
Supporting Ad-Hoc Changes in Distributed
Workflow Management Systems

Manfred Reichert1 and Thomas Bauer2

1Informaton Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

2Dept. GR/EPD, DaimlerChrysler AG Group Research, Germany
thomas.tb.bauer@daimlerchrysler.com

Abstract. Flexible support of distributed business processes is a charac-
teristic challenge for any workflow management system (WfMS).
Scalability at the presence of high loads as well as the capability to
dynamically adapt running process instances are essential requirements.
Should the latter one be not met, the WfMS will not have the neces-
sary flexibility to cover the wide range of process-oriented applications
deployed in many organizations. Scalability and flexibility have, for the
most part, been treated separately in literature thus far. Even though
they are basic needs for a WfMS, the requirements related with them
are totally different. To achieve satisfactory scalability, on the one hand
the system needs to be designed such that a workflow (WF) instance can
be controlled by several WF servers that are as independent from each
other as possible. Yet dynamic WF changes, on the other hand, neces-
sitate a (logical) central control instance which knows the current and
global state of a WF instance. This paper presents methods which allow
ad-hoc modifications (e.g., to insert, delete, or shift steps) to be correctly
performed in a distributed WfMS; i.e., in a WfMS with partitioned WF
execution graphs and distributed WF control. It is especially noteworthy
that the system succeeds in realizing the full functionality as given in the
central case while, at the same time, achieving favorable behavior with
respect to communication costs.

1 Introduction

Workflow management systems (WfMS) enable the definition, execution, and
monitoring of computerized business processes. Very often, a centralized WfMS
shows deficits when it is confronted with high loads or when the business pro-
cesses to be supported span multiple organizations. As in several other ap-
proaches (e.g. [9,15]), in the ADEPT project, we have met this particular demand
by realizing a distributed WfMS made up of several workflow (WF) servers. WF
schemes may be divided into several partitions such that related WF instance
may be controlled ”piecewise” by different WF servers in order to obtain a fa-
vorable communication behavior [3,5]. Such a distributed WF execution is also
needed, for example, for the WF-based support of ubiquitous applications and
their integration with backend systems.

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 150–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 151

Comparable to centralized WfMS (e.g., Staffware), a distributed WfMS must
meet high flexibility requirements in order to cover the broad spectrum of pro-
cesses we can find in large organizations [16,20,14]. In particular, at the WF
instance level it must be possible to deviate from the pre-defined WF schema
during runtime if required (e.g., by adding, deleting or moving process activi-
ties in the flow of control). As reported in literature (e.g., [14,19]), such ad-hoc
WF changes become necessary to deal with exceptional or changing situations.
Within the ADEPT project we have developed an advanced technology for the
support of adaptive workflows. In paticular, ADEPT allows users (or agents) to
dynamically modify a running WF instance without causing any run-time error
or inconsistency in the sequel (e.g., deadlocks or program crashes due to activity
invocations with missing input parameter data) [16,17].

In our previous work we considered distributed execution of partitioned WF
schemes and ad-hoc modifications as separate issues. In fact, we have not system-
atically investigated how these two vital aspects of a WfMS interact. Typically
such an investigation is not trivial as the requirements related to each of these
two aspects are different: Ad-hoc WF instance modifications and the correct
processing of the WF instance afterwards prescribe a logically central control
instance to ensure correctness and consistency [16]. The existence of such a
central instance, however, contradicts to the accomplishments achieved by dis-
tributed WF execution. The reason for this is that a central component decreases
the availability of the WfMS and increases communication efforts between WF
clients and the WF server. One reason for this lies in the fact that the central
control instance must be informed of each and every change in the state of any
WF instance. This state of the instance is needed to decide whether an intended
modification is executable at all [16].

The objective of this paper is to introduce an approach for enabling ad-hoc
modifications of single WF instances in a distributed WfMS; i.e., a WfMS with
WF schema partitioning and distributed WF control. As a necessary prerequi-
site, distributed WF control must not affect the applicability of ad-hoc modifi-
cations; i.e., each modification, allowed in the central case, must be applicable
in case of distributed WF execution as well. And the support of such ad-hoc
modifications, in turn, must not impact distributed WF control. In particular,
normal WF execution should not necessitate a great deal of additional commu-
nication effort due to the application of WF instance modifications. Finally, in
the system to be developed, ad-hoc modifications should be correctly performed
and as efficiently as possible. To deal with these requirements, it is essential to
examine which servers of the WfMS must be involved in the synchronization of
an ad-hoc modification. Most likely we will have to consider those servers cur-
rently involved in the control of the respective WF instance. These active servers
require the resulting execution schema of the WF instance (i.e., the schema and
state resulting from the ad-hoc modification) in order to correctly control it after
the modification. Thus we first need an efficient approach to determine the set
of active servers for a given WF instance. This must be possible without a sub-
stantial expense of communication efforts. In addition, we must clarify how the

152 M. Reichert and T. Bauer

new execution schema of the WF instance, generated as a result of the ad-hoc
modification, may be transmitted to relevant servers. An essential requirement
is, thereby, that the amount of communication may not exceed acceptable limits.

Section 2 gives background information about distributed WfMS, which which
is needed for the understanding of this paper. Section 3 describes how ad-hoc
modifications are performed in a distributed WfMS, while Section 4 sets out how
modified WF instances can be efficiently controlled in such a system. We discuss
related work in Section 5 and end with a summary in Section 6.

2 Distributed Workflow Execution in ADEPT

Usually, WfMS with one central WF server are unsuitable if the WF participants
(i.e., the actors of the WF activities) are distributed across multiple enterprises
or organizational units. In such a case, the use of one central WF server would
restrict the autonomy of the involved partners and might be disadvantageous
with respect to respones times. Particularly, if the organizations are widespread,
response times will significantly increase due to the long distance communication
between WF clients and the WF server. In addition, owing to the large number
of users and co-active WF instances typical for enterprise-wide applications,
the WfMS is generally subjected to an extremely heavy load. This may lead
to certain components of the system becoming overloaded. For all these and
other reasons, in the distributed variant of ADEPT, a WF instance may not
be controlled by only one WF server. Instead, its related WF schema may be
partitioned at buildtime (if favorable), and the resulting partitions be controlled
”piecewise” by multiple WF servers during runtime 1 [3] (cf. Fig. 1). As soon
as the end of a partition is reached at run-time, control over the respective WF
instance is handed over to the next WF server (in the following we call this
migration).

