
A One-Dimensional Kalman Filter for Real-Time
Progress Prediction in Object Lifecycle Processes

Lisa Arnold
Institute of Databases

and Information Systems
Ulm University, Germany
lisa.arnold@uni-ulm.de

Marius Breitmayer
Institute of Databases

and Information Systems
Ulm University, Germany

marius.breitmayer@uni-ulm.de

Manfred Reichert
Institute of Databases

and Information Systems
Ulm University, Germany

manfred.reichert@uni-ulm.de

Abstract—Real-time monitoring of business processes offers
promising perspectives to discover problems and optimisation
potentials. Early detection is a key part in this endeavour. One
crucial aspect of real-time monitoring is to determine the current
progress of a running business process. This is particularly
challenging for business processes that consist of a multitude
of loosely coupled, smaller processes that interact with each
other, like object lifecycle processes in data-centric approaches
to business process management. In this paper, an approach to
predict the remaining portion of the process path to be still
executed in relation to the overall process is proposed. This
prediction is based on a one-dimensional Kalman Filter. As a
major benefit of this approach, real-time progress determination
can start directly with the first run of the process, i.e., without
need for comprehensive event log data. This becomes possible due
to the procedure applied by the Kalman Filter, which requires
no log data. A quantitative study with 250 progress estimations
for large object lifecycle processes results in a deviation of the
average estimated progress from the real progress, calculated
after the completion of the process, of about 5%. This emphasises
that reasonable progress predictions are possible even in the
absence of an event log, as it is the case when deploying new or
changed processes to the run-time system.

Index Terms—Business process monitoring, object lifecycle
process, real-time progress, prediction, one-Dimensional Kalman
Filter

I. INTRODUCTION

To stay competitive, companies need to continuously
improve and evolve their business processes. In this context,
monitoring is crucial to discover problems and optimisation
potentials of business processes. Additionally, real-time
monitoring can support process participants during run-time,
for example, through the provision of an overview about the
current progress of a process as well as potential delays or
errors. Real-time monitoring can display the current state of
the business process and indicate which activities or sub-
processes are on time, at risk or overdue. When triggering an
alarm for an activity (or the entire business process); e.g., in
case a sub-process is assessed as being at “on risk”, it becomes
possible to take timely actions to prevent this assessment
changing to “overdue”. This kind of monitoring has already
been implemented in several Business Process Management
(BPM) tools. Another fundamental approach is to monitor and

display the current progress of the business process to involved
stakeholders.

Currently, however, there are only a few BPM tools with
capabilities for real-time process monitoring and progress
measurement is usually not supported. To remedy this
drawback, we developed a method for measuring process
progress in object-aware BPM and implemented this method
in PHILHARMONICFLOWS [16]. In principle, the approach
introduced in this paper can also be used to predict progress
in activity-centric BPM tools. Note that there are predictive
monitoring approaches [5] that can be used to determine the
progress of processes with multiple execution paths. However,
these approaches presume the existence of an event log, but
are unable to determine the progress for processes without
log data [5]. Note that there are business processes that need
more than one year to collect a representative log data set.
Thus, for all business processes with low transaction rates,
progress monitoring is not possible when deploying a new or
changed process. To deal with this situation, an approach for
predictive monitoring and progress estimation is needed that
can be used without log data.

In this paper, we introduce an approach that is solely based
on the schema of the business processes. This approach uses
graph theory to determine all possible paths from the current
state to an end state of a business process. With these possible
paths, the estimation of a one-dimensional Kalman Filter [6],
[7], [10], [13], [22] is used to predict the remaining path of
a business process without utilising any log data. With this
estimation, in turn, the current progress of a lifecycle can be
determined.

Object-aware business processes consist of multiple
interacting objects whose relations are defined in a directed
relational process structure [15]. Each object is defined by its
attributes and an object lifecycle process describing its run-
time behaviour. In contrast a coordination process controls
the interactions between multiple lifecycle processes, i.e., the
overall business process [19]. In the following, an object
lifecycle process is denoted as a lifecycle process. Fig. 1
illustrates the structure of an object-aware business process
with simple lifecycle processes in their state-based view.
Taking this process structure, the procedure of determining
the progress can be mapped to few tasks. First, we must be

able to determine the progress of a single lifecycle process
(cf. Fig. 1) with its state-based view. Second, we need to
refine progress measurement of a single state within a lifecycle
process taking the data-driven execution of lifecycle processes
into account (i.e. data-driven state transition). Third, we must
investigate progress determination of multiple, interacting
(i.e., interrelated) lifecycle processes and, fourth, the way
the coordination process (see dependencies in Fig. 1) of an
object-aware business process influences its progress [2]. In
this paper, the first and second challenge of determining the
progress of a single lifecycle process are addressed. In a
linear lifecycle or a lifecycle with equally long paths, like the
simple lifecycles depicted in Fig. 1, progress determination
is trivial. However, for lifecycles with a multitude of
possible paths of different lengths, progress determination is
challenging. Particularly, for large lifecycle processes, progress
determination depends on accurate path predictions.

Fig. 1: Abstract example of the structure of an object-aware
business process with its interacting lifecycle processes (in
their state-based view).

One major contribution of this paper is to define an approach
for estimating the current progress of running lifecycle
processes without need for event log data. In this context,
progress determination methods are defined in terms of pseudo
code to define the Kalman Filter approach. Additionally, an
implementation based on this pseudo code is introduced for
the object-aware BPM system PHILHARMONICFLOWS [16].
Finally, the implementation is evaluated with 250 progress
predictions from several object lifecycles.

