
future internet

Article

Ambalytics: A Scalable and Distributed System Architecture
Concept for Bibliometric Network Analyses

Klaus Kammerer 1,* , Manuel Göster 1 , Manfred Reichert 2 and Rüdiger Pryss 1

����������
�������

Citation: Kammerer, K.; Göster, M.;

Reichert, M.; Pryss, R. Ambalytics:

Scalable and Distributed System

Architecture Concept for Bibliometric

Network Analyses. Future Internet

2021, 13, 203. https://doi.org/

10.3390/fi13080203

Academic Editors: Ramon Alcarria,

Borja Bordel and Eirini Eleni

Tsiropoulou

Received: 31 May 2021

Accepted: 30 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Clinical Epidemiology and Biometry, University of Würzburg, 97080 Würzburg, Germany;
goester_m@ukw.de (M.G.); ruediger.pryss@uni-wuerzburg.de (R.P.)

2 Institute of Databases and Information Systems, Ulm University, 89081 Ulm, Germany;
manfred.reichert@uni-ulm.de

* Correspondence: kammerer_k@ukw.de

Abstract: A deep understanding about a field of research is valuable for academic researchers. In
addition to technical knowledge, this includes knowledge about subareas, open research questions,
and social communities (networks) of individuals and organizations within a given field. With
bibliometric analyses, researchers can acquire quantitatively valuable knowledge about a research
area by using bibliographic information on academic publications provided by bibliographic data
providers. Bibliometric analyses include the calculation of bibliometric networks to describe affilia-
tions or similarities of bibliometric entities (e.g., authors) and group them into clusters representing
subareas or communities. Calculating and visualizing bibliometric networks is a nontrivial and
time-consuming data science task that requires highly skilled individuals. In addition to domain
knowledge, researchers must often provide statistical knowledge and programming skills or use
software tools having limited functionality and usability. In this paper, we present the ambalytics
bibliometric platform, which reduces the complexity of bibliometric network analysis and the visual-
ization of results. It accompanies users through the process of bibliometric analysis and eliminates
the need for individuals to have programming skills and statistical knowledge, while preserving
advanced functionality, such as algorithm parameterization, for experts. As a proof-of-concept, and
as an example of bibliometric analyses outcomes, the calculation of research fronts networks based on
a hybrid similarity approach is shown. Being designed to scale, ambalytics makes use of distributed
systems concepts and technologies. It is based on the microservice architecture concept and uses
the Kubernetes framework for orchestration. This paper presents the initial building block of a
comprehensive bibliometric analysis platform called ambalytics, which aims at a high usability for
users as well as scalability.

Keywords: system architecture design; bibliometric analysis; community detection

1. Introduction

The overall goal of science is to gather insights about reality through observation
and experimentation and to predict events based on natural laws, i.e., to produce new
knowledge about aspects of reality. Such knowledge is mainly articulated through the
publication of documents, such as articles published in academic journals. In addition to
the full text, those documents contain bibliographic information that helps to locate and
categorize them, e.g., the date when a document was published or its authors. Bibliographic
information on academic publications is made available by bibliographic data providers.

This information is utilized by a quantitative approach for literature analysis, which
is denoted with bibliometric analysis [1]. While traditional literature reviews are a time-
consuming and manual task that only provides insights into a field of research on a sample
basis, researchers can conduct a bibliometric analysis of a field of research to acquire
quantitatively profound knowledge in a rather short period of time. It is valuable—often
indispensable—for academic researchers to have a deep understanding of a field of research

Future Internet 2021, 13, 203. https://doi.org/10.3390/fi13080203 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-8998-0890
https://orcid.org/0000-0003-3805-5456
https://orcid.org/0000-0003-2536-4153
https://orcid.org/0000-0003-1522-785X
https://doi.org/10.3390/fi13080203
https://doi.org/10.3390/fi13080203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13080203
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13080203?type=check_update&version=1


Future Internet 2021, 13, 203 2 of 29

in a quick and efficient manner, even if the body of knowledge encompasses a vast number
of research works.

In addition to technical knowledge, this also includes knowledge about subareas, open
research questions, and social communities (networks) of individuals and organizations.
This knowledge then helps researchers to position themselves within the field, find new
collaboration partners, and find open problems to work on. Furthermore, bibliographic
information is used to calculate metrics that influence the evaluation of the academic output
of individuals, institutes, universities, and countries.

Bibliometric analyses are a data science method. As with most data science methods, it
requires the individuals applying it to have three skills: statistical knowledge, programming
skills, and domain knowledge [2]. However, not every academic researcher can have all
of these skills at the same time. In addition, conducting bibliometric analyses are time-
consuming without the help of capable software. Consequently, there is a demand for
software systems providing comprehensive bibliometric analysis functionality. These
systems, in the best case, pose a high usability, while not demanding programming skills
and deep statistical knowledge [3].

To the best of our knowledge, there is a lack of such tools. Either tools require
statistical knowledge and programming skills [4], or they focus on certain bibliometric
analysis techniques—and thus do not provide comprehensive functionalities [5–7], they do
not support a wide range of data providers [8], they do not cover a wide range of academic
fields [9], or they do not much consider usability aspects [10].

Toward the goal of filling this gap, we developed ambalytics, a web-based platform
that simplifies conducting bibliometric network analyses and the visualization of results
through the automation of parts of the required data science process. Additionally, it
accompanies users through bibliometric analyses and eliminates the need for individuals
to have programming skills and statistical knowledge, while preserving advanced func-
tionality such as algorithm parameterization. As a proof-of-concept, the calculation of
research fronts networks is implemented using Microsoft Academic as a bibliographic data
provider [11].

Being designed to scale, ambalytics makes use of distributed systems concepts and
technologies. It is based on the microservice architecture concept and uses the Kubernetes
framework for orchestration. In this work, ambalytics is presented in more detail for
the first time to convey its basic mode of action and how this can contribute to conduct
bibliometric analyses more easily:

• A technical description of the generation process of hybrid research fronts is presented,
which can then be used as a development blueprint for other calculation opportunities
of bibliometric analyses.

• A derivation of user stories and functional requirements based on interviews is
provided to better show the needs of the interested users.

• A computing schema to support ad hoc as well as batch-oriented bibliometric analysis
tasks is presented and discussed.

• A system architecture concept to support scalable and distributed bibliometric analy-
ses is presented.

To conclude, this paper illustrates the first prototype of ambalytics, which constitutes
our initial building block of a comprehensive bibliometric analysis platform that goes
beyond bibliometric networks, offers support for various data providers, considers usability,
and is scalable.

The remainder of this paper is organized as follows: in Section 2, relevant back-
ground information is provided, while Section 3 presents the overall concept of ambalytics.
Section 4 discusses the currently achieved status of ambalytics, including related works,
whereas Section 5 concludes the paper.



Future Internet 2021, 13, 203 3 of 29

2. Bibliometric Analysis

New scientific knowledge is mainly communicated through the publication of docu-
ments, e.g., through articles in scientific journals or patent specifications. In addition to the
full text, these documents also contain bibliographic information that helps to categorize
and find them [1]. Figure 1 shows an exemplary conference proceeding’s publication with
its bibliographic information (orange) and its full text (gray). The publication contains bibli-
ographic information, such as the name of the conference, the paper title, information about
the authors, the abstract, the publication date, keywords and references. The references, in
turn, constitute a list of other publications, which the publication in question cited.

Title
Publication Type

Authors
Affiliations

Summary

Abstract

Academic Editor
Dates

Keywords

Publisher's Notes

Copyright

Author Contributions

Funding

Board Statements

Conflicts of Interest

References
Content

Pages

Figure 1. Example conference proceedings publication highlighting bibliographic metadata [12].

Definition and Classification: Bibliographic information about documents may be ana-
lyzed statistically: Bibliometrics is the research domain that concerns itself with the statistical
analysis of bibliographic information. If bibliometric methods are applied to bibliographic
information originating from academic publications, the term scientometrics is used some-
times. A generalization of bibliometrics is informetrics, a research domain that addresses
the quantitative analysis of communication processes in general. Another subdomain of
informetrics that analyses internet data is webometrics [1]. The subdomain of bibliometrics
that defines a quantitative approach for literature research is called bibliometric analysis [13].
Within this work, the term bibliometric analysis (or bibliometric analyses) is used when-
ever statistical methods to analyze bibliographic information of academic publications
are discussed.