When performing such a migration, a description of the state of the WF
instance has to be transmitted to the target server before this WF server can
take over control. This includes, for example, information about the state of WF
activities as well as values for WF relevant data; i.e., data elements connected
with output parameters of activities. (To simplify matters, in this paper we
assume that WF templates (i.e., respective WF schemes) have been replicated
and stored on all (relevant) WF servers of the distributed WfMS.)

To avoid unnecessary communication between WF servers, ADEPT allows
to control parallel branches of a WF instance independently from each other –
at least as no synchronization due to other reasons, e.g. a dynamic WF modi-
fication, becomes necessary. In the example given in Figure 1b, WF server s3,
which currently controls activity d, normally does not know how far execution
has progressed in the upper branch (activities b and c). This has the advantage
that the WF servers responsible for controlling the activities of parallel branches
do not need to be synchronized.
1 To achieve a better scalability we allow the same partition of different WF instances

to be controlled by multiple WF servers (for details see [6]).

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 153

� � � � � � � � � 	

� � � � � � � � � 	 �

� � � � � � � � � 	 �

 � 	 � � � � � � 	 �
�

�

� �

�

�

 � 	 � � � � � � 	 �
�

 � 	 � � � � � � 	 �

� � � � � � 	 � � � � � � � 	 � � � �

� � � � � � � 	 � � � �

� � � 	 � � � � � � � � �

�

�

�

�

� � � � � � � �

! � " � 	 � � � � � � � # 	 � � � 	 � � � � � � � �

� � 	 � " � 	 � � � $ � � � � � %

& ' ((� ()

! � " � 	 � � � � � � � # 	 � � 	 � * � � � � � � #

� + � � * � � � 	 � # 	 � 	 * � � � %

� , - . / � � �

! � " � 	 � + � � * � � � � 	 � � 	 � " � 	

� � � � � � � # 	 � � � 	 � � � � � " � � %

� � � � � � � � � 	

� � � � � � � � � 	 �

� � � � � � � � � 	 �

 � 	 � � � � � � 	 �
�

�

� �

�

�

 � 	 � � � � � � 	 �
�

 � 	 � � � � � � 	 �

�

�

� %

� %

� � � � � � � � �

� � � � � � � � � 	 �
 � � �

� � � � � � � � 	

 � � � � � �

� � � � � � � � 	

 � � � � � �

� � � � � � � � 	

 � � � � � �

�

�

� (0 � � � � �

� (0 1 � � �

Fig. 1. a) Migration of a WF instance (from s1 to s3) and b) the resulting state of the
WF instance

The partitioning of WF schemes and distributed WF control have been suc-
cessfully utilized in other approaches as well (e.g. [9,15]).In ADEPT, we have
targeted an additional goal, namely the minimization of communication costs.
Concrete experiences we gained in working with commercial WfMS have shown
that there is a great deal of communication between the WF server and its WF
clients, oftentimes necessitating the exchange of large amounts of data. This may
lead to the communication system becoming overloaded. Hence, the WF servers
responsible for controlling activities in ADEPT are defined in such a way that
communication in the overall system is reduced: Typically, the WF server for
the control of a specific activity is selected in a way such that it is located in
the subnet to which most of the potential actors belong (i.e., the users whose
role would allow them to handle the activity). This way of selecting the server
contributes to avoid cross-subnet communication between the WF server and its
clients. Further benefits are improved response times and increased availability.
This is achieved due to the fact that neither a gateway nor a WAN (Wide Area
Network) is interposed when executing activities. The efficiency of the described
approach – with respect to WF server load and communication costs – has been
proven by means of comprehensive simulations and is outside the scope of this
paper (see [4]).

Usually, servers are assigned to the activities of a WF schema already at
build-time. However, in some cases this approach does not suffice to achieve the
desired results. This may be the case, for example, if dependent actor assignments
become necessary. Such assignments indicate, for example, that an activity n has
to be performed by the same actor as a preceding activity m. Consequently, the
set of potential actors of activity n is dependent on the concrete actor assigned
to activity m. Since this set of prospective actors can only be determined at run-
time, it would be beneficial to wait with WF server assignment until run-time
as well. Then, a server in a suitable subnet can be selected; i.e., one that is most

154 M. Reichert and T. Bauer

favorable for the actors defined. For this purpose, ADEPT supports so-called
variable server assignments [5]. Here, server assignment expressions like "server
in subnet of the actor performing activity m" are assigned to activities and then
evaluated at run-time. This allows the WF server, which shall control the related
activity instance, to be determined dynamically.

3 Ad-Hoc Modifications in a Distributed WfMS

In principle, in a distributed WfMS ad-hoc modifications of single WF instances
have to be performed just as in a central system (for an example see Fig. 2).
The WfMS has to check whether or not the desired modification is allowed on
basis of the current structure and state of the concerned WF instance. If the
modification is permissible (e.g., if the instance has not progressed too far in its
execution), the related change operations will have to be determined and the
WF schema belonging to the WF instance will be modified accordingly (incl.
adaptations of the WF instance state if required).