The remainder of this paper is structured as follows. Section
II gives an overview on (A) the object-aware BPM paradigm
with its most fundamental components and, (B) the procedure
of the one-dimensional Kalman Filter. Section III shoes how
to calculate the required input values for the Kalman Filter to
apply the latter to lifecycle processes. In Section IV progress
determination methods are presented based on the results from
Section III. Section V evaluates the approach. First, the design
of the evaluation, which comprises a qualitative as well as
a quantitative study, is presented. Second, the results of 250
progress estimations performed in the context of different
business process are discussed. Finally, Section VII concludes
the paper.

II. FUNDAMENTALS

A. Object-Aware Business Process Lifecycle

Object-aware business processes consist of interacting
objects whose relations are defined in a directed relational
process structure [15]. The relation between objects and their

lifecycle processes, respectively, induces a hierarchy within a
relational process structure with its lower- and higher-level
relations between objects. Cardinality constraints for these
objects are 1:n or n:m [17]. Each object of a relational
process structure is defined by its attributes and lifecycle
process, with the latter describing object behaviour at run-time
[15]. Finally, a coordination process controls the interactions
between the multiple lifecycle processes forming the overall
business process [19].

Fig. 2: Structure of a lifecycle with its state-based view. The
dark blue state is the start state, white states are end states,
and light blue states are intermediate ones. ID is the unique
identifier of the state and W represents its weight (i.e., the
effort required to process the state). The number next to a
transition arrow represents the priority, whereas * marks the
most frequently used path.

Each lifecycle process of an object-aware business process
comprises states (including exactly one start and at least one
end state) as well as state transitions. In Fig. 2, a lifecycle in
its state-based view is shown and used as running example in
the following. During run-time, for each instance of an object,
a lifecycle process instance (formally superscriptI) is created.
During the execution of the latter, to each state one of the
markings described in Table I is assigned. A weight between
1 and 5 can be assigned to each state, except the end states
that receive 0 as weight. The weights are assigned at design-
time with a default weight of 3 (i.e., the median). A modeler
decides whether a state requires more or less effort than the
average and then adapts the weight accordingly.

Marking Description

Waiting The state has not been executed yet. A predecessor state is
activated.

Pending The activation of the state is blocked due to an unfulfilled
coordination constraint (derived from the relation to other
running lifecycles processes).

Activated The state is currently executing.

Confirmed The state has been successfully executed. A successor state
is activated.

Skipped The state can no longer be executed. A state on an
alternative execution branch was chosen.

TABLE I: Possible state markings at run-time [18]

At run-time, exactly one active state exists per lifecycle
process instance. Consequently, no parallel execution within

a particular lifecycle process instance is possible. However,
several lifecycle process instances maybe executed in parallel
enabling concurrency on the business process level. The
execution of a lifecycle process instance begins with its
instantiation and the marking of the unique start state as
“Activated”. It ends with marking one of the end states as
“Activated”. Throughout the execution of a business process
instance all associated lifecycle process instance sole present
and will not be discarded, even if these are in a end state.
Formally, each end state must be a silent state (i.e., a
state without any action). When marking the end state as
“Activated”, the execution of the lifecycle process instance
terminates. A single state, in turn, is defined by a number of
steps, of which each is related to an object’s attributes whose
values it needs to see when executing the state.

In addition, forms enabling the user input (i.e. the writing
of the attributes) are generated dynamically for each state
using the information on its steps (cf. Fig. 3). Moreover,
backward transition between two states may be defined at
design-time. Based on a backward transition, jumping back
from a given state to a previous state becomes possible such
that the attributes of target state may be updated. In case of a
backward jump, the data previously filled in the form of the
state is re-displayed.

Fig. 3: The start state “Preparation” from a banking process
with its step-based view and its automatically generated form.

For a given state the automated generation of its form
is accomplished based on its steps and their order. As
discussed, the latter allow refining a state. Fig. 3 shows
state “Preparation” from a banking process with its step-
based view. Each step represents an attribute of the object,
or more precisely an update operation on this attribute. As
for the structure of the states, the steps are connected with
transitions (but no backward transitions, which are solely
allowed between the states of a lifecycle process). The
execution mode is defined by step markings with no parallel

execution being possible. With a predicate step a decision
can be defined to realise conditional branches. Finally, for all
outgoing transitions a priority must be set, which represents
the standard path.

B. One-Dimensional Kalman Filter

In a non-linear lifecycle, calculating progress at run-time
is challenging as the still to be executed (i.e. remaining)
path needs to be predicted. One possible approach for
calculating the progress in a running lifecycle process is the
use of a Kalman Filter. The latter constitutes an iterative
mathematical process that can estimate the remaining weight
of the path that still needs to be executed to complete lifecycle
execution. In general, Kalman Filter can estimate the real
value. In this context, the remaining weight is estimated
in order to determine the progress in relation to the total
weight. This estimation is based on the measured value
of the unexpected error (e.g. measuring error) with a set
of equations and consecutive data inputs (measurements).
Kalman Filter eliminates these errors or variations from the
data measurements and projects the measurements onto the
estimate [6], [10]. A model of the procedure of a Kalman
Filter is depicted in Fig. 4. It can be divided into three parts
of which each is defined by an equation given in (1), (2), and
(3) in the following.

Fig. 4: Procedure of the Kalman Filter.

