
Fakultät für
Ingenieurwissenschaften,
Informatik und
Psychologie

Institut für Datenbanken
und Informationssys-
teme (DBIS)

Konzeption und Realisierung einer interak-
tiven und Feedback-orientierten Webplat-
tform für Stresspatienten

Abschlussarbeit an der Universität Ulm

Vorgelegt von:
Ana Luciana Anisie Coderea
ana.anisie-codrea@uni-ulm.de
2000527

Gutachter:
Prof. Dr. Manfred Reichert
Prof. Dr. Rüdiger Pryss

Betreuer:
Rüdiger Pryss

2021

Fassung July 26, 2021

© 2021 Ana Luciana Anisie Coderea

Satz: PDF-LATEX 2ε

Abstract

Stress is a normal biological reaction to stressors. Stress is more and more present
in our lives. Exposure to high stress levels for a long period of time can have neg-
ative effects on emotional and physical health. It is important to control and reduce
stress and anxiety. Technology can help to measure, track and reduce the stress
level.

At University Ulm there exists several applications where patients suffering from
stress can track their stress levels.

The goal of this project is to develop an interactive and feedback-oriented web plat-
form for patients that participate in the stress tracking program. The web platform
should offer to users the opportunity to visualize their recorded stress data. Statis-
tic related with their own data and in comparison with other participants should be
presented.

This web platform could help patients to become more conscious of their stressors
or stressful situations, manage and maybe reduce their stress levels.

iii

Contents

1 Introduction 1
1.1 The Aim of this Work . 1
1.2 The Overview of Chapters . 1
1.3 C4 Diagramming Standard . 2

1.3.1 Context . 2
1.3.2 Container . 2
1.3.3 Component . 2
1.3.4 Class . 3

2 Background Information 4
2.1 Stress . 4
2.2 The TrackYourStress mHealth platform 5
2.3 Project Goals . 5

3 System Context and Architectural Patterns 6
3.1 System Context . 6

3.1.1 Single-page Application . 7
3.1.2 Backend . 9
3.1.3 REST API . 10

3.2 Architectural Patterns . 10
3.2.1 Single Responsibility Principle 10
3.2.2 Component Design Principle 11

4 Container Level Architecture and Used Technologies 12
4.1 Container View of the Frontend . 12
4.2 Technologies of the Frontend . 13

4.2.1 TypeScript . 13

iv

Contents

4.2.2 Overview of Angular Framework 13
Model View Controller . 14
Benefits of Using Angular Framework 14

4.2.3 Detailed Description of Angular Framework 15
Component-based Architecture 15
Elements of the Component 16
Communication Between Components 17
Data Binding Overview . 18
One-way Data Binding from Source to View 18
One-way Data Binding from View to Source 18
Two-way Data Binding . 19
Dependency Injection . 19

4.3 Container View of the Backend . 19
4.4 Technologies of the Backend . 20

4.4.1 Node.js . 20
4.4.2 Express Framework . 21
4.4.3 HTTP . 21

5 Backend Architecture 23
5.1 Component Diagram . 23
5.2 Router . 23
5.3 Questionnaire Controller . 24
5.4 Statistic Controller . 24
5.5 User Controller . 24
5.6 Services Component . 25
5.7 Testing . 25
5.8 Backend Design . 25
5.9 Tree Diagram . 25

6 Frontend Architecture 27
6.1 Component Diagram . 27
6.2 Services Component . 28
6.3 Login Romponent . 28
6.4 Questionnaire Page Component . 29
6.5 Statistic Page Component . 29

v

Contents

6.6 Side-menu Component . 29
6.7 Logout Component . 29
6.8 Navbar Component . 30
6.9 Models . 30
6.10 Frontend Design . 30
6.11 Tree Diagram . 30

7 User interface 32
7.1 Easy and Intuitive Design . 32
7.2 User Experience . 32
7.3 Design Context . 33
7.4 Main Elements of User Interface . 33

7.4.1 Home Page . 33
7.4.2 Navigation Bar . 34
7.4.3 Questionnaire Page . 34

PDF Download Button . 35
7.4.4 Statistic Page . 36

Horizontal Bar Chart . 37
Registation Questionnaire 38

7.4.5 Colors . 39
7.4.6 Interaction . 39

8 Statistic 40
8.1 Answersheet . 40
8.2 Histogram . 41

9 Testing and Documentation 43
9.1 Software Testing . 43

9.1.1 Backend-Testing . 44
9.1.2 Frontend-Testing . 45
9.1.3 Test Coverage . 46

9.2 Code Documentation . 47

10 Conclusions 49

Bibliography 50

vi

1 Introduction

1.1 The Aim of this Work

The purpose of this project is to develop a web platform that allows people to visu-
alize the data about their stress levels that has been collected during their participa-
tion in the TrackYourStress mHealth platform running at University of Ulm. The
detailed goals are explained in detail in Project Goals.

1.2 The Overview of Chapters

The document is structured as follows.

The chapter Background Information presents a brief definition of stress, intro-
duces the TrackYourStress mHealth platform and briefly explains the goals of this
project.

The next two chapters focus on the high-level architecture of the project. The chap-
ter System Context and Architectural Patterns presents the highest-level struc-
ture of the project. It explains the main concepts and patterns that have been used
in this project. The chapter Container Level Architecture and Used Technolo-
gies describes the frameworks and tools that have been used to implement the
concepts and patterns explained in System Context and Architectural Patterns.

Once the high-level architecture decisions have been explained, the following two
chapters detail the design of the application on the component level. The chapter
Backend Architecture presents the details of the server part of the application.
The chapter Frontend Architecture presents the details of the client part of the
application.

1

1 Introduction

Next three chapters describe various specific aspects of application development.
The chapter Statistic presents in detail how the statistic is calculated. The chapter
User interface presents the user experience and user interface of the project. The
chapter Testing and Documentation describes the testing of the application and
the code documentation.

1.3 C4 Diagramming Standard

To present the architecture of the project I use the Diagramming Standard C4.

This diagramming technique C4 was developed by Simon Brown to modernize the
UML diagrams and address certain deficiencies of UML approach.

1.3.1 Context

The first C in the Diagramming Standard C4 is the Context diagram. The context
refers to the business use case, the whole system, external dependencies, user
roles, and other systems that it interacts with.

1.3.2 Container

The second C in the Diagramming Standard C4 is the Container diagram. The
container refers to the applications, data stores or microservices that make up the
system.

