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Predicting the Time Until a Vehicle Changes the Lane
Using LSTM-Based Recurrent Neural Networks

Florian Wirthmüller , Marvin Klimke , Julian Schlechtriemen , Jochen Hipp , and Manfred Reichert

Abstract—To plan safe and comfortable trajectories for auto-
mated vehicles on highways, accurate predictions of traffic situ-
ations are needed. So far, a lot of research effort has been spent
on detecting lane change maneuvers rather than on estimating the
point in time a lane change actually happens. In practice, however,
this temporal information might be even more useful. This letter
deals with the development of a system that accurately predicts the
time to the next lane change of surrounding vehicles on highways
using long short-term memory-based recurrent neural networks.
An extensive evaluation based on a large real-world data set shows
that our approach is able to make reliable predictions, even in
the most challenging situations, with a root mean squared error
around 0.7 seconds. Already 3.5 seconds prior to lane changes the
predictions become highly accurate, showing a median error of less
than 0.25 seconds. In summary, this article forms a fundamental
step towards downstreamed highly accurate position predictions.

Index Terms—Intelligent Transportation Systems, AI-Based
Methods, Automated Driving, Vehicle Motion Prediction.

I. INTRODUCTION

AUTOMATED DRIVING is on the rise, making traffic safer
and more comfortable already today. However, handing

over full control to a system still constitutes a particular chal-
lenge. To reach the goal of fully automated driving, precise
information about the positions as well as the behavior of
surrounding traffic participants needs to be gathered. Moreover,
an estimation about the development of the traffic situation,
i. e. the future motion of surrounding vehicles, is at least as
important. Only if the system is taught to perform an anticipatory
style of driving similar to a human driver, acceptable levels
of comfort and safety can be achieved. Therefore, every step
towards improved predictions of surrounding vehicles’ behavior
in terms of precision as well as wealth of information is valuable.
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Fig. 1. A lot of previous works investigated systems that classify whether or
not a lane change is going to take place. Instead, the proposed approach estimates
the time to the next lane change directly. This information is more useful and
covers the classification information implicitly.

Although many works in the field of motion prediction focus
on predicting whether or not a lane change maneuver will take
place, predictions on the exact point in time the lane changes
will occur have not been well investigated. This temporal in-
formation, however, is extremely important, as emphasized
by Fig. 1. Hence, this letter deals with the development of
a system that predicts the time to upcoming lane changes of
surrounding vehicles precisely. The system is developed and
thoroughly evaluated based on a large real-world data set, which
is representative for highway driving in Germany. As methodical
basis, the state-of-the-art technique of long short-term memory
(LSTM)-based recurrent neural networks (RNNs) is applied.
Therefore, we form the basis for downstreamed highly accurate
position predictions. The novelty and main contribution of our
article results from using and thoroughly investigating known
techniques with the special perspective of (vehicle) motion
prediction rather than from developing completely new learning
methods. Therefore, we changed the learning paradigm from
classification to regression and obtained a significant gain in
knowledge. In addition, to the best of our knowledge, there is
no other article comparing an approach for time to lane change
regression with a maneuver classification approach.

The remainder of this paper is structured as follows: Section II
discusses related work. Section III then describes the proposed
approach, followed by its evaluation based on real-world mea-
surements in Section IV. Finally, Section V concludes the article
with a short summary and an outlook on future work.
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II. RELATED WORK

An overview of motion prediction approaches is presented
in [1], which distinguishes three categories: physics-based,
maneuver-based, and interaction-aware approaches. Maneuver-
based approaches, which are most relevant in the context of our
work, typically define three fundamental maneuver classes: lane
change to the left LCL, lane change to the right LCR, and lane
following FLW [2]–[4]. These maneuver classes are used to
simplify modeling the entirety of highway driving and its multi-
modality. Based on this categorization, the prediction problem is
interpreted as a classification task with the objective to estimate
the upcoming maneuver or the maneuver probabilities based on
the current sensor data.

