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Abstract— Already today, driver assistance systems help to
make daily traffic more comfortable and safer. However, there
are still situations that are quite rare but are hard to handle
at the same time. In order to cope with these situations and
to bridge the gap towards fully automated driving, it becomes
necessary to not only collect enormous amounts of data but
rather the right ones. This data can be used to develop and
validate the systems through machine learning and simulation
pipelines. Along this line this paper presents a fleet learning-
based architecture that enables continuous improvements of
systems predicting the movement of surrounding traffic par-
ticipants. Moreover, the presented architecture is applied to a
testing vehicle in order to prove the fundamental feasibility
of the system. Finally, it is shown that the system collects
meaningful data which are helpful to improve the underlying
prediction systems.

I. INTRODUCTION

Driver assistance systems are on the rise and help to
prevent accidents and to support drivers in various ways
more and more frequently. Thereby, modules predicting
future motions of surrounding traffic participants constitute
a central piece of such system’s intelligence. As shown in
[1], it is beneficial to integrate external information such
as knowledge about weather or traffic conditions into these
prediction modules. Therefore, the systems are enabled to
deal with rarely occuring and nevertheless challenging con-
ditions, resulting in increased system performances as well
as benefits for the drivers in general and especially during
challenging conditions. As a prerequisite for developing such
context-aware motion prediction modules huge amounts of
data need to be collected. But it is not only about gathering
the pure amount of data but rather about collecting the right
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Fig. 1. Current software modules for predicting the movement of surround-
ing traffic participants are developed through an unidirectional process with
a single data collection campaign and model training. This is shown in the
upper part of the illustration. In this context a motion prediction module can
be thought of as any machine learning model, beeing illustrated as simple
neural network. The lower part of the image shows our idea of a continuous
fleet data collection in an illustrative way.

data. This means to collect data during conditions where
current systems face problems and data which facilitates
developers to improve their systems. As at least some of
these conditions occur rather rarely, it is crucial to collect
corresponding data with a large fleet of vehicles to ensure
a good coverage of all kinds of situations. Hence, this
work presents a data collection architecture enabling contin-
uously improving motion predictions over time. Besides, we
demonstrate the fundamental feasibility of the approach by
integrating it into a testing vehicle. Fig. 1 illustrates the idea
of such a fleet learning architecture indicating its potential
for system improvements.

The remainder of this work is structured as follows: Sec. II
gives an overview of related works. Sec. III introduces
the new fleet learning-based architecture concept. The con-
cept enables the detection of challenging conditions with
respect to behavior prediction. In particular, it allows re-
parametrizing onboard prediction modules in order to achieve
improved prediction performances. Afterwards, Sec. IV and
Sec. V describe the development of the desired prediction
watchdog and the prototypical realization of the needed
onboard components in a testing vehicle. Sec. VI summarizes
and concludes the article.

II. RELATED WORK

For the present study, works dealing with the development
of systems intended for data collection and management
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(Sec. II-A) as well as such dealing with behavior prediction
(Sec. II-B) are of particular interest. After introducing and
categorizing characteristic approaches, Sec. II-C discusses
them and deduces the contribution of this article.

A. Data Collection and Management Systems

Works intending to collect, manage and preprocess data
to be used during the development, test and simulation of
algorithms for automated driving applications in general can
be divided into two main groups. The approaches of the
first group focus on data collection from an external point
of view. Therefore, camera systems or statically positioned
drones looking from a birds-eye view onto the scene are used.
Whereas the NGSIM data set [2] has been very popular,
most researchers recently switched over to the more exact
and larger highD and inD data sets [3], [4].

By contrast, the second group relies on dedicated mea-
surement vehicles [5]–[7]. Therefore, the data collection is
performed from a moving point of view within the scene.
Thus, challenges as occluded vehicles can occur and the
data collection mechanism itself can influence the collected
behaviors. In exchange, measurement durations for single ve-
hicles can be significantly increased compared to approaches
in the first group.

In addition to the data sets mentioned above, which
represent traffic scenes and their objects through numerical
descriptions of the traffic scenes and their objects, several
optical data sets exist. As examples the popular KITTI
[8] and Cityscapes [9] data sets or the upcoming Baidu
driving [10] and Audi autonomous driving [11] data sets
can be mentioned. While such optical data sets are more
suitable, for example, for the development of object detection
and semantic segmentation algorithms, numerical ones are
significantly more useful for object motion predictions.

Additionally, this work focuses on the development of a
fleet learning architecture. Consequently, it is desirable to
minimize the size of the data to be transmitted. Accord-
ingly, optical data sets are only of secondary interest for
the presented article, as images or even videos are much
larger compared to sparse numerical object representations.
This also applies to works focusing on the collection of
pedestrian motion data, such as the popular UCY, ETH, and
stanford drone data sets [12]–[14], as our research focuses
the prediction of vehicle motions.

