

Business Level Service-Oriented Enterprise Application
Integration

Stanislav Pokraev1, Dick A. C. Quartel2, Maarten W. A. Steen1, Andreas
Wombacher2 and Manfred Reichert2

1 Telematica Instituut, P. O. Box 589, 7500 AN, Enschede, The Netherlands
{stanislav.pokraev, maarten.steen}@telin.nl

2 Center for Telematics and Information Technology (CTIT), University of Twente, P.O.
Box 217, 7500 AE Enschede, The Netherlands
{D.A.C.Quartel, M.U.Reichert, A.Wombacher}@ewi.utwente.nl

Abstract. In this paper we propose a new approach for service-oriented enterprise
application integration (EAI). Unlike current EAI solutions, which mainly focus on
technological aspects, our approach allows business domain experts to get more involved in
the integration process. First, we provide a technique for modeling application services at a
sufficiently high level of abstraction for business experts to work with. Next, these business
experts can model the orchestration as well as the information mappings that are required to
achieve their integration goals. Our mediation framework then takes over and realizes the
integration solution by transforming these models to existing service orchestration
technology.

1 Introduction

In the networked economy the success of companies is largely determined by the
speed and effectiveness with which they integrate their services into new (cross-
organizational) business processes. However, almost every company has unique
business processes supported by legacy systems which are difficult to integrate.
Solving integration problems with traditional enterprise application integration
(EAI) approaches often leads to expensive and inflexible solutions which do not
always meet business requirements. Part of the problem is that integration is done
at a technical level by IT specialists; e.g., by building data transformation
components and customizing business process logic. Business domain experts are
only consulted at the beginning, i.e., in the requirements elicitation phase.

Service-oriented architectures (SOA) provide an approach which allows
integration solutions to be specified only by means of service interactions; i.e.,
technical details can be hidden from business domain experts. In addition, SOA
solutions show a high degree of flexibility. Both service providers and service

2 S. Pokraev, D.A.C. Quartel, M.W.A. Steen, A. Wombacher & M. Reichert

consumers may change their software implementation; the solution will continue to
work provided that both parties continue to adhere to the same service description.

To support SOA a lot of effort is currently being invested in the standardization
of service description languages and protocols for service interactions such as
WSDL, BPEL and WS-CDL. Unfortunately, these standards are still too technical
for business domain experts to understand and to use them. Moreover, even
properly educated and provided with sophisticated tools, business domain experts
do not always have all information required to build integration solutions based on
these technologies (e.g., port types, message formats, protocol bindings, etc.).

In this paper we describe a challenging integration scenario and show how it
can be solved at a higher level of abstraction enabling the more active participation
of business domain experts. The paper is organized as follows: Section 2 presents
the integration scenario according to the Semantic Web Services (SWS) Challenge
20061. Section 3 presents our integration approach. Section 4 sketches basic
service modeling concepts needed for the further understanding of the paper. Sec-
tion 5 shows how we deal with the given integration scenario in our approach.
Section 6 relates our work to other research activities. Finally, Section 7 gives a
summary and defines some future research directions.

2 Problem description

In order to illustrate the problem of integrating business processes we present an
integration scenario according to the SWS Challenge. SWS Challenge provides a
standard set of problems, based on industrial specifications and requirements.

A manufacturing company called Moon uses three backend systems to manage
its order processing: a Customer Relation Management System, a Stock Manage-
ment System, and a Production Management System. Moon has signed an
agreement with a customer, called Blue, to exchange purchase order messages in
RosettaNet PIP 3A4 format. Currently, the back-end systems of Moon use proprie-
tary data models and interaction protocols that differ from those of RosettaNet. The
objective is to build a system, called Mediator, that compensates these differences
and facilitates the conversation between Moon’s and Blue’s systems. The complete
scenario is depicted in Fig. 1.

First, the Mediator receives a Purchase Order Request message from the
customer Blue. Next, it communicates with the Customer Relation Management
system to obtain Moon’s internal customer ID. Then, it requests to create a new
order by communicating with the Stock Management system. Next, all line items
are submitted one by one and then the order is closed. If an article is not available
the Stock Management system will reply that the respective line item is rejected. In
this case the Mediator communicates with the Production Management system to
obtain relevant information about the date and the price to manufacture the article.
If this information meets the initial expectations of customer Blue, as specified in
the RosettaNet message, the article is ordered. Finally, the mediator sends a
Purchase Order Confirmation message back to Blue.