The first activity of the Kalman Filter procedure, shown
in Fig. 4, calculates Kalman Gain (KG), i.e., the percentage
the estimation error contributes to the total error (error in
estimate plus measurement). The calculated value is used to
minimise the unexpected error or variation of the estimate. KG
is defined by Formula (1). For its calculation, Error in Estimate
(EEST ∈ R+) and Error in Measurement (EMEA ∈ R+) are
required, with Error in Measurement being a fixed value. Error
in Estimate as well as KG are recalculated in each iteration.
Note that the number of iterations corresponds to the number
of Measurements. KG specifies the proportion between the
estimation error and the total error.

KG =
EEST

EEST + EMEA
(1)

with KG ∈ {x | x ∈ R, 0 < x ≤ 1}

The closer KG is to 1, the bigger the Error in Estimate is and
the smaller Error in Measurement. In contrast, the closer KG

is to 0, the smaller Error in Estimate is and the bigger Error in
Measurement. KG is recalculated in each measurement. The
current estimation error is recalculated in the third activity of
Kalman Filter procedure (cf. Fig. 4).

The second activity of the Kalman Filter procedure, (cf.
Fig. 4) calculates the Current Estimate (ESTt ∈ R+). In
the first iteration (t = 1, t marks count of iteration) of
calculating Kalman Filter, an initial estimate as well as the
first Measurement (MEA ∈ R+) are needed to calculate
the current estimation. In case of progress determination
of a single lifecycle process, the average weight of all
possible paths in the lifecycle is used as this initial estimate.
Additionally, KG as calculated by the first activity of Kalman
Filter is required. In the first iteration of calculating Kalman
Filter the value of the initial estimate is used as Previous
Estimate (ESTt−1 ∈ R+). Accordingly, all further iterations
use the result of the preceding calculation of Formula (2).

ESTt = ESTt−1︸ ︷︷ ︸
Part1

+KG ·
(
MEA− ESTt−1

)︸ ︷︷ ︸
Part2

(2)

Formula (2) determines Current Estimate. For this
purpose, the estimation is recalculated with the next data
input (Measurement). More precisely, the second part of
the equation proportionately computes the difference of
Measurement and Previous Estimate with KG. In this
context, multiplying the difference between Measurement and
Previous Estimate with KG determines the percentage of
the modification from the previous estimate. The impact on
Current Estimate is minimal with a large Error in Measurement
and a small Error in Estimate, as KG is close to zero.
Depending on whether Previous Estimate is bigger or smaller
than Measurement, Current Estimate decreases or increases.

The third activity of the Kalman Filter procedure, (cf. Fig.
4) recalculates the estimate error for the next iteration. New
Error in Estimate is denoted as EESTt ∈ R+ and the previous
Error in Estimate, which is used in the current iteration, is as
EESTt−1

∈ R+. Therefore, the Error in Estimate is multiplied
with the proportion of Error in Measurement and Total Error
[6], [7]. This calculation is given by Formula (3).

EESTt
=

(
1−KG

)
· EESTt−1

(3)

Altogether, Kalman Filter needs an Initial Estimate and
Initial Error in Estimate as input, and an immutable Error
in Measurement (unchanging). Additionally, in each iteration
the data input (i.e. Measurement) is required to calculate the
estimation of the remaining still to be executed path.

III. LIFECYCLE PROGRESS PREDICTION WITH KALMAN
FILTER

Kalman Filter is now applied for predicting the progress
of a running lifecycle process (cf. Section II). More precisely,
Kalman Filter is applied every time a state changes its marking
to “Activated” (cf. Table I) in order to determine the current
progress of the running lifecycles process. Therefore, the sum
of weights of all confirmed states (cf. Table I) in relation to
the sum of weights of the executed path (confirmed states

plus active state plus unknown states still to be executed) are
calculated. At run-time, the path to be executed is not known.
For example, if state 3 of the lifecycle from Fig. 2 is the
current active state, two possible paths exit. The lower one
(states: 3-4-7-8) with a total weight of 8 and the upper one
(states: 3-4-5-6-7-8) with a total weight of 12. To predict the
remaining weight for any from the active state 3 to an end
state, Kalman Filter is applied.

The data inputs of Kalman Filter are various measurements
based on all possible paths from a given state to the end
states. Due to the fact that the measurements are independent
of the execution of the lifecycle process as well as the Kalman
Filter procedure, they can be already calculated at design-
time for each lifecycle type. At run-time, the precalculated
measurements can be used to allow for a real-time progress
calculation. For each state, an array comprising the following
five measurements is calculated:

[0] Average weight of all possible paths
[1] Highest weight of all possible paths
[2] Lowest weight of all possible paths
[3] Weight of the priority path
[4] Weight of the most frequently used path
The most frequently used (MFU) path may only be

considered after several runs of the lifecycle process. At run-
time, this additional measurement is realised with a check on
whether there exists a sufficient number of runs.

A. Initialisation of Kalman Filter

For the first application of Kalman Filter, initial values
for Error in Estimation, Error in Measurement, and Initial
Estimate need to be provided. Using Kalman Filter in
a physical scenario, for example, a measurement of a
distance sensor might have Error in Measurement. The graph
algorithms, used to calculate the array have, in general, no
Error in Measurement. For this reason, Error in Measurement
is set to a number near zero (zero is not possible). The
biggest possible Error in Estimation is the difference of
remaining weights between the path with the highest and
lowest weight. Consequently, this difference is chosen as initial
Error in Estimation. Initial Estimate, in turn, is set to the first
measurement (data input). After initialising the Kalman Filter,
the multiple measurements from the array are used as input.