An approach that decomposes the lane change probability
into a situation- and a movement-based component is presented
in [2]. As a result, an F1-score better than 98 %, with the
maneuvers being detected approximately 1.5 s in advance, can be
obtained. The probabilities are modeled with sigmoid functions
as well as a support vector machine.

In [3], the problem of predicting the future positions of sur-
rounding vehicles is systematically investigated from a machine
learning point of view using a non-public data set. Among
the considered approaches and techniques, the combination of
a multilayer perceptron (MLP) as lane change classifier and
three Gaussian mixture regressors as position estimators in a
mixture of experts shows the best performance. The mixture of
experts approach can be seen as a divide and conquer manner
enabling to master modeling the complex multimodalities during
highway driving. In order to achieve this, the probabilities of
all possible maneuvers are estimated. The latter are used to
aggregate different position estimates being characteristic for
the respective maneuvers. In [4], the approach of [3] has been
adopted to the publicly available highD data set [5], showing
an improved maneuver classification performance with an area
under the receiver operating characteristic curve of over 97 % at
a prediction horizon of 5 s. Additionally, [4] studies the impact of
external conditions (e.g. traffic density) on the driving behavior
as well as on the system’s prediction performance.

The highD data set [5] has evolved into a defacto standard data
set for developing and evaluating such prediction approaches
since its release in 2018. The data set comprises more than
16 hours of highway scenarios in Germany that were collected
from an aerial perspective with a statically positioned drone. The
recordings cover road segments ranging 420 m each. Compared
to the previously used NGSIM data set [6], the highD data
set contains less noise and covers a higher variety of traffic
situations.

In opposition to the so far mentioned machine-learning
based approaches, [1] introduced the notion ‘physics-based’ ap-
proaches. Such approaches mostly depend on the laws of physics
and can be described with simple models such as constant
velocity or constant acceleration [7]. Two well-known and more
advanced model-based approaches are the ‘Intelligent Driver
Model’ (IDM) [8] and ‘Minimizing Overall Braking Induced
by Lane Changes’ (MOBIL) approach [9]. Such approaches are
known to be more reliable even in rarely occurring scenarios.

Therefore, it is advisable to use them in practice in combination
with machine learning models, which are known to be more pre-
cise during normal operation, to safeguard the latter’s estimates.

Approaches understanding the lane change prediction prob-
lem as a regression task instead of a classification task and that
are more interested in the time to the next lane change are very
rare though. Two such approaches can be found in [10], [11].

In [10], an approach predicting the time to lane change based
on a neural network that consists of an LSTM and two dense
layers is proposed. Besides information about the traffic situa-
tion which can be measured from each point in the scene, the
network utilizes information about the driver state. Therefore,
the approach is solely applicable to predict the ego-vehicle’s
behavior, but not to predict the one of surrounding vehicles.
Nevertheless, the approach performs well showing an average
prediction error of only 0.3 s at a prediction horizon of 3 s when
feeding the LSTM with a history of 3 s. To train and evaluate
the network, a simulator-based data set covering approximately
1000 lane changes to each side is used.

An approach based on quantile regression forests, which
constitute an extension of random decision forests, is presented
in [11]. It uses features that describe the relations to the sur-
rounding traffic participants over a history of 0.5 s and produces
probabilistic outputs. The approach is evaluated with a small
simulation-based as well as a real-world data set with 150 and 50
situations per lane change direction, respectively. The evaluation
shows that the root mean squared error (RMSE) falls below
1.0 s only 1.5 s before a lane change takes place. In [12], this
work is extended utilizing the time to lane change estimates
to perform trajectory predictions using cubic polynomials. An
approach based on quantile regression forests, which constitute
an extension of random decision forests, is presented in [11]. It
uses features that describe the relations to the surrounding traffic
participants over a history of 0.5 s and produces probabilistic
outputs. The approach is evaluated with a small simulation based
as well as a real-world data set with 150 and 50 situations per
lane change direction, respectively. The evaluation shows that
the root mean squared error (RMSE) falls below 1.0 s only 1.5 s
before a lane change takes place. In [12], this work is extended
utilizing the time to lane change estimates to perform trajectory
predictions using cubic polynomials.