B. Behavior Prediction Approaches

According to Lefèvre [15], behavior prediction ap-
proaches can be divided into the three categories: physics-
based, maneuver-based, and interaction-aware prediction ap-
proaches. Physics-based approaches assume that future ve-
hicle motions solely depend on the laws of physics and can
be described with simple models such as constant velocity
or constant acceleration. A good overview on corresponding
approaches is provided in [16]. By contrast, maneuver-based
approaches (e. g. [1], [17]–[22]) try to infer the maneu-
ver a driver intends to perform. Finally, interaction-aware
approaches [23]–[26] provide the most advanced motion

models by predicting the motions of all vehicles in a given
situation simultaneously. In particular, these models consider
that all vehicles mutually influence each other.

[18] uses a categorization, which is more oriented towards
the representation of the prediction output and also allows
categorizing approaches that cannot be uniquely assigned
to one of the aforementioned classes. This categorization
distinguishes between approaches for maneuver prediction,
position prediction, and hybrid approaches. While maneuver
prediction approaches (e. g. [20], [24]) try to infer which
one of a fixed set of maneuvers a vehicle will perform,
position prediction approaches (e. g. [21], [23], [25]–[28]) try
to infer at which exact position a vehicle will be at a certain
future point in time, i. e. the latter approaches operate in a
continuous space. Finally, hybrid approaches (e. g. [1], [17]–
[19], [22]) integrate the outputs of maneuver and position
prediction approaches into a single or combined model.

C. Contribution

As the literature overview has revealed, a lot of research
has been spent on data collection for automated driving as
well as on motion prediction. However, the presented works
presume a setting, where a data set is collected once and
afterwards utilized to train and validate prediction models.
This procedure, obviously limits the variance as well as the
size of the data set. In general, it is not possible to collect a
data set covering all relevant corner cases through a single
data collection campaign.

As an exception, [29] uses growing hidden markov models
to learn trajectory prediction models for pedestrians and
vehicles at a fixed location. Essentially, the drivable space
is represented as a discretized graph with edges and nodes,
which is updated over runtime. Although this work is in line
with our research direction, it cannot be integrated into a
moving vehicle and a therefore changing surrounding.

In order to bridge the described research gap, this article
contributes in three respects:
C.1 A fleet learning-based architecture enabling enhanced

behavior predictions, especially during challenging ex-
ternal conditions, is presented.

C.2 As a key part of the described architecture, a prediction
watchdog is developed.

C.3 The necessary modules of the architecture are pro-
totypically implemented and integrated into a testing
vehicle, demonstrating the fundamental feasibility of the
approach.

III. ARCHITECTURE CONCEPT

We aim to develop an architecture concept enabling
continuous performance improvements to motion prediction
systems within a fleet of vehicles. The architecture needs to
fulfill the following requirements:
R.1 The prediction performance shall be equal over all

vehicles of the fleet in any situation.
R.2 Data transmission (e. g. via mobile communication) if

necessary shall be restricted to a minimum in order to
reduce communication costs.
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Fig. 2. Overview of the proposed fleet learning architecture. The colored connections highlight the two main loops within the architecture:
blue: condition-adaptive parameter request loop; green: data collection and parameter update loop. As indicated by the 1-to-N relation, there are a lot of
vehicles with the described in-vehicle component communicating with a single backend component.

R.3 The prediction module shall produce reliable results
even if the system is offline (i. .e. if there is no mobile
communication signal).

R.4 The overall prediction performance shall increase over
lifetime.

R.5 All updates to be deployed to the vehicle fleet need to
go through a release process.

The developed architecture meeting these requirements
is depicted in Fig. 2. From a high-level perspective, the
architecture comprises of a communication channel as well
as an in-vehicle and a backend component. The in-vehicle
component, in turn, comprises seven modules:

• A sensor fusion module aggregating the raw informa-
tion from different sensors and providing a consistent
representation of the surrounding to other modules.

• A situation prediction module providing the trajectory
planning module with information about the evolution
of the current traffic situation. The module’s output can
be optimized through remote parametrization.

• A trajectory planning module planning trajectories for
the ego-vehicle based on the current sensor information
as well as the situation predictions. Good trajectories are
characterized by safety and comfort for the passengers.
To enable the planning module to generate such trajec-
tories, both inputs need to be as accurate as possible in
any situation.

• Actuators realizing planned trajectories.
• A prediction buffer storing the current prediction out-

put, the prediction parameters, and the current sensor
information until reaching the prediction time.