B. Handover parameter for Kalman Filter

For each state, Kalman Filter has the five defined
measurements as input: average, highest, lowest, priority and
most frequently used weight. These input parameters are stored
in a two-dimensional array and are calculated by Algorithms
1 and 2 before run-time. For each state S, Algorithm 1
determines a list that stores the sum of weights for each
possible path from S to an end state. For this purpose, all list
elements from all successor states are added with the current
state weight and are appended to the list of State S (cf. line
11-12). To ensure that all successor state have a complete list,
a topological sorting (cf. Line 7) starting with the last element
is applied. [12].

Algorithm 1: AllPaths(ΘI)

Input : One lifecycle ΘI that contains all states ΣI .
Output: A list (for each state) of lists containing all

weights of possible paths for this state.
1 begin
2 topSort← topSorting(ΣI)
3 i← |ΣI |
4 initialise list
5

6 while topSort ! = empty do
7 σI ← topSort.last
8 if σI .next = empty then
9 add σI .weight to list[σI .ID]

10 else
11 forall σI .next of σI do
12 add

σI .next.list[σI .ID].elem+σI .weight
to list[σI .ID]

13 remove topSort.last

14 return list

Algorithm 2 is used to calculate the five defined
measurements for each state. To store these measurements for
all states, a two-dimensional array with size 5× i (or 4× i if
MFU is not known) is initialised (cf. Line 4) with i being the
number of states of the given lifecycle. Concerning the running
example (cf. Fig. 2), the two-dimensional array calculated by
Algorithm 2 is shown in Table II. Note that the calculation
of the first three measurements – AVG, MAX and MIN – is
trivial (cf. Lines 7-9).

MEA State

0 1 2 3 4 5 6 7 8

0 (AVG) 13.8 12.33 0 11 7 8 5 2 0
1 (MAX) 21 19 0 14 10 8 5 2 0
2 (MIN) 7 5 0 8 4 8 5 2 0
3 (PRIO) 16 19 0 14 10 8 5 2 0
4 (MFU) 10 5 0 8 4 8 5 2 0

TABLE II: Array resulting from the application of Algorithm
2 to the running example.

For calculating the weight of the priority path (cf. Lines
11-17), a loop is used. The result sumWeight is the weight
corresponds to the current state as well as all weights
of subsequent states that are connected with a transition
marked with priority 1. The weight measurement of the most
frequently used path can only be calculated if a sufficient
number of runs of the lifecycle process exists (cf. Line 19).
The calculation is based on the same principle as the one
of the priority path by following the path marked as the most
frequently used one (cf. Lines 19-26). The result of Algorithm
2 is used as the measurements for the second activity of
Kalman Filter procedure (cf. Fig. 4).

Algorithm 2: 2DimensionalArray(ΘI)

Input: One lifecycle ΘI that contains all states ΣI .
Output: two-dimensional array i× j. i being the

number of states, in turn j = 0 defines the
average weight, j = 1 the highest weight,
j = 2 the lowest weight, j = 3 the weight of
the priority path, and j = 4 the weight of the
path most frequently used.

1 begin
2 list← AllPaths(ΘI)
3 count← |ΣI |

/* w. MFU size 5, w/o. size 4 */
4 initialise array[5][i]
5

6 for 0 ≤ i < count do
7 array[0][i]← AV G

(
list[i]

)
8 array[1][i]←MAX

(
list[i]

)
9 array[2][i]←MIN

(
list[i]

)
10

/* Calculate prio weight */
11 sumWeight← 0
12 σI ← σI with (ID == i)
13 do
14 sumWeight← sumWeight+ σI .weight
15 σI ← σI .next with (prio == 1)
16 while σI .next ! = empty
17 array[3][i]← sumWeight
18

/* Calculate MFU weight */
19 if MFU exists then
20 sumWeight← 0
21 σI ← σI with (ID == i)
22 do
23 sumWeight←

sumWeight+ σI .weight
24 σI ← σI .next with MFU set
25 while σI .next ! = empty
26 array[4][i]← sumWeight
27

28 return array

IV. DETERMINING THE PROGRESS OF OBJECT LIFECYCLES

This section shows how the progress of a lifecycle process
can be determined based on the Kalman Filter estimation.

In the first step, Algorithms 1 and 2 are executed once
before running any instance of the lifecycle process. The
algorithms return a two-dimensional array that captures the
required measurements (average, highest, lowest, priority, and
most frequently used weight) for each state.

In the second step, the Kalman Filter is applied to calculate
the estimated weight starting from the current lifecycle process
state to a possible end state. At run-time, this calculation

Algorithm 3: LPD(ΘI)

Input: One lifecycle ΘI that contains all states ΣI .
1 begin
2 listi ← AllPaths(ΘI)
3 array[][]← 2DimensionalArray(listi)
4 progress← 0
5

6 do
7 if σI

A.next ! = ∅ then
8 progress← 100
9 output progress

10 else
11 σA ← activeState(ΘI)
12 est← kalmanFilter(array[][σA])
13

14 doneWeights← 0
15 forall σI marked as Confirmed do
16 doneWeights←

doneWeights+ σI .weight

17

18 sumWeights← est+ doneWeights
19

20 progress← doneWeights

sumWeights
∗ 100

21

22 progressMax←
doneWeights+ σI

A.weight

sumWeights
∗ 100

23

/* Algorithm 4 */
24 refineProgress(progress, progressMax, σA)

25

26 while process run

is performed each time a state becomes activated taking the
results of Algorithms 1 and 2 as input as well.