Other approaches try to infer the future position or a spatial
probability distribution [3], [4], [13]–[16]. As [13] shows, it
is promising to perform the position prediction in a divide and
conquer manner. Therefore, a system exclusively producing time
to lane change estimates remains reasonable even though ap-
proaches directly estimating the future positions also determine
that information as by-product.

The approach presented in [13] uses a random forest to
estimate lane change probabilities. These probabilities serve as
mixture weights in a mixture of experts predicting future posi-
tions. This approach has been extended by the above-mentioned
works [3], [4], which have replaced the random forest by an
MLP. The evaluations presented in [4] show a median lateral
prediction error of 0.18 m on the highD data set at a prediction
horizon of 5 s.
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Fig. 2. Architecture of the used LSTM-based RNN together with its inputs and outputs. As the illustration indicates, it is necessary to feed the network with
several consecutive measurements in order to take advantage of the recursive nature of the LSTM units. The relevant output is the most recently produced one,
highlighted in red, as it is influenced by all previous measurements.

A similar strategy is applied by [14]. In this work, an MLP
for maneuver classification as well as an LSTM network for
trajectory prediction are trained using the NGSIM data set. In
turn, the outputs of the MLP are used as one of the inputs of the
LSTM network. The evaluation yields an RMSE of only 0.09 m
at a prediction horizon of 5 s for the lateral direction when using
a history of 6 s.

The approach presented in [15] uses an LSTM-based RNN,
which predicts single shot trajectories rather than probabilistic
estimates. The network is trained using the NGSIM data set. [15]
investigates different network architectures. Among these archi-
tectures, a single LSTM layer followed by two dense layers using
tanh-activation functions shows the best performance, i. e., an
RMSE of approximately 0.42 m at a prediction horizon of 5 s.

[16] uses an LSTM-based encoder-decoder architecture to
predict spatial probability distributions of surrounding vehicles.
The used architecture is enabled to explicitly model interactions
between vehicles. Thereby, the LSTM-based network is used
to estimate the parameters of bivariate Gaussian distributions,
which model the desired spatial distributions. Evaluations based
on the NGSIM and highD data sets show RMSE values of 4.30 m
and 2.91 m, respectively, at a prediction horizon of 5 s.

As our literature review shows, many approaches, and espe-
cially the most recent ones, use long short-term memory (LSTM)
units. An LSTM unit is an artificial neuron architecture, which
is used for building recurrent neural networks (RNNs). LSTMs
have been firstly introduced by Hochreiter and Schmidhuber in
1997 [17].

The key difference between RNNs and common feedforward
architectures (e.g. convolutional neural networks) results from
feedback connections that allow for virtually unlimited value
and gradient propagation, making RNNs well suited for time
series prediction. To efficiently learn long-term dependencies
from the data, the LSTM maintains a cell and a hidden state
that are selectively updated in each time step. The information
flow is guided by three gates, which allow propagating the
cell memory without change. The latter contributes to keep the

problem of vanishing and exploding gradients, classic RNNs
suffer from [18, Ch. 10], under control.

III. PROPOSED APPROACH

The present work builds upon the general approach we de-
scribed in [3], [4] but follows a fundamentally different idea.
We replaced the previously used multilayer perceptron (MLP)
for lane change classification by a long short-term memory
(LSTM)-based recurrent neural network (RNN) predicting the
time to an upcoming lane change. Consequently, the classifi-
cation task becomes a regression task. For the moment of the
lane change, we are using the point in time when the vehicle
center has just crossed the lane marking [3]. Transforming the
classification problem to a regression problem has in fact also the
benefit, that the labeling is simplified, as it is no longer necessary
to define the start and the end of the lane change maneuver. The
latter is a really challenging task. Fig. 2 illustrates the proposed
model architecture together with the inputs and outputs. The
architecture consists of one LSTM layer followed by one hidden
dense layer and an output layer. The dimensionality of the output
layer is two, with the two dimensions representing the predicted