Applications: Bibliometric methods are applied in multiple areas. According to [14], a
bibliometric analysis is part of the methodology used to evaluate research, e.g., influencing
how university rankings are calculated. In order to evaluate research, bibliometric indica-
tors for the productivity, impact, and cooperation of scientists, institutions, and countries
are used. The evaluation results form an impartial, quantitative basis of decision-making,
e.g., justifying decisions regarding academic project funding.

Bibliometric concepts are also implemented in the field of information retrieval, a
field of research that is dealing with “finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from within extensive collections” [15].
Bibliometric analyses help to discover the structure and dynamics of science itself, also
known as the science of science [1]. In addition to these applications, new applications
arose, for which bibliometric analyses are used, e.g., to detect future developments in fields
of research [16] or for technology foresight [17].

Results and Limitations: By conducting bibliometric analyses, new knowledge can be
acquired, such as:



Future Internet 2021, 13, 203 4 of 29

• Knowledge Bases: Groups of academic publications in a field of research on which the
field is based on.

• Research Fronts: Groups of academic publications in a field of research that concern
themselves with similar unsolved research problems.

• Classics: Academic publications that are outstanding and have a great impact on a
field of research.

• Field Players: Authors, organizations, or countries significantly contributing to a field
of research, and thereby their cooperation dynamics can be analyzed.

On the other hand, the interpretation of bibliometric analyses results is limited by
several factors [16]:

• Hidden Knowledge: Scientific knowledge is not always published in the form of aca-
demic publications or even published at all. Furthermore, qualitative findings, such
as expert opinions, are often not taken into account by bibliometric analyses.

• Dataset Creation: Every bibliometric analysis is based on a dataset of documents that
has to be acquired in some way. Typically, publication databases are queried, and
the results are extracted. The query terms used for data collection affect bibliometric
analyses results.

• Time Delay: The data available in publication databases is a snapshot of academic
knowledge, which does not fully represent the current state of the art, as it takes up to
two years for research findings to be published and listed in those databases.

• Publish or Perish: As the number of publications and citations have some influence on
the evaluation of authors and institutions, a co-authorship might not reflect actual
collaborations [1]. In addition, self-citations and citations in review publications may
not be content-specific.

While bibliometric analyses are also concerned with statistical distributions, models,
and indicators, the focus of this work is set to bibliometric networks.

2.1. Bibliometric Networks

Among others, bibliometric analyses deal with networks of bibliographic entities.
Bibliometric networks describe affiliations or similarities of bibliographic entities, such as
academic publications, authors, journals, institutions, countries, or keywords, and are used
to find groups of similar entities and relations to other entities or groups. In 1965, Price [18]
investigated the citation behavior of journal articles and started the field of bibliometric
networks by depicting a network of journal articles.

A minimalistic example of an article network is shown in Figure 2. Price’s network
shows journal articles as nodes and citations among the articles (sometimes also called
references, but used synonymously here) as directed edges, i.e., there is an edge from node
one to node two if node one cites node two. In case of the shown network, articles one and
two both cite article three. Mathematically, an article network can be represented by the
adjacency matrix of its underlying directed graph.

Based on the idea of [18], different bibliometric networks arose. In general, there are
two groups of bibliometric networks: affiliation networks and similarity networks (see
Figure 2). Affiliation networks describe the membership of bibliographic entities, while
similarity networks express similarities between bibliographic entities.



Future Internet 2021, 13, 203 5 of 29

Bibliometric Networks

Affiliation Networks Similarity Networks

BipartiteSingle Node Type
weighted, directed
graph, represented by affiliation
matrix A (m x m)
Example: 

Price's network of journal
articles

weighted, directed bipartite
graph, represented by affiliation
matrix A (m x n)
Examples:

author-publication
network
publication-citation
network

weighted, undirected graph with single
node type, represented by symmetric
similarity matrix S (m x m)
Examples:

co-authorship network
co-citation network
bibliographic coupling network
term frequency network
TF-IDF network

2 6

1 5

73

21

3 4

1

1 2

2

3

1

Bibliometric entity of type one, e.g. an author

Bibliometric entity of type two, e.g. a publication

Legend

Figure 2. Bibliometric networks—overview.

Affiliation networks are represented by a weighted, directed graph whose nodes
represent bibliographic entities of any type. Most common are bipartite affiliation networks,
which depict a bipartite graph, i.e., there are only two types of nodes in the graph, and nodes
of the same type must not be directly connected. A bipartite graph can be represented by a
matrix A of size m × n, with m denoting the number of nodes of type one and n denoting
the number of nodes of type two. The entry aij of A yields the value of the affiliation from
the ith node of type one to the jth node of type two.

Bipartite affiliation networks are named after their entity types, e.g., in an author–
publication network, the nodes either depict an author or a publication, while the edges
represent an affiliation from an author to a publication or vice versa. An intuitive example
of such an affiliation is an edge in the graph from an author to a publication if the author
has written the publication. Price’s network of journal articles can be considered a special
type of affiliation network with articles as the only entity type occurring in the network.

In contrast, similarity networks are weighted, undirected graphs. Every node of the
graph represents an entity of the same type, e.g., all nodes represent authors. The nodes are
connected by weighted, undirected edges, depicting the similarity between the connected
nodes. These similarities are calculated by using a similarity measure expressing the
similarity of two bibliographic entities. A similarity network is represented by its similarity
matrix S, being the graphs’ adjacency matrix of size m × m, with m depicting the number
of nodes of the graph. Each entry sij of S describes the similarity between node i and node
j. As adjacency matrices are quadratic, the graph of a similarity network is undirected, and
S is symmetric.

Dependent on the bibliographic entity type, different similarity measures can be used.
An example of a similarity measure for authors is co-authorship. The co-authorship between
two authors is defined by the number of academic publications they have published
together. In order to measure the similarity of publications, co-citation and bibliographic
coupling are commonly used, as well as some lexical measures.



Future Internet 2021, 13, 203 6 of 29

A co-citation of two publications is given if both publications are cited by a third
publication, while two publications are bibliographically coupled if one or more citations
of them are similar [1]. Similarity networks are named after the similarity measure used to
calculate the similarities, e.g., a co-authorship network is a network whose nodes represent
authors and whose edges represent their similarity based on the co-authorship measure.

Many similarity networks can be calculated based on a bipartite affiliation network.
Consider a bipartite similarity network with m nodes of entity type one and n nodes of
entity type two. As stated above, such a network is represented by the matrix A of size
m × n. A similarity network for entity type one can be calculated by S1 = AAT and a
similarity network for entity type two by S2 = AT A [1].

Publication Networks

Every bibliometric network that contains academic publications as nodes is considered
to be a publication network. For publications, the affiliation network is described by a binary
matrix Apc of size m × n, with m denoting the number of publications of a given dataset,
and n, denoting the amount of disjoint citations that are listed in the publications. Every
entry aij yields whether the publication i has cited the citation j or not. A co-citation of two
publications is given if both publications are cited by a third publication [1] (see Figure 3).
The two publications are then considered a knowledge base [13]. In a co-citation network,
the similarity matrix Scc is calculated by Scc = AT

pc Apc with size n × n [1].

Knowledge base

publication
3

publication
1

publication
2

Research front

publication
3

publication
1

publication
2

Co-citation Bibliographically coupled

Figure 3. Co-citation and bibliographic coupling [13].

Bibliographic coupling is another similarity measure for academic publications. If one
or more citations of two publications are similar, the two publications are considered
bibliographically coupled [1] (see Figure 3). Bibliographically coupled publications form a
research front [13]. To compute a bibliographic coupling network, the same bipartite graph
and, thus, matrix Apc as for co-citation networks is used; however, the similarity matrix Sbc
is given by Sbc = Apc AT

pc with size m × m [1].
In addition to those two similarity measures, which are based on the citations of

publications, lexical measures can be used to define the similarity of publications. Lexical
measures compare the textual content of publications, such as their title, keywords, abstract,
and full text. If two publications contain the same word, they are connected by the latter. In
information retrieval theory, term occurrences in documents are described by a document-
feature-matrix (DFM) At f whose entry aij yields a term frequency, i.e., how often publication
i contains word j.

As a DFM has the same properties as an affiliation matrix of a publication-word
network, At f can be used to describe this affiliation network. The similarity matrix of the
term frequency network is then given by St f = At f AT

t f [1]. In order to optimize the results,
special characters and stop words in publication texts may be removed, and the remaining
words may be compressed before At f is created [13].