� %

� %

� � �

� %

 2 	 	 	 � � � � � � � � � � � � � # 	 + 	 � � � � � 	 3 � 4 	 5 � � � � � 	 3 � 4 6

7 � " � � � � (� � � � # � � ! � 8 	 � (0 9 � � � � % 8 	

7 � " � � � � (� � � � # � � ! � 8 	 � (0 : � � � % 8

7 � � � � � � (� � � ! + % 8 	

7 � � � � � � � � � � � � � � � � � ! � 8 + % 8 	

7 � � � � � � � � � � � � � � � � � ! + 8 � %

9 � � � � ! � 8 	 2 2 2 % 8 	 � � � ! � 8 	 2 2 2 % 8 	 9 � � � � ! � 8 	 2 2 2 % 8 	 # � - � � � � !
 %

9 � � � � ! � 8 	 2 2 2 % 8 	 � � � ! � 8 	 2 2 2 % 8 	 9 � � � � ! � 8 	 2 2 2 %

� � � � � � 	 � � � � � � � # 	 +

� � � � � � � 	 � 	 � � � 	 �

�
�

+
�

� (9 � � � � � (: � � �

5 � � � � � 	 � " � 	 � # � � � � � 	 � � � � � � � � � � � � 6

� � � � � 	 � " � 	 � # � � � � � 	 � � � � � � � � � � � � 6

�

�

�

�

�

� %

� %

� %

� � � � � � � � � � � �
 � �

� � � � � � � � � � � � � � � � �

� �
 � � � � � � � � � � �

�

�

�

� � � � � � � �

! � " � 	 � � � � � � � # 	 � � � 	 � � � � � � � �

� � 	 � " � 	 � � � $ � � � � � %

& ' ((� ()

! � " � 	 � � � � � � � # 	 � � 	 � * � � � � � � #

� + � � * � � � 	 � # 	 � 	 * � � � %

� , - . / � � �

! � " � 	 � + � � * � � � � 	 � � 	 � " � 	

� � � � � � � # 	 � � � 	 � � � � � " � � %

� � � � � � � � � 	 �
 � � �

�

Fig. 2. (Simplified) example of an ad-hoc modification in a centralized WfMS with a)
WF execution schema, b) execution history, and c) modification history

To investigate whether an ad-hoc modification is permissible in a distributed
WfMS, first, the system needs to know the current global state of the (dis-
tributed) WF instance (or at least relevant parts of it). In case of parallel execu-
tion branches this state information may be distributed over several WF servers
and therefore may have to be retrieved from these WF servers when a change
becomes necessary.

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 155

This section describes a method for determining the set of WF servers on
which the state information relevant for the applicability of a modification is
located. In contrast to a central WfMS, in distributed WfMS it is generally
not sufficient to modify the execution schema of the WF instance solely on
the WF server responsible for controlling the modification. Otherwise, errors or
inconsistencies may occur in the following, since other WF servers would use
”out-of-date” schema and state information when controlling the WF instance.
Therefore, in the following, we show which WF servers have to be involved in
the modification procedure and how corresponding protocols look like.

3.1 Synchronizing Workflow Servers During Ad-Hoc Modifications

An authorized user may invoke an ad-hoc modification on any WF server which
(currently) controls the WF instance in question. Yet as a rule, this WF server
alone may not always be able to correctly perform the modification. If other WF
servers currently control parallel branches of the corresponding WF instance,
state information from these WF servers may be needed as well. In addition, the
WF server initiating the change process must also ensure that the corresponding
modifications are taken over into the execution schemes of the respective WF
instance, which are being managed by these other WF servers. Note that this
becomes necessary to enable them to correctly proceed with the control flow in
the sequel (see below). A naive solution would be to involve all WF servers of the
WfMS by a broadcast. However, this approach is impractical in most cases as it
is excessively expensive. In addition, all server machines of the WfMS must be
available before an ad-hoc modification can be performed. Thus we have come
up with three alternative approaches, which we explain and discuss below.

Approach 1: Synchronize all Servers Concerned With the WF Instance

This approach considers those WF servers which either have been or are currently
active in controlling activities of the WF instance or which will be involved in the
execution of future activities. Although the effort involved in communication is
greatly reduced as compared to the naive solution mentioned above, it may still
be unduly large. For example, communication with those WF servers which were
involved in controlling the WF instance in the past and which will not participate
again in future is superfluous. They do not need to be synchronized any more
and the state information managed by them has already been migrated.

Approach 2: Synchronize Current and Future Servers of the WF In-
stance.
To be able to control a WF instance, a WF server needs to know its current
WF execution schema. This, in turn, requires knowledge of all ad-hoc modifi-
cations performed so far. For this reason, a modification is relevant for those
WF servers which either are currently active in controlling the WF instance or
will be involved in controlling it in the future. Thus it seems to make sense to
synchronize exactly these WF servers in the modification procedure. However,
with this approach, problems may arise in connection with conditional branches.

156 M. Reichert and T. Bauer

For XOR-splits, which will be performed in the future, it cannot always be
determined in advance which execution branch will be chosen. As different ex-
ecution branches may be controlled by different WF servers, the set of relevant
WF servers cannot be calculated immediately. Generally, it is only possible to
calculate the set of the WF servers that will be potentially involved in this WF
instance in the future. The situation becomes even worse if variable server as-
signments (cf. Sect. 2) are used. Then, generally, for a given WF instance it is
not possible to determine the WF servers that will be potentially involved in
the execution of future activities. The reason for this is that the run-time data
of the WF instance, which is required to evaluate the WF server assignment
expressions, may not even exist at this point in time. For example, in Figure 3,
during execution of activity g, the WF server of activity j cannot be determined
since the actor responsible for activity i has not been fixed yet. Thus the system
will not always be able to synchronize future servers of the WF instance when
an ad-hoc modification takes place. As these WF servers do not need to be in-
formed about the modification at this time (since they do not yet control the
WF instance), we suggest another approach.

Approach 3: Synchronize all Current Servers of the WF Instance

The only workable solution is to synchronize exclusively those WF servers cur-
rently involved in controlling the WF instance, i.e. the active WF servers. Gen-
erally, it is not trivial at all to determine which WF servers these in fact are.
The reason is that in case of distributed WF control, for an active WF server
of a WF instance the execution state of the activities being executed in paral-
lel (by other WF servers) is not known. As depicted in Figure 3, for example,
WF server s4, which controls activity g, does not know whether migration Mc,d

has already been executed and, as a result, whether the parallel branch is being
controlled by WF server s2 or by WF server s3. In addition, it is not possible
to determine which WF server controls a parallel branch, without further effort,
if variable server assignments are used. In Figure 3, for example, the WF server
assignment of activity e refers to the actor of activity c, which is not known by
WF server s4. – In the following, we restrict our considerations to Approach 3.