1 http://sws-challenge.org/

 Business Level Service-Oriented Enterprise Application Integration 3

RosettaNet
System

Send
purchase

Order (PO)

Receive
Purchase Order

Confirmation (POC)

Customer Relation
Management

System

Search
customer

Stock Management
System

Create
new order

Add
line Item

Close
order

Confirm/
refuse

line Item

Production
Management

System

Check
production
capability

Confirm
order

Mediator

Obtain Moon’s
internal

customer ID

Send Purchase
Order Confirmation

(POC)
Create

order using
internal

customer ID

Send
line item n

Confirm
line item

Order
line item for
production

Receive
Purchase Order

(PO)

Close
order

Check
production
capability

Line item rejected

Line item
accepted

RosettaNet PIP3A4 PO ►

◄ Acknowledgement of
receipt

◄ RosettaNet PIP3A4 POC

Acknowledgement of
receipt ►

Search string ►

◄ Customer object

Customer ID ►

◄ Order ID

Order ID, Article ID, Quantity ►

◄ Confirmation

Order ID ►

◄ Line item confirmation

Article ID, Quantity ►

◄ Date, Price

Article ID, Quantity ►

◄ Date, Price

massage ►
Asynchronous message

Synchronous message
request ►

◄ response

Control flow

massage ►
Asynchronous message

Synchronous message
request ►

◄ response

Control flow

Blue (Customer) Moon (Manufacturer)

Fig. 1. Integration scenario

As one can see there are differences regarding data models and interaction
protocols of Blue and Moon. We have classified respective problems into two
groups – data mismatches and behavior mismatches – and have provided
mediation patterns to cope with them (for details see [5][4]). This paper omits
details of these mismatches and focuses on our overall integration methodology
instead.

3 Integration framework

The service concept plays a central role in our approach. A service is a set of
related interactions between a system and its environment that establish some
effect that has value for the entities in this environment. Service orientation
typically leads to a layered enterprise architecture model, where the service
concept is the main link between the systems at the different layers (see [6] for
details). In our approach we distinguish between the business and the IT world, and
we divide these two worlds into service layers as depicted in Fig. 2:

4 S. Pokraev, D.A.C. Quartel, M.W.A. Steen, A. Wombacher & M. Reichert

Business
Business environment

Business systems

Software systems

Business
services

IT services

ICT

Hardware systems

Communication
services

Fig. 2. Business and IT services

As mentioned, very often, integration solutions built at IT level do not always meet
the business requirements of the involved companies. Part of the problem is that
business domain experts do not speak the language of IT experts; usually, they are
only consulted at the beginning of the project to identify requirements.

In our approach we “lift” IT service descriptions to a higher level of abstrac-
tion; i.e., closer to the business service layer, thus enabling the active participation
of business domain experts. Once the integration solution is specified at the
business service layer, it can be transformed (semi)automatically to an IT solution
specification by applying a number of mapping rules. From this point on the IT
experts can focus on the implementation of the missing parts of the integration
solution. In addition, the formal link between the business and IT solution
specifications enables reasoning tasks which, in turn, lead to more correct
implementations of the solution. The approach is outlined in Fig. 3.

IT
services

Step 1: Lifting IT service
descriptions to business service
descriptions

Step 2: Solving the integration
problem at business service
layer

Step 3: Deriving an IT
integration solution from the
business integration solution

Company A

Business
services

Company B

1 1

2 2

3

Integration
solution

Fig. 3. Integration approach

4 Service modeling framework: basic concepts

In order to realize the sketched integration approach we have developed a
framework, which provides concepts for modeling both services and integration
solutions at the business level. Our framework provides modeling concepts that can
be used in different application domains and at different abstraction levels. This
reduces the number of required modeling concepts and thus makes it easier for
business experts to apply them. The core concept of our framework constitutes the
interaction concept, which is also the core concept in SOA. Our interaction
concept supports a constraint-oriented style of service specification. This facilitates
reasoning about the interoperability of involved systems by modeling their
participation as separate constraints and by reasoning about satisfiability of the

 Business Level Service-Oriented Enterprise Application Integration 5

logical conjunction of these constraints. Our framework has been presented in
detail in [6]. This section summarizes the basic concepts needed for understanding
the remainder of this paper.