1.3.3 Component

The third C in the Diagramming Standard C4 is the Component diagram. The
component diagram shows the components inside of the containers and interac-
tions between them.

2

1 Introduction

1.3.4 Class

The fourth C in the Diagramming Standard C4 is the Class diagram. The class
diagram defines and provides the overview and structure of the system in terms of
classes, attributes and methods, and the relationships between them [18].

3

2 Background Information

To understand why this project takes place, it is necessary to understand what the
stress and its implications are. I will briefly describe the problem of stress and
explain how the goals of this project stand in the context of the TrackYourStress
mHealth platform.

2.1 Stress

The World Health Organization qualifies stress as the "Health Epidemic of the 21st
Century"[4]. Stress can have serious effects on emotional and physical health.
Hans Selye was an endocrinologist who did important scientific work on the hypo-
thetical nonspecific response of an organism to stressors. According to Selye stress
is the non-specific response of the body to any demand [4].

Stress is a natural and essential mental and physical reaction but if the stress level
remains elevated for long it has a negative impact on human health. Selye de-
veloped the concept of general adaptation syndrome (GAS) which represents a
three-stage reaction of coping with stress.

The alarm is the first stage when the body reacts with a "fight-or-flight" response
to a stressor. This stage prepares a person to respond to the stressor. In normal
conditions, the alarm reaction dos not last for long.

The resistance is when the body begins to prepare itself to handle the stressful
situations. The cortisol is being released, heart rate and blood pressure are in-
creasing. If the stressful situation remains unsolved the stress hormone, heart rate
and blood pressure remain elevated. This can lead to serious health problems.

The exhaustion is the third stage and appears if the stressor continues to exceed

4

2 Background Information

the body’s handling capacity. At this stage, the body no longer can fight stress and
the risks of developing stress-related health conditions are high [3].

Stress is an ordinary occurrence and it is impossible to avoid all the stressors in
our life. It is important to manage the stress levels to prevent ourselves from the
negative health effects of stress.

2.2 The TrackYourStress mHealth platform

The Institut für Datenbanken und Informationssysteme at University Ulm runs sev-
eral projects related to stress tracking. The users can track their stress by answering
questionnaires and monitoring the stress level over time. There are several mobile
and desktop applications to measure stress levels. For example, at the website
trackyourstress.org the user can log in and answer daily, weekly, and monthly ques-
tionnaires [12], [11].

2.3 Project Goals

The goal of this project is to develop a website where the verified user can:

• view the questionnaires they have answered,

• download the answered questionnaires,

• view graphical statistic related with their own data,

• view graphical statistic in comparison with other users.

This application, the same as the trackyourstress.org website supports both English
and German language.

5

https://www.trackyourstress.org/
https://www.trackyourstress.org/

3 System Context and Architectural
Patterns

In this chapter, the project context and the used architectural patterns are pre-
sented. The context diagram is presented in the figure 3.1.

3.1 System Context

Figure 3.1: Context diagram

In this project, the user of TrackYourStress mHealth platform can visualize infor-
mation related to their answered questionnaires. The frontend system communi-
cates with the backend system to get all the data and process them. The backend
system uses the Rest API to retrieve the user’s data from the database.

6

3 System Context and Architectural Patterns

The project consists of three parts, each being responsible for a specific task. The
single-page application (SPA), serves the static content and runs in the user’s
browser. The backend application processes and serves the requested user’s
data. The Database API is used by the backend to retrieve the raw data stored in
database.

The software systems and the interactions between them are presented in Context
diagram.

Each component is defined and described in more detail below.

3.1.1 Single-page Application

A multi-page application sends an HTTP request every time the user interacts
with it. The server sends in response the HTTP content back to the browser and
the entire page is reloaded.

A single-page application (SPA) is a web application that dynamically rewrites a
web page in a browser instead of loading the entire page every time. An initial
HTML document is requested from the server and sent to the browser. The user
interaction will request small fragments of data that are inserted into the initial HTML
document.

A single-page application can be much faster than a multi-page application because
it does not require full content reload . The single-page application downloads only
the needed data that can reduce the network traffic and possibly improve respon-
siveness of the application. In this model, the server is no longer responsible for
creating dynamic HTTP content. [16]

Single-page applications may perform better when the data needed to render a
page is small in comparison to the HTTP content. Better performance means a
better user experience as the application responds faster to the user’s request. This
approach splits the backend (server part) and the frontend (client part) development
which makes a single-page application highly decoupled. This separation brings the
opportunity to use serverless architecture. The SPA applications are easier to port
from web to mobile by reusing the backend code.[5]

7

3 System Context and Architectural Patterns

Figure 3.2: Page life cycle

The choice between a single or multi-page application depends mainly on the char-
acteristics of the project. The biggest drawback of a single-page application is that
it is not Search Engine Optimization SEO-friendly. Since single-page applications
load the content only after a user interaction for a search engine it seems to be a
page with no content. Another disadvantage of SPA is security because they are
prone to cross-site scripting (XSS) attacks. Since they run on JavaScript, it does
not compile code, making it more vulnerable to malware.

All these drawbacks can be overcome by implementing good practices like keeping
the logic on the server side to avoid sensitive information leaks.

Some of the reasons I chose to develop a single-page application for this project
are:

• the web is geared towards user interaction,

• the data needed to render a page is small,

8

3 System Context and Architectural Patterns

• the database is only accessible via Rest API.

3.1.2 Backend

In software engineering, the terms front-end and back-end refer to the separation
between the presentation layer and the data access layer.

The presentation layer also called frontend refers to the client-side, where the focus
is on the interactions with the end user. The frontend includes everything that the
user experiences directly, from text, colors to menus and navigation buttons.

The data access layer also called backend refers to the server-side, where the
focus is on storing, processing, and organizing data. The backend includes every-
thing that is related with the data processing, logic hardware, and storage[27].

The following figure represents these two layers and their interactions.

Figure 3.3: Back-end and Front-end Architecture

This project contains a backend application where the logic and the data processing
are done. In this way, the presentation layer and the data access layer are sepa-
rated, making the application more organized and secure. The sensitive data is not
exposed and the information sent to the client-side is ready to be displayed.

9

3 System Context and Architectural Patterns

3.1.3 REST API

The Representational state transfer (REST) application programming Inter-
face API is a software intermediary that allows the interaction of multiple applica-
tions. The REST API defines the functions and procedures that govern the data
access point. The REST API handles requests from the client and returns a re-
sponse to those requests[13].