In the third step, the current progress can be calculated.
This calculation is based on Algorithm 3, which we denotes as
LPD (Lifecycle Progress Determination). Algorithm 3 receives
the lifecycle instance for which the current progress shall be
determined as input. The first part of Algorithm 3 calculates
the two-dimensional array by invoking Algorithms 1 and
2 (cf. Lines 2-3). Then the current progress is calculated
continuously during run-time. This is realised by a loop (cf.
Lines 6-25), which terminates when reaching an end state
of the lifecycle process. If the current state corresponds to
an end state, the progress is set to 100 percent (cf. Line 8).
Otherwise, the estimated weight of the remaining process is
calculated with the Kalman Filter (cf. Line 12). To determine
the current progress the weights of all confirmed states (cf.
Table I) are summed up (cf. Lines 14-16). With this sum and
the estimation provided by Kalman Filter the estimated total
weight can be calculated (cf. Line 18). This result describes,

the estimated progress at the point in time switching to the
current state (cf. Line 20). For the calculation of the upper
progress boundary, the sum of the weights from all confirmed
states as well the weight of the current state are added (cf.
Line 22). Accordingly, the size of this interval depends on
the weights of the states. The realisation with a left-closed
and right-open interval ensures that the progress of a state is
non-overlapping with any previous or succeeding state. In this
approach, a percentage of 100 is not possible, as a right-open
progress interval not includes 100. When marking an end state
of the lifecycle as “Activated”, therefore, 100 is assigned (cf.
Line 8) directly. The end states of a lifecycle process are silent,
i.e., they have no associated actions and steps respectively.
Regarding the running example (cf. Fig. 2), path (0, 1, 3, 4,
7 ,8) is taken. For the latter, the resulting interval is shown
in Table III.

State Progress in Percent

0 [0, 13.3)
1 [13.3, 46.7)
3 [46.7, 73.3)
4 [73.3, 86.7)
7 [86.7, 100)
8 100

TABLE III: Progress distribution of path (0, 1, 3, 4, 7 ,8)
from the running example.

The progress interval of the current state can be refined
with Algorithm 4, which is invoked by Algorithm 3 (cf. Line
24). Algorithm 4 calculates the current progress until the next
state becomes activated (cf. Lines 3-5). Remember that every
state of a lifecycle process is refined by its steps (cf. Fig. 3),
based on which user form for processing the respective state
is automatically created. In this context, steps with marking
“Assigned” the corresponding attribute has already set with
the created user form. To determine the progress of the current
state itself, first, the number of the steps, (i.e. steps marked as
“Assigned”) executed in the current state is computed. Second,
the current progress is determined within the provided state
interval (difference between maximum and minimum, cf. Line
7) in relation between assigned steps and total steps of a state.

In principle, the described Kalman Filter approach can
be adopted to activity-centric business processes as well. In
this case, amongst others, loops must be addressed as well.
The functionality of a loop in activity-centric BPM is not
comparable with a backward transition in object-aware BPM.
In the latter, the input data of a previous state remain available
in the case of a backward jump. An actual repetitions as in
a loop in the activity-centric BPM is not possible. Moreover,
an activity-centric process should have one start event and
at least one end event to meet the preconditions of the
introduced algorithms. Finally, no weights exist in activity-
centric business processes. Therefore, either to all activities
and events the same weight of one should be assigned or
a specific solution for introducing weights in activity-centric
business processes needs to be developed.

Algorithm 4: refineProgress(min,max, σA)
Input: Possible progress interval (min, max) of an

active state and the active state itself.
Output: Returned maximum of progress interval.

Output current progress.
1 begin
2 do
3 if σI .next = Activated then ▷ End State
4 output max
5 break
6 else
7 progress←

min+ (max−min) ∗ |Γ
I .assigned|
|ΓI |

8 output progress

9

10 while process run

V. EVALUATION

A. Design of the evaluation

In the evaluation, first of all, the improvement of the
Kalman Filter estimation compared to the initial progress
determination, which always uses the highest weighted path,
shall be demonstrated. Second, Kalman Filter estimations
with and without the most frequently used (MFU) path are
evaluated and compared with each other. The overall aim of
the evaluation is to identify the most suitable approach for
determining progress.

We have implemented the object-aware process
management paradigm in the PHILHARMONICFLOWS
tool [1], [16]. The latter enables the modeling of object-aware
business processes, including their relational process structure,
lifecycles and coordination processes. Additionally, the tool
provides an execution engine that controls lifecycle processes
and coordination their interactions at run-time. To integrate
the Kalman Filter approach with PHILHARMONICFLOWS
an extension using the JSON-based process export of
PHILHARMONICFLOWS was implemented. The export
contains all information needed to reconstruct a business
process and its components. This includes information on
lifecycle process. For each lifecycle process, its states as
well as their weights and successor states are stored. This
information is supplemented by the presented priorities and
the most frequently used paths (cf. Section III). Algorithms
2-4 as well as the Kalman Filter function have been
implemented and integrated with the tool.

In detail, the evaluation of the progress estimation with the
Kalman Filter comprises two parts, i.e., a qualitative and a
quantitative study:

1. The qualitative study evaluates two paths of the lifecycle
process from the running example (cf. Fig. 2). For each
state on these paths, the estimated progress is calculated
and compared to the real progress.

2. The quantitative study evaluates the application of the
presented approach to five large lifecycles with 44
different execution paths in total. This results in 250
progress estimations1. Each estimation is calculated with
and without the weight of the most frequently used path.
The results are then compared with the real progress
as well as the highest possible weight used in the first
implementation of progress determination.