• A comparison module comparing the actual positions
of the surrounding vehicles with the predictions made

some moments ago. If a predicted position differs too
much from the actual one, this module triggers the
communication module to send a new package of train-
ing data containing the buffered prediction (output), the
buffered sensor information (input), and the actual po-
sition (desired output) to the backend. This mechanism
ensures that exactly those situations are detected and
used to increase the prediction performance, which are
currently handled sub-optimally during the predictions.
This contributes to meet requirement R.2.

• A communication module requesting condition-specific
prediction parameters from the backend and providing
them to the prediction module. This communication
module also transmits data backwards over the com-
munication channel.

The backend part on the other hand consists of only four
modules:

• A communication module receiving data from the ve-
hicle fleet and transmitting prediction parameters back-
wards.

• A condition-adaptive parameter storage, holding the
parameters currently used during different situations.
Due to the use of a single shared parameter storage
for all vehicles of the fleet, requirement R.1 is met.

• A situation database storing all data that are necessary to
(re-)train a machine learning-based prediction module.
In detail:
– All inputs necessary for the prediction module.
– The desired output of the prediction module.
– The external conditions of the measurement (e. g.

weather or speedlimit).



• A parameter update module using the measurements
stored in the situation database to calculate improved
parameter values. Before pushing an update to the
parameter storage, it is checked whether it increases the
performance in all known situations. Then the updated
parameters are released resulting in the fulfillment of
requirements R.4 and R.5.

As further shown in Fig. 2, essentially there are two
data loops. The loop emphasized in green collects data that
shall enable determining improved prediction parameters in
the backend. Within the blue-colored loop, vehicles request
condition-adaptive prediction parameters and use them to
ensure reliable predictions during all situations. To ensure
that the prediction also works in scenarios in which no com-
munication with the backend is possible, the system may fall
back to a basic parameter set (fulfilling requirement R.3). The
latter is initially used as well. To bridge short offline-phases,
it is advisable that the vehicles request parameters already
in advance if possible. This becomes possible, for example,
if the route ahead is known or if it is foreseeable that it will
start to rain soon. From the viewpoint of functional safety, it
might also be advantageous to rely on a fixed neural network
architecture and to solely adjust the weights during parameter
updates. This though is also transferable to other prediction
techniques.
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Fig. 3. Overview of the communication channel and the three transmitted
message types.

Fig. 3 shows the communication channel and the in-
vehicle- and backend-sided communication modules in more
detail. Basically, there are three types of messages to be
transmitted:

• New measurements collected by a vehicle that need to
be added to the situation database.

• A request for a parameter set fitting the external condi-
tions a vehicle is faced with.

• A reply to a parameter request.

IV. PREDICTION WATCHDOG

The prediction watchdog as depicted in Fig. 2 consists
of the prediction buffer and the comparison module. As
introduced briefly, it is able to memorize predicted positions
as well as the input features that led to the respective
model output. Moreover, it compares the actual prediction
outputs with the desired one, and triggers the transmission
of additional data to the backend. Sec. IV-A provides further
details on the concept of buffering predictions, whereas

Fig. 4. Illustration of the memory module update using ego-relative
coordinates. The striped green vehicle depicts the predicted position of the
green vehicle. The vehicle shown in blue is the ego-vehicle.

Sec. IV-B outlines the working principle of the comparison
module and the triggering.

A. Prediction Buffer

The prediction buffer’s function is to hold positions
[x̂th , ŷth ]T predicted at the current point in time t = t0 until
reaching the prediction horizon h at t = t0+th. In case of an
ideal prediction for any given point in time, the memorized
point lies on the continuously updated trajectory until the
vehicle arrives at that position.

Due a lacking world-fixed coordinate frame, the predicted
position has to be fixed to the current environment by
changing its vehicle-relative coordinates. The prediction is
memorized in lane or also called Frenet coordinates [30],
which enable a robust and reasonably precise way of updat-
ing the numeric values using Euler integration. The velocity
of the ego-vehicle is measured and split into longitudinal and
lateral components given the current driving lane, denoted by
~v = [vx, vy]T . For each memory entry, there is a countdown
variable tc that is initialized with the prediction horizon th
when saving a new prediction. The memorized prediction is
updated according to Eq. 1 and Eq. 2:[

x̂th

ŷth

]
←

[
x̂th

ŷth

]
−
[
vx
vy

]
·∆t (1)

tc ← tc −∆t (2)

∆t corresponds to the time passed since the last model
update. Fig. 4 illustrates the process of updating the model.

Simply put, the predicted position declared relatively to
the ego-vehicle performing the prediction is adjusted with the



Fig. 5. Image showing the prediction and logging approach integrated into
a testing vehicle and connected to an AR visualization.

ego-vehicle’s movement in each step. As soon as tc reaches
zero, the memorized prediction is not updated anymore and
the comparison with the current position can be carried
out. Due to the limited model update frequency, the exact
moment when the countdown vanishes cannot be captured.
A significantly large movement of the vehicle can be caused
until the assessment is issued, as the longitudinal velocity
can be reasonably high. To deal with that effect a constant-
velocity correction in longitudinal direction is performed.
This prevents the slack due to finite update frequency to have
an effect on the accuracy evaluation. A perfect prediction
would feature a residual position of zero in the exact moment
the countdown reaches zero.