Figure 3.4: Application programming Interface (API)

In this project the used REST API is provided by the Instituts für Datenbanken und
Informationssysteme (DBIS) at university Ulm. The REST API was created using
the PHP web framework Laravel.

REST API services are addressed via URL using the basic HTTP request methods:
GET, POST or DELETE.

3.2 Architectural Patterns

The architectural patterns used in the project are presented next.

3.2.1 Single Responsibility Principle

The containers and components are structured following the Single-Responsibility
Principle (SRP). Historically, the SRP says that: A class should have only one rea-
son to change. Each component has responsibility for a single part of the applica-
tion’s functionality. [14]

10

3 System Context and Architectural Patterns

3.2.2 Component Design Principle

Software systems are changed to satisfy needs of users and stakeholders, so the
final definition of the SRP is: A module should be responsible to one, and only one,
actor [20].

The SRP is about functions and classes but it reappears in different levels. At
components levels, it becomes the Common Closure Principle (CCP). The CCP
says:

Gather together those things that change at the same times and for the
same reasons. Separate those things that change at different times or
for different reasons [20].

11

4 Container Level Architecture and
Used Technologies

In this chapter, the container diagrams and the chosen technologies for the frontend
and the backend applications are presented and explained in detail.

4.1 Container View of the Frontend

The single page application container diagram is shown below.

Figure 4.1: SAP Container diagram

The frontend container diagram describes the bigger parts of the frontend applica-
tion. The web application serves the static content. The single-page application
is an Angular application, and runs in the user’s web browser. The single-page
application uses the backend application to request the needed data.

12

4 Container Level Architecture and Used Technologies

4.2 Technologies of the Frontend

The frontend – the single page application, is made using Angular framework due
to several reasons:

• the main objective of the project is to build an interactive and user experience-
oriented website.

• no need for data storage and database

• not much need of page reloads

4.2.1 TypeScript

TypeScript is a compile-to-JavaScript language, which was released as an open-
source project by Microsoft in 2012. TypeScript is a strongly typed and object ori-
ented language. It adds static type definitions and provides a way to describe an
object. The types are not automatically converted and they are checked at compile
time. TypeScript is a superset of JavaScript [26].

Figure 4.2: TypeScript as a superset of JavaScript

4.2.2 Overview of Angular Framework

Angular is a TypeScript-based open-source web application framework developed
by Google.

13

4 Container Level Architecture and Used Technologies

The angular core value proposition is making it possible to build apps that work for
almost any platform, mobile, web, or desktop.

According to the Stack Overflow survey from 2020 Angular Framework is getting
more and more popular and the TypeScript is the second laved programming lan-
guage [28].

Model View Controller

Angular uses a variation of the classical Model View Controller (MVC) pattern.
In the MVC pattern the data (Model), the logic (Controller) and the HTML (View)
are separated. The Model manages the data of the application in terms of what
data is presented to the user. The View manages the presentation of the data
and control elements such as buttons, menus, etc. to the user. The Contoller
manages the user interactions and prepares the data for the view. In the logic part
of the application the calculations and transformations of the data are handled in
the controller. [21]

The Angular MVC pattern uses different terms for the Model View Controller. The
Angular Model contains the data and the logic to modify and manipulate the data.
The model is isolated from the view and from the controller. The Angular View/Tem-
plates contains the markup and logic to present the data to the user and is defined
using HTML elements. The Angular Controller/Components contains the logic and
behavior required to present or update the data. The RESTful Services is in this
case a database that manages the data and is accessed through HTTP requests.
[6]

Benefits of Using Angular Framework

Some of the benefits of using Angular framework for the frontend are:

• Component-based architecture Angular supports custom components that
include functionality along with their rendering logic in reusable parts.

• Data binding Angular supports bidirectional event binding where changes
reflected in the application code or within HTML DOM are reflected in both
places.

14

4 Container Level Architecture and Used Technologies

Figure 4.3: Model View Controller

• Dependency injection Angular supports modular services that can be in-
jected wherever they are needed – increasing the flexibility of the application
[27].

4.2.3 Detailed Description of Angular Framework

In the next section, the Angular concepts are introduced and described.

Component-based Architecture

Angular components are organized in modules. Angular application is bootstrapped
by a root module that renders the root component. The root component connects
complete component hierarchy to the document object model (DOM) of the page.
The root component is the app.component and is called from the single page –
index.html – that the server provides. Angular router provides smart hotlink tracking
for navigating between components and enables changing parts of a page.

15

4 Container Level Architecture and Used Technologies

The image below explains how Angular routing works.

Figure 4.4: Angular Router

The Angular Components are the basic building blocks of an Angular application.
A component is a directive that defines it own HTML content and CSS style. The
data, logic, and the HTML for a specific view are encapsulated in a component.
They allow dividing large projects into smaller pieces.

The Component is a TypeScript class with the @Component decorator. It has an
associated HTML file and a style-sheet file. The class contains the logic and data
that is available to the HTML template [23].

Elements of the Component

All angular components have a selector, templateUrl and stylesUrls.

The Selector is used to identify a component uniquely within the component tree.
The selector informs Angular to create and insert an instance of this component
wherever it finds the corresponding tag in the HTML template.

16

4 Container Level Architecture and Used Technologies

Figure 4.5: Angular Component

The TemplateUrl defines the template to be used along with a component. A tem-
plate is an HTML snippet that tells Angular how to render the component. It defines
the component’s view.

The StylesUrls are used to add CSS styles to the component template. By defining
the styles for each component, one gets complete encapsulation and isolation of the
styles. The styles used in one component do not affect any other component.

Angular is based on components that have to interact with each other. This inter-
action can be done in several ways, some of them are: interaction parent to child
component, child to parent component, or component to component (siblings). The
components follow the parent tree structure, each component is a child of another
component, up to the root.

Communication Between Components

To pass information from parent to child the @Input() decorator can be added to
the child component so that it can receive messages from its parent component.

To pass information from child to parent the @Output() decorator and EventEmitter
can be used. The child has to emit a message and the parent will receive it.

17

4 Container Level Architecture and Used Technologies

To access a child property or methods the @ViewChild() decorator can be used.
It is the most flexible form of communication since the parent component has full
access to all the attributes and methods within the child component.

Interactions between siblings components in real-time will be primarily dynamic and
should be updated with real-time data without the need to refresh the page. This
can be done using Subject. A Subject allows values to be transmitted to many
Observers. An Observer can subscribe to the Subject and receive values from it.
Subject adds them to his collection of observers. Whenever there is a value in the
stream the Subject will notify all his observers.