time to a lane change to the left ˜TTLCL1 and to the right
˜TTLCR, respectively. In accordance with [17], the LSTM layer

uses sigmoid functions for the gates and tanh for the cell state
and outputs. By contrast, in the following dense layers rectified
linear units (ReLU) are used. ReLUs map negative activations to
a value of zero. For positive values, in turn, the original activation
is returned. ReLUs have to be favored against classical neurons,
e.g., using sigmoidal activation functions as they help to prevent
the vanishing gradient problem. The use of ReLUs instead of
linear output activations for a regression problem can be justified
with the fact that negative TTLC2 values cannot occur in the

1Symbols which are overlined with a tilde denote estimated values in contrast
to the actual ones.

2TTLC stands for time to lane change values in general no matter to which
direction the lane change is performed.
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Fig. 3. Visualization of the relative feature importance values. As the relative
importance values are derived from the model weights, they are related to a
fitted model. In this case we chose the one with the optimal hyperparameters
(see Table I). The feature identifiers are in accordance with the ones from [3],
where the feature selection was carried out. A short overview can be found in
the Appendix (Table V).

given context. While designing our approach, we also considered
model architectures featuring two LSTMs stacked on top or
using a second dense layer. Both variants provided no significant
performance improvement. This observation is in line with the
findings described in [15].

The used feature set is the same as in [4] and is based
on the highD data set. The selection of the features is taken
from [3], where data produced by a testing vehicle fleet is used to
thoroughly investigate different feature sets. As opposed to [3],
however, our approach omits the yaw angle as it is not available
in the highD data set. Moreover, the transformation to lane
coordinates is not needed as the highD data set solely contains
straight road segments. The relative feature importance values
are depicted in Fig. 3.

For each feature f , the importance value ι(f) is calculated
according to (1) as the sum of all weights w connecting that
feature to the nLSTM neurons of the LSTM layer:

ι(f) =

nLSTM∑
n=1

w(f, n) (1)

The relative importance is calculated by normalization. As
Fig. 3 indicates, the distance to the left lane marking dml

y

and the lateral acceleration ay play superior roles, whereas the
importance of the other features is lower and quite similar.

In order to use the recursive nature of the LSTM units, one
has to feed not only the current measurement values, but also a
certain number of previous measurement values to the network.
Although the network is able to output estimates each time an
input vector has been processed, we are only interested in the
last output. This is due to the fact that only in the last iteration, all
measurements and especially the most recent ones are utilized
for generating the prediction. This input/output interface of the
network is illustrated in Fig. 2. The gray box on the left depicts
a set of past measurements that are fed to the RNN as the
input time series for a prediction at point t. The LSTM layer

TABLE I
HYPERPARAMETERS IN THE GRID SEARCH

continuously updates its cell state, which can be used to derive a
model output at any time. This is indicated by the time series of
TTLC estimates in the gray box on the right. The relevant final
estimate is framed in red. In case a prediction is required for
every time step, the LSTM is executed with largely overlapping
input time series and reset in between.

The remaining hyperparameters, namely the dimensionality
of the LSTM cell and the hidden dense layer, as well as the num-
ber of time steps provided and the learning rate are tuned using
a grid search scheme [19, p. 7f]. Table I lists the hyperparameter
values to be evaluated, yielding 54 possible combinations. This
hyperparameter tuning scheme is encapsulated in a 5-fold cross
validation to ensure a robust evaluation of the model’s general-
ization abilities [3].

More precisely, for each possible combination of hyperparam-
eters a model is trained based on 4 folds. Subsequently, the model
is evaluated using the remaining fifth fold. This procedure is
iterated so that each fold is used once for evaluation. Afterwards,
the results are averaged and used to indicate the fitness of this
hyperparameter set. As evaluation metric the loss function of the
regression problem is used.