At a high level of abstraction a service can be modeled as a single interaction
between two or more systems (e.g. companies). The interaction represents an
activity in which the involved systems produce some common result in
cooperation. An interaction is defined by a composition of two or more interaction
contributions, which represent the participation (or responsibility) of each system
involved in the interaction. Consequently, an interaction is considered an atomic
activity that either occurs and establishes the same result for all involved systems,
or does not occur for any of the systems and therefore does not establish a (partial)
result.

Fig. 4 models a sample procurement service as a single interaction between a
customer and a retailer. Interaction contributions buy and sell represent the
participation of the customer and retailer in this interaction, respectively. The
associated text boxes define the constraints they each have on the interaction result.
In this case, both the customer and the retailer want to establish an order as
interaction result. The customer wants to order a notebook, whereas the retailer is
willing to sell any article from its catalog. Furthermore, the customer wants the
notebook to have certain properties, to be delivered within 5 days to a certain
location, and to cost less than a maximum price in mind. The retailer has specified
for each article a minimum price and delivery period. In addition, the retailer will
only deliver articles in the region “Twente”.

Fig. 4. Procurement interaction

In general, a service cannot be implemented as a single interaction, and we
have to refine the abstract interaction into a structure of multiple smaller more
concrete interactions. For representing related activities, we have introduced the
behavior concept (graphically represented as rounded rectangles). Fig. 5 depicts a
possible refinement of the procurement service from Fig. 4 into a number of
interactions: select represents the selection of an article, checkout the establishment
of the order comprising the selected article, pay the payment of the order (by credit
card), and deliver the order delivery. In addition, the retailer offers the possibility to
pay by bank transfer through the interaction contribution pay2. The retailer will
allow credit card payments only if some precondition is satisfied, i.e., the price of
the selected article is greater than 500. Note that the contributions checkout, pay and
pay2 refer to results established in the causally preceding contribution select (i.e.,
article and price of the article).

6 S. Pokraev, D.A.C. Quartel, M.W.A. Steen, A. Wombacher & M. Reichert

Fig. 5. Refinement of the procurement example

The effect of a service refers to elements in the subject domain of the systems
involved in its execution. The subject domain of a system comprises the entities
and phenomena in the real world that are identifiable by the system. For capturing
these entities we use an information model. It consists of individuals that represent
the entities and phenomena from the subject domain, classes that represent the
types of the entities and phenomena and properties that represent the possible
relations between individuals (object properties) or between an individual and a
data value (data properties) . Further, we allow classes and properties to be defined
as logical conjunctions, disjunctions or negations involving other classes and
properties.

Fig. 6 depicts part of a simple information model for our procurement example.
This model does not include individuals and the valuations of their data properties,
which together we denote as the state of a system.

Fig. 6. Procurement information model

5 Solving the integration scenario

In this section we show how the approach described in Section 3 can be used to
solve the integration problem described in Section 2. We assume the systems to be
integrated all expose Web service interfaces and that we have a BPEL
orchestration engine with XSLT support at our disposal to realize the integration at
the IT level.

 Business Level Service-Oriented Enterprise Application Integration 7

First, we derive the information and behavior models of the Blue and Moon
systems using the WSDL descriptions of their services. Next, we define mappings
between the classes and properties from the information models, and we define the
integrated process model (the Mediator system). Once we have done all this we
transform the Mediator specification into an executable BPEL specification and
deploy it onto the BPEL orchestration engine. The concrete steps to be taken are
illustrated in Fig. 7 and described in more detail in the remainder of this section.
The left picture in Fig. 7 concerns the information models, and the right picture
concerns the behavior models of Blue’s and Moon’s system.