Data Binding Overview

Data binding is the way information is exchanged between the component and the
DOM. The exchange of data between the component and the view will help to build
dynamic and interactive web applications.

There are three ways of binding the data based on the direction of the data flow:
from source to view, from view to the source or bidirectional sequence from view to
source to view.

One-way Data Binding from Source to View

There are several types of binding data to the view, some examples are:

• Interpolation binding is used to display property in the respective view tem-
plate. The data is moved from the component to the HTML elements.

• Property Binding is used to set a property of a view element. It involves
updating the value of a property in the component and binding it to an element
in the view template.

One-way Data Binding from View to Source

Event binding is used when information flows from the view to the component when
an event is triggered. When the event occurs in the view, it calls the method speci-
fied on the component.

18

4 Container Level Architecture and Used Technologies

Two-way Data Binding

Two-way data binding means that changes made to the model in the component are
propagated to the view and any changes made to the view are immediately updated
to the data in the underlying component. The Two-way data binding sets a specific
element property and listens for an element change event. The component and the
view are always in sync, and changes made at both ends are immediately updated
in both directions [6].

Dependency Injection

Dependency injection is a design pattern in which a class requests dependencies
from external sources. Dependency injection keeps code flexible, testable, and
mutable. Classes can inherit external logic without knowing how to create it. In
Angular, dependency injection is done by injecting a service class into a component.
A service is a class of data or logic that is not associated with any specific views
to share between components. Services can be used for many things besides
requesting data from APIs.

4.3 Container View of the Backend

The backend container diagram describes the bigger parts of the backend appli-
cation. In this case, the backend has a simple structure and it contains only one
container. The user does not interact directly with the backend application. The
express-server accepts requests from the frontend. It uses the remote database to
get the raw data.

19

4 Container Level Architecture and Used Technologies

The backend application container diagram is shown below.

Figure 4.6: Backend container diagram

4.4 Technologies of the Backend

The technologies used fro the backend implementation are presented next.

4.4.1 Node.js

Node.js is a JavaScript runtime engine designed to run outside the browser. It
can be used to build scalable network applications, asset compilation, scripting, or
monitoring [8]. Some features of Node.js are:

• Fast processing by handling concurrent requests. The Node.js-based server
never waits for an API to return data. The server passes to the next API after
it is called and a Node.js Event notification mechanism helps the server to get
a response from the previous API call.

• As an asynchronous event-driven JavaScript runtime, Node.js is designed to
build scalable network applications.

20

4 Container Level Architecture and Used Technologies

• Single programming language, since it uses JavaScript, there is no need to
learn another programming language for the backend.

4.4.2 Express Framework

Express was developed by TJ Holowaychuk and is maintained by Node.js founda-
tion and open source community.

Express.js is a web framework for Node.js. Express provides features for building
robust web applications and APIs. It is often used to power single-page applications
that normally require a server component. It includes several middleware modules
that can be used to perform additional tasks on demand. Express gives a high
performance due to the execution of multiple operations independently of each other
through asynchronous programming.

It associates an HTTP method to a function or set of functions that are called to
handle the path. The way an application responds to a client request is determined
by routing. Each route can have one or more handler functions, which are executed
when the route is matched. Routers are useful for separating concerns and keeping
related parts of code together. This way the code is easier to maintain.

One of the reasons for using the Express framework was the ease of integration
with the Angular application. The frontend application request data over HTTP to
the express server and receives JSON files as a response. For each request, the
server accesses the API and processes the data before sending the response to
the frontend [25].

All sensitive data is processed on the express server to prevent information leaks.
The data sent to the client is ready to be shown to the user.

Communication is done using the HTTP protocol which is explained next.

4.4.3 HTTP

The Hypertext Transfer Protocol HTTP is an application layer protocol used for
communication between clients and servers. The browser sends HTTP requests to
the server and the server sends an HTTP response.

21

4 Container Level Architecture and Used Technologies

The transactions between client and server are done through HTTP request meth-
ods. The method tells the server what action to take [1]. In this project the HTTP
methods used are:

• GET method requests a representation of the specific resource. Requests
using GET should only retrieve data. The server should send the named
resource to the client.

• POST method submits an entry to the specified resource. Requests using
POST often cause a state change or side effects on the server. The server
stores the data from the client on a named server resource.

22

5 Backend Architecture

This chapter describes in detail the software architecture of the backend application.

5.1 Component Diagram

The backend application component diagram is shown below.

Figure 5.1: Backend component diagram

Each component is responsible for one functionality of the application. Each com-
ponent is described in detail below.

5.2 Router

The client, in this case, the single page application (angular app) requests data from
the express server. Incoming requests are handled in the router’s file.

23

5 Backend Architecture

The Express router is a class library that defines the way the HTTP requests from
the client are handled.

For each incoming request, the router forwards the request to the appropriate con-
troller. The corresponding controller holds the logic and processes the requests.
The controllers request data from the external database using the services compo-
nent.

5.3 Questionnaire Controller

The Questionnaire controller processes the requests related to the question-
naires answered by the user. It is responsible for requesting all answered ques-
tionnaires of the user and the answersheet for a specific questionnaire. The ques-
tionnaire controller requests the data from the database and contains the logic that
translates the answersheets. The controller returns the answerseets processed
through the routes to the client. The data is ready to be consumed and does not
need to be further processed on the client side.

5.4 Statistic Controller

The Statistic Controller processes the requests related to the statistic of the user
and all the participants in the TrackYourStress mHealth platform. It is responsible
for requesting all answersheets for all users from the database. This information
is processed separately for the user and the other participants. How statistic are
actually calculated is presented in the Statistic chapter later in the document. The
data is ready to be consumed and does not need to be further processed on the
client side.

5.5 User Controller

The User Controller processes the login requests. The data sent to the client side
is the login token that is attached to all other requests from the user.

24

5 Backend Architecture

5.6 Services Component

Communication with the remote API is done through the Services. All the HTTP
requests to remote API are grouped in the services class. This class is in charge
of requesting the data to the database. The data is sent in JSON format to the
corresponding controller without any processing.

5.7 Testing

The methods processing the questionnaires and the statistic are tested using Uni
Tests. More details about the testing are presented in the chapter Testing and
Documentation later in the document.

5.8 Backend Design

The backend application is designed using the single-responsibility principle,
so each component is responsible for a specific part of the application. By doing
this the system is very flexible. Adding new features is easy due to the split of
responsibilities and only the corresponding controller needs to be changed.