To visualise the calculated progress we propose diagrams
as the one depicted in Fig.: 6. The y-axis shows the progress
that may range between 0 and 100 percent. The x-axis shows
all states on the evaluated path. Concerning the diagram from
Fig. 6, path (0, 1, 3, 4, 7 ,8) was taken. For this evaluation,
only the Kalman Filter estimations are analysed. Given an
active state with a given progress interval and the proportion
of assigned and unassigned steps, determining the progress
in processing this state is trivial. Therefore, we focus on
determining the possible progress at the transition between
two states. For each state, the corresponding progress values
always refer to the state after its complete processing. Consider
Fig. 5. For each state, its progress values (estimation with and
without Kalman Filter as well as real progress) are displayed.
The span coloured in black represents the progress range from
the path with the lowest weight (maximum progress) to the
one with the highest weight (minimum progress). The red
line, in turn, indicates the real progress which can not be
precalculated, but only becomes known after having actually
executed the path. Note that this value is created to compare
Kalman Filter values with the actual progress. The green line
shows the progress estimated with the Kalman Filter without
the weight of the most frequently used path (MFU). This
corresponds the progress calculation, if no data on the most
frequently path exits. Finally, the blue line represents the
progress estimated with the Kalman Filter with the weight
of the path most frequently used (MFU). This corresponds to
the progress calculation after multiple runs, i.e., when having
knowledge of the weight of the most frequently used (MFU)
path.

Fig. 5: Legend of evaluation diagram.

1The 250 progress estimation as well as the 5 lifecycles are available
via the following link to Researchgate: https://www.researchgate.net/project/
Progress-determination

https://www.researchgate.net/project/Progress-determination
https://www.researchgate.net/project/Progress-determination

B. Evaluation of the Kalman Filter

Qualitative Study. We use the longest path to determine
progress, as in this case no backward jumps of the progress
occur. Consider, for example, Fig. 7; when using the shortest
path to calculate the current progress of a lifecycle process,
the course of the progress would result in a backward jump
between State 1 and 3 (see black maximum lines).

When using the Kalman Filter, backward jumps in the
progress scale might occur in principle. However, for all
considered lifecycles and their various paths, this was not the
case. Backward jumps occur, when the blue line (or green line
when using the estimation without the most frequently used
path) of a state is lower than the one of the previous state.

In the first evaluation step we consider for the progress
estimation for the running example (cf. Fig. 2 in more detail.
Here, five different execution paths are possible as summarised
in Table IV.

Path ID Path Sequence

1 0 - 1 - 2
2 0 - 1 - 3 - 4 - 5 - 6 - 7 - 8
3 0 - 1 - 2 - 3 - 4 - 7 - 8
4 0 - 3 - 4 - 5 - 6 - 7 - 8
5 0 - 3 - 4 - 7 - 8

TABLE IV: Possible paths from start state to an end state

In the following, two paths are analysed in more detail. Fig.
6 shows the progress comparison of the estimated and real
progress for Path 3. As can be seen, the progress estimation
for State 1 is very close to the real progress. Comparing the
different values of State 0, the progress presuming the path
with the highest weight taken is 9.52% and progress presuming
path with the lowest weight taken is 28.57%. This results in
the progress difference of 19.05%.

In relation to this difference, the deviation of the real
progress (13.33%) from the one estimated Kalman Filter (w/o.
MFU) (13.64%) is only 0.34%. The approach using the path
with the highest weight for estimation deviates 3.81% from
the real progress, which is more than ten times worse.

Note that the different values of State 1 result in a very large
range of 66.67% with the progress between 33.33% and 100%.
This can be explained with an end state being a potential
successor. The real progress is 46.67%. Both estimations (w.
and w/o. MFU) deviating similar degree from the real progress
(KF w. MFU 3.34%, KF w/o. MFU 3.81%). Considering
the large range, both estimations are very close to the real
progress. After State 3, the path with the lowest remaining
weight is executed. This path reflects the worse case scenario
of the approach using the highest weighted path for prediction
resulting in a deviation of the prediction of more than 20% to
the real progress.

In comparison, Kalman Filter (w. MFU) achieves an
improvement of 8, 73% after State 3 and 10.33% after State
4. The improvement of Kalman Filter (w/o. MFU) is 2.72%
better after State 3 and 9.34% better after State 4. After State

7 only one transition to an end state remains. For this reason,
all calculated progress estimations result in 100%.

Fig. 6: Evaluating Path 3 of the lifecycle from Fig. 2.

Fig. 7 shows another example for evaluating the Kalman
Filter approach. Here, the path with the highest weight of the
lifecycle process (i.e. Path 2) is used. This is the best-case
scenario for the first implementation, which is always used
the highest weighted path for progress determination. For this
reason, this path is analysed in more detail.

Table V shows the numerical difference between the
estimations provided by the Kalman Filter (w. MFU and w/o.
MFU) in relation to the real progress. Regarding, the path with
the highest weight, the estimation without the most frequently
path is significantly better (improvement of 7.15% for State
1). In this case, the input of the most frequently used path is
not executed. For this reason, the estimation of Kalman Filter
(w/o. MFU) is, on average, 3.84% more accurate than Kalman
Filter (w. MFU). After the decision in State 4, only path (5,
6, 7 ,8) is left over. Therefore, all progress determinations are
the same.