�

�

�

	 � 	 1
�

�
;

�
<

�

� * � � � � ! � � � � � ! � % %

�
�
�

�

"
�
;

� * � � � � ! � � � � � ! � % %

�
�
�

	 �
�

+

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
" 8 �

-
� 8 �

-
� 8 1

Fig. 3. Insertion of activity x between the activities g and d by the server s4

3.2 Determining the Set of Active Servers of a Workflow Instance

As explained above, generally, a WF server is not always able to determine from
its local state information which other WF servers are currently executing ac-
tivities of a specific WF instance. And it is not a good idea to use a broadcast

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 157

call to search for these WF servers, as this would result in exactly the same
drawbacks as described for the naive solution at the beginning of Section 3.1.
We, therefore, require an approach for explicitly managing the active WF servers
of a WF instance. The administration of these WF servers, however, should not
be carried out by a fixed (and therefore central) WF server since this might lead
to bottlenecks, thus negatively impacting the availability of the whole WfMS.

For this reason, in ADEPT, the set of active WF servers (ActiveServers) is
managed by a ServerManager specific to the WF instance. For this purpose, for
example, the start server of the WF instance can be used as the ServerManager.
Normally, this WF server varies for each of the WF instances (even if they are
of the same WF type), thus avoiding bottlenecks.

The start WF server can be easily determined from the (local) execution his-
tory by any WF server involved in the control of the WF instance. The following
subsections show how the set of active WF servers of a specific WF instance is
managed by the ServerManager, how this set is determined, and how ad-hoc
modifications can be efficiently synchronized.

Managing Active WF Servers of a WF Instance. As mentioned above, for
the ad-hoc modification of a WF instance we require the set ActiveServers, which
comprises all WF servers currently involved in the control of the WF instance.
This set, which may be changed due to migrations, is explicitly managed by the
ServerManager. Thereby, the following two rules have to be considered:

1. Multiple migrations of the same WF instance must not overlap arbitrarily,
since this would lead to inconsistencies when changing the set of active WF
servers.

2. For a given WF instance, the set ActiveServers must not change due to mi-
grations during the execution of an ad-hoc modification. Otherwise, wrong
WF servers would be involved in the ad-hoc modification or necessary WF
servers would be left out.

As we will see in the following, we prevent these two cases by the use of sev-
eral locks.2 We now describe the algorithms necessary to satisfy these require-
ments. Algorithm 1 shows the way migrations are performed in ADEPT. It
interacts with Algorithm 2 by calling the procedure UpdateActiveServers (re-
motely), which is defined by this algorithm. This procedure manages the set of
active WF servers currently involved in the WF instance; i.e., it updates this set
consistently in case of WF server changes.

2 A secure behavior of the distributed WfMS could also be achieved by perform-
ing each ad-hoc modification and each migration (incl. the adaptation of the set
ActiveServers) within a distributed transaction (with 2-phase-commit). But this ap-
proach would be very restrictive since during the execution of such an operation,
“normal WF execution” would be prevented. That means, while performing a mi-
gration, the whole WF instance would be locked and, therefore, even the execution of
activities actually not concerned would not be possible. Such a restrictive approach
is not acceptable for any WfMS. However, it is not required in our approach and we
realize a higher degree of parallel execution while achieving the same security.

158 M. Reichert and T. Bauer

Algorithm 1 illustrates how a migration is carried out. It is initiated and ex-
ecuted by a source WF server that hands over control to a target WF server.
First, the SourceServer requests a non-exclusive lock from the ServerManager,
which prevents the migration from being performed during an ad-hoc modifi-
cation (cf. Algorithm 3). Then an exclusive, short-term lock is requested. This
lock ensures that the ActiveServers set of a given WF instance is not changed si-
multaneously by several migrations within parallel branches. (Both lock requests
may be incorporated into a single call to save a communication cycle.)

The SourceServer reports the change of the ActiveServers set to the Server-
Manager, specifying whether it remains active for the concerned WF instance
(Stay), or whether it will not be involved any longer (LogOff). If, for example, in
Figure 3 the migration Mb,c is executed before Mf,g, the option Stay will be used
for the migration Mb,c since WF server s1 remains active for this WF instance.
Thus, the option LogOff is used for the subsequent migration Mf,g as it ends
the last branch controlled by s1. The (exclusive) short-term lock prevents that
these two migrations may be executed simultaneously. This ensures that it is
always clear whether or not a WF server remains active for a WF instance when
a migration has ended. Next, the WF instance data (e.g., the current state of
the WF instance) is transmitted to the target WF server of the migration. Since
this is done after the exclusive short-term lock has been released (by Update-
ActiveServers), several migrations of the same WF instance may be executed
simultaneously. The algorithm ends with the release of the non-exclusive lock.

Algorithm 1 (Performing a Migration)

input
Inst: ID of the WF instance to be migrated
SourceServer: source server of the migration (it performs this algorithm)
TargetServer: target server of the migration

begin
// calculate the ServerManager for this WF instance by the use of its execution

history
ServerManager = StartServer(Inst);
// request a non-exclusive lock and an exclusive short-term lock from the Server-

Manager
RequestSharedLock(Inst) → ServerManager;3

RequestShortTermLock(Inst) → ServerManager;
// change the set of active servers (cf. Algorithm 2)
if LastBranch(Inst) then

// the migration is performed for the last execution branch of the WF instance,
that is active at the

// SourceServer
UpdateActiveServers(Inst, SourceServer, LogOff, TargetServer) → ServerMan-

ager;
else // another execution path is active at SourceServer

UpdateActiveServers(Inst, SourceServer, Stay, TargetServer) → ServerManager;

3 p() → s means that procedure p is called and then executed by server s.

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 159

// perform the actual migration and release the non-exclusive lock
MigrateWorkflowInstance(Inst) → TargetServer;
ReleaseSharedLock(Inst) → ServerManager;

end.

Algorithm 2 is used by the ServerManager to manage the WF servers currently
involved in controlling a given WF instance. To fulfill this task, the ServerMan-
ager also has to manage the locks mentioned above. If the procedure Update-
ActiveServers is called with the option LogOff, the source WF server of the
migration is deleted from the set ActiveServers(Inst); i.e., the set of active WF
servers with respect to the given WF instance. The reason for this is that this
WF server is no longer involved in controlling this WF instance. The target WF
server for the migration, however, is always inserted into this set independently
of whether it is already contained or not because this operation is idempotent.