5.9 Tree Diagram

The backend tree diagram is presented in the figure below.

25

5 Backend Architecture

Figure 5.2: Server tree diagram

26

6 Frontend Architecture

This chapter describes in detail the software architecture of the frontend application.

6.1 Component Diagram

The component diagram for the frontened application is shown in the diagram be-
low.

Figure 6.1: Single page application Component diagram

27

6 Frontend Architecture

The single page application made with Angular is divided into several components.
Each component has a single responsibility and can contain other components to
split the tasks. The components communicate and interact with one another to build
the complete application.

6.2 Services Component

The Services allow components to communicate with the server side application.
The services folder contains the classes for fetching the data from the server. The
components do not need to request the data directly, so they delegate the task to
the services.

The services are responsible for making the HTTP requests to the server side and
deliver the requested data. They are divided into three classes, each serving the
data related to a specific part of the application.

The user-services contains the business logic related to the user login and logout.
The questionnaires-services contains the business logic related to the question-
naires. And the answersheets-services contains the business logic related to the
answersheets.

Depending on the type of information that is needed, the controllers use the corre-
sponding services.

The services are also used to communicate between the components. The navbar-
services are used to send messages to the navigation bar informing when the user
logged in or out. The communication is done using Subject and Observers as
explained in the chapter Used technologies 4.2.3.

6.3 Login Romponent

The Login component is responsible for the user login. It sends the login form to
the server side using the user-services. When the login is successful the application
routes to the questionnaires page. A message is sent to the Navbar Component
informing that the user logged in.

28

6 Frontend Architecture

6.4 Questionnaire Page Component

The Questionnaire page component holds other components that are used to dis-
play the questionnaires page as a whole. Because the questionnaire page displays
everything related to the questionnaires, it consists of several smaller components.
Each of them is responsible for a specific part of the page.

On the Side-Menu Component the user can select a type of questionnaire. The An-
swersheet List Component is responsible for displaying the list of all answersheets
for a specific questionnaire type. The Answersheet View Component is responsible
for displaying one selected answersheet.

6.5 Statistic Page Component

Similar to the questionnaire page component the Statistic Page component holds
smaller components that are used to display the statistic as a whole. On the Side-
Menu Component the user can select a type of questionnaire. The Statistic List
Component is responsible for displaying the list of all questions for a specific ques-
tionnaire type. The Statistic View Component is responsible for displaying the statis-
tic for the selected question.

6.6 Side-menu Component

The Side-Menu Component is a shared component used to display the question-
naire type. The user can select for which type of questionnaire the information
should be displayed. The data is passed to the corresponding component using the
EventEmmitter explained in the chapter Used technologies 4.2.3.

6.7 Logout Component

The Logout Component is responsible for the user logout. The Logout Compo-
nent uses the user-services to send a request to the server for the user logout. The

29

6 Frontend Architecture

Logout Component uses the navbar-services to inform the Navbar component
that the user logged out.

6.8 Navbar Component

The Navbar Component is responsible for the navigation bar that is used in the
root component, explained in the chapter Used technologies. 4.2.3
This navigation bar is always shown to the user with the most links when the user
is logged in.

6.9 Models

The Models are used for modeling the infromation that flows between the template,
the controller and the backend application. Each model is a class that represents a
data structure, they are used to isolate the data structure from the component code.

In this project, the models are very simple, and they contain the property related
with the data they model. They store the data delivered by the backend application,
and they are used in the templates to display the data to the user.

6.10 Frontend Design

The user interface design and how the data is presented to the user is described in
the chapter User interface. Dividing the page into smaller parts makes the code
easy to debug and flexible to changes. The components can be modified separately
and a change in the answersheet or statistic view component does not affect the
answersheet or statistic list component.

6.11 Tree Diagram

The frontend tree diagram is presented in the figure below.

30

6 Frontend Architecture

Figure 6.2: Server tree diagram

31

7 User interface

This project is intended to offer an interactive and feedback-oriented website. The
user interface (UI) and the user experience (UX) are important concepts.

7.1 Easy and Intuitive Design

The user interface (UI) is anything a user may interact with to use a software prod-
uct. The goal is to create interfaces that users find easy to use and intuitive. Easy
to use means that the interface should be simple and clear in the language used in
the labels, buttons, etc. Intuitive means that the interface should be understandable
to the user. The user should not need to remember or memorize things to use it.
An intuitive interface is an interface that looks familiar to the user.

7.2 User Experience

The user experience (UX) refers to how the user experiences a product. It includes
all the aspects of the interaction between the end-user and the website.

The website is a self-service product, where the user interacts with it alone. The
user experience is crucial in web development. The users have no instructions on
how to use the website, and the only guide they have is their previous experience
[7].

The user experience design requires understanding the needs of the end-users.
The design is user-centered and focuses on their needs.

32

7 User interface

7.3 Design Context

This project has a design inspired by the website trackyourstress.org, and the Uni-
versity Ulm web-based email, sogo.uni-ulm.de.

The user of this project web application might have some experience with the men-
tioned websites. The design should look familiar, and the user should not need to
memorize or remember new things to use the web application.

7.4 Main Elements of User Interface

The interface elements such as the navigation bar, menu, and the different pages
are presented next.

7.4.1 Home Page

The Home page is the page where the user can log in. It has a simple design that
looks similar to the login page at the University Ulm web-based email, sogo.uni-
ulm.de.

In the middle of the page is shown the trackyourstress name next to the login form.
The login form is very simple, showing where the user can introduce the login code
and the login button. The login form is placed in the center, making it easy to view.
The page displays also the horizontal navigation-bar placed at the top of the page.

The login page is shown in the figure below.

Figure 7.1: Login page

33

https://www.trackyourstress.org/
https://sogo.uni-ulm.de/SOGo/so/
https://sogo.uni-ulm.de/SOGo/so/
https://sogo.uni-ulm.de/SOGo/so/

7 User interface

7.4.2 Navigation Bar

The horizontal navigation-bar is placed on the top of the page, the same as the
navigation bar in the trackyourstress.org website. Many websites use this type of
navigations bars, so the users are familiar with it. They are easy to notice, uses little
space, and takes a prominent position on the page.

Navigation bars are the most useful when having only a few items. Otherwise, they
become quickly cluttered and confuse the user. In the case of this application, there
are very few items, so the interface is clear.

