., access rules referring to org. entities which are no
longer present in the new organizational model. Even more critical might be cases
where changes of an organizational model lead to access rules for which no actor
qualifies any more. In process–aware information systems [13], for example, such
non-resolvable actor assignments lead to tasks which cannot be processed and
therefore have to be forwarded to the system administrator. As a consequence,
business process execution may be delayed and security gaps may arise.

To deal with these challenges we need an enterprise security service which
manages the organizational model as well as its evolution in a consistent and
correct manner. Furthermore, model changes have to be efficiently propagated
to access rules without causing inconsistencies or security gaps. Finally, we have
to consider passive access rules, which are checked when a certain privilege is
applied (e.g., at the moment a user wants to access a document), as well as active
access rules used to determine a set of potential users before accessing an object
or task (e.g., to create work items for user worklists in workflow systems).

Altogether these tasks are non-trivial. Both organizational models and access
rules may have complex structure, and we have to analyze and understand the
interdependencies between changes of an organizational model and necessary
adaptations of related access rules. This necessitates a framework with precise
and formal semantics for reasoning about model and rule changes.

1.2 Contribution

In this paper, we present a formal framework for the controlled evolution of or-
ganizational models and related access rules. Firstly, we introduce a meta model
and a set of operators with well-defined semantics for defining and changing or-
ganizational models. Secondly, we show how to define access rules based on such

A Formal Framework for Adaptive Access Control Models 85

models. We provide a precise semantics for access rules and introduce a notion
of correctness for them. These are important pre-conditions for reasoning about
rule changes. Thirdly, we present a formal framework for the (semi-automated)
adaptation of access rules when changing the related organizational model. For
selected organizational changes we show how they can be realized in our formal
framework, how their effects on access rules look like, and how these access rules
can be migrated to the new version of the organizational model. Thereby we
make use of the semantics of model changes and we introduce formally sound
migration concepts. Altogether the presented approach provides an important
contribution for realizing adaptive enterprise access control frameworks.

In [14] we have already introduced first results on adaptive access control (i.e.,
a criterion for correctness of access rules and exemplary strategies for avoiding
dangling references in such rules after model changes). This paper extends this
work in several directions: On the one hand, we elaborate these previous results
(e.g., by considering more complex access rules and model changes, or by pro-
viding more details on architectural issues). On the other hand, as completely
new results, the effects of organizational changes on actor sets are evaluated.
For example, we deal with the challenging question when actor sets become
empty after model changes. The remainder of this paper is organized as follows:
Section 2 introduces our framework for defining and changing organizational
models. Section 3 shows how to define access rules based on this framework, and
Section 4 illustrates how to adapt access rules to model changes. Architectural
and implementation issues are sketched in Section 5. Section 6 discusses related
work and Section 7 concludes with a summary and an outlook on future work.

2 Framework for Creating and Evolving Organizational
Models

In order to be able to analyze changes of organizational models as well as
their impact on related access rules we need a formalization of organizational
structures; i.e., a formal description of organizational entities and the relations
between them. Based on such a formalization it should be possible to specify
changes and their operational semantics. For this purpose, first of all, we intro-
duce a meta model for defining organizational structures, which is comparable to
the meta models current access control models are based on (e.g., [6,15,16]). In
this paper we restrict our considerations to the basic entity types organizational
unit, role and actor (cf. Fig. 2), and to the particular relation types existing
between respective entities (e.g., actor A1 belongs to organizational unit O1,
actor A1 has role R1, role R1 specializes role R0, etc.). In the overall frame-
work, we are currently realizing in the ADEPT2 project [17], we additionally
consider entity types like position, group, and capability (see [18] for details).
However, in this paper we omit these entity types in order to better focus on
core issues related to the evolution of organizational models and related access
rules.

86 S. Rinderle and M. Reichert

Organizational
Unit Actor Role

is subordinated

has

specializes

belongs to

(0,1)(0,n)

(0,n) (0,1) (0,n) (0,n)

(0,n)(0,1)

Fig. 2. Organizational Meta Model (in ER Notation)

Regarding the meta model OMM used in this paper (cf. Fig. 2) we specify
the set of valid entity types EntityTypes and the set of valid relation types
RelationTypes as follows:

– EntityTypes := {OrgUnit, Actor, Role}
– RelationTypes := {(OrgUnit, OrgUnit, is subordinated), (Role, Role,

specializes), (Actor, OrgUnit, belongs to), (Actor, Role, has)}
We further denote

– E := EId:= {(entId, entType) | entId ∈ Id, entType ∈ EntityTypes} as the
set of all entities definable over a set of identifiers Id and

– RE := {(e1, e2, relType) | e1 = (eId1, eType1), e2 = (eId2, eType2) ∈ E ,
(eType1, eType2, relType) ∈ RelationTypes} as the set of all tuples that
can be used to define relations over E

Actors are users (or resources) who need privileges to work on certain tasks
(e.g., workflow activities) or to access certain data objects (e.g., business doc-
uments). Generally, access rules are not directly linked to actors, but to the
more abstract concept of a role. Roles group privileges and are assigned to ac-
tors based on their capabilities and competences. Furthermore, an actor can
play different roles: A physician in a hospital, for example, may possess the two
roles ward doctor and radiologist. Actors with same role are being considered
as interchangeable. Roles can be hierarchically organized, i.e., a role may have
one or more specialized sub-roles. Thereby a sub-role inherits all privileges of its
super–role and may extend this set by additional privileges. Finally, each actor
can be assigned to an organizational unit. Like roles, organizational units can be
hierarchically structured; i.e., a particular unit may have one or more subordi-
nated units (e.g., a hospital may have an intensive care unit and an emergency
laboratory as subordinated units). Based on this meta model we can define the
notion of organizational model (cf. Def. 1). For the sake of readability, we do not
consider the cardinalities associated with the relation types of our meta model.

Definition 1 (Organizational Model). For the organizational meta model
OMM let E be the set of all entities over a given set of identifiers and let RE
be the set of all relations over E (see above). Then:
An organizational model OM is defined as a tuple (Entities, Relations) with
Entities ⊆ E and Relations ⊆ RE such that

A Formal Framework for Adaptive Access Control Models 87

– all entity identifiers are used in a unique way
– there are no cyclic dependencies between roles (relation specializes) or

between organizational units (relation is subordinated), formally:
• ∀ (role, Role) ∈ Entities: (role, Role) �∈ Spec(OM, (role, Role)) with
Spec(OM, el):=

⋃
el′:(el′,el,specializes)∈Relations ({(el′, Role)} ∪ Spec(OM, el′))

• ∀ (ou, OrgUnit) ∈ Entities: (ou, OrgUnit) �∈ Sub(OM, (ou, OrgUnit)) with
Sub(OM, el):=

⋃
el′:(el′,el,issubordinated)∈Relations ({(el′, OrgUnit)}∪Sub(OM, el′))

The set of all org. models definable on basis of OMM is denoted as OM.

As it can be seen from Def. 1 we define a notion of correctness imposed on
organizational models. It is based on different correctness constraints in order to
exclude undesired effects when creating and changing such models. For example,
a unique usage of entity identifiers is claimed. Another constraint refers to the
exclusion of cyclic dependencies between roles (relation specializes) as well as
cyclic dependencies between organizational units (relation belongs to) due to
their unclear semantics. The definition of further correctness constraints depends
on the particular application scenario and is omitted in this paper.

In order to be able to express all relevant kinds of changes on an organizational
model OM our framework provides a complete set of basic change operations;
e.g., for creating or deleting organizational entities and the relations between
them. For each change operation we define formal pre– and post–conditions,
which preserve the correctness properties of OM when applying the operation(s)
to this model (assuming that OM has been a correct model before). In addition
to these basic change operations we provide frequently used, high–level oper-
ations in order to facilitate change definition and to capture more semantics
about model changes. Examples for such high-level operations include the join
of two entities (e.g., fusion of two organizational units; cf. Fig. 3) or the split of
an existing entity into two new entities (e.g., a role; cf. Fig. 3).

Definition 2 (Change Framework for Organizational Models). Let E be
the set of all entities over a set of identifiers and let RE be the set of all relations
over E. Let further OM = (Entities, Relations) be a (correct) organizational
model which can be transformed into another (correct) organizational model OM’
:= (Entities’, Relations’) by applying change (transaction) Δ = op1, ..., opn. The
notion Δ = op1, ..., opn describes the sequential application of basic (cf. Tab. 1)
or high-level (cf. Tab. 2) change operations op1, ...opn to OM. This sequence of
change operations is encapsulated within change (transaction) Δ.

For example, a new relation (of type relT ype) between two entities e1 and e2
of an organizational model OM = (Entities, Relations) can be created by ap-
plying the basic change operation CreateRelation(OM, e1, e2, relType) to
OM . The pre–conditions associated with this operation ensure that both enti-
ties e1 and e2 are present in OM and that (e1, e2, relT ype) constitutes a valid
relation not yet present in OM . The post–condition of this operation, in turn,
describes the effects resulting from the application of this operation to OM . In
our example, relation (e1, e2, relT ype) is added to the set Relations whereas set
Entities remains unchanged.

88 S. Rinderle and M. Reichert

OU = medical clinic

OU = administrationOU = treatment area

A = Dr. Smith A = Black A = Hunter

R = internist R = secretary

is subordinated is subordinated

belongs tobelongs to

R = assistant

belongs to

has

R = staff

has

specializesspecializes

has

OU: OrgUnit
A: Actor
R: Role

OU = medical clinic

OU = patient services

A = Dr. Smith A = Black

R = internist

R = admin staff

is subordinated

belongs to

R = assistant

belongs to

hashas has

Change

b) Change =

(JoinEntities(OM,(treatment area,OrgUnit),(administration,OrgUnit),(patient,services,OrgUnit),
 DeleteRelation(OM,((Hunter,Actor),(secretary,Role),has)),
 DeleteRelation(OM,((Jones,Actor),(secretary,Role),has)),
 DeleteRelation(OM,((secretary, Role),(staff,Role),specializes)),
 DeleteEntity(OM,(secretary,Role)),
 SplitEntity(OM,(staff,Role),(medical staff,Role),(admin staff,Role)),
 CreateRelation(OM,(Hunter,Actor),(admin staff,Role),has),
 DeleteEntitiy(OM,(Jones,Actor)))

R = medical staff

specializesspecializes

join two
org. units

delete role

split role

a) Organizational Model OM: Organizational Model OM’:

specializes

delete
actor

A = HunterA = Jones

belongs to

specializes

has

Fig. 3. Structural Change of the Organizational Model OM from Fig. 1

Table 2 contains high–level change operations which can be realized by ap-
plying a sequence of basic change operations. The purpose of these high–level
operations is to better assist users in defining complex, but common changes. In
this paper we consider the operations for reassigning existing relations, for join-
ing two entities (e.g., two organizational units), and for splitting entities (e.g.,
roles). An example for joining two organizational units treatment area and
administration to the new unit patient services is depicted in Fig. 3.