The short-term lock requested by Algorithm 1 before the invocation of Up-
dateActiveServers prevents Algorithm 2 from being run in parallel more than
once for a given WF instance. This helps to avoid an error due to overlapping
changes of the set ActiveServers(Inst). When this set has been adapted, the
short-term lock is released.

Algorithm 2 (UpdateActiveServers: Managing the Active WF Servers)

input
Inst: ID of the affected WF instance
SourceServer: source server of the migration
Option: source server be involved in the WF instance furthermore (Stay) or not

(LogOff)?
TargetServer: target server of the migration

begin
// update the set of the current WF servers of the WF instance Inst
if Option = LogOff then

ActiveServers(Inst) = ActiveServers(Inst) − {SourceServer};
end if
ActiveServers(Inst) = ActiveServers(Inst) ∪ {TargetServer};
ReleaseShortTermLock(Inst); // release the short-term lock

end.

Performing Ad-hoc Modifications. Where the previous section has de-
scribed how the ServerManager handles the set of currently active WF servers
for a particular WF instance, this section sets out how this set is utilized when
ad-hoc modifications are performed.

First of all, if no parallel branches are currently being executed, trivially, the
set of active WF servers contains exactly one element, namely the current WF
server. This case may be detected by making use of the state and structure
information (locally) available at the current WF server. The same applies to
the special case that currently all parallel branches are controlled by the same
WF server. In both cases, the method described in the following is not needed

160 M. Reichert and T. Bauer

and therefore not applied. Instead, the WF server currently controlling the WF
instance performs the ad-hoc modification without consulting any other WF
server. Consequently, this WF server must not communicate with the Server-
Manager as well. For this special case, therefore, no additional synchronization
effort occurs (when compared to the central case).

We now consider the case that parallel branches exist; i.e., an ad-hoc modifi-
cation of the WF instance may have to be synchronized between multiple WF
servers. The WF server which coordinates the ad-hoc modification then requests
the set ActiveServers from the ServerManager. When performing the ad-hoc
modification, it is essential that this set is not changed due to concurrent mi-
grations. Otherwise, wrong WF servers would be involved in the modification
procedure. In addition, it is vital that the WF execution schema of the WF in-
stance is not restructured due to concurrent modifications, since this may result
in the generation of an incorrect schema.

To prevent either of these faults we introduce Algorithm 3. It requests an ex-
clusive lock from the ServerManager to avoid the mentioned conflicts. This lock
corresponds to a write lock [11] in a database system and is incompatible with
read locks (RequestSharedLock in Algorithm 1) and other write locks of the same
WF instance. Thus, it prevents that migrations are performed simultaneously to
an ad-hoc modification of the WF instance.

Algorithm 3 (Performing an Ad-hoc Modification)

input
Inst: ID of the WF instance to be modified
Modification: specification of the ad-hoc modification

begin
// calculate the ServerManager for this WF instance
ServerManager = StartServer(Inst);
// request an exclusive lock from the ServerManager and calculate the set of active

WF servers
RequestExclusiveLock(Inst) → ServerManager;
ActiveServers = GetActiveServers(Inst) → ServerManager;
// request a lock from all servers, calculate the current WF state, and perform the

change (if possible)
for each Server s ∈ ActiveServers do

RequestStateLock(Inst) → s;
GlobalState = GetLocalState(Inst);
for each Server s ∈ ActiveServers do

LocalState = GetLocalState(Inst) → s;
GlobalState = GlobalState ∪ LocalState;

if DynamicModificationPossible(Inst, GlobalState, Modification) then
for each Server s ∈ ActiveServers do

PerformDynamicModification(Inst, GlobalState, Modification) → s;
// release all locks
for each Server s ∈ ActiveServers do

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 161

ReleaseStateLock(Inst) → s;
ReleaseExclusiveLock(Inst) → ServerManager;

end.

As soon as the lock has been granted, a query is sent to acquire the set of ac-
tive WF servers of this WF instance.4 Then a lock is requested at all WF servers
belonging to the set ActiveServers in order to prevent local changes to the state
of the WF instance. Any activities already started, however, may be finished
normally since this does not affect the applicability of an ad-hoc modification.
Next the (locked) state information is retrieved from all active WF servers. Note
that the resulting global and current state of the WF instance is required to
check whether the ad-hoc modification to be performed is permissible or not. In
Figure 3, for example, WF server s4, which is currently controlling activity g and
which wants to insert activity x after activity g and before activity d, normally
does not know the current state of activity d (from the parallel branch). Yet
the ad-hoc modification is permissible only if activity d has not been started at
the time the modification is initiated [16]. If this is the case, the modification
is performed at all active WF servers of the WF instance (PerformDynamic-
Modification). Afterwards, the locks are released and any blocked migrations or
modification procedures may then be carried out.

3.3 Illustrative Example

How migrations and ad-hoc modifications work together is explained by means
of an example. Figure 4a shows a WF instance, which is currently controlled by
only one WF server, namely the WF server s1. Figure 4b shows the same WF
instance after it migrated to a second WF server (s2). In Figure 4c the execution
was continued. One can also see that each of the two WF servers must not always
possess complete information about the global state of the WF instance.

Assume now that an ad-hoc modification has to be performed, which is co-
ordinated by the WF server s1. Afterwards, both WF servers shall possess the
current schema of the WF instance to correctly proceed with the flow of control.
With respect to the (complete) current state of the WF instance, it is sufficient
that it is known by the coordinator s1 (since only this WF server has to decide on
the applicability of the desired modification). The other WF server only carries
out the modification (as specified by WF server s1).