Future Internet 2021, 13, 203 7 of 29

Lexical similarity measures pose a problem that needs to be addressed: simple count-
ing of words (which is done when creating a DFM) favors those words that often occur
within many publications, which may be counterproductive, as those words may not reflect
an interesting similarity between publications. Intuitively, more meaningful are words that
often occur in only a few publications. To account for this problem, the term frequency-inverse
document frequency (TF-IDF) measure can be used [19]. Let m be the number of publications
and n the number of disjoint words, which occur in any of the m publications, W a matrix of
size m × n with entries wij and IDF a vector of length n. The inverse document frequency
(IDF) is defined as [19]:

IDFj = log(
n
aij

) (1)

and the entries of the TF-IDF matrix W are defined as

wij = aij ∗ IDFj (2)

Given the IDF, an improved lexical similarity measure can be used to create a TF-IDF
network by calculating its similarity St f id f = WWT .

2.2. Computing Hybrid Research Fronts

Academic researchers are interested in obtaining an overview over current research
fronts in their field of research [13]. As stated previously, research fronts consist of academic
publications, which are linked through their citations. Here, the term research front is used
in a more general way, i.e., to describe an upcoming field of research or topic that is formed
from similar publications. Bibliometric techniques can be used to find these research fronts.

Following this, the idea is to find groups of academic publications that are similar
in that they deal with similar research problems. As introduced in the previous sec-
tion, similarity networks of academic publications express similarities between academic
publications. On the basis of those similarities, groups of publications (clusters) can be
formed and visualized. As a dataset typically contains several thousand publications, the
visualization of the found clusters becomes challenging, and this must be addressed.

One approach to find research fronts based on publication similarity networks is
described in the following (see Figure 4) [13,17,20]. As a similarity measure, a citation-based
measure is combined with a lexical measure. As a citation-based measure, bibliographic
coupling is combined with TF-IDF by treating citations of a publication the same way as
terms, resulting in a document–citation-matrix DCM(0) [20]. As a lexical measure, TF-IDF
is applied to the terms occurring in the title, abstract, and keyword list of a publication,
resulting in a weighted document–term-matrix DTM(0) [20].

bibliographic
coupling

term frequency

start first-order hybrid
similarity

second-order
hybrid similarity

k-nearest
neighbor edge

cutting

Louvain
clustering

Fruchterman
Reingold graph
layout algorithm

end

first-order
citation-based

similarity

first-order
textual similarity

Figure 4. The process of computing and visualizing research fronts.

Salton and McGills’ [21] cosine measure is then applied to both matrices resulting
in first-order similarity matrices DCM(1) and DTM(1), which hold similarities that are
normalized to the range [0, 1]. The similarity matrices are first-order similarity matrices, as
two documents are considered similar in the first order if they are both similar to a third
document. Similarly, two “documents are similar in the second-order, if they are both similar to a
third document in the first order” [17]. Next, the first-order similarity matrices are reduced
to a first-order hybrid similarity matrix HS(1) by applying Glänzel and Thijs’ method [22]



Future Internet 2021, 13, 203 8 of 29

of calculating hybrid similarities by a linear combination of the angles of DCM(1) and
DTM(1). To obtain a second-order hybrid similarity matrix, HS(2), Saltons and McGills’
cosine measure is applied to HS(1) as well [20].

Furthermore, k-nearest neighbor edge cutting is applied to HS(2), i.e., only the k edges
with the k-largest weights per row and column are retained, resulting in the sparse matrix
SM. By edge cutting, the computation time of the following algorithms can be significantly
reduced. Based on SM, topical communities are computed using the Louvain method (see
Section 2.3). Concurrently, a graph layout can be computed, and the result is a publication
similarity network that can be visualized, for example, by utilizing force-directed graph
drawing algorithms. An example of a graph visualization that has been computed with the
3D variant of the Fruchterman–Reingold algorithm is given in Figure 5, in which hybrid
research fronts are visualized.

Figure 5. 3D Fruchterman–Reingold visualization of bibliographic data.

2.3. The Louvain Algorithm for Community Detection in Graphs

Structured data “where graphs are the fundamental structural representation of the data” [23]
is called graph data. The goal of a cluster analysis is to extract structure from seemingly
unstructured data [24] by putting similar data points into groups, so-called clusters. The
idea is that data points within a cluster are alike, while data points from different clusters
are not alike. In order to measure the distance or similarity between any two data points, a
distance or similarity measure has to be defined for the given dataset [25].

There are different clustering methods, such as hierarchical-, partitioning-, fuzzy-,
probabilistic-, and neuronal clustering. In hierarchical clustering, data points of a dataset
are not partitioned into a fixed number of clusters. Instead, a series of partitions are
computed. In every step of the series, the number of clusters may be decreased in the case
of agglomerative clustering or increased in divisive clustering [25]. The Louvain method
used within this work is a hierarchical clustering algorithm.

Community detection in graphs is closely related to graph clustering. While graph
clustering is the more general concept of dividing a graph into multiple groups so that they
share similarities, community detection in graphs depicts the sub-problem of finding groups
of nodes having high interconnection among each other while having few connections
to other nodes outside the group. Often, sparse connections are assumed for community
detection [26]. The main characteristic of community detection is that the clusters (in this
case, they are called communities) are not formed based on a similarity measure, defined
for each pair of data points, as it is the case for standard cluster algorithms, but based on
edge density [27].

The average edge density of a graph is the ratio of the total amount of edges in the graph
and the maximum number of possible edges. The intra-cluster edge density of a cluster is the



Future Internet 2021, 13, 203 9 of 29

ratio of the number of edges inside the cluster and the number of possible edges inside the
cluster. The inter-cluster edge density of a cluster is the ratio of the number of edges running
from nodes of the cluster to the rest of the graph and the number of possible edges running
from nodes of the cluster to the rest of the graph [27].

There is no formal definition of a community. However, the intra-cluster edge density
inside a community should be larger than the average edge density, and the inter-cluster
edge density should be smaller than the average edge density. Under this condition, a
subgraph qualifies as a community. Consequently, community discovery aims to find a
graph partition such that there are a high number of edges inside the communities and few
edges going from nodes inside the communities to nodes outside the communities. More
formally, the goal is to achieve large intra-cluster edge densities at small inter-cluster edge
densities for a given graph partition [27].

A metric for measuring intra-cluster edge density versus inter-cluster edge density is
called modularity, and is a scalar value between −1 and 1. For weighted graphs, i.e., the
edges of the graph have weights, the modularity is defined as

Q =
1
m ∑

i,j

[
ωij −

kik j

m

]
δ(ci, cj) (3)

with

m = ∑
i,j

ωij ki = ∑
j

ωij δ(ci, cj) =

{
1, if ci = cj
0, otherwise

}

where ωij is the weight of the edge going from node i to node j, m is the sum over all
weights in the network, kx is the sum of all weights of the edges at node i, and ci is the
community node i is assigned to. In the case of a weighted graph, the goal of community
detection can be reformulated to the problem of maximizing the modularity of a given
graph [28].

As exact modularity maximization is computationally hard, an approximation al-
gorithm is needed to deal with large graphs. One such approximation algorithm that
implements modularity maximization for weighted graphs is the Louvain algorithm. This
is an agglomerative clustering method, as communities are formed by merging similar
nodes, and thus it is an unsupervised data mining method. The authors of the algorithm
suggest that the complexity is linear on sparse graphs [28].

The algorithm consists of two phases, which are repeated iteratively (see Figure 6).
The initial state is a weighted graph of n nodes where each node forms its community. In
the first phase, for each node, all its j neighbors are considered. The gain in modularity is
calculated for all neighbors when node i would leave its community and would join the
community of node j. The node i is then placed into the community where the modularity
gain is maximal, on the condition that the modularity gain is positive.

44

1

2

4

0

5

3

7

6

11

1310

9

8
15

12

14

1

2

4

0

5

3

7

6

11

1310

9

8
15

12

14

Phase 1

Modularity
Optimization

Phase 2

Community
Aggregation

1

3

1
1

216

14

next pass

Figure 6. Steps of the Louvain algorithm, adapted from [28].



Future Internet 2021, 13, 203 10 of 29

Otherwise, the node i stays in its community. This is applied repeatably for all nodes
until no further gain in modularity can be achieved [28]. In the second phase, a new graph is
created, having the communities formed in phase one as its nodes. The weight of an edge
between two nodes in the new graph is calculated by summing up the weights of the edges
between their communities. Similarly, the weights of the edges between nodes in the same
community are summed up, and the result is used as the weight of a self-loop edge.

After the second phase, the next pass is done. Following this, the algorithm starts
again with the first phase by replacing the initial graph with the one formed in phase two.
This is repeated until no additional modularity gain is achieved, i.e., by finding the local
maximum modularity. After each repetition of the two phases, a graph of communities is
created, holding fewer but larger communities from repetition to repetition. Finally, every
data point is assigned to a community [28].