Given the aforementioned grid definition (see Table I), the
following hyperparameter setup has proven to be optimal in the
context of the present study: The output dimensionality of the
LSTM nLSTM results to 256 and the dense layer to a size of
ndense = 32 units. Moreover, 3 s of feature history at 25 Hz,
resulting in 75 time steps, is sufficient for the best performing
model. As optimization algorithm we chose Adam [20], with
α = 0.0003 as optimal learning rate.

When labeling the samples, the time to lane change values are
clipped to a maximum of seven seconds, which is also applied to
trajectory samples with no lane change ahead. The loss function
of the regression problem is defined as mean squared error
(MSE). As theTTLC values are contained in the interval [0, 7] s,
there are virtually no outliers that MSE could suffer from.

In order not to over-represent lane following samples during
the training process, the data set used to train the model is
randomly undersampled. Accordingly, only one third of the
lane following samples are used. A similar strategy is described
in [10]. Moreover, the features are scaled to zero mean and
unit-variance.

Keras [21], a Python-based deep learning API built on top
of Google’s TensorFlow [22], is used to assemble, train, and
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Fig. 4. Distribution of the unclipped time to lane change values. The upper
part of the figure only contains samples with an upcoming lane change to the
left. Hence, it solely depicts the time to the next lane change to the leftTTLCL.
The lower part, in turn, shows an equivalent representation for lane changes to
the right. The used data set is not balanced over maneuver classes.

validate the RNN models. The grid search is performed on
a high-performance computer equipped with a graphics pro-
cessing unit, which is exploited by TensorFlow to reach peak
efficiency.

IV. EVALUATION

To evaluate the resulting time to lane change prediction model,
one fold of the highD data set is used. This fold was left out
during model training and hyperparameter optimization. It is
noteworthy that the used data sets are not balanced over TTLC.
This means, for example, that there are more samples with a
TTLCL of 3 s than samples with a TTLCL of 5 s. This fact is
illustrated by the histogram depicted in Fig. 4. The reason is that
in the highD data set observations for individual vehicles rarely
span over the full time of 7 s or more. However, this does not
affect the following evaluations significantly. For all experiments
we relied on the model, which showed the best performance
during the grid search.

In the following, we evaluate two different characteristics of
the proposed approach. First, we investigate how well the system
solves the actual task, that is to estimate the time to the next
lane change (cf. Section IV-A). Subsequently (Section IV-B),
we deduce a maneuver classification estimate from the TTLC
estimates and perform a performance evaluation in comparison
to existing works.

A. Time to Lane Change Prediction Performance

To investigate the system’s ability to estimate the time to
the next lane change, we consider the root mean squared error
(RMSE). This stands in contrast to the loss function that uses
the pure mean squared error (MSE) (see Section III). However,
as evaluation metric the RMSE is beneficial due to its better
interpretability. The latter is caused by the fact that the RMSE has
the same physical unit as the desired output quantity, i. e. seconds
in our case. Further note that the overall RMSE is not always the

TABLE II
TIME TO LANE CHANGE PREDICTION PERFORMANCE (RMSE [s]) ON A

BALANCED DATA SET

most suitable measure. This fact shall be illustrated by a simple
example: For a sample where the driver follows the current lane
(FLW ) or performs a lane change to the right (LCR), it is
relatively straight forward to predict the TTLCL. By contrast,
it is considerably more challenging to estimate the same quantity
for a sample where a lane change to the left (LCL) is executed.
However, the latter constitutes the more relevant information.
Therefore, we decided to calculate the RMSE values for the two
individual outputs ˜TTLCL and ˜TTLCR. A look at the results
presented in Table II makes this thought clearer.

To produce the results shown in Table II, we use a data set
that is balanced according to the maneuver labels. The latter are
defined according to [4].3 The evaluation considers all samples
with an actual TTLCL value below 7 s as LCL samples.
Regarding LCR samples, an equivalent logic is applied. All
remaining samples belong to the FLW class. In some very rare
cases, two lane changes are performed in quick succession. Thus,
a few samples appear in both LCL and LCR. This explains the
slightly different number of samples, shown in Table II.