4 Distributed Execution of a Modified Workflow Instance

If a migration of a WF instance has to be performed, its current state has to be
transmitted to the target WF server. In ADEPT, this is done by transmitting
the relevant parts of the execution history of the WF instance together with the

4 This query may be combined with the lock request into a single call to save a
communication cycle.

162 M. Reichert and T. Bauer

�

� �

� �

�

�
�

�
�

�
�

�

�

�

� �
�

� � � � � � � � � 	 -
� 8 �
	 � � � � 	 � � � � � � 	 �

	 � � 	 � � � � � � 	 �

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

� �
�

�

� � 	 � � � � � � � 	 � 	 � # � � � � � 	 � � � � � � � � � � � � 	 ! � � � � � � � � � 	 � � 	 + 	 � � � � � 	 3 � 4 	 � � � 	 � � � � � � 	 3 � 8 	 � 4 	 � # 	 � " � 	 � � � � � � 	 �

% 8 	

�

	 � � = * � � � � 	 � � � � � 	 � � � � � � � � � � � 	 � � � � 	 � " � 	 � � � � � � 	 �

�
	

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

� �

� ���

� � � � � � � � � � � 	 � � 	 � " � 	 � # � � � � � 	 � � � � � � � � � � � � 	 � # 	 � � � � � � 	 �

	 ! � � � � � � � � � � � � 	 � � 	 � " � 	 � + � � * � � � � 	 � � � � " 	 � � 	 � � � 	 � � � � � � 	

� � � � � � � 8 	 � " � � � 	 � � � 	 �

	 � � � 	 �

�
	 � � 	 � " � 	 � + � � � � � %

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

� �

� ���

+

�

�

+

�

�

� � � � � � � * � � � 	 � + � � * � � � � 	 � � 	 � 	 � � � � � � � � � � 	 ! � 	 � # 	 �

% 	 � � � 	 � 	 ! � # 	 �

�
% 	 ! � � 	 � � � � 	 � � 	 � � � � � � 	 � 	 � + � � * � � � � 8 	 � � 	 � � � � � 	

� # � � " � � � � > � � � � � 	 � � 	 � � � � � � � � � 	 � � � � � � � 	 � " � 	 � � � � � � � 	 � � 	 � � � � � � � � 	 � � � � � " � � %

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

�

� �

� �

�

�
�

�
�

�
�

�

�

�

�

� �

� �

�

� %

� %

� %

� %

� %

�

�

Fig. 4. Effects of migrations and ad-hoc modifications on the (distributed) execution
schema of a WF instance (local view of the WF servers)

values of WF relevant data (i.e., data elements used as input and output data
of WF activities or as input data for branching and loop conditions)

If an ad-hoc modification was previously performed, the target WF server
of a migration also needs to know the modified execution schema of the WF
instance in order to be able to control the WF instance correctly. In the approach
introduced in the previous section, only the active WF servers of the WF instance
to be modified have been involved in the modification. As a consequence, the
WF servers of subsequent activities, however, still have to be informed about the
modification. In our approach, the necessary information is transmitted upon

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 163

migration of the WF instance to the WF servers in question. Since migrations
are rather frequently performed in distributed WfMS, this communication needs
to be performed efficiently. Therefore, in Section 4.1 we introduce a technique
which fulfills this requirement to a satisfactory degree. Section 4.2 presents an
enhancement of the technique that precludes redundant data transfer.

4.1 Efficient Transmission of Information About Ad-Hoc
Modifications

In the following, we examine how a modified WF execution schema can be com-
municated to the target WF server of a migration. The key objective of this inves-
tigation is the development of an efficient technique that reduces communication-
related costs as far as possible.

Of course, the simplest way to communicate the current execution schema of
the respective WF instance to the migration target server is to transmit this
schema in whole. Yet this technique burdens the communication system unnec-
essarily because related WF graph of this WF schema may comprise a large
number of nodes and edges. This results in an enormous amount of data to be
transferred – an inefficient and cost-intensive approach. Apart from this, the
entire execution schema does not need to be transmitted to the migration target
server as the related WF template has been already located there. (Note that
a WF template is being deployed to all relevant WF servers before any WF in-
stance may be created from it.) In fact, in most cases the current WF schema of
the WF instance is almost identical to the WF schema associated with the WF
template. Thus it is more efficient to transfer solely the relatively small amount
of data which specifies the modification operation(s) applied to the WF instance.
It would therefore seem practical to use the change history for this purpose. In
ADEPT the migration target server needs this history anyway [16], so that its
transmission does not lead to an additional effort. When the base operations
recorded in the change history are applied to the original WF schema of the
WF template, the result is the current WF schema of the given WF instance.
This simple technique dramatically reduces the effort necessary for communica-
tion. In addition, as typically only very few modifications are performed on any
individual WF instance, computation time is kept to a minimum.

4.2 Enhancing the Method Used to Transmit Modification Histories

Generally, one and the same WF server may be involved more than once in
the execution of a WF instance – especially in conjunction with loops. In the
example from Figure 5, for instance, WF server s1 hands over control to WF
server s2 after completion of activity b but will receive control again later in the
flow to execute activity d. Since each WF server stores the change history until
being informed that the given WF instance has been completed, such a WF
server s already knows the history entries for the modifications it has performed
itself. In addition, s knows any modifications that had been effected by other
WF servers before s handed over the control of the WF instance to another WF

164 M. Reichert and T. Bauer

�

�

�

	 � �

"

�

�

�

�

�
;

�

�
�

�

�
�

�
�

� %

� % 9 � � � � ! � 8 	 �

8 	 2 2 2 % 8 	 # � - � � � � !
 % 8 	 � � � ! � 8 	 �

8 	 2 2 2 % 8 	 # � - � � � � ! � % 8 	 9 � � � � ! � 8 	 �

8 	 2 2 2 % 8 	 � � � ! � 8 	 �

8 	 2 2 2 % 8 	

9 � � � � ! � 8 	 �
�
8 	 2 2 2 % 8 	 # � - � � � � ! � % 8 	 � � � ! � 8 	 �

�
8 	 2 2 2 % 	

�

� �

�

	 �

�
�

�

�

�

	 � �

"

�

�

�

�

�
;

�

�
�

�

�
�

�
�

� %

�

�

�

�

�

	 � ��

�

�

�

�

�
�

�

�
�

�
�

� %

�

� � �	 � ��

�

�

�
�

�

�
�

�
�

� %

� � � � � 	 � � 	 � � � � � � � # 	 �

� � � � � � � � � 	 � � 	 � � � � � � � # 	 � 	 ! � � � � � � � � � � 	 � # 	 � � � � � � 	 �

% 	 � � � � � 	 � � � � � � � # 	 � 	 � � � 	 � � � � � � 	 � � � � � � � # 	 �

� � � � � � � � � � 	 � � 	 � � � � � � � # 	 �

� � � � � � � � � 	 � � 	 � � � � � � � # 	 " 	 ! � � � � � � � � � � 	 � # 	 � � � � � � 	 �
;
% 	 � � � � � 	 � � � � � � � # 	 � 	 � � � 	 � � � � � � 	 � � � � � � � # 	 �

� + � � * � � � � 	 � � 	 � � � � � � � # 	 � 	 � � � 	 � � � � � 	 � � 	 � � � � � � � # 	 �

� � � � � � � � � 	 � � 	 � � � � � � � # 	 � 	 ! � � � � � � � � � � 	 � # 	 � � � � � � 	 �
�
% 	 � � � � � 	 � � � � � � � # 	 �

� � � � � � � � � � 	 � � 	 � � � � � � � # 	 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
� 8 �

-
" 8 �

-
" 8 �

-
� 8 "

-
� 8 "

Fig. 5. a-d) WF instance and e) Execution history of WF server s2 after completion of
activity c. – In case of distributed WF control, with each entry the execution history
records the WF server responsible for the control of the corresponding activity.

server for the last time. Hence the data related to this part of the change history
need not be transmitted to the WF server. This further reduces the amount of
data required for the migration of the “current execution schema”.

Transmitting Change History Entries. An obvious solution for avoiding
redundant transfer of change history entries would be as follows: The migra-
tion source server determines from the existing execution history exactly which
modification the target WF server must already know. The related entries are
then simply not transmitted when migrating the WF instance. In the example
given in Figure 5, WF server s2 can determine, upon ending activity c, that the
migration target server s1 must already know the modifications 1 and 2. In the
execution history (cf. Figure 5e), references to these modifications (DynModif(1)
and DynModif(2)) have been recorded before the entry End(b, s1, ...) (which was
logged when completing activity b). As this activity was controlled by WF server
s1, this WF server does already know the modifications 1 and 2. Thus, for the

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 165

migration Mc,d, only the change history entry corresponding to modification 3
needs to be transmitted. The transmitted part of the change history is concate-
nated with the part already present at the target server before this WF server
generates the new execution schema and proceeds with the flow of control.

In some cases, however, redundant transfer of change history data cannot be
avoided with this approach: As an example take the migrations Md,e and Mh,f

to the WF server s3. For both migrations, with the above approach, all entries
corresponding to modifications 1, 2, and 3 must be transmitted because the WF
server s3 was not involved in executing the WF instance thus far. The problem
is that the migration source servers s1 and s4 are not able, from their locally
available history data, to derive whether the other migration from the parallel
branch has already been effected or not. For this reason, the entire change history
must be transmitted. Yet with the more advanced approach set out in the next
section, we can avoid such redundant data transfer.

Requesting Change History Entries. To avoid redundant data transmis-
sions as described in the previous section, we now sketch a more sophisticated
method. With this method, the necessary change history entries are explicitly
requested by the migration target server. When a migration takes place, the tar-
get WF server informs the source WF server about the history entries it already
knows. The source WF server then only transmits those change history entries
of the respective WF instance which are yet missing on the target server. In
ADEPT, a similar method has been used for transmitting execution histories;
i.e., necessary data is provided on basis of a request from the migration target
server. Here, no additional effort is expended for communication, since both, the
request for and the transmission of change history entries may be carried out
within the same communication cycle.

With the described method, requesting the missing part of a change history
is efficient and easy to implement in our approach. If the migration target server
was previously involved in the control of the WF instance, it already possesses
all entries of the change history up to a certain point (i.e., it knows all ad-hoc
modifications that had been performed before this server handed over control
the last time). But from this point on, it does not know any further entries. It is
thus sufficient to transfer the ID of the last known entry to the migration source
server to specify the required change history entries. The source WF server then
transmits all change history entries made after this point. Due to lack of space
we omit further details.

To sum up, with our approach not only ad-hoc modifications can be performed
efficiently in a distributed WfMS (see Section 3), transmission costs for migration
of modified WF instances may also be kept very low.

5 Related Work

There are only few approaches which address both WF modification issues and
distributed WF control [8,9,13,21,2]. WIDE [9] allows WF schema modifications

166 M. Reichert and T. Bauer

and their propagation to running WF instances (if compliant to the new schema).
In addition, control of WF instances is distributed [9]. Thereby, the set of the
potential actors of an activity determines the WF server which is to control this
activity. In MOKASSIN [13] and WASA [20,21], distributed WF execution is
realized through an underlying CORBA infrastructure. Both approaches do not
discuss the criteria used to determine a concrete distribution of the tasks; i.e.,
the question which WF server has to control a specific activity remains open.
Here, modifications may be made at both, the WF schema and the WF instance
level under consideration of correctness issues. INCAs [2] realizes WF instance
control by means of rules. WF control is distributed, in INCAs, with a given
WF instance controlled by that processing station that belongs to the actor of
the current activity. The mentioned rules are used to calculate the processing
station of the subsequent activity and, thereby, the actor of that activity. With
this approach, it is possible to modify the rules, what results in an ad-hoc change
of the WF instance behavior. As opposed to the approach presented in this
paper, all these approaches do not explicitly address how ad-hoc modifications
and distributed WF execution interact. The approach proposed in [10] enables
some kind of flexibility in distributed WfMS as well, especially in the context
of virtual enterprises. However, it does not allow to modifiy the structure of
in-progress WF instances. Instead, the activities of a WF template represent
placeholders for which the concrete implementations are selected at run-time.