B. Comparison

The working principle of the comparison module is rather
simple. In order to send the appropriate data to enhance the
prediction modules in the backend, it is advisable to select
those predictions that are too far away from the desired
output, i. e. the actual position [xth , yth ]T . Therefore, the
comparison module calculates the longitudinal ex,th and
lateral prediction errors ey,th according to Eq. 3 and Eq. 4:

ex,th =| xth − x̂th | (3)

ey,th =| yth − ŷth | (4)

A a new data package is sent to the backend when
exceeding one of the given thresholds Θx and Θy for the
two directions.

V. APPLICATION IN A TESTING VEHICLE

In order to demonstrate the fundamental feasibility and
benefits of the presented approach, we implemented the
described modules in a testing vehicle. To do so, we relied
on the findings we published in [18] with regard to the
prediction component as well as on the prediction watchdog
presented in Sec. IV. Initially, we are restricting ourselves
to the prediction of the behavior of the ego-vehicle, as this

setting is easier and faster to realize. In general, the same
mechanisms can be transfered to surrounding vehicles as
well. Our investigations focus on the fundamental feasibility
of the data collection loop as well as the quality of the
collected data in order to enable model improvements. The
design of the communication channel and training adapted
prediction models are out of scope of this work. Instead,
the data, which would be transferred from the vehicle to
the backend in the final application is simply logged in
CSV files. This allows for a downstreamed inspection by
examining e. g. the histograms of the residuals.

The testing vehicle is equipped with a series-like sensor
setup consisting of automotive radars and cameras facing
the front and the back of the vehicle. Moreover, the testing
vehicle is equipped with an additional computing unit, where
a ROS environment [31] is deployed. Within the ROS envi-
ronment, the sensor signals published over the Flexray bus
are accessible, allowing for the easy implementation of new
functional blocks. The ROS environment is connected to an
integrated augmented reality display that allows visualizing
the prediction outputs in real time. Fig. 5 shows an example
of the AR visualization of the predictions. A video showing
the output for a short sequence can be found on Reserach-
Gate1. The visualization solution allows for additional visual
inspection of the system performance.

In our experiments, the denoted system frequency is 25 Hz
and the threshold for triggering an erroneous lateral predic-
tion logging is set to Θy = 0.2 m2. Therefore, the logged
data have to show up significantly higher prediction errors
than the system shows during normal operation. According
to [18], the median lateral error should be around 0.11 m
for a prediction horizon of 3 s. These values cannot be
reached in the given experiment, as the prediction models
could probably be subject to transfer errors. This is because
a different, even though similar, vehicle and sensor setup
were used compared to the original work. However, as an
approximate estimate the values obtained are sufficient.

Fig. 6 depicts the distributions of the logged samples over
the longitudinal ax (upper part) and lateral ay acceleration
(lower part). This shows the samples collected during several
highway test drives with an overall measuring period of more
than one hour. According to the visualization, the employed
position prediction approach seems to produce more faulty
predictions when negative longitudinal or positive lateral
accelerations occur. Even this small example with a very
limited amount of collected data shows that the presented
collection strategy has great potential to enhance training
data sets for motion predictions with meaningful samples.
Although this example does not refer to external conditions,
the same effects could be observed for such, when collecting
more data e. g. through a fleet of several vehicles.

1https://www.researchgate.net/publication/343392786 Prediction and
Memory Module within AR display

2For the sake of simplicity we restricted ourselves to solely investigate
the lateral direction here.
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Fig. 6. Histograms showing the distribution of the logged data’s longitu-
dinal and lateral acceleration.

VI. SUMMARY AND OUTLOOK

We presented a new fleet learning-based data collection
architecture that ensures continuous improvements of motion
predictions of surrounding traffic participants. Especially,
this is beneficial during challenging external conditions. In
addition, the relevant elements of the pipeline were proto-
typically applied to a testing vehicle. Empirical evaluations
conducted with the testing vehicle prove the fundamental
feasibility of the system. Besides, the investigations show
that meaningful samples, which can be used to improve the
motion predictions, can be collected.

As the next steps of our research, we will expand the
memory component and conduct investigations based on
vehicles other than the ego-vehicle. Additionally, we plan
a rollout of the data collection architecture on a larger fleet
of testing vehicles. Furthermore, we will study the actual im-
provements of the motion prediction modules being enabled
by the collected data with respect to external conditions, as
soon as a larger data basis becomes available.
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