The navigation bar is used to switch pages, and for changing the language. The
side menu is used to navigate inside the page, between the views.

Figure 7.2: Navigation bar and side menu

7.4.3 Questionnaire Page

When the user logs in, the Questionnaire-page is shown by default.

The design of Questionnaire-page (and of the Statistic-Page) is inspired by the
the University Ulm web-based email, sogo.uni-ulm.de. The page is divided into
three columns.

On the left column, the side menu is shown. The users can select the questionnaire
type, they want to see. The middle column lists all answersheets for a specific
questionnaire type. They are ordered by date, in descending order. The content
of a single answersheet is displayed on the right column. The design is the same
as the university Ulm web-based email. The list of emails is shown in the middle
column, and the selected email is displayed in the right column.

The user can answer the questionnaires at the trackyourstress.org website. In this
project, the content of the answersheets is displayed similarly to the questionnaire
on the mentioned website.

34

https://www.trackyourstress.org/
https://sogo.uni-ulm.de/SOGo/so/
https://www.trackyourstress.org/

7 User interface

The questionnaire page is shown in the figure 7.3.

Figure 7.3: Questionnaire page

PDF Download Button

The download button is shown on the top right corner of the page. The user can
download the questionnaire content in pdf format.

The positioning of the button is due to several reasons:

• the position of this type of button is at the top of the page in the web-based
email, sogo.uni-ulm.de.

• the user does not need to scroll to the end of the page, to download the
document

35

https://sogo.uni-ulm.de/SOGo/so/

7 User interface

• some questionnaires, like the registration questionnaire, can be very large, so
the download button should be easily visible.

7.4.4 Statistic Page

The Statistic-page has the same structure and design as the Questionnaire-page.
The side menu is placed on the left column. The questions are listed in the middle
column. The list of questions is displayed in a bunch of five questions. The user
can navigate to the next bunch of questions using the pagination buttons.

The statistic page is shown in the figure 7.4 and 7.5.

Figure 7.4: Logged in user statistic

36

7 User interface

Figure 7.5: All users statistic

Horizontal Bar Chart

The statistic related to a specific question is displayed in the right column. The data
is displayed on a horizontal bar chart. Some reasons for using this type of chart
are:

• easy to read, the text is displayed horizontally,

• the labels are the possible answers to a specific question, so the bars are a
continuation of the answers,

• some of the labels are very large, they are displayed horizontal, so the entire
text is shown.

The chart displays the user statistic by default. The user can see it data in the
context of the entire population by clicking on a button. The horizontal bar chart is
shown in the figure 7.6.

37

7 User interface

Figure 7.6: Horizontal bar chart

Registation Questionnaire

The statistic for the registration questionnaire is displayed slightly differently. The
user answers this questionnaire only once and gives one answer per question. The
data is shown in a stacked horizontal bar chart. The focus of the chart is to compare
the totals and the part of the totals (the user answer). The data is easy to read on
a stacked chart. The statistic page for the registration questionnaire is shown in the
figure 7.7.

38

7 User interface

Figure 7.7: Statistic page registation questionnaire

7.4.5 Colors

To make the website familiar to the users the main color used is the same as the
one used in the navigation bar in the trackyourstress.org website. This color is used
for the side menu, and the user statistic on the bar chart.

7.4.6 Interaction

A good interaction design provides feedback to the user. Feedback communicates
the results of any interaction. The links and buttons are changing color on hovering
to tell that they are clickable. In case of errors or no information available, the
system will prompt an informative message.

39

https://www.trackyourstress.org/

8 Statistic

This chapter describes in detail how the statistic is calculated. The processing of
the statistic is done in the User Controller part of the application, in the statistics
controller.

8.1 Answersheet

The controller requests the answers of all users to the database. The answersheet
is parsed into a key-value pair object (dictionary). The key is the question label and
the value is the user given answered to that question.

The parsed answersheet for the weekly questionnaire is shown in the figure below.

Figure 8.1: Parsed answersheet

40

8 Statistic

8.2 Histogram

A histogram is created for each question type. The histogram is a counter for each
question and possible answer. It is a key-value pair object (dictionary). The key
represents a possible answer for a given question, and the initial value is set to zero.
For the slider question type, the histogram divides the answers into five ranges.
The possible answers for the slider question typo are between 0 and 100. The
histograms are assigned to the corresponding question.

The histograms for weekly questionnaire are presented in the figure 8.2.

(a) Slider (b) Multiple and Single choice

Figure 8.2: Histograms

The initial value in the histograms is incremented based on the users’ answers.
For all answers in the answersheet, the corresponding value in the histogram is
incremented. In the end, each histogram has the answers count for each question
and each possible answer.

The last step is to calculated and add the percentage for each histogram. The per-
centage is calculated based on how many users answered a specific questionnaire.
For each possible answer, the percentage is shown.

In the end, the histogram for the weekly questionnaire will look like in the figure 8.3.

41

8 Statistic

(a) Slider (b) Multiple and Single choice

Figure 8.3: Final histograms

42

9 Testing and Documentation

This chapter focuses on testing and code documentation of the project. Before
getting into details, the definition and the importance of testing are explained.

9.1 Software Testing

Software testing is the process of evaluating the functionality of a software ap-
plication. The main goal is to test if the application functions as expected and to
identify the defects.

Testing is a part of the programming phase. It is a very important part of software
development due to several reasons [9]:

• errors and bugs can be found in early stages,

• unit testing leads to a better design,

• testing allows sustainable project growth.

There are three level of testing: end to end testing, integration testing and unit
testing, [2].

The end to end testing tests the fully integrated application. This type of test is the
least frequent.

The integration tests validates how the different pieces of the application work
together. The individual software modules are combined and tested as a group.

The unit testing is a way of testing an individual piece of code. The goal of the unit
tests is to verify a small unit of code, quickly and in an isolated manner. The unit
tests are the most frequent tests. They are used to ensure that the building blocks
of the software work independently from each other [9].

43

9 Testing and Documentation

This project uses unit tests to test small pieces of code. The tests are divided into
backend and frontend testing, which are described below.

9.1.1 Backend-Testing

The backend testing is done using Jest Testing Framework for JavaScript unit
testing. Jest is a node.js package and does not need extra configuration. It is very
fast due to the parallelization of the tests.

The tests isolation is done by replacing the dependencies of the system under test
with test doubles [9]. The backend application contains tests for the Questionnaire
controller, the Statistic controller, and for the Routes. A test class exists for each
of these files – and tests most of the methods. The JSON data used for testing is
declared in a separate folder.