3 Framework for Defining (Correct) Access Rules

How do changes of an organizational model OM affect the access rules based on
it? In order to find a correct and precise answer to this challenging question, first
of all, we must be able to formally define access rules as well as their semantics.
Based on this formalization it should be possible to determine which access rules
(on OM) are affected by a model change Δ, how the effects of Δ on these rules
look like, and which rule adaptations become necessary.

Let OM = (Entities, Relations) be an organizational model. Based on the
entities and relations defined by OM we can specify rules for controlling the
access to processes, documents, or other objects. Since the structuring as well
as the semantics of these access rules is fundamental for the (semi-) automated
derivation of rule adaptations after model changes, we consider this issue in more
detail. We distinguish between elementary and complex access rules.

A Formal Framework for Adaptive Access Control Models 89

Table 1. Basic Change Operations on Organizational Models

CreateEntity:OM× Identifier × EntityType �→ OM with CreateEntitiy(OM, eId, entType) = OM’
Preconditions: • (eId, entType) �∈ Entities
Postconditions: • Entities’ = Entities ∪ {(eId, entType)}

• Relations’ = Relations
DeleteEntity: OM× E �→ OM with DeleteEntity(OM, e) = OM’

Preconditions: • e ∈ Entities
• � ∃ rel = (e1, e2, relType) ∈ Relations with e1 = e ∨ e2 = e

Postconditions: • Entities’ = Entities \ {e}
• Relations’ = Relations

CreateRelation: OM× E × E × RelType �→ OM with CreateRelation(OM, e1, e2, relType) = OM’)
Preconditions: • e1 := (eId1, eType1), e2 := (eId2, eType2) ∈ Entities

• (e1, e2, relType) ∈ R
• (e1, e2, relType) �∈ Relations

Postconditions: • Entities’ = Entities
• Relations’ = Relations ∪ {(e1, e2, relType)}
• for eType1=eType2 = Role ∧ relType = specializes: e1 �∈ Spec(OM, e2)Θ

• for eType1=eType2 = OrgUnit ∧ relType = is subordinated: e1 �∈ Sub(OM, e2)
DeleteRelation: OM×RE �→ OM with DeleteRelation(OM, relation) = OM’

Preconditions: • relation ∈ Relations
Postconditions: • Entities’ = Entities

• Relations’ = Relations \ {relation}

Θ For a formal definition of Spec and Sub see Definition 1

An elementary access rule (cf. Def. 3) consists of a simple expression that
qualifies a set of entities from OM (i.e., a subset of Entities) for this rule.
The elementary access rule Actor = ’Hunter’, for example, expresses that ex-
actly one entity, namely the actor with name ’Hunter’, qualifies for this rule and
therefore owns the privileges associated with it. As a second example consider
the elementary access rule OrgUnit = ’medical clinic’. For this access rule
we denote the organizational unit medical clinic as the qualifying entity. Fur-
thermore, all actors belonging to this unit own the privileges associated with this
rule.

For entities that can be hierarchically organized (i.e., for organizational units
and roles in our meta model) we further support the definition of transitive ele-
mentary access rules. As an example consider the elementary access rule OrgUnit
= medical clinic(+). For this transitive rule (indicated by the ’+’) the set of
qualifying entities comprises the organizational unit medical clinic itself and
all of its directly or indirectly subordinated units (i.e., the transitive closure with
respect to the ’is subordinated’ relation). All actors belonging to one of these
qualifying units own the privileges associated with this elementary rule.

Similar considerations can be made regarding the ’specializes’ relation between
entities of type Role.

Definition 3 (Elementary Access Rule). Let OM = (Entities, Relations)
be an organizational model based on OMM. Then an elementary access rule EAR
on OM is defined as follows:
EAR ≡ EAR1 | EAR2 | EAR3 with

EAR1 ←− (EntityType = el), EAR2 ←− (OrgUnit = el(+)), EAR3 ←− (Role = el(+))

90 S. Rinderle and M. Reichert

Table 2. High-Level Change Operations on Organizational Models

ReAssignRelaton: OM×RE × E × E �→ OM with ReAssignRelation(OM, r, e, eNew) = OM’
Preconditions: • r = (e1, e2, relType) ∈ Relations

• e = e1 ∨ e = e2
• eNew := (eIdNew, eTypeNew) ∈ Entities
• e = e1:=(eId1, eType1) =⇒ eTypeNew = eType1
• e = e2:=(eId2, eType2) =⇒ eTypeNew = eType2
• e = e1:=(eId1, eType1) =⇒ (eNew, e2, relType) �∈ Relations
• e = e2:=(eId2, eType2) =⇒ (e1, eNEw, relType) �∈ Relations

Postconditions: • e = e1 =⇒ Relations’ = Relations ∪ {(eNew, e2, relType} \
{(e1, e2, relType}
• e = e2 =⇒ Relations’ = Relations ∪ {(e1, eNew, relType} \
{(e1, e2, relType}
• for e = e1 ∧ eType1 = eType2 = eTypeNew = Role ∧ relType
= specializes: eNew �∈ pred*(OM, e1)
• for e = e2 ∧ eType1 = eType2 = eTypeNew = Role ∧ relType
= specializes: e2 �∈ pred*(OM, eNew)
• for e = e1 ∧ eType1 = eType2 = eTypeNew = OrgUnit ∧
relType = is subordinated: eNew �∈ pred*(OM, e1)
• for e = e2 ∧ eType1 = eType2 = eTypeNew = OrgUnit ∧
relType = is subordinated: e2 �∈ pred*(OM, eNew)

JoinEntities: OM× E × E × Identifiers �→ OM with JoinEntities(OM, e1, e2, nId) = OM’
Preconditions: • e1= (eId1, eType), e2 = (eId2, eType) ∈ Entities

• (nId, eType) �∈ Entities
• eType �= Actor

Basic Change Operations: • CreateEntity(OM, (nId, eType)), eNew := (nId, eType)
• ∀ (e, e1, relType) ∈ Relations: ReassignRelation(OM, (e, e1,
relType), e1, eNew)
• ∀ (e, e2, relType) ∈ Relations: ReassignRelation(OM, (e, e2,
relType), e2, eNew)
• ∀ (e1, e, relType) ∈ Relations: ReassignRelation(OM, (e1, e,
relType), e1, eNew)
• ∀ (e, e2, relType) ∈ Relations: ReassignRelation(OM, (e, e1,
relType), e2, eNew)
• DeleteEntity(OM, e1)
• DeleteEntity(OM, e2)

SplitEntity: OM × E × E × E �→ OM with SplitEntity(OM, eOld, e1, e2) = OM’
Preconditions: • (eIdOld, eType) := eOld ∈ Entities

• (e1Id, eType) := e1, (e2Id, eType) := e2 �∈ Entities
• eType �= Actor

Basic Change Operations: • CreateEntity(OM, e1)
• CreateEntity(OM, e2)
• All actors belonging to the splitted org. unit or possessing the
role to be splitted have to be assigned to one of the new entities
or to both of them
• Default behaviorχ for sub-roles: If the entity to split is of type
Role reassign its sub-roles to both new resulting roles after split.
• Default behavior for super-roles: If the entity to split is of type
Role and has a super-role reassign both resulting roles after split
to this super-role.
• Default behavior for subordinated org. units: If the entity to split
is of type OrgUnit reassign its subordinated org. units to exactly
one of the new org. units (user decision).
• Default behavior for superordinated org. units: If the entity to
split is of type OrgUnit and has a superordinated org. unit assign
both new org. units to this superordinated unit.
• DeleteEntity(OM, eOld)

The post conditions of the high-level changes result from the aggregation of the
post conditions of the applied basic change operations.
χ The user may override the default behavior any time.

The set of entities qualifiying for one of the elementary access rules EAR1, EAR2
or EAR3 can be determined as follows:

A Formal Framework for Adaptive Access Control Models 91

– EAR1 ←− (EntityType = el)

QualEntities(OM, EAR1) =

{ {(el, EntityType)} : (el, EntityType) ∈ Entities
∅ : otherwise

– EAR2 ←− (OrgUnit = el(+))

QualEntities(OM, EAR2) =

{ {(el, OrgUnit)} ∪ Sub(OM, el) : (el, OrgUnit) ∈ Entities
∅ : otherwise

with
Sub(OM, el):=

⋃
el′:(el′,el,issubordinated)∈Relations

({(el′, OrgUnit)} ∪ Sub(OM, el′)
)

– EAR3 ←− (Role = el(+))

QualEntities(OM, EAR3) =

{ {(el, Role)} ∪ Spec(OM, el) : (el, Role) ∈ Entities
∅ : otherwise

with

Spec(OM, el):=
⋃

el′:(el′,el,specializes)∈Relations

({(el′, Role)} ∪ Spec(OM, el′)
)

In general, the semantics of an access rule (defined on OM) is determined by
the set of actors from OM qualifying for this rule (valid actor set). Definition 4
presents the valid actor sets for elementary access rules.

Definition 4 (Valid Actor Set for Elementary Access Rules). Let OM =
(Entities, Relations) be an organizational model. Let Act(OM) := {(a, Actor)|
(a, Actor) ∈ Entities} be the set of all actors defined by OM, and let EAR be an
elementary access rule on OM. Then: Valid actor set VAS(OM, EAR) denotes
the set of all actors (from OM) who qualify for EAR, i.e., who own the privileges
associated with rule EAR. Formally:

– AR ←− (EntityType = el) =⇒

V AS(OM, AR) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(el, Actor)|(el, Actor) ∈ Act(OM)} ifEntityType = Actor
{(a, Actor)|(a, Actor) ∈ Act(OM)∧
∃(a, el, belongsto) ∈ Relations)} ifEntityType = OrgUnit

{(a, Actor)|(a, Actor) ∈ Act(OM)∧
∃(a, el, has) ∈ Relations)} ifEntityType = Role

– AR ←− (EntityType = el(+)) =⇒

V AS(OM, AR) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{(a, Actor)|(a, Actor) ∈ Act(OM)∧
∃el′ ∈ QualEntities(OM, AR) :
∃(a, el′, belongsto) ∈ Relations)} ifEntityType = OrgUnit

{(a, Actor)|(a, Actor) ∈ Act(OM)∧
∃el′ ∈ QualEntities(OM, AR) :
∃(a, el′, has) ∈ Relations)} ifEntityType = Role

In order to enable the definition of more complex access rules we allow for the
composition of existing rules (cf. Def. 5). For this purpose the following operators
can be used: negation, conjunction and disjunction. Def. 5 also sets out a precise
semantics for complex access rules based on their valid actor sets.