An example visualization of a similarity network is shown in Figure 7. It shows
3000 academic publications. Each color represents a community, computed by the Louvain
method. The (x,y) coordinates of the publications were computed with the Fruchterman–
Reingold algorithm, which was run for 100 iterations. Every cluster is a research front
candidate, e.g., it could depict an upcoming topic of research. With this technique, research
fronts may be identified that were not known by the researcher previously.

Figure 7. Example research fronts network.

2.4. Bibliometric Analysis Process

In order to identify relevant research fronts in the area of equipment maintenance
systems, [13] provided a bibliometric analysis process that can be followed, consisting of
ten steps. Based on this process, the Knowledge Discovery in Databases (KDD) process, the
workflow given in [29], and the statements given by an expert interview, a general-purpose
process of bibliometric analysis is provided in the following (see Figure 8).

At the start of a bibliometric analysis, its goals have to be set (1), i.e., the type of
results that are expected must be defined, e.g., finding research fronts and knowledge
bases. Next, a dataset has to be collected (2). Therefore, one or many data sources need
to be selected. Frequently used bibliographic data providers are Web of Science, Google
Scholar (scholar.google.com (accessed on 6 May 2021)), Scopus (scopus.com (accessed on 6
May 2021)), Microsoft Academic (academic.microsoft.com (accessed on 6 May 2021)), and
Science Direct (sciencedirect.com (accessed on 6 May 2021)). This step also includes the
definition of query strings that are used to find publications in the databases.

https://scholar.google.com/
https://www.scopus.com/
https://academic.microsoft.com/
https://www.sciencedirect.com/


Future Internet 2021, 13, 203 11 of 29

(1) Define Goals (2) Collect Data (3) Preprocess
Data

(4) Compute
Networks and

Metrics

(5) Visualize
Results

(6) Interpret
Results

AMBALYTICS PlatformUser

Figure 8. Bibliometric analysis process.

Then, the raw data needs to be extracted from these databases. Afterward, the data
are preprocessed (3). This usually encompasses data cleansing, e.g., removing duplicates
and incomplete records, enriching the dataset with data from further information sources,
and, in the case that multiple data sources are used, merging the raw data. Based on the
defined goals, some bibliometric algorithms are selected and executed to compute (4) and
visualize (5) the results. In the end, the results must be interpreted (6).

As in the KDD process, it is possible and may be necessary to go back a step at any
time in the process. For example, when visualizing research fronts with the Fruchterman–
Reingold algorithm, the parameter of the number of iterations has to be set. If the first
parameter selection leads to an unsatisfying visualization, it may be adjusted and rerun.
Furthermore, having finished a bibliometric analysis, it may be done again at some point
in the future to keep track of the field of research.

In the introduction, two important aspects were discussed. First, we delineated how
bibliometric analyses essentially work and what aspects, including limitations, must be
considered when creating a technical solution. As shown, for this work, we focus on
the calculation of hybrid research fronts (important part of bibliometric networks), and
therefore the important aspects are conveyed. Based on this, we discussed how hybrid
research fronts are supported by ambalytics.

This means that the essential procedure to calculate them is presented, see Figure 4.
Then, we show how the procedure is incorporated by ambalytics, see Figure 8. As for
many other domains [30], the shown principle can be considered as the standard operating
procedure (SOP) in this context. SOPs, in turn, are a powerful instrument to see in a
comparable way how parts of a system work. In the following, we demonstrate how
ambalytics technically implements the SOP of hybrid research fronts.

3. Ambalytics Bibliometric Platform

In order to enable the calculation of hybrid research fronts and make their creation
available to non-technical users, a web-based system architecture was created. In the
following, the goals, challenges, and requirements for the architecture are described. Then,
the concrete concept and its technical implementation are described. To obtain a better
understanding of the general needs and demands of users, a survey was conducted, which
is described in this section at first.

3.1. Objectives and Challenges

Based on a qualitative user survey with 21 participants, the following objectives were
identified in developing a solution for bibliometric analyses:

The system should provide an easy-to-use and web-based interface. It should provide
the entire process of creating a bibliometric analysis as an integrated solution. This includes,
in particular, the search and provision of a bibliometric dataset to be analyzed, the automatic
application of bibliometric analyses to the dataset, a visual representation of the results
of the analysis, and easy ways to export the results in various data formats. In particular,



Future Internet 2021, 13, 203 12 of 29

the creation of hybrid research fronts for the identification and grouping of thematically
related publications should be supported.

In this context, particular challenges arise for the technical implementation of the
objectives. First, bibliometric data are made available by various providers. However, in
order to calculate high-quality bibliometric networks, citations of the identified publications
are needed. The latter are only provided by a few providers. In addition, many of the
providers are very expensive, especially when utilizing their application programming
interfaces. Another challenge is the efficient computation of bibliometric networks.

As these networks are to be created based on a dataset that is, in turn, created based
on a user-specific search, they cannot be computed in advance, but must be able to be
created on the fly after the dataset has been created. Since the creation of hybrid research
fronts involves the generation of large adjacency matrices and large document frequency
matrices, the speed of generation depends on efficient implementation and is limited by
available hardware capacity, particularly by the available memory.

3.2. User Stories

The overall goal is to create a solution to analyze bibliometric datasets in order to
determine research actors as well as emerging research topics and challenges. A biblio-
metric analysis follows a process consisting of (1) defining the goals of the bibliometric
analysis, (2) collecting data, (3) preprocessing data, (4) data analysis, (5) visualization of
analysis results, and (6) interpreting the results. A more detailed view on this process is
given in Section 2.4.

Aligned with this process, the goal is to create a system that supports the user to
accomplish steps (3), (4), and (5) of the process. Support for more steps could be added
in the future, but is not considered within this work as this would exceed the boundaries
of this paper. System users are considered to be researchers or individuals in charge of
research management at any level. For such a user, there are six user stories (US) defined:
• A user searches for scientific publications and other bibliometric entities. For this

purpose, they are able to search the entities in full text.
• A user inspects a publication in the search results and uses additional information,

such as the abstract, references and citations and their number, and a link to the
publisher’s website.

• A user wants to compute and visualize a bibliometric network. For example, they
want to find out emerging topics in research covered by the search result. Therefore,
the user creates a publication similarity network.

• Having calculated a bibliometric network, a user is not satisfied with the result. He or she
adjusts the search query, reruns the computation, and inspects the updated visualization.

• Calculation of a bibliometric network may take some time. Following this, a user starts
the calculation of multiple networks, which are expected to be computed in parallel.
Thus, they do not have to wait until they have been computed sequentially. While
waiting for the calculations to finish, they explore the search results by inspecting
some entities.

• A user interrupts his work on a bibliometric analysis in their office and continues their
work at a later point in time with a different computer.

3.3. Requirements Analysis

In general, the development focus is on a platform (1) that provides an easy-to-use user
interface, (2) where available resources can be scaled easily and quickly, so that the platform
is available for a more significant number of users, and (3) that offers a flexible structure
that can be extended with additional services. In order to elicit technical requirements for
implementing the platform, functional requirements were derived based on the presented
user stories. Table 1 lists the identified functional requirements by name with a summary
and a rationale [31].



Future Internet 2021, 13, 203 13 of 29

Table 1. Functional requirements.

Name Summary Rationale

Search for Bibliometric Entities Create a dataset by executing a
search query.

In order to execute a bibliometric analysis,
a dataset containing bibliometric entities
is needed.

Provide Bibliometric Entities Provide an interface to retrieve
bibliometric entities.

The use of bibliometric entities and their
attributes, such as the abstract of a
publication, is a prerequisite for performing
a full-text search and computing hybrid
similarity networks.

Results Search and Sorting Provide an interface to search for
bibliographic entity attributes in
search results.

It is essential to have a capable text search
within search results as it typically consists
of several hundred or
thousand publications.

Descriptive Statistics Compute descriptive metrics of the given
search result.

Users are interested in search result
descriptive metrics, such as a time-based
distribution, to orient themselves and
obtain an overview.

Bibliometric Networks
Computation

Create bipartite or similarity graphs of
bibliometric entities.

A user wants to use bibliometric networks
to obtain a better overview of a research
field, find related publications, or identify
research trends.

Visualization of Analysis Results Computed descriptive statistics and
bibliometric networks have to
be visualized.

Appropriate visualizations are appealing
and provide fast insights to a user.

Parallel Execution of
Computation-intensive Tasks

Distribute computation-intensive tasks,
such as network calculations, across
processes and computing hardware.