Error Calculation State ∅

0 1 3 4

|w/o. MFU - real progress| in % 4.12 9.53 5.52 6.52 6.42
|w. MFU - real progress| in % 5.3 16.68 8.73 10.33 10.26

TABLE V: Difference between the progress estimations
obtained with Kalman Filter and the real progress (using Path
2 of the example of Fig. 2).

Quantitative Study we considered five lifecycle processes.
These lifecycles are larger than most of the lifecycles from
practice. Note that the larger the lifecycle process, the less
accurate an estimation might be due to the potentially large
differences in the weights of the different paths. In total, these
five lifecycles have 44 different paths. In the following, the
progress of each state on all 44 paths is evaluated. This results

Fig. 7: Evaluation of path 2 of running lifecycle example from
Fig. 2.

in a total number of 250 states among all five lifecycles. For
each of them, the estimation of Kalman Filter with and without
the most frequently used path is calculated. In addition, the
result of the highest weighted path for progress determination
is indicated. In the boxplot depicted in Fig. 8 the difference
between the real progress, Kalman Filter with and without
the most frequently used path, and the highest weighted path
is visualised. The divergence between the real progress and
the two Kalman Filter estimations as well as the divergence
between the real progress and the highest weighted path are
used to evaluate the approach.

First, the divergences of the two Kalman Filter progress
estimations to the real progress are very similar. Consequently,
the most frequently used path does not result in a significant
improvement. In fact, Kalman Filter (w/o. MFU) is on average
even better (0.24%) than the one with MFU. Thus, the
most frequently used path need not be considered as an
input for Kalman Filter. In particular, the progress calculation
can be applied immediately after model creation without
need for event log data. The average difference between
the real progress and the progress estimation using the
highest weighted path (5.69%) is significantly worse than
the average difference between the real progress and the
progress estimation of Kalman Filter (w/o. MFU) (7.46%).
Additionally, the outlier points are significantly bigger (the
bigger, the less accurate the estimate) and occur more
frequent for the highest weighted path than for Kalman Filter
estimation. The average error rate (i.e., the difference between
the real progress and the progress estimated one using the
highest weighted path) for any path not being the highest
weighed path itself is 14, 36%. This error is almost three times
as large as in the context of the Kalman Filter (w/o. MFU)
estimation. On average, Kalman Filter estimation deviates
about 5% (above or below) from the real progress. Considering
that no log data is utilised, this error rate of 5% constitutes a
suitable first orientation towards progress, especially for newly
deployed business processes estimation, which no log data
is available at the beginning. If log data is collected over

several runs of the process, other approaches (e.g. predictive
monitoring [5]) can be further used to optimise this error rate.

Fig. 8: Comparison of the 250 progress estimates in a boxplot
with outlier points.

VI. RELATED WORK

Related to our work is the field of predictive process
monitoring [4], [14], [20], [21]. According to [5], predictive
monitoring approaches can be categorised into three different
types. First, numerical prediction is applied to predict the
remaining time of an ongoing execution [21] or its cost [20].
Second categorical predictions on the risk class of an ongoing
process are supported be existing approaches [4]. Third, the
sequence of the still remaining activities (their payload) can
be predicted [14]. However, these approaches presume the
existence of an event logs. For newly generated processes
without any event log, as well as predictions are therefore
not possible.

Real-time process monitoring, especially progress
determination, is not well-supported in object-aware or
object-centric approaches to BPM. A dashboard-based
approach for offline (i.e. non-real-time) monitoring in object-
aware BPM is described in [3]. Another approach to measure
the progress of activity-centric business models is introduced
in [11]. The latter included two measurement techniques for
reference model-based business process modeling. For this
purpose, both techniques determine the progress based on the
compliance of activity labels [11]. Moreover, an approach for
monitoring processes and prediction their progress with data
state transition events is presented in [8]. In [9], progress in

activity-centric processes is improved by utilising object state
transition as described in [8].

In the research area of business processes monitoring, the
Kalman Filter has not been applied yet. However, Kalman
Filter can be found in many other disciplines to predict states.
One of its most famous applications is the moon landing
[13]. Even today, Kalman Filter is used extensively in state
estimation of linear and non-linear systems such as in the
inertial navigation system of aeroplanes [13], in the tracking
method of autonomous vehicles [13], in early failure prediction
[22], and many more applications [10], [13].

VII. SUMMERY AND OUTLOOK

We presented an approach for determining the progress of
object lifecycle processes as known from data- or artifact-
centric business processes. The challenge of determining
progress in the given context is to estimate the weight of the
still to be executed path of the lifecycle process originating
from its current state to one of the end states.

To tackle this challenge, an existing estimation method, i.e.,
one-dimensional Kalman Filter, is used to predict the weight of
this remaining path. As a major benefit of our approach, real-
time progress determination becomes feasible already with the
first runs of lifecycle process. As opposed to known predictive
monitoring approaches, no log data is required. For large and
complex lifecycle processes, the deviation of the determined
median and average progress differs about 5% from the real
progress. Our quantitative study has also shown that the use of
the weight of the most frequently used path results in slightly
inferior progress prediction than without considering this most
frequently used path. The latter case the estimation of Kalman
Filter and the resulting progress are completely independent
of previous executions of the business process.

In future work, we will consider progress determination
multiple, interacting (i.e., interrelated) lifecycle processes. We
want to investigate how a coordination process affects the
progress of the overall (object-aware) business process [2].
Furthermore, the inaccuracy of about 5% on average can be
improved. Considering that no log data is used at all, the
error rate of 5% of Kalman Filter (w/o. MFU) constitutes
a suitable first orientation towards progress determination,
especially for newly deployed business processes for which no
expressive log data is available at the beginning. Furthermore,
backward transitions within a lifecycle process have not been
considered in this paper. Jumping back to previous state can
be interpreted in two ways. First, jumping back might decease
current progress (as parts of the lifecycle process may have to
be repeated) or, second, the progress remains the same as the
data has already been set. Both options will be evaluated in
an empirical study.