Definition 5 ((Complex) Access Rule). Let OM = (Entities, Relations) be
an organizational model based on OMM. Then an access rule AR on OM is
defined as follows:

AR ≡ EAR | NEAR | CAR | DAR with

– EAR is an elementary access rule (cf. Def. 3)

– NEAR ←− (NOT (EAR)) where EAR is an elementary access rule
VAS(OM, NEAR) = Act(OM) \ VAS(OM, EAR)

92 S. Rinderle and M. Reichert

– DAR ←− (AR1 OR AR2) with AR1 and AR2 are access rules
VAS(OM, AR) = VAS(AR1) ∪ VAS(AR2)

– CAR ←− (AR1 AND AR2) with AR1 and AR2 are access rules
VAS(OM, AR) = VAS(AR1) ∩ VAS(AR2)

Consider the organizationalmodelOM depicted in Fig. 1a). An example for a com-
plexaccess ruleonOM is theexpressionAR←−(OrgUnit=medicalclinic(+)AND
Role = assistant)with valid actor set VAS(AR)= {Dr. Smith, Black, Hunter,
Jones} ∩ {Black}= {Black}.

Finally, we provide a criterion which allows us to decide when an access rule
AR is valid with respect to a given organizational model OM . We call an access
rule valid if the following two conditions hold:

(1) AR does not contain dangling references, i.e., it does not refer to entities
which are not present in OM . Formally:

DanglingRef(OM, AR)=
{
False if∀ EAR in AR : QualEntities(OM, EAR) �= ∅
True otherwise

where the notion EAR ∈ AR describes all elementary access rules EAR contained
in access rule AR.

(2) AR is resolvable, i.e., the set of valid actors VAS(OM , AR) does not become
empty. We consider this second constraint as an important property of any access
control module in order to ensure that objects remain accessible or tasks remain
doable. Formally:

Resolv(OM, AR) =
{
True if V AS(OM, AR) �= ∅
False otherwise

Note that dangling references or non-resolvable access rules might occur when
organizational models are changed in an uncontrolled manner (cf. Fig. 4).

Definition 6 (Valid Access Rule). Let OM = (Entities, Relations) be an
organizational model and let AR be an access rule on OM. Then AR is valid re-
garding OM if and only if there are no dangling references within the elementary
access rules contained in AR and AR is resolvable over the set Entities. Formally:
Valid(OM, AR) = True ⇐⇒ (DanglingRef(OM, AR) = False ∧ Resolv(OM, AR) = True)

As an example consider the change scenario depicted in Fig. 4 where organi-
zational model OM is transformed into another organizational model OM ′ by
applying change Δ (for a formal definition of this change see Fig. 3 b)). Access
rule AR1 ←− Role=’staff(+)’ defined on OM would contain a dangling refer-
ence when migrating this rule to the new organizational model OM ′. The same
holds for access rules AR2 and AR3. Access rule AR4←− NOT(OrgUnit=’medical
clinic’(+)) is resolvable on OM (VAS(OM’,AR4) = {Jones}), but no longer re-
solvable on OM ′. These simple examples demonstrate that uncontrolled changes
of an organizational model can lead to security gaps or access errors later on if
not treated in an adequate way. In the following section we introduce a formalism
for adaptive access control rules in order to avoid such problems.

A Formal Framework for Adaptive Access Control Models 93

OU = medical clinic

OU = administrationOU = treatment area

A = Dr. Smith A = Black A = Hunter

R = internist R = secretary

is subordinated is subordinated

belongs tobelongs to

R = assistant

belongs to

has

R = staff

has

specializesspecializes

has

OU: OrgUnit
A: Agent
R: Role

OU = medical clinic

OU = patient services

A = Dr. Smith A = Black

R = internist

R = admin staff

is subordinated

belongs to

R = assistant

belongs to

hashas has

Change

R = medical staff

specializesspecializes

a) Organizational Model OM: Organizational Model OM’:

specializes

A = HunterA = Jones

belongs to

specializes

has

b) Access Rules on OM: c) Access Rules on OM’:

AR1 Role=‘staff’(+) AR1: dangling reference
AR2 OrgUnit=‘treatment area’ AR2: dangling reference
AR3 (Role=’secretary’) OR (Role=’assistant’) AR3: dangling reference
AR4 NOT(OrgUnit=medical clinic’(+)) AR4: not resolvable (VAS(OM’,AR4)) =

Migration?

Fig. 4. Changing the Organizational Model OM from Fig. 1 and the Resulting Problem
of Migrating Access Rules

4 Impact of Organizational Changes on Access Rules

In this section we introduce our formal framework for realizing adaptive access
control models. When transforming an organizational model OM into another
model OM ′ one must be able to decide which access rules defined on OM can
be directly migrated to OM ′, i.e., which rules can be re–linked to the new model
version without need for adaptation. Intuitively, this is the case for access rules
which are also valid on OM ′ (cf. Def. 6). Otherwise, we have to adapt access
rules that are no longer valid in order to keep the total set of access rules on the
new model version OM ′ consistent. Due to the potentially large number of access
rules to be managed we want to assist users as much as possible in accomplishing
this task. In particular, we aim at the (semi-) automated migration and trans-
formation of access rules in order to adapt them to changes of the organizational
model if possible. Finding meaningful access rule adaptations is based on exploit-
ing the semantics of the applied change operation(s). With ’semi-automated’ we
mean that the system shall assist the user in an adequate way, i.e., by explaining
the potential conflicts arising after org. model changes (e.g., dangling references)
and by making suggestions about potential rule transformations.

In Section 4.1 we provide a general criterion for the correct migration of ac-
cess rules when changing the organizational model these rules are based on.
Section 4.2 deals with the problem of dangling references. In Section 4.3 we

94 S. Rinderle and M. Reichert

analyze how the valid actor set of an access rule may change when migrating
this rule to a modified organizational model.

4.1 Basic Migration Rule

First of all, we provide a general criterion for the correct migration of access
rules, which is based on the considerations we made in Section 3:

Axiom 1 (Direct Migration of Access Rules). Let OM = (Entities, Rela-
tions) be a (correct) organizational model and AR be a valid access rule on OM,
i.e., Valid(OM, AR) = True. Let further Δ = op1, ..., opn be a change (trans-
action) consisting of a sequence of basic and/or high–level change operations,
which transforms OM into another (correct) organizational model OM’. Then:
AR can be directly migrated to OM’ if Valid(OM’, AR) = True.

As a simple example consider the scenario depicted in Fig. 4a). Assume that
access rule AR5 ←− Role = ’internist’ is defined on OM . When migrating
AR5 to OM ′ there are no dangling references since entity internist is still
present in OM ′. Further, the actor set of AR5 remains resolvable over OM ′

(VAS(OM’,AR5) = {Dr. Smith}). Consequently, AR5 is a valid access rule on
OM ′ as well (i.e., Valid(OM ′, AR) = True) and can therefore be directly migrated
to OM ′ according to Axiom 1.

4.2 Static Aspect – Dangling References

We analyze the problem of dangling references when migrating access rules to a
changed organizational model. For the sake of readability, first of all, we consider
the application of one single change operation. Following this, we deal with multi-
operation changes and their effects on access rules.

Application of Single Change Operations Δop. We consider a change
consisting of one single, basic or high–level change operation Δop := Δ = op
applied to an organizational model OM . We analyze the effects of this model
change on related access rules, particularly regarding the occurence of dangling
references.

As a first important result we can conclude that direct migration of an ac-
cess rule from OM to OM ′ (without additional checks) is always possible in
connection with change operation CreateEntity(OM, ...)(cf. Proposition 1).

Proposition 1 (Direct Migration of Access Rules). Let OM be a (correct)
org. model and let AR be a valid access rule on OM, i.e., Valid(OM, AR) =
True. Let further Δop be a change operation which transforms OM into another
(correct) org. model OM’. Then: AR can be directly migrated (re-linked) to OM’
(i.e., Valid(OM’, AR) = True) if Δop = CreateEntity(OM, ...).

When creating a new entity and solely adding this entity to OM we can always
guarantee that an arbitrary access rule valid on OM will remain valid on the

A Formal Framework for Adaptive Access Control Models 95

new model version OM ′ as well: No dangling references occur and the change is
invariant regarding the set of valid actors (of any access rule).

If an access rule AR cannot be directly transferred to the changed org. model
OM ′ there may be two reasons for that. Either there are dangling references (e.g.,
after deleting an entity from OM to which AR refers) or the set of valid actors
becomes empty for AR on OM ′. In this section we cope with the first problem.
Proposition 2 states for which basic change operations we can guarantee that
there will be no dangling references within existing rules after a change.

Proposition 2 (No Dangling References). Let OM be a (correct) organi-
zational model and let AR be a valid access rule on OM, i.e., Valid(OM, AR) =
True. Let further Δop be a change operation which transforms OM into another
(correct) organizational model OM’. Then: DanglingRef(OM’, AR) = False if
Δop ∈ {CreateEntity(OM,...), CreateRelation(OM,...),

DeleteRelation(OM,...), ReAssignRelation(OM,...)}.
The application of all other basic and high–level change operations Δop ∈
{DeleteEntity, JoinEntities, SplitEntity} to an org. model OM may re-
sult in dangling references for access rules defined on OM . The challenging
question is whether we can adapt respective access rules in a syntactically and
semantically correct manner in order to migrate them to the new org. model
OM ; i.e., no dangling reference must occur after the rule transformation and
the derived rule should still be compliant with its original objective.