Blue

Behavioral
model

Blue
Behavioral

model

Integrated
process
model

Integrated
process
model

Textual
description

Textual
description

Moon
Behavioral

model

Moon
Behavioral

model

BPELBPEL

Blue
service
Blue

service
Moon

services
Moon

services
BPEL

engine
BPEL

engine

Textual
description

Textual
description

Blue
Information

model

Blue
Information

model
MappingMapping

Moon WSDLMoon WSDL

XSD

Moon WSDLMoon WSDL

XSD

Blue WSDLBlue WSDL

XSD

Blue WSDLBlue WSDL

XSD

Moon
Information

model

Moon
Information

model

XSLTXSLT

Blue
service
Blue

service
Moon

services
Moon

services
BPEL

engine
BPEL

engine

Fig. 7. Solving the integration problem from Section 2

5.1 Step 1a: Lifting data models to information models

In this step we use the XML schemas which define the message types of Blue’s
and Moon’s services to derive information models. This is done by applying a
number of rules including:

• xsd:element with at least one sub-element or attribute is transformed into a
class

• xsd:element with neither sub-elements nor atributes is transformed into a
property

• xsd:complexType is transformed into a class and xsd:simpleType into a
property

• an XSD inheritance by extension is transformed to a subClassOf property
• an XSD inheritance by restriction is transformed to a class, defined by

restricting the range of some Properties to a particular set of values
• xsd:sequence and xsd:all are transformed into a logical conjunction of two

or more classes
• xsd:choice is transformed into a class defined as an expression containing

logical conjunctions or disjunctions and negations of two or more classes
An XML schema defines only the syntax of the messages. Thus, some further

work is required to define the semantics of their elements. For example, some
hidden assumptions are made more explicit in the information models (e.g., by
defining new classes and relations among them), or classes and properties are
mapped to classes and properties from domain specific ontologies, thus defining
their meaning. This is usually a manual process which requires domain specific

8 S. Pokraev, D.A.C. Quartel, M.W.A. Steen, A. Wombacher & M. Reichert

knowledge. Fig. 8 shows part of the information models of Blue and Moon that are
relevant to understand our approach.

Fig. 8. Information models of Blue and Moon

5.2 Step 1b: Lifting interface descriptions to service behaviors

In this step we transform the WSDL descriptions that define the possible message
exchanges between Blue’s and Moon’s services into behavior models. These
behavior models are constructed from the concepts explained in Section 4.

A WSDL description defines the operations that can be invoked on some server
that implements the service, and in this way, the types of messages that can be
accepted and returned by the server. This description only concerns the
involvement of the server. To model some service behavior completely we also
want to model the involvement of the client, i.e., the sending of the request
message and the acceptance of the reply message.

We model a two-way operation as a sequence of two instances of the
interaction concept. The first instance models the operation invocation, and
consists of two interaction contributions: one modeling the sending of the request
message by the client and the other modeling the reception of the message by the
server. The second instance models the operation return, which similar to the first
interaction models the exchange of the reply message. In case of a one-way
operation, the second interaction is absent.

A complete behavior model should also define the relationships between the
executions of distinct operations. These relationships are not part of the WSDL
descriptions, but have to be derived from informal textual descriptions as provided
in Section 2. An example of how such relationships are modeled is given in
Section 4.

 Business Level Service-Oriented Enterprise Application Integration 9

For the purpose of structuring, distinct service or interface descriptions can be
modeled by distinct instances of the behavior concept

5.3 Step 2a: Mapping information models

In this step we define mappings between classes, properties and individuals from
Blue’s and Moon’s information models. We consider four types of mappings:
equivalence - defines that two classes or properties have the same meaning; more
general - defines that a class (or a property) has more general meaning than
another class (or property); less general - defines that a class (or a property) has
more specific meaning than another class (or property); disjointness - defines that
two classes (or properties) have different meanings.

Creating mappings requires understanding of the meaning of the classes and
properties in the information models of the systems being integrated and cannot be
fully automated. However, tools and techniques exist that use sophisticated
heuristic algorithms to discover possible mappings and propose these to the
business domain experts. A good survey of semi-automatic schema matching is
presented in [7]. Fig. 9 shows the mappings between Blue’s and Moon’s
information models. In the figure we only show the equivalence relations.

Fig. 9. Mapping Blue's and Moon's information models

5.4 Step 2b: Specifying the integrated behavior

In this step we define a mediator, which compensates the mismatches between
Blue’s and Moon’s behavior models. This step can be performed in a manual (e.g.