An example of a unit test used in the Statistic controller is presented below.

1

2 test(" create all Histograms" , () => {
3 var qqStructure = require (’./ testJsonData/qstructure←↩

.json ’);
4 var qallHisto = require (’./ testJsonData/←↩

allHistograms.json ’);
5 var qtypes = require (’./ testJsonData/types.json ’);
6 expect(stats.createAllHistograms(qqStructure)).←↩

toEqual ([qallHisto , qtypes])
7 });

The example test, tests the createAllHistograms() function that created all the his-
tograms. The first variable is the questionnaire structure, which is the parameter
passed into the function. The next two variables are the returning object. The
function should return an array with the histograms, and the question type for all
questions from the questionnaire structure.

The Routes file is also tested. The HTTP calls are tested using the SuperTest mod-
ule. The SuperTest provides a high-level abstraction for testing HTTP requests.

An example of a unit test used in the routes files is presented below.

44

9 Testing and Documentation

1

2 test("get statistics for questionnaire id = 2", done ←↩
=> {

3 request(appExpress)
4 .get("/ statistics /2/6 b86b273ff34fce19d6b804eff5a
5 3f5747ada4eaa22f1d49c01e52ddb7875b4b ")
6 .expect (200, done);
7 });

The example test tests the statistic route. It makes an HTTP GET request using
the resquest (SuperTest) variable. The statistic for the given questionnaire id is re-
quested, and the user token is also attached to the request URL. Once the response
is received, the expected status code is 200.

9.1.2 Frontend-Testing

The frontend application in this project is an Angular application, built from compo-
nents, so the place to start testing is components tests.

Each component in Angular has a .spec.ts file to unit test the source file. The tests
are created using the Jasmine framework and run with the Karma test runner.

Karma is a JavaScript command-line tool used to open a browser, load an applica-
tion, and execute tests. It is used to run tests using the Jasmine framework, which
is a behavior-driven development framework for testing JavaScript code [17].

An example of a test case used in angular side-menu.comment.spec.ts is presented
below.

1 it(’button should display Daily ’, () => {
2 let q = new QuestionnaireType ("2"," Daily ");
3 let questionnaire: QuestionnaireTypeList = new ←↩

QuestionnaireTypeList ();
4 questionnaire.data.push(q);
5 component.questionnaires = questionnaire;
6 fixture.detectChanges ();

45

9 Testing and Documentation

7 let buttonLoop = fixture.debugElement.←↩
nativeElement.querySelector(’button ’);

8 expect(buttonLoop.textContent).toContain(’Daily ’)
9 });

In the test above, the buttons created for the side menu component are tested. First,
the object containing the questionnaire data, and the array list storing these objects
are created. After having the data needed to display on the button, the list in the
component has to be assigned to the new list that has been created in the test. The
component has to trigger the changes using the detectChanges() function. Once
the component has noticed the change, the assertion is that the button is created,
and contains the correct label.

This example shows just how Angular testing works, and each component has its
own test file. In these test files, everything can be tested, the component class, the
interactions with the DOM, and with other components.

9.1.3 Test Coverage

The Test Coverage is a metric that reflects how much of the code is exercised by
running the test. The coverage is presented in percentage of code covered in the
test suites. The report contains four measurements of coverage.

• Statement coverage reflects how many statements from the code run in the
tests,

• Branch coverage reflects how many executions paths the test went through
considering the total possible number of paths,

• Function coverage reflects how many functions run out of the total that exists
in the code,

• Line coverage reflects how many lines of code the test executes.

The most important type of coverage is branch coverage. It indicates if all the
possible branches from each decision point are executed. The branch coverage
shows if each possible choice that the code can make is validated [2].

46

9 Testing and Documentation

As an example for the test coverage, the test coverage report for the backend ap-
plication is presented in the figure below.

Figure 9.1: Backend-tests coverage report

9.2 Code Documentation

Code documentation is a very important part of the development due to several
reasons:

• the code and the project is easily maintainable,

• easy for all parties involved to read, change and improve the code,

• helps others to understand the code without reading it.

There are many tools for generating documentation. They generate static docu-
mentation for software applications. In this project, for the frontend application They
generate a web API that contains different details about the project. In this project,
the Compdoc documentation tool is used for the frontend application. Compdoc is
an open-source tool for documenting Angular applications.

The documentation coverage for the frontend application is presented in the image
below.

47

9 Testing and Documentation

Figure 9.2: Frontend documentation coverage

48

10 Conclusions

The purpose of this project was to deliver an interactive and feedback-oriented web
application for patients suffering from stress.

The web application should offer to users the possibility to view questionnaires they
answered and view statistics related to those questionnaires. From the beginning,
the focus of the project was on the end-user. This helped to develop a familiar user
interface as explained in the User interface chapter. The user interface is, in the
end, the part of the project with which the end-user interacts.

Stress is a serious problem in modern society. Tracking the stress, and monitoring
the stress levels can help people protect their health in the long term.

This web platform can help people suffering from stress to better understand what
causes their stress, and how their stress changes over time. The statistic shows
some of the reasons for stress. It is also interesting to see how the user’s stress
looks comparing with the global population. All this information can help to get a
better diagnose or treatment.

In the future, new features could be implemented. For example, showing to the
user how their stress level changed over a period of time, or how their answers
have changed over the time for the same question.

This could help to detect new stressors or to see if some stress treatment helped to
improve their stress situation.

49

Bibliography

[1] Brian Totty; Sailu Reddy; David Gourley; Marjorie Sayer; Anshu Aggarwal.
HTTP: The Definitive Guide. : O’Reilly Media, Inc, 2002.

[2] Lucas Fernandes da Costa. Testing JavaScript Applications. : Manning Pub-
lications, 2021.

[3] Guibert Ulric Crevecoeur. A system approach to the General Adaptation Syn-
drome. https://www.researchgate.net/publication/305609884_A_
system_approach_to_the_General_Adaptation_Syndrome. [Online; ac-
cessed 13-January-2021]. 2016.

[4] George Fink. Stress: Concepts, Definition and History. : Elsevier Inc., 2017.

[5] Ido Flatow; Gil Fink. Pro Single Page Application Development: Using Back-
bone.js and ASP.NET. : Apress, 2014.

[6] Adam Freeman. Pro Angular 9: Build Powerful and Dynamic Web Apps. :
Apress, 2020.

[7] Jesse James Garrett. The Elements of User Experience, Second Edition:
User-Centered Design for the Web and Beyond. : New Riders, 2010.