We have a more detailed look at the two change operations JoinEntities
and SplitEntity from Table 2 in order to deal with these questions. When
applying one of these high–level change operations to an organizational model,
obviously, dangling references within access rules might occur. Adaptation Policy
1 indicates which rule adaptations can be automatically derived in such a case.
Particularly, Adaptation Policy 1 makes use of the semantics of these high-level
change operations. For example, if two entities e1 and e2 are joined to a new
entity e3, resulting dangling references to e1 or e2 within access rules could be
substituted by references to e3. At this point it is important to mention that
all derived rule adaptations solely constitute suggestions, i.e., users may apply
another strategy if more favorable.

Rule Adaptation Policy 1 (Avoiding Dangling References). Let OM =
(Entities, Relations) be a (correct) org. model and let AR be a valid access rule on
OM. Let further Δop ∈ {JoinEntities(OM, ...), SplitEntity(OM, ...)} be
a high-level change operation which transforms OM into another (correct) org.
model OM’. Then: When applying adaptation rule δAR (see below) to AR this
rule can be transformed into an access rule AR’ on OM ′ which does not contain
dangling references and which is semantically ”close” to AR. For respective Δop

the adaptation rule δAR turns out as follows:

– Δop = JoinEntities(OM, e1, e2, newE) =⇒ δAR:
∀ [N]EAR in AR with

[N]EAR:= [NOT](EntityType = e1) ∨ [N]EAR:= [NOT](EntityType = e2)

replace [N]EAR by [N]EAR’ ≡ [NOT](EntityType = newE) ∧

96 S. Rinderle and M. Reichert

∀ [N]EAR in AR with
[N]EAR:=[NOT](EntityType=e1(+)) ∨ [N]EAR:= [NOT](EntityType=e2(+))

replace [N]EAR by [N]EAR’ ≡ [NOT](EntityType = newE(+))

– Δop = SplitEntity(OM, e, e1, e2) =⇒ δAR:

∀ [N]EAR in AR with [N]EAR:= [NOT](EntityType = e)

replace [N]EAR by
[N]EAR ≡ [NOT](EntityType = e1 OR EntityType = e2) ∧

∀ [N]EAR in AR with [N]EAR:= [NOT](EntityType = e(+))

replace [N]EAR by
[N]EAR ≡ [NOT](EntityType = e1(+) OR EntityType = e2(+))

We illustrate these rule adaptations policies by means of examples. Figure 5a
shows the join of two organizational units OU1 and OU2 resulting in a new orga-
nizational unit OUNew. Access rules AR1 and AR2 on OM refer to one or both of
the joined organizational units (cf. Figure 5b). According to Adaptation Policy
1 these access rules could then be adapted by substituting the ”old” reference to
OU1(+) OR OU2(+) in AR1 by a reference to OUNew(+) and the ”old” reference
to OU1(+) in AR2 by a reference to OUNew (+) (analogously for AR3).

Note that the described adaptation policies may also affect the valid actor
sets of access rules when migrating them to the changed organizational model
OM ′. For example, for access rule AR2 its valid actor set on OM ′ becomes
bigger: VAS(OM, AR2) = {A1, A2} and VAS(OM’,AR2) = {A1, A2, A3}. Gen-
erally, changes of the valid actor set are more critical if it becomes smaller or even
an empty set. Regarding our example from Figure 5, for instance, this would be
exactly the case for access rule AR3 when migrating it to OM ′ in the described
way. We come back to this problem in Proposition 3 (cf. Section 4.3).

Figure 6 shows how access rules can be adapted when applying a split oper-
ation (here splitting organizational unit OU2 into two new organizational units
OU2 1 and OU2 2). According to Adaptation Policy 1 the given access rule con-
taining a reference to the splitted organizational unit OU2 could be adapted by

AR1 (OrgUnit = OU1(+)) OR (OrgUnit = OU2(+))

AR2 OrgUnit = OU1(+)

Δ = JoinEntities (OM, OU1, OU2, OUNew)
a) OM OM’

OU1

OrgUnit

SubOU2SubOU1

OU2

OrgUnit

A1

Actor

A2

Actor

A3

OUNew

OrgUnit

SubOU2

OrgUnit

SubOU1

OrgUnit

A1

Actor

A2

Actor

A3

Actor

belongs tois subordinated

belongs tobelongs to

belongs to

belongs tobelongs to

is subordinated is subordinated

b) Access Rules

AR3 OrgUnit = NOT(OU1(+))

ActorOrgUnitOrgUnit

AR1 OrgUnit = OUNew(+)

AR2 OrgUnit = OUNew(+)

AR3 OrgUnit = NOT(OUNew(+))

Fig. 5. Automatic Adaptation of Access Rules when Applying a Join Operation

A Formal Framework for Adaptive Access Control Models 97

 AR OrgUnit = OU2 AR (OrgUnit = OU2_1) OR (OrgUnit = OU2_2)

a) OM OM’
OU1

OrgUnit

SubOU2

OrgUnit

SubOU1

OrgUnit

OU2

OrgUnit

A1

Actor

A2

Actor

A3

Actor

belongs to

belongs tobelongs to

is subordinated is subordinated

OU1

OrgUnit

SubOU2

OrgUnit

SubOU1

OrgUnit

OU2_1

OrgUnit

A1

Actor

A2

Actor

A3

Actor

belongs to

belongs tobelongs to

is subordinated is subordinated

OU2_2

OrgUnit

belongs to

Δ = SplitEntity(OM, OU2, OU2_1, OU2_2)

b) Access Rules

Fig. 6. Automatic Adaptation of Access Rules when Applying a Split Operation

replacing this reference with the expression (OU2 1 OR OU2 2). Again it has to
be pointed out that this only constitutes a suggestion by the system.

In addition to split and join operations the deletion of entities may lead to
dangling references. In certain cases no automatic strategy for adapting a par-
ticular access rule can be provided; the system then only reports the problem
to the user and asks him for an adequate solution strategy. However, there exist
many situations in which automatic rule adaptations become possible, and thus
users can be assisted in transforming rules in a way such that they become valid
on the new model version OM ′ as well. In particular, this possibility exists in
connection with the migration of complex access rules (cf. Def. 5). As an exam-
ple take access rule (AR ←− Role = R1 ∨ Role = R2). Assume that role R2 is
deleted from the used org. model. This model change causes a dangling reference
in AR. A meaningful suggestion for automatically adapting rule AR would then
be to delete expression (EAR ←− Role = R2) from AR. This would result in the
simplified rule (AR ←− Role = R1), which does not contain dangling references.
Furthermore, we could exploit the semantics of hierarchical relations in order to
come up with some adaptation suggestions for affected access rules. Assume, for
example, that role r, which is a specialization of another role rsuper , is deleted.
Assume further that there exists an access rule AR←− "... Role = r ..." af-
fected by this change. Then it could be a reasonable strategy to suggest adapted
rule AR’←− "... Role = rsuper ..." instead of AR (e.g., if it is not longer nec-
essary to have a more specialized nurse working on a specific ward, patient care
can be performed by a regular nurse as well). The same strategy may be applied
in the contrary direction if super-role r is deleted and the associated references
within affected access rules are adapted to reference more specific role rsub. Jus-
tification is that actors having role rsub possess all capabilities assigned to role r
and therefore are able to substitute actors having role r. Similar considerations
hold for hierarchical relations between organizational units.

Note that for join, split, and delete operations access rule transformations
do not always become necessary. If an access rule does not refer to any entity
joined, deleted, or splitted, the rule can stay unaltered after the respective model
transformation. Finally, in addition to the described rule transformations in our
current implementation we apply a number of other rule optimizations when

98 S. Rinderle and M. Reichert

migrating rules to a new version of the organizational model. The treatment of
these optimizations, however, is outside the scope of this paper.

Application of Complex Changes Δ = op1, ..., opn. We now consider the
application of a sequence of change operations to an organizational model OM ;
i.e., the application of a change (transaction) Δ = op1, ..., opn to OM (resulting
in OM ′) and its effects on related access rules. Again, when considering an
access rule AR on OM , dangling references within AR may result after migration
to OM ′. As an example consider Fig. 4 where the migration of access rules AR1,
AR2, and AR3 to OM ′ results in dangling references when applying change Δ
to OM . In order to deal with this problem, we have to analyze the effects of
each applied change operation opi (i = 1, ..., n) on access rules defined on OM .
Regarding a particular access rule this analysis is accomplished in the order
these operations were applied to OM . For those change operations opi which
cause dangling references and for which there exists an adaptation policy (cf.
Adaptation Policy 1) we can adapt the affected access rules accordingly.

For change Δ from Fig. 4 and Fig. 3, respectively, we check for the effects of op-
erations op1 = JoinEntities(OM, ...), op2 = DeleteRelation(OM, ...),
and so on (for a complete definition of Δ see Fig. 3b). Consider, for
example, access rule AR2 ←− OrgUnit=’treatment area’ in Fig. 4b. The ap-
plication of op1 = JoinEntities(OM, ...) already results in a dangling ref-
erence for AR2. Therefore AR2 is modified to (AR2 ←− OrgUnit = ’patient
services’) by applying Adaptation Policy 1 for the join operation. According
to Proposition 2 the following three change operations related to Δ (and be-
ing of type DeleteRelation(OM, ...)) do not cause dangling references when
migrating access rules to OM ′. For the applied DeleteEntity(OM, ...) op-
eration there may be dangling references, but not for access rule AR2. The
next SplitEntity(OM, ...) operation does not affect AR2 and the following
CreateRelation(OM, ...) operation is uncritical regarding dangling references.
Finally, the last DeleteEntity(OM, ...) operation could cause dangling refer-
ences, but again not for access rule AR2. Altogether, AR2 can migrate to OM ′ by
adapting it to (AR2←− OrgUnit = ’patient services’). According to Adap-
tation Policy 1 we can ensure that AR2 does not contain dangling references
based on OM ′.

4.3 Dynamic Aspect – Valid Actor Set

Even if the problem of dangling references is satisfactorily solved we still may be
confronted with non–resolvable access rules when changing an org. model. This
may cause runtime errors or at least runtime delays (e.g., if activities cannot im-
mediately be worked on since there is no qualifying actor any more). It may also
impose security problems (e.g., if then the non-resolvable activity is offered to
the system or process administrator as it is the case in several existing systems).