The first row of Table II depicts the overall RMSE. The RMSE
can be monotonically mapped from the MSE, which is used
as loss function during the training of the network. The two
rows below depict the RMSE values separated by the outputs.
The values we consider as the most relevant ones (TTLCL
estimation error for LCL samples and vice versa) are high-
lighted (bold font). Thus, the most interesting error values are
close to 0.7 s. The other error values are significantly smaller
but this is in fact not very surprising. This can be explained, as
the system only has to detect that no lane change is about to
happen in the near future in these cases. If this is successfully

detected, the respective ˜TTLC can simply be set to a value
close to 7 s. Note that these values can be hardly compared with
existing works (e.g. [10]) as the overall results strongly depend
on the distribution of the underlying data set as well as the RMSE
values considered. In addition, our investigations are based on
real-world measurements rather than on simulated data.

In addition to the overall prediction performance, we are
interested in the system’s prediction performance over time.
Obviously, the prediction task is, for example, significantly more
difficult 4 s prior to the actual lane change than it is 1 s before it.
To investigate this, we evaluate the RMSE and the distribution of
the errors using boxplots as functions of the TTLC, as shown
in Fig. 5. Attention should be paid to the fact that the illustrated

3The definition of the labels essentially complies with the one presented in
(2). As opposed to the shown equation, the actual times to the next lane change
are used instead of the estimated ones.
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Fig. 5. RMSE (red) and error distribution (boxplot) as functions of the remain-
ing time to the next lane change. The underlying data set is not balanced over the
actual maneuver classes. The depicted values refer to the error values separated
by the output channels.

values correspond to the errors separated by output channels
as in Table II. For this investigation we rely on the unbalanced
data set, meaning that considerably more FLW samples are
included. An exact depiction of the label distribution can be
found later on in Table IV. By using the unbalanced data set,
more samples with TTLC values between 5 s and 7 s remain
in the data. Thus, the error values aggregated over TTLC are
assumed to be less noisy, especially between 5 and 7 s.

As shown in Fig. 5, the RMSE and the median values in the
boxplots are mostly very close to each other, but the medians
are more optimistic in general. Especially, this is the case in
the upper part of Fig. 5 (arising lane change to the left) in
the region between 7 s and 6 s. This can be explained with the
fact that in this range the data density is relatively low. Thus, a
single large error can significantly affect the RMSE, whereas this
sample is considered as outlier in the boxplot. The illustrations
show that our approach reaches very small prediction errors
below 0.25 s already 3.5 s before the actual lane change moment.
Even though a direct comparison to other approaches is also
difficult for this quantity, it is noteworthy that [11] reports RMSE
values below 0.25 s only 1 s before the lane changes. Conversely,
our evaluations show comparable RMSE values already 2.5 s in
advance of the lane change.

The fact that errors for large TTLC values (>4.5 s) are also
very low can be explained as the system may not recognize such
examples as lane changes. In that case, the system will solely
output a TTLC value of around 7 s. If, for example, the actual
value corresponds to 6 s, the error is of course around 1 s. Thus,
one can conclude that outputs, which are larger than the break
even point of approximately 4.5 s are not very reliable. Note
that this is in fact not surprising as predictions with such time
horizons are extremely challenging.

Besides, it is known that lane changes to the left are easier to
predict than the ones to the right [3], [23]. This is the reason that
the RMSE values for lane changes to the right decrease slower
over time than the values for lane changes to the left.

TABLE III
MANEUVER CLASSIFICATION PERFORMANCE ON A DATA SET BALANCED OVER

ACTUAL MANEUVER CLASSES COMPARED TO THE STUDY IN [4]
THE PROCEDURE TO CONSTRUCT THE DATA SET CAN BE EXTRACTED FROM

THE CONTINUOUS TEXT

B. Classification Performance

In addition to the preceding evaluations, we want to know
how well our approach performs compared to a pure maneuver
classification approach. This can be easily investigated by deriv-
ing the classification information from the time to lane change
estimates. For this purpose, the logic depicted in (2) is applied:

L =

⎧⎪⎨
⎪⎩

LCL, if ( ˜TTLCL ≤ 5 s) ∧ ( ˜TTLCL ≤ ˜TTLCR)

LCR, if ( ˜TTLCR ≤ 5 s) ∧ ( ˜TTLCR < ˜TTLCL)

FLW, otherwise
(2)

˜TTLCL and ˜TTLCR denote the estimated time to the next
lane change to the left and to the right, respectively. The defined
labels LCL, LCR and FLW are used to specify samples
belonging to the three already introduced maneuver classes: lane
change to the left, lane change to the right, and lane following.
This definition matches the one used in [4] for the labeling. Also
the prediction horizon of 5 s was adopted from [4] in order to
ensure comparability. As lane change maneuvers usually range
from 3 s to 5 s (see [24]), this is also a reasonable choice. The
following investigations are, therefore, conducted in comparison
to the approach outlined in [4], where an MLP for maneuver
classification is trained using the highD data set (see Section II).
We use the well-known metrics precision, recall and F1-score,
whose definitions can be found in [25, p. 182 f]. The results on
a balanced data set are given in Table III.

This investigation shows that our newly developed LSTM
network is able to perform the classification task – for which
it was not intended – with a comparable or even slightly bet-
ter performance than existing approaches. In particular, it is
remarkable that not only the overall performance (measured
with the F1-score) is significantly increased with respect to the
FLW samples, but also with respect to the LCL samples. The
improved performance on the FLW class can be explained by
the adapted training data set. While [4] uses a balanced data
set, in this study we use a third of all FLW samples and thus
significantly more than from the two other classes.

The overall slightly improved performance can presumably be
attributed to the recurrent LSTM structure enabling the network
to memorize past cell states. As opposed to this approach, [4]
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TABLE IV
MANEUVER CLASSIFICATION PERFORMANCE ON AN UNDERSAMPLED BUT NOT

BALANCED DATA SET COMPARED TO THE STUDY IN [4]
THE PROCEDURE TO CONSTRUCT THE DATA SET CAN BE EXTRACTED FROM

THE CONTINUOUS TEXT

relies on the Markov assumption and, thus, does not model past
system states. Although recurrent approaches can improve the
prediction performance, Markov approaches have to be also
taken into account when it comes to embedded implementations,
as the latter ones are more resource-friendly.

Another interesting characteristic of our approach can be
observed in Table IV, where its performance is measured on
a data set which is undersampled in the same way as during the
training.

As shown by Table IV, the new LSTM approach copes signif-
icantly better with the changed conditions (using an unbalanced
instead of a balanced data set) compared to the MLP approach
presented in [4]. On one hand, this is not surprising, as our
network is exactly trained on a data set that is distributed in
the same way. On the other, together with the results displayed
in Table III, where the LSTM also performs quite well, it
demonstrates that the LSTM approach is significantly more
robust than the MLP. Nevertheless, note that in practice the
MLP is applied together with a prior multiplication step. The
probabilities estimated this way are then used as weights in a
mixture of experts.

V. SUMMARY AND OUTLOOK

This work presented a novel approach for predicting the time
to the next lane change of surrounding vehicles on highways
with high accuracy. The approach was developed and evaluated
with regard to its prediction performance using a large real-world
data set. Subsequently, we demonstrated that the presented ap-
proach is able to perform the predictions even during the most
challenging situations with an RMSE around 0.7 s. Additional
investigations showed that the predictions become highly accu-
rate already 3.5 s before a lane change takes place. Besides, the
performance was compared to a selected maneuver classification
approach. Similar approaches are often used in recent works.
Thus, it was shown that our approach is also able to deliver this
information with a comparably high and in some situations even
better quality. On top of this, our approach delivers the time to
the next lane change as additional information.

The described work builds the basis for improving position
prediction approaches by integrating the highly accurate time to

lane change estimates into a downstreamed position prediction.
Our future research will especially focus on how to use these
estimates in an integrated mixture of experts approach instead
of maneuver probabilities as sketched in [3].

APPENDIX

TABLE V
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TABLE VI
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