Parallel computations are required to
ensure high speed in the creation of
bibliometric networks.

3.4. Software Architecture

In the following, the developed system architecture is described. The latter is de-
scribed based on the C4 model, which meets the requirements of the description toward a
distributed system [32]. Within the C4 model, there are four layers describing the static
view of a software system on different abstraction layers [33]: context, containers, components,
and code. The context layer gives a high-level overview of the system as a whole and with
other systems it may interact with. In the container layer, the different containers of the
system and their relations are depicted. In this model, containers do not necessarily depict
containerized applications.

Instead, a container is a deployable unit, such as a server-side web application, a
database, a file system, or a microservice. The components layer describes the components
inside containers and their interactions. Being optional, the code layer describes the code
structure in detail, e.g., supported by class diagrams. Additionally, the C4 model addresses
the dynamic behavior and the mapping of system containers to the infrastructure [32].

3.5. System Context

The system context coarsely shows how the system interacts with users and other
software systems. Academic researchers are considered the only users of the bibliometric
analysis platform as described in Section 3.2. They interact with the system by creating a
dataset, exploring the former, running analyses, and viewing results. From the researcher’s
point of view, no other providers need to be considered in the system context since their
functions are provided transparently via the integrated platform.

Thus, an integrated search function enables the creation of the dataset to be analyzed.
Furthermore, the bibliometric analysis platform relies on Amazon AWS (user authentica-
tion with AWS Cognito (aws.amazon.com/cognito (accessed on 6 May 2021)) and Microsoft
Azure (Microsoft PAK Project Academic Knowledge [11]) services. Microsoft PAK provides
a free search API that can be used to search for publications using definable queries (see

https://aws.amazon.com/cognito/


Future Internet 2021, 13, 203 14 of 29

Section 3.7). Sentry.io (sentry.io (accessed on 6 May 2021)) is used for application perfor-
mance monitoring.

3.6. System Architecture

The overall system consists of several layers: A hardware layer provides physical
computing capacity. Two 16-way Xeon servers, each with 256GB RAM and 8TB SSD storage,
were used in the prototypical development. A virtual infrastructure layer abstracts from the
physical layer and enables dynamic and programmatic provisioning of system resources.
In the prototypical development, a vanilla Kubernetes environment of version 1.18 was
used for this purpose (see Section 3.9). All software services are provided and executed in
a container layer, which are described in more detail below.

Various services exist on the container layer, such as authentication, search, user man-
agement, and execution and provision of the analysis results. Analyses of the ambalytics
platform are provided via an Analysis API service (see Figure 9). The latter communicates
with an Analysis Scheduler Service that manages the execution of the analyses (e.g., for the
runtime lifecycle of analyses containers). All services are expressed as micro-services and
run statelessly or statefully (i.e., scheduler service) on the Kubernetes cluster.

Analysis API Service

Analysis Registry
Service Analysis Scheduler Service

Analysis Ad-Hoc Runner

Analysis Batch Runner

SparkContext

Spark Cluster Manager

Worker Node

Object Storage (minio)

Entity Service
(Postgres...)

Graph Service
(DGraph)

Database
Cluster

In Memory
Database

Spark Executor

Task

Task

Worker Node

Spark Executor

Task

Task

Figure 9. Analysis schema.

In the ambalytics platform, analyses are divided into two types: small analyses that
are calculated in an ad hoc manner based on search results as well as analyses that are
batch-oriented and applied to a large bibliometric dataset. Available analyses are registered
as Docker containers in the Analysis Registry Service and can be instantiated and executed by
the Ad-hoc Runner Service. The data to be analyzed can include either a list of bibliometric
entities that can be loaded from an entity service or a subgraph that can be computed using
a graph service. Both services are explained in more detail in Section 3.7.

https://sentry.io


Future Internet 2021, 13, 203 15 of 29

Analyses performed on large datasets, such as bibliometric analyses across the entire
medical field, may contain millions of publications and may run based on a big data
computing cluster framework. Apache Spark is used for the prototypical implementation,
which, in turn, is deployed in Kubernetes. For large-scale analytics over Apache Spark,
the Analysis Batch Runner runs analytics over SparkContext in runtime containers. The
latter communicates with Spark Cluster Manager. Bibliometric data is provided for Apache
Spark Cluster via an Object Storage Service (see below).

3.7. System Containers

The bibliometric analysis platform is a software system that consists of 15 containers,
seven external services, and a web application front-end (see Figure 10).

Researcher
[Person]

Platform User

API Gateway
[Container: KrakenD]

Authorization Service
[Container: Spring Boot]

Microsoft PAK
[Software System]

Web Application Frontend
[Container: technology]

Requests
[HTTPS]

Monitoring Service
[Software System]

Identity Service
[Container: Spring Boot]

Web Server
[Software System]

GitHub Pages CDN

Code Repository
[Software System]

GitHub Git Repository

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[HTTPS]

Object Storage Service
[Container: Minio]

Network Block Storage
Service

[Container: Rook.io]

Entity Service
[Container: Spring Boot]

Graph Service
[Container: DGraph]

Analysis Service
[Container: Python]

Analysis Scheduler Service
[Container: Python]

Analysis Registry Service
[Container: Python]

Analysis Ad-Hoc Runner
[Container: Python]

Analysis Batch Runner
[Container: Spring Boot]

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[HTTPS]

Runs analyses
[]

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[HTTPS]

Requests
[SQL-Bin]

Load Graph
[HTTPS]

Import Service
[Container: Python]

Import Bibliometric Data
[SQL-Bin]

AWS Cognito Services
[Software System] Requests

[OAuth2]

Requests
[OAuth2]

Search Service
[Container: Spring Boot]

Requests
[HTTPS]

Azure Blob Storage
[Software System]

Import 
Bib Data
[HTTPS]

Image Service
[Software System]

GitHub Docker Repository

1 2

3

4

5

6 7

8 9

10 11

12 13

1516 1817

192021

22

23

Entity Database
[Container: Postgres SQL

Cluster]

14

Import Bibliometric Data
[HTTPS]

Figure 10. System containers and their relations within the software architecture.

The web application front-end (1) is the only part the user directly interacts with. The
web application front-end runs in the web browser of the user’s machine and provides
the system’s functionality to the user through a graphical UI. The web application is
implemented based on Vue3 (vuejs.org (accessed on 6 May 2021)), and is served by a web
server (2) delivering the static content of the front-end, for which GitHub pages are used as
a fast and distributed web server.

Source code of the individual services as well as the web front-end are stored in a
code repository (3), i.e., using GitHub repositories. With the help of the GitHub Actions
automation service, defined workflows perform various actions when the source code
changes, such as code checking, unit tests, end-to-end tests, or Docker container builds.
The latter are stored in an image service (4), i.e., GitHub Docker repositories, and can be
loaded and executed within the Kubernetes execution environment. For example, the
analysis registry service requests docker images for registered ad hoc analyses from the
image service. The individual container builds services that are described below.

https://vuejs.org/


Future Internet 2021, 13, 203 16 of 29

An API gateway (5) serves as a load balancer for requests to the respective services,
defines the corresponding endpoints, ensures SSL transport encryption, and verifies login
tokens for restricted API endpoints. KrakenD (krakend.io (accessed on 6 May 2021)),
a stateless, distributed, and high-performance open source implementation is used for
this purpose.

A search service offers possibilities to search for publications, authors, affiliations,
and fields of studies based on different types of queries. Queries are defined using a
domain-specific language (DSL) and support logical operands, such as “AND” or “OR”,
searching by various fields (such as names and identifiers, such as the Microsoft Academic
ID or DOI, aso.), and defining sorting. The search service is a container implemented in
Java based on Spring Boot and uses the Microsoft PAK service or its own ElasticSearch
cluster as a search source. For the prototypical implementation, the service of Microsoft
Academic has proven itself since it allows a sufficient number of queries and the dataset is
kept up-to-date, in contrast to the search cluster.

In order to generate bibliometric subgraphs as well as lexical analysis, a large num-
ber of queries are required, and the resulting amount of data can be several hundred
megabytes. For this reason, the ambalytics platform uses two additional databases: an
Entity Service (12), which stores and makes available bibliometric entities in a relational
manner known from relational databases with corresponding indexes, and a Graph Ser-
vice (13), which provides a complete copy of the Microsoft Academic graph using an
in-memory database.

For example, the Entity Service provides analysis containers for bibliometric entities,
such as authors or publications, upon request using a set of identifiers. The service enables
the entities needed for lexical analysis on abstracts stored for publications to be made
available quickly. A Entity Database (14), developed as Postgres SQL cluster, is used as the
relational database, and the data is stored in block storage, provided by a locally mounted,
fast enterprise SSD storage.