General Considerations. Let OM be an org. model which is transformed into
another org. model OM ′ by change Δ. Furthermore, let AR be an access rule on

A Formal Framework for Adaptive Access Control Models 99

OM � OM’

a) VAS(OM,AR) = VAS(OM’,AR) b) VAS(OM,AR) � VAS(OM’AR) c) VAS(OM,AR) � VAS(OM’,AR)

d) (VAS(OM’,AR) � VAS(OM,AR)) � (VAS(OM,AR) � VAS(OM’,AR))

d1) VAS(OM’,AR) � VAS(OM,AR) � � d2) VAS(OM’,AR) � VAS(OM,AR) = �

VAS(OM,AR): VAS(OM’,AR):

Fig. 7. Changing Organizational Models and Migrating Access Rules

OM . First of all, we illustrate at an abstract level how the valid actor set of an
access rule AR based on OM may change when migrating this rule to the new
model version OM ′. Figure 7 depicts possible relations between the valid actor
set of AR on OM VAS(OM,AR) and the valid actor set of AR on OM ′ VAS(OM’,AR):

In Fig. 7a the migration of AR from OM to OM ′ does not influence the valid
actor set, i.e., the set of valid actors remains the same. In this case, first of all,
AR is still resolvable over OM ′ and does not require any adaptation of work lists
or lists of qualified actors afterwards.

Figure 7b shows the case where the valid actor set is expanded when migrat-
ing AR to OM ′. In practice this may require, for example, an update of user
worklists by additionally inserting the associated work items into the worklists
of newly qualified actors from the difference set VAS(OM’, AR) \ VAS(OM, AR).
By contrast, the valid actor set may be also reduced due to a model change as
depicted in Fig. 7c. Consequently, for all actors no longer qualified for accessing
the associated object or task (i.e., VAS(OM, AR) \ VAS(OM’, AR)) the associated
access privileges have to be adapted accordingly. Note that for the case depicted
in Fig. 7c, it is possible that the valid actor set of AR on OM ′ becomes empty,
i.e., AR may be no longer resolvable on OM ′.

The scenario depicted in Figure 7d, where VAS(OM, AR) is not a subset of
VAS(OM’, AR) (or vice versa) can be further divided into two sub-cases d1 and
d2. For case d1 there are still actors contained in both valid actor sets, i.e.,
the intersection of VAS(OM, AR) and VAS(OM’, AR) is non–empty. For this case,
we firstly have to withdraw the privileges associated with AR for all actors con-
tained in VAS(OM, AR) \ VAS(OM’, AR). Second, we have to newly assign these
privileges to the actors contained in VAS(OM’, AR) \ VAS(OM, AR). Finally, if
VAS(OM, AR) and VAS(OM’, AR) are disjoint as depicted in case d2 the privileges
associated with AR have to be removed for all actors from VAS(OM, AR) and be
added for all actors from VAS(OM’, AR).

Knowing which of this cases applies in a given change scenario is helpful
in order to conduct the necessary adaptations of qualified actor lists or work
lists when migrating an access rule to the changed organizational model. In the

100 S. Rinderle and M. Reichert

following, first of all, we study the effects on valid actor sets of both elemen-
tary and complex access rules when a single change operation Δop is applied to
OM . This is followed by a discussion of complex changes where a sequence of
operations op1, ..., opn is applied within one change transaction Δ to OM .

Impact of Org. Model Changes on Actor Sets When Applying Single
Change Operations. Let Δop be a single change operation which transforms
org. model OM into org. model OM ′. Let further AR be a valid access rule on
OM . According to Proposition 2 the application of a change operation Δop ∈
{CreateRelation(...) DeleteRelation(...) ReAssignRelation(...)} does
not lead to dangling references in AR afterwards. However, Δop may affect the
valid actor set of AR when migrating this access rule to OM ′, i.e. VAS(OM’, AR) �=
VAS(OM, AR) (cf. Fig. 7). Assume, for example, that in the org. model from Fig.
1 the relation indicating that actor Black belongs to treatment area (i.e., rela-
tion ((Black, Actor), (treatment area, OrgUnit), belongs to)) is reas-
signed to (Black, Actor), (administration, OrgUnit), belongs to).
Then the valid actor set for access rule (AR2 ←− OrgUnit=’treatment area’)
is then reduced from {Dr. Smith, Black} to {Dr. Smith}.

We first analyze the effects of Δop on the valid actor sets of elementary access
rules EAR and negated elementary access rules NEAR. For the sake of readability
we do not consider all scenarios from Fig. 7, but focus on the most ”critical”
cases; i.e., changes of the oganizational model due to which the valid actor set of
[N]EAR is reduced (or even becomes empty) when migrating this access rule from
OM to OM ′. These cases are summarized in Table 3. The first column of this
table shows the change operation (and its parameters) and the third column the
(negated) elementary access rule(s) to be considered. Note that we may examine
more than one access rule for a given change operation. Further, the effects of a
change operation on the valid actor set of an access rule is depicted in the second
column. As can be seen, in most cases the actor set will reduced when applying
the change operation and migrating the access rule to the new organizational
model. Regarding operation ReassignRelation we also give examples where
new actors may be also added to the valid actor set.

The following figures illustrate some interesting situations from Table 3.
Firstly we consider the creation of a new relation between two entities of the
organizational model as depicted in Fig. 8. In this example, for both negated
access rules NEAR1 and NEAR2 their valid actor set based on OM will be reduced
when migrating the rule to OM ′. In particular, due to change Δ2 for NEAR2
the valid actor set becomes empty afterwards. Analogously, the application of
change operation DeleteRelation(OM, ...) may lead to reduced actor sets. As
an example consider the change scenario from Fig. 9. When deleting the relation
((a2, Actor), (r1, Role), has) from OM , for instance, for access rules EAR
←− (Role = ’r1’) or EAR ←− (ROLE=’r5’(+) the valid actor set will be re-
duced afterwards. The same applies to access rule EAR ←− (ROLE=r3(+)) after
deleting relation (((r1, Role), (r2, Role), specializes).

As discussed in Section 4.2, when applying change operations joinEntities
or splitEntity, dangling references within certain access rules may emerge

A Formal Framework for Adaptive Access Control Models 101

Table 3. Reduction of Valid Actor Set After Application of Change Operation Δ

Assume in the following that organizational model OM is transformed into organizational model OM’
by applying change operation Δ. Let further AR be an access rule defined on the basis of OM.

Change Operation Δ VAS(OM’,[N]EAR) =
VAS(OM, [N]EAR) \ δ (∪ ε)

∀ [N]EAR ∈ AR =⇒

CreateRelation(OM,

(a,Actor),(r,Role),has)

δ = {(a, Actor)} NEAR ←− NOT(Role=r1[(+)])

with (r, Role) ∈ QualEntities(OM,Role=r1[(+)])

CreateRelation(OM,

(a,Actor),(o,OrgUnit),belongsTo)

δ = {(a, Actor)} NEAR ←− NOT(OrgUnit=o1[(+)])

with (o, OrgUnit) ∈
QualEntities(OM,OrgUnit=o1[(+)])

CreateRelation(OM,

(r1,Role),(r2,Role),specializes)

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1

NEAR ←− NOT(Role=r3[(+)])

with (r1,Role), (r2,Role) ∈
QualEntities(OM’,Role=r3[(+)])

CreateRelation(OM,

(o1,OrgUnit),(o2,OrgUnit),

is subordinated)

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1

NEAR ←− NOT(OrgUnit=o3[(+)])

with(o1,OrgUnit), (o2,OrgUnit) ∈
QualEntities(OM’,OrgUnit=o3[(+)])

DeleteRelation(OM,

(a Actor),(r,Role),has)

δ = {(a, Actor)} EAR ←− Role = r1[(+)]

with (r, Role) ∈ QualEntities(OM,Role=r1[(+)])

DeleteRelation(OM,(a,Actor),

(o,OrgUnit),belongsTo)

δ = {(a, Actor)} EAR ←− OrgUnit=o1[(+)]

with (o, OrgUnit) ∈
QualEntities(OM,OrgUnit=o1[(+)])

DeleteRelation(OM,

(r1,Role),(r2,Role),specializes)

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1

EAR ←− Role=r3[(+)]

with (r1,Role), (r2,Role) ∈
QualEntities(OM’,Role=r3[(+)])

DeleteRelation(OM,

(o1,OrgUnit),(o2,OrgUnit),

is subordinated)

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1

EAR ←− OrgUnit=o3[(+)]

with (o1,OrgUnit), (o2,OrgUnit) ∈
QualEntities(OM’,OrgUnit=o3[(+)])

ReassignRelation(OM,

((a,Actor),(r,Role),has),

(r,Role),(rN,Role))

δ = {(a,Actor)} EAR ←− Role=r1[(+)]

with (r,Role) ∈ QualEntities(OM,Role=r1[(+)])

δ = {(a,Actor)} NEAR ←− NOT(Role=r1[(+)])

with (rN, Role) ∈ QualEntities(OM,Role=r1[(+)])

ReassignRelation(OM,

((a,Actor),(o,OrgUnit),belongsTo),

(o,OrgUnit),(oN,OrgUnit))

δ = {(a,Actor)} EAR ←− OrgUnit=o1[(+)]

with (o,OrgUnit) ∈
QualEntities(OM,OrgUnit=o1[(+)])

δ = {(a,Actor)} NEAR ←− NOT(Role=o1[(+)])

with (oN,OrgUnit) ∈
QualEntities(OM,OrgUnit=o1[(+)])

ReassignRelation(OM,

((r1,Role),(r2,Role),specializes),

(r1,Role),(rN,Role))

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1(+)

EAR ←− Role=r’[(+)]

with (r2, Role) ∈ QualEntities(OM,Role=r’[(+)])

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1(+)

NEAR ←− Role=r’[(+)]

with (r2, Role) ∈ QualEntities(OM,Role=r’[(+)]):

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1(+)

NEAR ←− Role=r’[(+)]

with (rN, Role) ∈ QualEntities(OM,Role=r’[(+)])

ReassignRelation(OM,

((r1,Role),(r2,Role),specializes),

(r2,Role),(rN,Role))

δ = VAS(OM,EAR’))

with EAR’ ←− Role=r1(+)

ε = VAS(OM,EAR’’)

with EAR’’ ←− Role = rN(+)

EAR ←− Role=r’[(+)]

with (r2, Role) ∈ QualEntities(OM,Role=r’[(+)])

ε = VAS(OM,NEAR’))

with NEAR’ ←− NOT(Role=r1(+))

δ = VAS(OM,NEAR’’)

with NEAR’’ ←− NOT(Role = rN(+))