10 S. Pokraev, D.A.C. Quartel, M.W.A. Steen, A. Wombacher & M. Reichert

using a modeling tool such as Grizzle2) or automated way. The model of the
mediator is shown in Fig. 10.

The behavioral mismatches can be associated with specific solutions for each
occurrence of a mismatch. Examples of such mismatches include different order of
source and target messages, a source message that contains two or more target
messages, etc. Based on these partial solutions the aim is to select only the relevant
ones and compose them automatically to form the behavior of the mediator. In our
approach we consider the partial solutions as little workflows and use them to
compose more complex workflows. The composition is recursively applied until
the composed workflow solves the mediation problem. We are currently
implementing this approach based on annotated Finite State Automata [8].

Automated composition faces the challenge that the number of possible
combinations is not constrained by a maximum number of possible compositions.
Further, there is no constraint which enforces that a particular partial solution is
applied only once. Therefore, the number of possible compositions of workflows
explodes. Further, each composition of workflows increases the complexity of the
resulting model significantly.

Fig. 10. The model of the mediator

5.5 Step 3a: Transforming information mappings to XSLT

In this step we use the information mapping defined in Section 5.3 to derive
executable XSLT specifications for the exchanged messages. These XSLT

2 http://isdl.ctit.utwente.nl/tools/grizzle/index.php

 Business Level Service-Oriented Enterprise Application Integration 11

specifications are applied at runtime to transform messages sent by one system
(source) to messages accepted by another system (target). The derivation of
message transformation specifications is done by searching for elements in the
source message that can be used to produce each element of the target message.
The simplest scenario is as follows: If an element ET from the target message
corresponds to a property PT in the information model of the target system and an
element ES from the source message corresponds to a property PS in the
information model of the source system and the mapping PR ≡ PS is defined, then
the value of ES in the source message will be copied (using <xsl:copy>) as value of
ET in the target message.

In a more complex scenario, a number of properties can be composed to define
a new, composite property. For instance, we can define a new property partnerCity
in the information model of Blue as composition of the properties physicalLocation,
physicalAddress and cityName and define a mapping partnerCity ≡ city from the
information model of Moon. This mapping is used at runtime to copy the value of
cityName as value of city only when cityName has an indirect relation (i.e., via
physicalLocation and physicalAddress) to an individual of class Partner.

5.6 Step 3b: Transforming the Mediator’s behavior to BPEL

In this step the behavior model of the mediator is transformed into a BPEL
specification. In [2] a mapping has been defined between the behavior concepts
presented in Section 4 and the BPEL language concepts. However, before this
mapping can be applied a preparatory step is needed in which the behavior model
of the mediator is annotated with marks and possibly restructured.

Marks are used to add implementation details, in this case BPEL specific
information. For example, interaction contributions should be marked to indicate
whether they have to be mapped onto an invoke, receive or reply activity in BPEL.
Furthermore, information about partner links and invoked web services (e.g.,
namespace URI and endpoint address) may have to be provided.

Restructuring of the behavior model may become necessary to enable its
mapping onto structured activities. For this purpose, separate behavior blocks can
be used and marked to represent, for example, flow, switch, while, pick, scope and
handler activities.

6 Related work

OWL-S[3] is an OWL ontology for describing services for the purpose of
discovery, composition and delivery. In OWL-S a service is formally described by
a Service Model that defines the steps required to execute a service. It describes a
service in terms of its inputs, preconditions, outputs, effects, and, where
appropriate, its components. The Service Model also describes the control flow in
terms of the service’s state, including initial activation, execution and completion.

The main difference between OWL-S and our work is that our conceptual
framework allows for constraint-oriented service specifications while OWL-S
enables only an imperative, and therefore prescriptive, specification style. In
addition, OWL-S takes only the perspective of the service provider into

12 S. Pokraev, D.A.C. Quartel, M.W.A. Steen, A. Wombacher & M. Reichert

consideration, whereas we treat both participants in a service interaction equally.
Our approach allows service requestors and providers to explicitly specify their
assumptions about the environment of their systems. This in turn allows business
domain experts to check whether their integration solutions satisfy these
constraints and meet the requirements of both the service requestors and providers.