[8] James Hibbard; Craig Buckler; Paul Orac; Mark Brown; M. David Green; Flo-
rian Rappl; James Kolce; Nilson Jacques. Your First Week With Node.js, 2nd
Edition. : SitePoint, 2020.

[9] Vladimir Khorikov. Unit Testing Principles, Practices, and Patterns. : Manning
Publications, 2020.

[10] Jörg Knappen. Schnell ans Ziel mit LATEX 2e. 3., überarb. Aufl. München:
Oldenbourg, 2009.

50

https://www.researchgate.net/publication/305609884_A_system_approach_to_the_General_Adaptation_Syndrome
https://www.researchgate.net/publication/305609884_A_system_approach_to_the_General_Adaptation_Syndrome

Bibliography

[11] Rüdiger Pryss; Dennis John; Winfried Schlee; Wolff Schlotz; Johannes Schobel;
Robin Kraft; Myra Spiliopoulou; Berthold Langguth; Manfred Reichert; Teresa
O’Rourke; Henning Peters; Christoph Pieh; Claas Lahmann and Thomas
Probst. Exploring the Time Trend of Stress Levels While Using the Crowd-
sensing Mobile Health Platform, TrackYourStress, and the Influence of Per-
ceived Stress Reactivity: Ecological Momentary Assessment Pilot Study. [On-
line; accessed July 2021]. 2019.

[12] Rüdiger Pryss; Dennis John; Manfred Reichert; Burkhard Hoppenstedt; Lukas
Schmid; Winfried Schlee; Myra Spiliopoulou; Johannes Schobel; Robin Kraft;
Marc Schickler; Berthold Langguth and Thomas Probst. Machine Learning
Findings on Geospatial Data of Users from the TrackYourStress mHealth
Crowdsensing Platform. [Online; accessed July 2021]. 2019.

[13] Neil Madden. API Security in Action. :Manning Publications, 2020.

[14] Micah Martin; Robert C. Martin. Agile Principles, Patterns, and Practices in C
sharp. : Pearson, 2006.

[15] Frank Mittelbach, Michel Goossens, and Johannes Braams. Der Latex-Begleiter.
2., überarb. und erw. Aufl. ST - Scientific tools. München [u.a.]: Pearson
Studium, 2005.

[16] Fernando Monteiro. Learning Single-page Web Application Development. :
Packt Publishing, 2014.

[17] Harmeet Singh Ravi Kumar Gupta Hetal Prajapati. Test-Driven JavaScript De-
velopment. : Packt Publishing, 2015.

[18] Neal Ford; Mark Richards. Fundamentals of Software Architecture. : O’Reilly
Media, Inc., 2020.

[19] Joachim Schlosser. Wissenschaftliche Arbeiten schreiben mit LATEX : Leit-
faden für Einsteiger. 5., überarb. Aufl. Frechen: mitp, 2014.

[20] Robert C. Martin Series. Cleas Architecture A Craftsman’s Guide to Software
Structure and Design. : Prentice Hall, 2018.

[21] Peter Späth. Beginning Java MVC 1.0: Model View Controller Development
to Build Web, Cloud, and Microservices Applications. : Apress, 2020.

51

Bibliography

[22] Thomas F. Sturm. LATEX : Einführung in das Textsatzsystem. 9., unveränd.
Aufl. RRZN-Handbuch. Hannover [u.a.]: Regionales Rechenzentrum für Nieder-
sachsen, RRZN, 2012.

[23] Doguhan Uluca. Angular for Enterprise-Ready Web Applications - Second
Edition. : Packt Publishing, 2020.

[24] Herbert Voß. LaTeX Referenz. 2., überarb. u. erw. Aufl. Berlin: Lehmanns
Media, 2010.

[25] Hage Yaapa. Express Web Application Development. : Packt Publishing, 2013.

[26] Anton Moiseev Yakov Fain. TypeScript Quickly. : Manning Publications, 2020.

[27] Simon Holmes; clive harber. Getting MEAN with Mongo, Express, Angular,
and Node, Second Edition. : Manning Publications, 2019.

[28] stackoverflow. Stack Overflow Survey. https://insights.stackoverflow.
com/survey/2020. [Online; accessed 11-January-2021]. 2020.

52

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

Name: Ana Luciana Anisie Coderea Matrikelnummer: 2000527

Erklarung

lch erklare, dass ich die Arbeit selbstandig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den tf:?.-.. ~.l : .. -~~~.(... _ Af?CE~ -~ ~~ •''Jl

Ana Luciana Anisie Coderea

	Introduction
	The Aim of this Work
	The Overview of Chapters
	C4 Diagramming Standard
	Context
	Container
	Component
	Class

	Background Information
	Stress
	The TrackYourStress mHealth platform
	Project Goals

	System Context and Architectural Patterns
	System Context
	Single-page Application
	Backend
	REST API

	Architectural Patterns
	Single Responsibility Principle
	Component Design Principle

	Container Level Architecture and Used Technologies
	Container View of the Frontend
	Technologies of the Frontend
	TypeScript
	Overview of Angular Framework
	Model View Controller
	Benefits of Using Angular Framework

	Detailed Description of Angular Framework
	Component-based Architecture
	Elements of the Component
	Communication Between Components
	Data Binding Overview
	One-way Data Binding from Source to View
	One-way Data Binding from View to Source
	Two-way Data Binding
	Dependency Injection

	Container View of the Backend
	Technologies of the Backend
	Node.js
	Express Framework
	HTTP

	Backend Architecture
	Component Diagram
	Router
	Questionnaire Controller
	Statistic Controller
	User Controller
	Services Component
	Testing
	Backend Design
	Tree Diagram

	Frontend Architecture
	Component Diagram
	Services Component
	Login Romponent
	Questionnaire Page Component
	Statistic Page Component
	Side-menu Component
	Logout Component
	Navbar Component
	Models
	Frontend Design
	Tree Diagram

	User interface
	Easy and Intuitive Design
	User Experience
	Design Context
	Main Elements of User Interface
	Home Page
	Navigation Bar
	Questionnaire Page
	PDF Download Button

	Statistic Page
	Horizontal Bar Chart
	Registation Questionnaire

	Colors
	Interaction

	Statistic
	Answersheet
	Histogram

	Testing and Documentation
	Software Testing
	Backend-Testing
	Frontend-Testing
	Test Coverage

	Code Documentation

	Conclusions
	Bibliography