NEAR ←− NOT(Role=r’[(+)])

with (r2, Role) ∈ QualEntities(OM,Role=r’[(+)])

ReassignRelation(OM,

((o1,OrgUnit),(o2,OrgUnit),is

subordinated),

(o1,OrgUnit),(oN,OrgUnit))

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1(+)

EAR ←− OrgUnit=o’[(+)]

with (o2,OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1(+)

NEAR ←− NOT(OrgUnit=o’[(+)])

with (o2,OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=OrgUnit=o1(+)

NEAR ←− NOT(OrgUnit=o’[(+)])

with (oN,OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

ReassignRelation(OM,

((o1,OrgUnit),(o2,OrgUnit),is

subordinated),

(o2,OrgUnit),(oN,OrgUnit))

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1(+)

ε = VAS(OM,EAR’’)

with EAR’’ ←− OrgUnit = oN(+)

EAR ←− OrgUnit=o’[(+)]

with (o2,OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

ε = VAS(OM,NEAR’))

with NEAR’ ←− NOT(OrgUnit=o1(+))

δ = VAS(OM,NEAR’’))

with NEAR’’ ←− NOT(OrgUnit = oN(+))

NEAR ←− OrgUnit=o’[(+)]

with (o2, OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

102 S. Rinderle and M. Reichert

(a1, Actor)

(r1, Role)

(r2, Role)

(r3, Role)

(r5, Role)

(a3, Actor)

(a2, Actor)

(a1, Actor)

(r1, Role)

(r2, Role)

(r3, Role)

(r5, Role)

(a3, Actor)

(a2, Actor)

Changes �i (i=1,2)

�1 = CreateRelation(OM, (a2.Actor), (r1, Role), has)
�2 = CreateRelation(OM, (r1, Role), (r2, Role), specializes)

OM: OM’:

NEAR1 � NOT(Role=’r5’(+))
NEAR2 � NOT(Role=’r3’(+))

VAS(OM,NEAR1) = {(a2,Actor), (a3, Actor)} � VAS(OM’,NEAR1) = {(a3,Actor)}
VAS(OM,NEAR2) = {(a1,Actor), (a2,Actor)} � VAS(OM’,NEAR2) = �

Fig. 8. Reduction of Valid Actors Sets After Creating Relations

(cf. Figures 5 and 6). Therefore we have provided rules (cf. Adaptation Policy 1)
which enable the system to suggest automatic adaptations of the affected access
rules to the user. However, after applying these adaptation rules the actor sets
of the adapted and migrated access rules may be affected as well. In detail: For
operation joinEntities it has to be checked how the actor sets of affected access
rules have changed after the applicastion of adaptation rule δ (cf. Adaptation
Policy 1). In particular, for negated access rules, the actor set may become
smaller (and therefore even empty) afterwards. For operation splitEntity the
application of adaptation rule δ does not affect the actor sets of access rules.
Therefore no checks become necessary afterwards.

Proposition 3 (Actor Set After Joining Entities and Adaptation of
Access Rules). Let a (correct) organizational model OM be transformed into
another (correct) organizational model OM’ by applying change operation Δ =
JoinEntities(OM, ...). Let further AR be an access rule defined on OM which
is transformed into access rule AR’ (by applying adaptation rules δAR; cf. Adap-
tation Policy 1) and then migrated to OM ′. Then:

• ∀ EAR ←− (OrgUnit=o1) ∨ (OrgUnit=o2)) ∧ ∀ NEAR ←− NOT((OrgUnit=o1) ∨ (OrgUnit=o2)) =⇒
VAS(OM’,[N] EAR) = VAS(OM,[N] EAR)

• ∀ EAR ←− OrgUnit=o1 =⇒
VAS(OM’,EAR) = VAS(OM,EAR) ∪ VAS(OM,EAR’) with EAR’ ←− OrgUnit=o2

• ∀ NEAR ←− NOT(OrgUnit=o1) =⇒
VAS(OM’,NEAR) = VAS(OM,NEAR) \ VAS(OM,EAR’) with EAR’ ←− OrgUnit=o2

• ∀ EAR ←− OrgUnit=o2 =⇒
VAS(OM’,EAR) = VAS(OM,EAR) ∪ VAS(OM,EAR’) with EAR’ ←− OrgUnit=o1

• ∀ NEAR ←− NOT(OrgUnit=o2) =⇒
VAS(OM’,NEAR) = VAS(OM,NEAR) \ VAS(OM,EAR’) with EAR’ ←− OrgUnit=o1

Consider, for example, access rule AR3 as depicted in Fig. 3. Before migration
the valid actor set of this rule turns out as VAS(OM,AR3) = {A3}. According to
the adaptation policies provided by Rule Adaptation Policy 1, AR3 is adapted to

A Formal Framework for Adaptive Access Control Models 103

(a1, Actor)

(r1, Role)

(r2, Role)

(r3, Role)

(r5, Role)

(a3, Actor)

(a2, Actor)

(a1, Actor)

(r1, Role)

(r2, Role)

(r3, Role)

(r5, Role)

(a3, Actor)

(a2, Actor)

OM’: OM:

Changes �i (i=1,2)

�1 = DeleteRelation(OM, (a2.Actor), (r1, Role), has)
�2 = DeleteRelation(OM, (r1, Role), (r2, Role), specializes)

EAR1 � Role=’r5’(+)
EAR2 � Role=’r3’(+)

VAS(OM,EAR1) = {(a1,Actor), (a2, Actor)} � VAS(OM’,EAR1) = {(a1,Actor)}
VAS(OM,EAR2) = {(a1,Actor), (a2,Actor), (a3,Actor)} � VAS(OM’,EAR2) = {(a3,Actor)}

Fig. 9. Reduction of Valid Actors Sets After Deleting Relations

AR3 ←− NOT(OUNew). This adaptation affects the valid actor set as follows:
VAS(OM’,AR3) = VAS(OM,AR3) \ VAS(OM,EAR’) with EAR’←− (OrgUnit=OU2)
which results in VAS(OM’,AR3) = {A3} \ {A3}= ∅ (cf. Proposition 3). Such critical
effects should be at least reported to the user.

Impact of Org. Model Changes on Actor Sets When Applying Com-
plex Change Operations. Finally, we sketch potential effects on the valid ac-
tor set of access rules when migrating them from an org. model OM to a changed
org. model OM ′ after application of a (complex) change Δ = op1, ..., opn. When
considering Fig. 7, it becomes clear that the application of each change operation
opi (i = 1, ..., n) may result in a change of the valid actor set. In particular,
some of the changes may add actors to the valid actor set whereas others remove
elements from it. Therefore a general statement on how the actor set changes is
difficult. Similar to the considerations about dangling references resulting after
the application of a complex (i.e., multi-operation) change, the effects of each
change operation opi (in the order of their application) on the valid actor set
can be determined. Doing so finally results in the new actor set of an access
rule based on OM . However, we have to consider the efforts for this approach.
In order to decrease the computing time for the resulting actor set, the analysis
and adaptation for dangling references and the determination of the actor set
changes can be done in one go. We will address the issue of possible optimization
methods in future work.

5 Architectural and Implementation Issues

In this section we sketch architectural and implementation issues which arise
when realizing the described framework. Section 5.1 summarizes the architecture

104 S. Rinderle and M. Reichert

of the implemented adaptive enterprise security service. In Section 5.2 we discuss
its concrete usage in the context of process-aware information systems.

5.1 Overview of the Enterprise Security Service

As proof-of-concept we realized an advanced enterprise security service (ESS)
which implements the described framework. We have chosen a service–oriented
design in order to support the reuse of the security component in different con-
text and by different system components (e.g., workflow systems or document
management tools). Fig. 10 depicts the overall architecture of the ESS (sim-
plified illustration). The developed ESS comprises both tools and programming
interfaces for creating, evolving and managing organizational models as well as
the access rules based on them.

security engineer
organizational
model(s)

stored access
rules (server-side)E

n
te

rp
ri

se
 S

ec
u

ri
ty

 S
er

ve
r

(E
S

S
)

org. model
definition & storrage

org.model
change

org. model
discovery

LDAP /
X.500

ESS: Access rule editor

Model Management API

acess rule
def. &

 storage
acess rule
checking

acess rule
resolution

acess rule
change

R
ule M

anagem
ent A

P
I

org. engineer

ESS: Org. modeling tooldefining, discovering,
changing and managing

org. models

parsing, resolving,
analysing, processing and

storing access rules

Process

management dystem

Locally stored access
rules (client-side)

define, store, load, change … org. model

discover org. model

check,
store,
adapt, …
rules

resolve rule,
register for
change notif.
etc.

process engineer

Fig. 10. (Simplified) architecture of the adaptive Enterprise Security Service (ESS)

For creating and adapting org. models the ESS offers a standard editor (cf.
Fig. 10). Among other things this tool utilizes the change operations presented
in this paper. All changes are logged and are traceable. Different org. models in
different versions can be maintained. For editing elementary as well as complex
access rules another tool is provided (cf. Fig. 10). Rules can be only released if
they are syntactically and semantically correct, which requires cross-checks with
the related org. model. The rule editor is realized as plug-in and can therefore
be easily integrated in different client applications (for further details see [18]).
Implementation is based on Java and SVG (Scalable Vector Graphics).

A Formal Framework for Adaptive Access Control Models 105

As mentioned the ESS offers powerful programming interfaces. The model
management API provides the basis for defining and storing new org. models,
for adapting existing ones to environmental changes, and for discovering infor-
mation about org. models. Based on this interface, adapted client components
for editing, displaying and analyzing org. models can be realized. Furthermore,
the ESS offers a complete interface for the management of access rules. This
interface allows to define, check and store new access rules (based on a referred
organizational model) and to maintain these rules by the ESS.

In general, we do not require clients of the ESS to store and maintain their
access rules within the ESS; this is only an optional feature. After having defined
an access rule, it may be also maintained by the client system itself (e.g., a
workflow system). In this case, the rule is represented as ”query string” following
the syntax of our rule definition language. This string can be resolved at runtime
by sending it to the ESS (e.g., when an activity in a workflow becomes activated),
which then parses and processes the access rule string, finally returning the set of
actors who qualify for it. For access rules already stored in the ESS these steps
can be partially omitted, resulting in higher system performance and better
response rates. In this case the client simply invokes a generic procedure with
the respective context information via the ESS interface.