The Graph Service, in turn, provides graph storage using the DGraph (dgraph.io
(accessed on 6 May 2021)) implementation, the Graph Service provides methods for breadth-
and depth-first search within the bibliometric graph. The graph is retrieved at service
startup from a Object Storage Service (15) (implemented with minio.io (min.io (accessed on
6 May 2021))) and kept in-memory. This allows, for example, the retrieval of a subgraph
with a depth-first search of 3 and 5000 resulting publications in under 500 ms.

Other services, such as a collection service, omitted for clarity, can store data using a
Network Block Storage Service implemented with rook (rook.io (accessed on 6 May 2021)) .
Following the persistence layer layout, the business logic for data retrieval and object ma-
nipulation is kept isolated, as suggested by the microservice architecture design principle.

Bibliometric analyses are offered via the Analysis Service (7), which offers actions to
create work tasks being sent to the Analysis Scheduler Service (8) for processing. Each work
task can be described by a directed-acyclic graph (DAG) containing jobs as nodes and their
dependencies as directed edges. The work scheduler handles coordinated batch processing
of work tasks. It initiates the processing of jobs by sending them to the Ad-hoc Runner (10)
for processing. Depending on the kind of job, a runner container that is registered in the
Analysis Registry Service (9) is instantiated for job execution. While the Analysis Scheduler
Service keeps track of the job computation progress, the Ad-hoc Runner keeps track of
work task progress.

Once a bibliometric network is calculated, the container stops executing. The analysis
runner directly communicates with the bibliometric databases, rather than respective APIs
suggested by the microservice principle, due to performance reasons. During execution,
runners inform the Scheduler Service about their progress.

User authentication and authorization is realized by providing an identity service (19).
This is needed to secure the system- and bibliographic API as well as the web server. It
provides authenticated users with a token the web application front-end can use to access
the APIs and the web server. When presenting a token to an application, the application can

https://www.krakend.io/
https://dgraph.io/
https://min.io/
https://rook.io


Future Internet 2021, 13, 203 17 of 29

ask the authorization application to verify that the presented token is indeed valid. User
and token information is stored in the user database (21). The authorization application
can be implemented using Spring Security (spring.io/projects/spring-security (accessed
on 3 August 2021)). Finally, a Monitoring Service (23) monitors application performance
and collects log data and error reports.

As Kubernetes is used to provide an infrastructure to orchestrate the system containers,
its Jobs API is used for scheduling jobs to available resources, i.e., it starts containerized
runners on Kubernetes nodes. The Job API is integrated into the Kubernetes API server
and, consequently, uses the Kubernetes built-in database etcd for storing jobs. Etcd is a
distributed, reliable key-value store designed for distributed systems. Jobs can be created
that consist of one or multiple pods, typically containing one container, which are then
scheduled onto nodes for execution.

The rationale behind technology choices is given in Section 4. In general, Java and
Spring Boot (spring.io (accessed on 6 May 2021)) are used to implement microservices for
business logic, and Python is used for analysis-related implementations, such as Analysis
Containers for research front generation.

3.8. Process View

In addition to the static structure of a software system, its dynamic behavior is covered
by the C4 model by providing process descriptions of container interactions. In the
following, the processes of the functional requirement for computing and visualizing
bibliometric networks are shown. The process of bibliometric network computation is
an asynchronous task that is executed by the Ad-hoc Runner (see Figure 11). If the user
wants to run a computation of a bibliometric network, the web front-end posts an analysis
description to the Analysis Service describing the analysis type and its parameter settings.

The parameter settings are already configured and do not need to be defined by the
user. After determining the type of analysis, i.e., ad hoc or batch, a job is created by calling
the respective Analysis Scheduler, together with the analysis description. An Analysis
Runner is deployed on a Kubernetes pod. The runner loads the required bibliometric data
from the entity and graph database and computes the analysis. The results are then cached,
and the web front-end is notified about completion and requests the results. Finally, the
bibliometric networks can be visualized.

3.9. Infrastructure View

Following the microservice architecture principle, the infrastructure concept is to
containerize system components and use a cloud orchestrator to orchestrate container-
ized microservices to cloud resources. For containerization, the container runtime Docker
(docker.com/products/container-runtime (accessed on 6 May 2021)) is used. The porta-
bility requirement is met by using Docker containers, as they run on Linux-based operating
systems. As a cloud orchestration tool, Kubernetes is used.

Kubernetes is an “open-source system for automating deployment, scaling, and management
of containerized applications” [34]. It was initially developed by Google and was donated
to the Cloud Native Computing Foundation (CNCF) as its first project [35]. It consists of
several components being split up in master and node components [36]. An overview of
the software components of Kubernetes is given in Figure 12.

The master components control the cluster and are responsible for moving the cluster
toward the desired state. There are five master components: the kube-apiserver, etcd, kube-
scheduler, kube-controller-manager and cloud-controller-manager. The kube-apiserver serves as
the Kubernetes API, acting as the endpoint to cloud operators. Kubernetes provides the
kubectl command line interface (CLI) to interact comfortably with the Kubernetes API from
a client machine. Etcd is a key value store that stores all cluster control data, as Kubernetes
objects [36].

The kube-scheduler is aware of any Kubernetes object being stored in etcd and triggers
actions to adjust the cluster as soon as objects are created, updated, or deleted. Kubernetes

https://spring.io/projects/spring-security
https://spring.io/
https://www.docker.com/products/container-runtime


Future Internet 2021, 13, 203 18 of 29

offers a set of controllers, each having different specific tasks; for example, a node controller
watches all nodes in the cluster and informs when nodes go down. Another example is
the replication controller maintaining the desired number of container replications. These
controllers are managed by the kube-controller-manager. In addition, the cloud-controller-
manager runs controllers handling cloud resources, e.g., a volume controller for creating
persistent volumes [36].

forward request

forward request

Web Frontend API Gateway Analysis
Scheduler Analysis Runner

run analysis

Entity/Graph DBAnalysis Service

determine
analysis type

request analysis

returnacknowledge

acknowledge

register job

acknowledge
deploy runner

acknowledge load dataset

return dataset

notifynotifynotify

request results

return results
return results

save results

acknowledge

request results

return results

Figure 11. UML sequence diagram for “bibliometric networks computation”.

Master

kube-apiserver

etcd

kube-controller-
manager

cloud-controller-
manager

kube-scheduler
Node

kubelet

kube-proxy

container runtime

Client

kubectl

Figure 12. Kubernetes architecture components, adapted from [37].

On the node side, there are three components running on every node: the kubelet, the
kube-proxy, and a container runtime. The agent that makes sure that pods run on a node is
called the kubelet, while the kube-proxy is a network proxy implementing some network
features—for example, request forwarding. The container runtime component runs the
containers [36].

3.10. Data Model

Bibliometric entities are provided by the Entity Service and the Graph Service as well
as the Search Service and represent bibliometric data, such as publications, authors, and



Future Internet 2021, 13, 203 19 of 29

keywords. System entities are all non-bibliographic entities of the system’s data model,
e.g., user, project, and visualization. To provide a focus, only the bibliometric data model
is discussed in more detail below. The bibliographic data model is shown in Figure 13
through an extended entity relationship (EER) model using Martin’s notation. Entity
attributes are not shown in the diagrams. The data model contains ten bibliometric entity
types: Institution, Country, Author, Keyword, Publisher, Publication, Record, Conference,
and Category.

An Institution represents an academic institute or firm that is located in a Country and
employs researchers, which are named as Author in the data model. An author lives in a
country and is (co)author of Records. A record represents an academic publication, such as
an article in a journal, a paper in a conference proceeding, or any other academic document.
In contrast, a Publication can contain multiple records. Journal and conference proceedings
are examples of a publication.

In case of conference proceedings, the publication is published at a Conference, located
in a country. A publication is published by a Publisher being based in a country. Typically, a
record comes with some Keywords and Categories that are listed in its metadata.

lives inCountry Author

Institution

Publication

is located at

works at

DataSet

Publisher

is located at

Conferenceis located at

is published at

Recordcontains

Category

is listed in

Keyword

containswrites

publishes

Figure 13. System data model: bibliographic entities.

3.11. User Interface

Generally, the system allows the execution of bibliometric analyses based on a set of
bibliometric entities. When starting to use the system, the user enters a search query on the
system’s start page. The query is processed, and the search result is presented to the user
(see Figure 14). In order to obtain detailed insights, a list view per bibliographic entity is
available including a text search with which the user can search for entities. For example, in
case of publications, when selecting a record in the list, a detail view provides information
about the publication containing the title, authors, keywords, categories, publisher, the
abstract, and citation metrics.