The Web Service Modeling Ontology (WSMO[1]) is a formal ontology for
describing several aspects of Semantic Web Services. It consists of four main
components – ontologies, goals, web services and mediators. Ontologies provide
terminology and formal semantics of information that is used by the other
components. A goal is a specification of the objectives of a service user. A web
service is a specification of the functionality of the service provider. Mediators are
used as connectors between ontologies, goals and web services.

The main difference between WSMO and our work is that our framework has
less concepts while providing comparable expressive power. This makes it easier
for business domain experts to learn and use. Furthermore, we feel that the
behavioral semantics of WSMO choreographies and orchestrations are rather
weakly specified.

7 Conclusion and Future Work

In this paper we presented a new approach for service oriented EAI. In our
approach we used a novel service modeling framework that is domain-independent
and provides concepts that can be applied at different abstraction levels enabling
the more active participation of domain experts in designing the integration
solution. The key concept in our framework (the interaction concept) supports
constraint-oriented style of service specification. This makes our framework
especially suitable for desiging integration solutions because the service requestors
and providers can explicitly specify their assumptions about the environment of
their systems as constraints and the system integrators can check if their solutions
satisfy these constraints.

Our forthcoming work will focus on further validation of our approach in
practice. In addition, we want to investigate the possibilities to extend existing
business process integration tools such as Microsoft BizTalk, Oracle BPEL
manager, and the IBM WebSphere Process Server to support our approach.

Acknowledgements

The presented work has been done in the Freeband Communication project A-
Muse (a-muse.freeband.nl). Freeband Communication (www.freeband.nl) is
sponsored by the Dutch government under contract BSIK 03025.

8 References

[1] Bruijn, J. de, et al. Web Service Modeling Ontology (WSMO), W3C Member
Submission 3 June 2005, http://www.w3.org/Submission/WSMO.

http://www.w3.org/Submission/WSMO

 Business Level Service-Oriented Enterprise Application Integration 13

[2] Dirgahayu, T. Model-Driven Engineering of Web Service Compositions: A
Transformation from ISDL to BPEL. M.Sc. thesis, University of Twente, The
Netherlands, July, 2005.

[3] Martin, D., et al. OWL-S: Semantic Markup for Web Services W3C Member
Submission 22 November 2004, http://www.w3.org/Submission/OWL-S.

[4] Pokraev, S., Reichert, M. (2006). Mediation Patterns for Message Exchange
Protocols. Open INTEROP-Workshop on Enterprise Modeling and Ontologies for
Interoperability (EMOI06). In: Proc. CAiSE'06 Workshops, Luxembourg, June 2006,
pp.659-663.

[5] Pokraev, S., Reichert, M., Steen, M.W.A., Wieringa, R.J. (2005). Semantic and
Pragmatic Interoperability: A Model for Understanding. In: J. Castro, E. Teniente
(Eds.) Proc. of the CAiSE'05 Workshops, Porto, Portugal, June 2005, pp. 377-382.

[6] Quartel, D. Steen, M.W.A., Pokraev, S. and van Sinderen, M. A Conceptual
Framework for Service Modelling. In Proceedings of the Tenth IEEE International
EDOC Enterprise Computing Conference, Hong Kong, China, pp. 319-330.

[7] Rahm, E. and Bernstein, P. A survey of approaches to automatic schema matching.
VLDB journal, (10(4)):334-350, 2001.

[8] Wombacher, A., Fankhauser, P., Mahleko, B. and Neuhold, E. Matchmaking for
Business Processes Based on Choreographies, Intl. Journal of Web Services, (1(4)):
14-32, 2004

	Business Level Service-Oriented Enterprise Application Integration
	1 Introduction
	2 Problem description
	3 Integration framework
	4 Service modeling framework: basic concepts
	5 Solving the integration scenario
	5.1 Step 1a: Lifting data models to information models
	5.2 Step 1b: Lifting interface descriptions to service behaviors
	5.3 Step 2a: Mapping information models
	5.4 Step 2b: Specifying the integrated behavior
	5.5 Step 3a: Transforming information mappings to XSLT
	5.6 Step 3b: Transforming the Mediator’s behavior to BPEL

	6 Related work
	7 Conclusion and Future Work
	Acknowledgements
	8 References