The realized ESS extends the features of existing access control components
by offering more advanced change facilities. Adaptations of the org. model are
based on the operational framework described in Section 2. The ability to con-
comitantly adapt access rules is of particular importance. It uses the rule adap-
tation framework introduced in Section 4. Further, we offer different migration
and adaptation policies for access rules depending on whether they are directly
maintained by the ESS or by the client application. Access rules stored within
the ESS can be immediately processed in order to decide whether there is a
need for adaptation and - if yes - how it should look like. Further the ESS deter-
mines for which rules actor sets have changed. Based on this information users
or clients can be notified in order to accept the suggested rule adaptations or to
accommodate them.

Rules outside ESS control cannot be immediately migrated. This, in turn,
might lead to non-resolvable access rules which require lazy migration techniques
and advanced exception handling mechanisms. By using the provided API, how-
ever, clients can register for change notification events. When a model change
occurs the ESS notifies registered clients, which then can check the validity of
their access rules against the newly released version of the org. model. Finally, if
a non-resolvable access rule is sent to the ESS, an exception is thrown providing
the client with the information about necessary rule adaptations. Due to lack
of space we omit further details and a more precise presentation of the inter-
action patterns between clients (buildtime and runtime) and the ESS. Current
implementation of the ESS is based on Java and relational database management
technology. Integration with LDAP (Lightweight Directory Access Protocol) ser-
vices [19] is one important requirement for the future.

106 S. Rinderle and M. Reichert

Clients can be components of information systems or supporting technology
(e.g., workflow systems). Different clients may share one org. model (e.g., to
achieve consistency across multiple systems) or may maintain their own model
if favorable. In any case the information about org. entities and access rules
can be separated from the business logic implemented by the client programs.
Note that this provides the basis for the controlled evolution of org. models
and related access rules, and also constitutes a significant improvement when
compared to the proprietary, heterogeneous security components we can find in
current information systems. We strongly believe that a component like ESS is
very useful for dealing with org. change in a secure and intelligent manner, and
for providing better maintainability and traceability in this context.

5.2 Managing Actor Assignments and Worklists in Process-Aware
Information Systems

To illustrate our results we apply them to important elements of process-aware
information systems (PAIS) - activity actor assignments, user worklists, and their
adaptation due to org. changes. More precisely we sketch how changes of an org.
model have to be handled within a workflow system and how the different system
components interact with each other to cope with model changes. Usually, a PAIS
maintains different process templates each of them representing a particular
business process. Each of these process templates captures different aspects of a
business process like process activities, control and data flow between activities,
and actor assignments. The latter are of particular interest in the context of the
present work. They represent the access rules needed by the PAIS to decide which
users may work on instances of the respective activity. As an example, consider
the two actor assignment rules R1: (OrgUnit = OU 2 and Role = Role 2) and
R2: Role = Role 1 as depicted in Fig. 11. When an activity instance becomes
activated at runtime the PAIS determines all actors qualifying for this activity,
creates corresponding work items, and adds them to the worklists of these users.

At buildtime the PAIS must support the definition of actor assignments based
on an org. model and their correlation with process activities. For this the PAIS
either can utilize the standard modeling tools offered by the ESS or realize
own buildtime clients based on ESS interfaces. Within the ADEPT project, for
example, we have utilized the tools and plug-ins mentioned above. Access rules
can be assigned to activities or to other privileges relevant for the PAIS. Both
org. models and access rules are stored within the ESS.

Consider the scenario depicted in Fig. 11. When a change occurs within the
organization, an authorized user can adapt the org. model accordingly. In the
example from Fig. 11, for instance, the two org. units OU 2 and OU 3 are joined
and the ”has-role” relation between Actor 1 and Role 1 is deleted. This results
in a new version of the respective model, which then triggers the adaptation
and migration of related access rules. In the given example, for instance, at
the process template level the two actor assignment rules R1: (OrgUnit = OU 2
and Role = Role 2) and R2: Role = Role 1 may have to be adapted. If these
rules are directly maintained by the ESS, this service analyses them for necessary

A Formal Framework for Adaptive Access Control Models 107

OU

OU_1

Actor_1

is subordinated

Role

specializesspecializes specializes

JoinEntities(OU_2, OU_3)

OU_2 OU_3

is subordinated

OU_New

Process Templates

B
u

ild
tim

e

User

Worklists

Process Instances

R
u

n
tim

e

Actor_2 Actor_3Actor_5 Actor_6

belongs to

Actor_3

belongs to belongs to

Role_1 Role_2 Role_3

has has has has has

Process-aware Information System

has

Delete-

Relation

is subordinated

actor
assignment rules

Create Process

Instances
Propagate Rule

Changes

Worklist Manager

1) New activity becomes activated:
• Resolve actor assignment and

retrieve actor sets from the ESS
• Cope with dependent actor

assignments if necessary
• Create new work items based on

retrieved actor set + update worklists
2) Change of organizational model:
• Adapt worklists according to

changes of valid actor sets

Enterprise
Security Service

(ESS)

Org. Model V 1.1

Model
Change

T1

R2: Role = Role_1

T2

resolve actor
assignment rule

send actor result set
I_11

I_12

notify about changes of
valid actor sets

OrgUnit = OU_2
and Role = Role_2

R1:

OrgUnit = OU_New
and Role = Role_2

R1’:

register for change
notification

adapt actor assignment

to org. model change

No adaptation
needed!

Actor set for rule R1 extended from
{Actor_3} to {Actor_3, Actor_5, Actor_6}

Actor set for rule R2 reduced from
{Actor_1, Actor_2} to {Actor_2}

(but: actor set
changed)

Fig. 11. Adapting actor assignment rules and worklists in process-aware IS

adaptations. As a result the ESS suggests the process engineer to adapt rule R1
to rule R1’ (cf. Fig. 11), but to remain rule R2 unchanged.

As discussed in Section 4 the adaptation of access rules (actor assignments) is
only one side of the coin. We also have to analyze the effects of the performed
model and rule changes to valid actor sets. This is of particular importance for
PAIS in order to avoid outdated or inconsistent worklists. As an example take the
adaptation applied for rule R1 in Fig. 11. Obviously, this extends the valid actor
set of this rule from {Actor 3} to {Actor 3, Actor 5, Actor 6}. For currently
activated activity instances based on this rule this should imply the creation of
new work items for Actor 5 and Actor 6. As another example consider rule R2.
Though this rule must not be adapted due to the model change (see above) its valid
actor set is reduced from {Actor 1, Actor 2} to {Actor 2}. Therefore, respective
work items currently assigned to Actor 1 on basis of R2 should be removed from
the worklist of this actor. In our approach, the worklist manager of the PAIS ac-
complishes such on-the-fly worklist updates based on the interfaces offered by the
ESS. Due to lack of space we omit further details. However, we are aware of the fact
that the efficient update of user worklists is a big challenge in the given context,
particularly when thinking of scenarios with ten thousands of work items.

6 Related Work

The provision of an adequate access control framework is indispensable for any
IS. In the literature numerous approaches have been presented dealing with

108 S. Rinderle and M. Reichert

challenging issues related to access control (e.g., [12,20,21,22]). Most of these
approaches apply Role–Based Access Control (RBAC) models for defining and
managing user privileges [6,23,20,24], e.g., to control the access to business doc-
uments and database objects, or to resolve the set of actors that qualify for a
newly activated task in a workflow system [25,4,8,21,26,22].

Usually, corresponding models provide core RBAC features as well as role
hierarchies. Regarding workflow–based applications, in addition, dynamic con-
straints (e.g., separation of duties) were extensively investigated in the past
[4,8,27,28]. Practical issues related to RBAC (e.g., NIST’s proposed RBAC stan-
dard, integration of RBAC with enterprise IT infrastructures, RBAC in commer-
cial products) are summarized in [24].

In the workflow literature several proposals have been made aiming at adap-
tive process management (e.g., [29,30,31,32,33,34,35,36,37]). The ADEPT tech-
nology, for example, enables controlled changes at the process type as well as
the process instance level (for details see [38,39,40]). Thereby, correctness and
consistency constraints of a workflow are preserved when dynamically changing
its structure, its state, or its attributes during runtime. In [22] an extension to
RBAC is proposed in order to accomplish such process changes is a safe way;
i.e. to restrict changes to selected user groups or processes if required. Though
all these approaches stress the need for adaptive information systems and define
different notions of correctness (for an overview see [30]), so far, focus has been
on process changes (control and data flow).

There are only few approaches [12,41,42,43] which address the problem of
organizational change. In [12,41,42] eight categories of structural changes on
organizational models are identified. Examples include the splitting of organiza-
tional units, the creation of new organizational entities, and the reassignment of
an actor to a new organizational unit. In principle, all these cases can be captured
by our change framework as well. As opposed to [12], however, we additionally
follow a rigorous formal approach in order to be able to derive the effects of
organizational changes on related access rules as well. Corresponding issues are
factored out in [12]. The approach introduced in [43] deals with the evolution
of access rules in workflow systems. However, only very simple scenarios are de-
scribed without any formal foundation. Furthermore, the compact definition of
access rules is aggravated by the lack of adequate abstraction mechanisms (e.g.,
hierarchical structures).

Issues related to the modeling of organizational structures have been con-
sidered by different groups [11,21,18]. Most of them suggest a particular meta
model for capturing org. entities and the relationships between them. Model
changes and the adaptation of access rules, however, have not been studied by
these approaches in sufficient detail. Particularly, no formal considerations exist
and no proof-of-concept prototypes have been provided.

In [44] important issues related to changes of processes and org. structures
are discussed. In this work the authors also motivate the need for the controlled
change of organizational models. In particular, they discuss different kinds of
adaptations that have to be supported by respective components (e.g., to extend,

A Formal Framework for Adaptive Access Control Models 109

reduce, replace, and re-link model elements). However, no concrete solution ap-
proach is provided (like, for example, formal change operators with well–defined
semantics or mechanisms for adapting access rules after model changes).

7 Summary and Outlook

The integrated and controlled evolution of organizational models as well as ac-
cess rules will be key ingredients of next generation enterprise security services,
ultimately resulting in adaptive and highly flexible access control frameworks.
Together with our previous work on business process evolution and dynamic
process change [38,45,40,39] the presented concepts contribute to a powerful
platform enabling the realization of flexible and adaptive information systems.