Furthermore, found publications are displayed as an interactive graph. Immediately
after the search results are displayed, a citation graph is shown with publications as nodes
and direct citations as edges between the nodes. In addition, a Hybrid Similarity Graph is
calculated in the background that can be activated in a toolbar after the calculations have
been completed.



Future Internet 2021, 13, 203 20 of 29

Figure 14. Search results page with graph visualization.

A Hybrid Similarity Graph shows similarities between the respective publications as
distance. The closer two publications are actually presented, the more thematically similar
they are. A Hybrid Similarity Graph also displays the individual calculated communities
with the help of background colors and allows a quick visual inspection of the structure
of search results. Clicking on a node displays additional information as a pop-over and
shows the corresponding publication in the results list.

The graph rendering web component uses WebGL for fast rendering of nodes and
edges using the graphics card of the respective device [38]. For this purpose, the sigma.js
(sigmajs.org (accessed on 6 May 2021)) framework was used as a basis and completely
rewritten in terms of the rendering performance and display options (drop shadows for
displaying communities and touch functions). Existing graph rendering frameworks
usually use an HTML5 canvas to render graphs and offer a below-average user experience
with about 1000 nodes and 2000 edges. The developed graph component runs smoothly on
commodity hardware and a modern browser supporting WebGL up to 20,000 elements
with an average of 25 frames per second.

In this part of the work, two important aspects were discussed. At first, a user
survey identified that the calculation of hybrid research fronts is actually demanded by
most users, which was the reason to first implement it with the ambalytics platform.
Furthermore, it was revealed that users crave an easy-to-use system. On top of these two
findings, general requirements and user stories could be identified for a technical solution
on bibliometric analyses.

Following the identification of requirements, the architecture and operating principles
of ambalytics were shown and how they provide research fronts as well as an easy-to-use
access to the system. The essential parts, in turn, constitute the technology stack, the system
containers, and the developed data model, which were all presented in detail. Through
a flexible system design (see Figure 10), the goals of creating a scalable and easy-to-use

http://sigmajs.org/


Future Internet 2021, 13, 203 21 of 29

system are addressed. With respect to the shown screenshot in Figure 14, which depicts
a calculated research front, we propose that ambalytics can be further developed to an
appealing system that is able to fulfill the demands of users.

However, in-depth studies on the usability as well as the scalability are necessary to
confirm this. Despite the need of further studies for ambalytics, general considerations
on architectures and insights on the operating principles are needed in the context of
bibliometric analyses, which was emphasized by a recent review of bibliometric analysis
software tools [39]. For all of the discussed works in [39], no system insights were provided,
and neither was an emphasis put on usability or scalability. In addition, most existing
tools focus on particular aspects rather than creating integrated infrastructures. Although
ambalytics must reveal in future works whether its architecture can fulfill this integrated
view, we consider the discussion of a system architecture like that shown for ambalytics as
an important preliminary step.

4. Results and Discussion

During the creation of the system, several issues emerged. With the goal of creating
a scalable system, the complexity of distributed systems must be added to the list of
challenges, and the wide variety of premature cloud technologies make architectural and
technological decisions nontrivial. In addition, retrieving bibliometric data automatically
from existing providers is a real challenge due to the fact that there is a lack of affordable
bibliometric APIs. In addition, the range of bibliometric programming frameworks can be
considered relatively small. In order to understand the decisions and choices made during
development of the software architecture, the rationales behind architectural decisions and
technological selections are further explained.

4.1. Architectural Decisions

After searching for and the evaluation of bibliographic data providers, it became
clear that there is a lack of freely accessible, public APIs for bibliometric data retrieval. In
addition, the established databases, such as Scopus or Web of Science, limit the use of their
bibliometric data for software-as-a-service approaches. Their APIs are also costly, and the
allowed number of exported elements is limited. This led to the design decision not to rely
on such APIs but instead to set up our own databases and services for bibliometric data.

For this purpose, the bibliometric data available under the Open Data Commons
license from Microsoft Academic was revealed to be suitable. These data are updated every
2 to 4 weeks and also made available in Microsoft Azure. The Microsoft Academic Graph
(MAG) is generated automatically using crawlers and other services and, in addition to the
bibliometric entities, also provides data on related publications and offers broad support
for other languages and the writing systems, such as Cyrillic and traditional Chinese.

Compared to other bibliometric data providers, such as Web of Science or Scopus,
MAG offers a considerable scope with over 260 million publications (as of 2021-05-28).
However, it lags somewhat behind the two classical services in terms of data quality, e.g.,
duplicate detection, according to the authors of [40]. A study from 2021 confirms MAG’s
high coverage and quality, including of non-English academic writings [41].

The microservice architecture suggests to vertically split the persistence layer and
data model to provide an independent persistence layer and data model per microservice.
Bibliometric datasets generated for analysis are large in size, e.g., a single dataset may
contain up to 100,000 records. Furthermore, a bibliometric dataset depicts a graph that may
be analyzed using graph algorithms, which may run faster on graph databases compared
to relational databases due to the nature how relations are stored in a graph database.

The latter pose a significantly better performance on string matching [42], which is
needed to provide a fast-string search of bibliographic data to the user. For these reasons,
graph-based computations, such as breadth-first and depth-first searches, are performed
on an in-memory graph database that holds a subset of the bibliometric entity attributes.



Future Internet 2021, 13, 203 22 of 29

In contrast, classical retrieval operations on the whole dataset are performed on a relational
database cluster using indexed attributes (e.g., a unique MAG entity id) and SQL joins.

Full-text search operations, for example, on the title and abstract of publications,
are performed based on specially optimized query strategies (e.g., fuzzy or proximity
queries) and index structures of a search engine, such as suffix trees or directed acyclic
word graphs [43]. For the implementation of the ambalytics prototype, the external Mi-
crosoft PAK service was used. Alternatively, a separate search cluster instance based on
ElasticSearch could have been used (see Section 3.7).

4.2. Technological Selection

Bibliometric analyses are computed by the analysis ad hoc runner container. For
implementation, Apache Spark (spark.apache.org (accessed on 6 May 2021)), bibliometrix,
and custom implementation in Python were considered as candidates. Apache Spark
“is a unified analytics engine for large-scale data processing” [44], while bibliometrix is a R
package that implements many bibliometric analyses. Initially, Apache Spark was tested
by implementing the term frequency algorithm as an example.

The algorithm compares the similarity of records by the words given in their abstracts
resulting in a similarity matrix. It took 10.0 minutes to compute the term frequency of
1000 records with Apache Spark on a 2.6 GHz 6-Core Intel Core i7 with 6.2 GB RAM. In
bibliometrix, all analyses are not implemented in a parallelizable way, which means that,
for example, only one processor core is used for calculations. This led to the decision not to
use Apache Spark or bibliometrix and to instead implement bibliometric analysis in Python
for ad hoc analysis, as speed is critical for smooth display of bibliometric networks in the
web front end and numeric frameworks are well established in the Python ecosystem.

The Spring framework was chosen for implementation as it comes with many required
functionalities, such as providing an interface for the implementation of a REST API, an
interface for accessing the Java persistence API, and an implementation of an OAuth2
authorization server.

Docker is selected as the runtime container, since it is the de facto standard for
application containerization. For cloud orchestration, Kubernetes was chosen, as it is
an open source product with great popularity (65.5k stars on Github in April 2020) and
stability (initial release: 7 June 2014). KrakenD was chosen for realizing the API gateway,
as it is suitable for distributed runtime setting in Kubernetes.

For work scheduling, Apache Airflow (airflow.apache.org (accessed on 6 May 2021))
was considered. After investigation and a proof-of-concept implementation, we deter-
mined that Apache Airflow did not meet the requirements of ad hoc work scheduling
and execution. Instead, it is used for regularly running work tasks that are scheduled by
time [45].

Due to the lack of tools providing ad hoc work scheduling, the work scheduler has
to be implemented from scratch based on lock-free Single-Producer/Single-Consumer
(SPSC) queues [46]. For job scheduling, Kubernetes Job API was selected as it provides
container-based batch processing and dynamic scaling of compute and memory resources
based on per job defined resource requirements. Furthermore, it fits to the infrastructure
concept, as Kubernetes is already used for orchestration.