In principle, the basic idea of using Kalman Filter for
progress determination is not restricted to object-aware
business process, i.e., in activity-centric business processes
this basic approach to calculate progress and to predict
the remaining path can be applied as well. However, the
robustness and accuracy of other modelling paradigms need

to be investigated separately, as the structure and size of a
single lifecycle in an object-aware business process is usually
smaller than an activity-centric business process.

ACKNOWLEDGMENT

This work is part of the ZAFH intralogistic project, funded by the
European Regional Development Fund and the Ministry of Science,
Research and Arts of Baden-Württemberg, Germany (F.No. 32-
7545.24-17/12/1).

REFERENCES

[1] K. Andrews, S. Steinau, and M. Reichert, “A tool for supporting ad-hoc
changes to object-aware processes,” in 2018 IEEE 22nd International
Enterprise Distributed Object Computing Workshop (EDOCW). IEEE,
2018, pp. 220–223.

[2] L. Arnold, M. Breitmayer, and M. Reichert, “Towards real-time progress
determination of object-aware business processes,” Central European
Workshop on Services and their Composition, pp. 14–18, 2021.

[3] M. Breitmayer, L. Arnold, and M. Reichert, “A dashboard-based
approach for monitoring object-aware processes,” Central European
Workshop on Services and their Composition, pp. 29–33, 2021.

[4] R. Conforti, S. Fink, J. Manderscheid, and M. Röglinger, “Prism–a
predictive risk monitoring approach for business processes,” in Int. Conf.
on Business Process Management, 2016, pp. 383–400.

[5] C. Di Francescomarino, C. Ghidini, F. M. Maggi, and F. Milani,
“Predictive process monitoring methods: Which one suits me best?” in
Int. Conf. on Business Process Management, 2018, pp. 462–479.

[6] G. Galanis and M. Anadranistakis, “A one-dimensional kalman filter
for the correction of near surface temperature forecasts,” Meteorological
Applications, vol. 9, no. 4, pp. 437–441, 2002.

[7] A. Gelb, Applied optimal estimation. MIT press, 1974.
[8] N. Herzberg and A. Meyer, “Improving process monitoring and progress

prediction with data state transition events,” Central European Workshop
on Services and their Composition, 2013.

[9] N. Herzberg, A. Meyer, and M. Weske, “Improving business process
intelligence by observing object state transitions,” Data & Knowledge
Engineering, vol. 98, pp. 144–164, 2015.

[10] Z. Khan, H. Bugti, and A. S. Bugti, “Single dimensional generalized
kalman filter,” in Int.Conf. on Computing., Electronic and Electrical
Engineering. IEEE, 2018, pp. 1–5.

[11] A. Koschmider, J. L. d. l. Vara, and J. Sánchez, “Measuring the progress
of reference model-based business process modeling,” in INFORMATIK
2010, pp. 218–229.

[12] D. J. Lasser, “Topological ordering of a list of randomly-numbered
elements of a network,” Communications of the ACM, vol. 4, no. 4,
pp. 167–168, 1961.

[13] R. Marchthaler and S. Dingler, Kalman-Filter. Springer, 2017.
[14] M. Polato, A. Sperduti, A. Burattin, and M. de Leoni, “Time and activity

sequence prediction of business process instances,” Computing, vol. 100,
no. 9, pp. 1005–1031, 2018.

[15] S. Steinau, K. Andrews, and M. Reichert, “Executing lifecycle processes
in object-aware process management,” in Int. Symp. on Data-Driven
Process Discovery and Analysis. Springer, 2017, pp. 25–44.

[16] ——, “A modeling tool for philharmonicflows objects and lifecycle
processes,” BPM Demo Session, 2017.

[17] ——, “The relational process structure,” in Int. Conf. on Advanced
Information Systems Engineering. Springer, 2018, pp. 53–67.

[18] ——, “Enacting coordination processes,” arXiv preprint
arXiv:2012.08409, 2020.

[19] S. Steinau, V. Künzle, K. Andrews, and M. Reichert, “Coordinating
business processes using semantic relationships,” in Conf. on Business
Informatics, vol. 1. IEEE, 2017, pp. 33–42.

[20] T. B. H. Tu and M. Song, “Analysis and prediction cost of
manufacturing process based on process mining,” in Int. Conf. on
Industrial Engineering, Management Science and Application). IEEE,
2016, pp. 1–5.

[21] W. van der Aalst, M. H. Schonenberg, and M. Song, “Time prediction
based on process mining,” Information systems, vol. 36, no. 2, pp. 450–
475, 2011.

[22] S. Yang and T. Liu, “State estimation for predictive maintenance using
kalman filter,” Reliability Engineering & System Safety, vol. 66, no. 1,
pp. 29–39, 1999.

	Introduction
	Fundamentals
	Object-Aware Business Process Lifecycle
	One-Dimensional Kalman Filter

	Lifecycle Progress Prediction with Kalman Filter
	Initialisation of Kalman Filter
	Handover parameter for Kalman Filter

	Determining the progress of object lifecycles
	Evaluation
	Design of the evaluation
	Evaluation of the Kalman Filter

	Related Work
	Summery and Outlook
	References