In this paper, we have designed a comprehensive framework for defining and
changing organizational models, for specifying access rules in a consistent man-
ner, and for correctly adapting these access rules when model changes occur.
We have discussed important challenges and requirements in this context as
well as limitations of current approaches. Based on this we have introduced a
comprehensive framework for the evolution of organizational models and the
adaptation of related access rules. The very important aspect of our work is its
formal foundation. We have provided precise definitions and formal propositions
which are fundamental for the correct handling of model changes, for reasoning
about the effects of such changes on access rules, and for adapting access rule
if necessary. The treatment of both elementary and composed access rules as
well as the consideration of runtime issues (e.g., effects of model changes on rule
actor sets) add to the completeness of our approach. Finally, we have discussed
important architectural issues and sketched a proof-of-concept implementation
demonstrating the feasibility of the presented concepts.

The implemented security service has been coupled with the ADEPT2 pro-
cess management system in order to enable the (dynamic) adaptation of actor
assignments, user worklists, etc. when changes of the organizational model hap-
pen. For the sake of readability, in this paper we have restricted our consid-
eration to a rather simple role-based access control model which applies basic
entities (org. unit, role, and actor) and the relations between them (incl. role
hierarchies). However, the enterprise security service realized by us within the
ADEPT2 project is based on a more expressive meta model (incl. organizational
entities like position, capability or project group).

There are many other challenging issues that can be linked to the evolution
of org. models and related access rules. Firstly, we should consider semantical
constraints as well. Uncontrolled changes of an org. model, for example, may
violate semantical constraints like separation of duty (SoD) or mutual exclusion
[27,28,46,47]. Among other things, this may result in security gaps. Secondly, we
believe that changes of the org. model must be closely linked to other components
of an IS. For example, actor assignments in workflow-based applications may
have to be adapted on-the-fly in order to cope with org. changes. This, in turn,
may require change propagation to hundreds up to thousands of in-progress

110 S. Rinderle and M. Reichert

process instances as well as to related user worklists. Doing this in a correct
and efficient manner is a non-trivial problem that will be investigated by us in
more detail in future. Thirdly, it is interesting to investigate how access rules can
be improved, for example, based on previous adaptations (access rule life cycle
management). First work in this field on the mining of access rules from workflow
log data has been published in [48]. Finally, changes may not only concern the
process model or the org. model but other components of the information systems
as well. As an example take resource models or data models, which may be also
subject of change. Thew more we extract the specification of these different
aspects from application code the better will be the basis for setting up flexible
adaptation mechanisms.

References

1. Aalst, v.d.W., van Hee, K.: Workflow Management. MIT Press, Cambridge (2002)
2. Sutton, M.: Document Management for the Enterprise: Principles, Techniques

and Applications. John Wiley, Chichester (1996)
3. Linthicum, D.: Enterpise Application Integration. Addison-Wesley, Reading

(1999)
4. Bertino, E., Ferrari, E., Alturi, V.: The specification and enforcement of autho-

rization constraints in wfms. ACM Trans. on Inf. and Sys. Sec. 2, 65–104 (1999)
5. Sandhu, Smarati,: Authentication, access control and audit. ACM Computings

Surveys 28, 241–243 (1996)
6. Ferraiolo, D., Kuhn, D., Chandramouli, R.: Role–Based Access Control. Artech

House (2003)
7. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-

trol models. IEEE Computer 29, 38–47 (1996)
8. Wainer, J., Barthelmess, P., Kumar, A.: W–RBAC – a workflow security model

incorporating controlled overriding of constraints. International Journal of Col-
laborative Information Systems 12, 455–485 (2003)

9. El Kalam, A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Saurel,
C., Deswarte, Y., Miege, A., Trouessin, G.: Organization-based access control.
In: Proc. Proc. 4th IEEE Int. Workshop on Policies for Distributed Systems and
Networks, IEEE Computer Society Press, Los Alamitos (2003)

10. Konyen, I.: Organizational structures and business processes in hospitals. Master’s
thesis, University of Ulm, Computer Science Faculty (in German) (1996)

11. Jablonski, S., Schlundt, M., Wedekind, H.: A generic component for the computer–
based use of organizational models (in german). Informatik Forschung und En-
twicklung 16, 23–34 (2001)

12. Klarmann, J.: A comprehensive support for changes in organizational models of
workflow management systems. In: Proc. 4th Int’l Conf. on Inf Systems Modeling
(ISM’01), pp. 375–387 (2001)

13. Dumas, M., ter Hofstede, A.W.A (eds.): Process Aware Information Systems.
Wiley Publishing, Chichester (2005)

14. Rinderle, S., Reichert, M.: On the controlled evolution of access rules in cooper-
ative information systems. In: CoopIS’05, pp. 238–255 (2005)

15. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli, R.: Proposed
NIST standard for role-based acces control. ACM ToISS 4, 224–274 (2001)

A Formal Framework for Adaptive Access Control Models 111

16. Tolone, W., Ahn, G., Pai, T.: Access control in collaborative systems. ACM Com-
putings Surveys 37, 29–41 (2005)

17. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management
with adept2. In: Proc. 21st Int’l Conf. on Data Engineering (ICDE’05), Tokyo,
pp. 1113–1114 (2005)

18. Berroth, M.: Design of a component for organizational models. Master’s thesis,
University of Ulm, Computer Science Faculty (in German) (2005)

19. Howes, T., Smith, M., Good, G.: Understanding and Deploying LDAP Directory
Services. New Riders (2001)

20. Bertino, E.: Data security. DKE 25, 199–216 (1998)
21. zur Muehlen, M.: Resource modeling in workflow applications. In: Proc. of the

1999 Workflow Management Conference (Muenster), pp. 137–153 (1999)
22. Weber, B., Reichert, M., Wild, W., Rinderle, S.: Balancing flexibility and security

in adaptive process management systems. In: Proc. Int’l Conf. on Cooperative
Information Systems (CoopIS’05), Agia Napa, Cyprus (2005)

23. NIST: Proposed Standard for Role-Based Access Control (2004),
http://csrc.nist.gov/rbac/rbacSTDACM.pdf

24. Ferraiolo, D.F., Kuhn, D.R.: Role based access control. In: 15th National Com-
puter Security Conference (1992)

25. Botha, R.A., Eloff, J.: A framework for access control in workflow systems. Infor-
mation Management and Computer Security 9, 126–133 (2001)

26. Pfeiffer, V.: A framework for evaluating access control concepts in workflow man-
agement systems. Master’s thesis, University of Ulm, Computer Science Faculty
(in German) (2005)

27. Giuri, L., Iglio, P.: A formal model for role-based access control with constraints.
In: Proc. Computer Security Foundations Workshop, pp. 136–145 (1996)

28. Kuhn, D.: Mutual exclusion of roles as a means of implementing separation of duty
in role-based access control systems. In: Proc. 2nd ACM Workshop on Role-based
Access Control, pp. 23–30. ACM Press, New York (1997)

29. Aalst, v.d.W.: Exterminating the dynamic change bug: A concrete approach to
support worfklow change. Information Systems Frontiers 3, 297–317 (2001)

30. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes
in workflow systems – a survey. Data and Knowledge Engineering, Special Issue
on Advances in Business Process Management 50, 9–34 (2004)

31. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sys-
tems. In: Proc. Int’l Conf. on Business Process Management (BPM’00), pp. 218–
234 (2000)

32. Joeris, G., Herzog, O.: Managing evolving workflow specifications. In: Proc. Int’l
Conf. on Cooperative Information Systems (CoopIS’98), New York City, pp. 310–
321 (1998)

33. Weske, M.: Workflow management systems: Formal foundation, conceptual de-
sign, implementation aspects. University of Münster, Germany, Habilitation The-
sis (2000)

34. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic
workflow processes. IJCIS 9, 93–116 (2000)

35. Fent, A., Reiter, H., Freitag, B.: Design for change: Evolving workflow specifica-
tions in ULTRAflow. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T.
(eds.) CAiSE 2002. LNCS, vol. 2348, pp. 516–534. Springer, Heidelberg (2002)

36. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,
J.: IntelliGEN: A distributed workflow system for discovering protein-protein in-
teractions. Distributed and Parallel Databases 13, 43–72 (2003)

http://csrc.nist.gov/rbac/rbacSTDACM.pdf

112 S. Rinderle and M. Reichert

37. Edmond, D., ter Hofstede, A.: A reflective infrastructure for workflow adaptabil-
ity. Data and Knowledge Engineering 34, 271–304 (2000)

38. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10, 93–129 (1998)

39. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16, 91–116 (2004)

40. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: van der Aalst, W.M.P., Bena-
tallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, Springer,
Heidelberg (2005)

41. Klarmann, J.: A comprehensive support for changes in organizational models
of workflow management systems. In: Proc. Int’l Conf. on Information Systems
Modeling (ISM’01), Hradec nad Moravici, Czech Republic (2001)

42. Domingos, D., Rito–Silva, A., Veiga, P.: Authorization and access control in adap-
tive workflows. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 23–28. Springer, Heidelberg (2003)

43. Aalst, v.d.W., Jablonski, S.: Dealing with workflow change: Identification of issues
an solutions. ESORICS 2003 15, 267–276 (2000)

44. Klarmann, J.: Using conceptual graphs for organization modeling in work-
flow management systems. In: Proc. Conf. Professionelles Wissensmanagement
(WM’01), pp. 19–23 (2001)

45. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes:
Challenges, solutions, applications. In: Meersman, R., Tari, Z. (eds.) On the
Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE. LNCS,
vol. 3290, pp. 101–120. Springer, Heidelberg (2004)

46. Simon, R., Zurko, M.: Separation of duty in role based environments. In: Proc.
Computer Security Foundations Workshop X (1997)

47. Botha, R., Eloff, J.: Separation of duties for access control enforcement in workflow
environments. IBM Systems Journal 40(3) (2001)

48. Ly, T., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from
event-based data. In: Castellanos, M., Weijters, T. (eds.) First International Work-
shop on Business Process Intelligence (BPI’05), Nancy, France, pp. 177–190 (2005)

	Introduction
	Problem Description
	Contribution

	Framework for Creating and Evolving Organizational Models
	Framework for Defining (Correct) Access Rules
	Impact of Organizational Changes on Access Rules
	Basic Migration Rule
	Static Aspect -- Dangling References
	Dynamic Aspect -- Valid Actor Set

	Architectural and Implementation Issues
	Overview of the Enterprise Security Service
	Managing Actor Assignments and Worklists in Process-Aware Information Systems

	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