In the WF literature, some approaches for distributed WF management are
cited where a WF instance is controlled by one and the same WF server over
its entire lifetime; e.g., Exotica [1] and MOBILE [12]. (The latter approach was
extended in [18] that way that a sub-process may be controlled by a different WF
server, which is determined at run-time.) Although migrations are not performed,
different WF instances may be controlled by different WF servers. And, since
a central control instance exists for each WF instance in these approaches, ad-
hoc modifications may be performed just as in a central WfMS. Yet there is
a drawback with respect to communication costs: The distribution model does
not allow to select the most favorable WF server for the individual activities.
When developing ADEPT, we therefore did not follow such an approach since the
additional costs incurred in standard WF execution are higher than the savings
generated due to the (relatively seldom performed) ad-hoc modifications.

6 Summary

Both distributed WF execution and ad-hoc modification are essential functions
of any WfMS. Each of these aspects is closely linked with a number of require-
ments and objectives that are, to some extent, opposing. Reason for this is
that the central control instance necessary for ad-hoc modifications typically
impacts the efficiency of distributed WF execution. Therefore, we cannot afford
to consider these two aspects separately. An investigation of exactly how these
functions interact has been presented. And the results show that they are, in
fact, compatible: We have realized ad-hoc modifications in a distributed WfMS.

Supporting Ad-Hoc Changes in Distributed Workflow Management Systems 167

Our approach also allows efficient distributed control of previously modified WF
instances since only a part of the relatively small change history needs to be
transmitted when transferring the modified execution schema. This is vital as
migrations are frequent. To conclude, ADEPT succeeds in seamlessly integrat-
ing both distributed WF execution and ad-hoc WF modifications into a single
system. The presented concepts have been implemented in a powerful proof-
of-concept prototype, which constitutes the distributed variant of the ADEPT
system (cf. Fig. 6). It shows that one can really build a WfMS which offers
the described functionality within one system (for details see [7]). It also shows,
however, that such a high-end WfMS is a large software systems, easily reaching
the code complexity of high-end database management systems.

Fig. 6. ADEPT monitoring component showing a distributed workflow controlled by
servers S1 and S2 after its runtime modification

References

1. Alonso, G., Kamath, M., Agrawal, D., El Abbadi, A., Günthör, R., Mohan, C.:
Failure Handling in Large Scale Workflow Management Systems. Technical Report
RJ9913, IBM Almaden Research Center (1994)

2. Barbará, D., Mehrotra, S., Rusinkiewicz, M.: INCAs: Managing Dynamic Work-
flows in Distributed Environments. J. of Database Management 7(1), 5–15 (1996)

3. Bauer, T., Dadam, P.: A Distributed Execution Environment for Large-Scale Work-
flow Management Systems with Subnets and Server Migration. In: Proc. CoopIS
1997, Kiawah Island, SC, pp. 99–108 (1997)

4. Bauer, T., Dadam, P.: Distribution Models for Workflow Management Systems.
Informatik Forschung und Entwicklung 14(4), 203–217 (1999) (in German)

5. Bauer, T., Dadam, P.: Efficient Distributed Workflow Management Based on Vari-
able Server Assignments. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000.
LNCS, vol. 1789, pp. 94–109. Springer, Heidelberg (2000)

6. Bauer, T., Reichert, M., Dadam, P.: Intra-Subnet Load Balancing for Distributed
Workflow Management Systems. Int. J. Coop. Inf. Sys. 12(3), 295–323 (2003)

168 M. Reichert and T. Bauer

7. Bauer, Th., Reichert, M.: An Approach for Supporting Ad-hoc Process Changes
in Distributed Workflow Management Systems. Technical report, University of
Twente, CTIT (September 2007)

8. Cao, J., Yang, J., Chan, W., Xu, C.: Exception handling in distributed workflow
systems using mobile agents. In: Proc. ICEBE 2005, pp. 48–55 (2005)

9. Casati, F., Grefen, P., Pernici, B., Pozzi, G., Sánchez, G.: WIDE: Workflow Model
and Architecture. CTIT Technical Report 96-19, University of Twente (1996)

10. Cichocki, A., Georgakopoulos, D., Rusinkiewicz, M.: Workflow Migration Support-
ing Virtual Enterprises. In: Proc. BIS 2000, Poznań, pp. 20–35 (2000)

11. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Francisco (1993)

12. Jablonski, S.: Architecture of Workflow Management Systems. Informatik
Forschung und Entwicklung 12(2), 72–81 (1997) (in German)

13. Joeris, G., Herzog, O.: Managing Evolving Workflow Specifications. In: Proc.
CoopIS 1998, New York, pp. 310–321 (1998)

14. Lenz, R., Reichert, M.: IT Support for Healthcare Processes - Premises, Challenges,
Perspectives. DKE 61, 82–111 (2007)

15. Muth, P., Wodtke, D., Weißenfels, J., Kotz-Dittrich, A., Weikum, G.: From Cen-
tralized Workflow Specification to Distributed Workflow Execution. JIIS 10(2),
159–184 (1998)

16. Reichert, M., Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows
Without Losing Control. JIIS 10(2), 93–129 (1998)

17. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adap-
tive workflow systems. Distributed and Parallel Databases 16(1), 91–116 (2004)

18. Schuster, H., Neeb, J., Schamburger, R.: A Configuration Management Approach
for Large Workflow Management Systems. In: Proc. Int. Conf. on Work Activities
Coordination and Collaboration, San Francisco (1999)

19. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: CAiSE 2007. Proc. 19th Int’l Conf. on
Advanced Information Systems Engineering, pp. 574–588 (2007)

20. Weske, M.: Flexible Modeling and Execution of Workflow Activities. In: Proc. 31st
Hawaii Int. Conf. on Sys Sciences, Hawaii, pp. 713–722 (1998)

21. Weske, M.: Workflow Management Through Distributed and Persistent CORBA
Workflow Objects. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626,
pp. 446–450. Springer, Heidelberg (1999)

	Introduction
	Distributed Workflow Execution in ADEPT
	Ad-Hoc Modifications in a Distributed WfMS
	Synchronizing Workflow Servers During Ad-Hoc Modifications
	Determining the Set of Active Servers of a Workflow Instance
	Illustrative Example

	Distributed Execution of a Modified Workflow Instance
	Efficient Transmission of Information About Ad-Hoc Modifications
	Enhancing the Method Used to Transmit Modification Histories

	Related Work
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