4.3. Related Work

Comparable to ambalytics, bibliometric tools exist as desktop programs, programming
libraries, and web-based solutions, which are presented and delimited in the following [47].
A tabular overview of the tools can be found in Appendix A. In addition, a recent work
also summarizes existing tools in a comparative manner [39].

Bibliometric tools, such as CiteNetExplorer [5], Citespace [48], SciMAT [49], and
VOSViewer [6] provide bibliometric analyses as a desktop application. They support the
creation of bibliometric networks, but not the creation of hybrid research fronts networks

https://spark.apache.org/
https://airflow.apache.org/


Future Internet 2021, 13, 203 23 of 29

and cannot be easily scaled due to their technical implementation, in contrast to ambalytics.
In addition, these tools require manual parameterization of the analyses.

In addition, bibliometric programming frameworks exist for the programming lan-
guages Python (Tethne (github.com/diging/tethne (accessed on 11 June 2021)), Bib-
liotool [50], metaknowledge [51]), and R (bibliometrix [4]). They can be used to generate
bibliometric networks; however, the computation for most of these frameworks is not
implemented in parallel.

In addition, programming skills are required. The respective analyses can be flexibly
parameterized, but this requires extensive knowledge in dealing with bibliometric analyses.
The presented bibliometric tools and the programming frameworks have in common that
bibliometric data, in contrast to the seamless and automated integration in ambalytics, have
to be exported manually from a bibliometric data provider and, subsequently, imported
into the respective tool.

Furthermore, web-based solutions exist that use bibliometric or comparable analyses.
CoCites (cocites.com (accessed on 11 June 2021)) calculates co-citations of publications
and is a browser plugin that displays a button below recognized publications for standard
publication search engines, like Google Scholar (scholar.google.com (accessed on 11 June
2021)) and PubMed [52]. The number of found co-citations is displayed. A click on the
button leads to a list of co-citations. CoCites only supports the calculation of co-citations
and does not offer any other functions in addition to the publication list.

ConnectedPapers (connectedpapers.com (accessed on 11 June 2021)) is a website that
displays thematically similar publications as a graph based on a publication using co-
citation and bibliographic coupling. In contrast to the ambalytics platform, only an initial
single seed of a publication is supported instead of a full-text search. Furthermore, Con-
nectedPapers does not offer the possibility to customize the applied algorithm. The graph
component is limited to the display of fewer than 50 nodes. In contrast to ambalytics, an
HTML5 canvas is used, which leads to a (1) frame rate below 20 per second and (2) notice-
able delays when panning and zooming the graph, even with a set of 50 nodes. According
to its information, SemanticScholar is used as bibliometric data provider [53]. However,
there is no information on the infrastructure structure or used technologies provided.

Inciteful (inciteful.xyz (accessed on 11 June 2021)), similar to ConnectedPapers, gener-
ates a publication graph based on a single seed publication and subsequent deep search.
Inciteful is programmed in Rust and does not use a scalable infrastructure. The Microsoft
Academic Graph is used as the bibliometric data source, the web-based interface is pro-
grammed in React (reactjs.org (accessed on 11 June 2021)) and presents publication abstracts
from SemanticScholar.

Similarity between two publications is calculated using the Adamic/Adar algorithm:
It is defined as the sum of the inverse log degree centrality of the common neighbors
of two nodes [54]. An advantage of Adamic/Adar is its time complexity of O(E) with
E be the number of edges, respectively the number of citations. Thus, it is faster than
calculating hybrid research fronts, whose time complexity is O(V2) with V be the number
of publications. However, the similarities computed with Adamic/Adar are less accurate
than the hybrid similarities used by ambalytics, partly due to the lack of lexical analysis
and partly due to the locally bounded similarity measure computed with Adamic/Adar.

Ambalytics combines the following features of the presented approaches: (1) a web-
based implementation that can be easily used by inexperienced users, (2) features to
calculate of hybrid research fronts, and (3) a description of a flexible architecture concept. A
recently presented up-to-date review of existing tools [39] also revealed no other approach
that combines these three aspects. In particular, the presentation of architectures is less
considered so far.

We are fully aware that (1) usability studies and (2) scalability experiments are needed
in future works to confirm that the developed architecture of ambalytics actually fulfills the
intended goals. We therefore consider the shown concept and its capabilities only as the

https://github.com/diging/tethne
https://www.cocites.com/
https://scholar.google.com
https://www.connectedpapers.com
https://inciteful.xyz/
https://reactjs.org/


Future Internet 2021, 13, 203 24 of 29

first and preliminary step of an integrated system that enables users to create bibliometric
analyses more easily and with a high expressiveness in terms of literature coverage.

5. Conclusions

Bibliometric analyses are a quantitative approach for literature analysis and help
researchers to keep track of their field of research. Furthermore, research managers can use
it to quantify academic output. Until now, conducting bibliometric analyses required highly
skilled individuals with statistical knowledge and programming skills. Consequently, to
make these methods available for a broader audience, the complexity of the application of
bibliometric analyses should be reduced. Software systems can help to achieve this goal.
However, available tools either require mathematical and programming skills or do not
offer comprehensive functionality simultaneously.

This paper contributes ambalytics, a microservice platform that is capable of calculat-
ing research fronts networks (as the first calculation on top of the presented architecture) in
a scalable manner and embodies a foundation for a system that meets the demands for a
platform capable of feature-rich bibliometric analyses. Based on a software requirement
specification, the system’s concept was presented. Due to its distributed nature, different
microservices and containers are the foundation of the system, which are deployed in a
Kubernetes environment.

Various containers for computing bibliometric networks, such as research fronts net-
works and the application of community detection algorithms, have been implemented.
The execution of analyses containers was orchestrated by using Kubernetes Jobs. Biblio-
metric data is made available via different data structures in a runtime-optimized way,
which enables fast search results on bibliometric subgraphs.

The system is designed to be scalable and extensible, for example, to support further
bibliometric network calculations and bibliometric methods. However, several technical
issues are still open and require further research. For example, to support complex multi-
step analyses, a scheduler implementing coordinated batch processing, on top of the
existing Kubernetes Job API, is needed. Furthermore, investigations are needed to improve
the overall performance by adding multi-core or GPU implementations for computation-
intensive analyses.

Additionally, support for further bibliographic data providers may be added, and
other data sources may be integrated. Finally, the web-based interface must be continuously
evolved, e.g., by a feature creating reports on research trends. We also plan to develop
a mobile application that will provide an integrated visualization of publication graphs.
More importantly, two studies must be conducted. One to evaluate the usability of the
system and one that investigates the performance of the system in terms of scalability.

As discussed, ambalytics is only the first step toward a powerful tool that fulfills the
intended goals of an easy-to-use system; however, we consider the creation of a flexible
architecture as an important step. Since we were able to realize the calculation of hybrid
research fronts as the first implemented feature on top of the architecture, ambalytics and
its overall design appear promising.

Author Contributions: Conceptualization, K.K. and M.G.; data curation, M.G.; writing—original
draft preparation, K.K.; writing—review and editing, R.P., M.G. and M.R.; supervision, R.P. and M.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.



Future Internet 2021, 13, 203 25 of 29

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
CLI Command Line Interface
DAG Directed Acyclic Graph
DOI Document Object Identifier
DFM Document Feature Matrix
DSL Domain Specific Language
EER Extended Entity Relationship
FR Functional Requirement
HS Hybrid Similarity Matrix
ID Identifier
KDD Knowledge Discovery in Databases
MAG Microsoft Academic Graph
REST REpresentational State Transfer
TF/IDF Term Frequency/Inverse Document Frequency
UC Use Case
US User Story

Appendix A. Overview of Bibliometric Tools

Table A1. Tool overview.

Aspect Citespace CitNetExplorer SciMAT VOSViewer

Developer
College of Computing
and Informatics,
Drexel University

Centre for Science and
Technology Studies,
Leiden University

Research Group Soft
Computing and Intelligent
Information Systems,
University of Granada

Centre for Science
and Technology
Studies,
Leiden University

Primary Use Case
Trends Visualization
with Bibliometric
Analysis

Bibliometric Analysis
and Visualization

Bibliometric Analysis and
Visualization

Bibliometric
Analysis and
Visualization

Application Type/
Architecture Desktop Desktop Desktop Desktop

Programming
Languages Java Java Java Java

Automatic
Data Retrieval − − − −

Pre−Processing Time slicing, data and
networks reduction Data reduction De-duplication, time

slicing, data reduction −

Bibliometric
Data Source

WoS, Scopus, CrossRef,
Dimensions, PubMed,
arXiv, custom

WoS, custom WoS, Scopus, PubMed,
custom

WoS, Scopus,
PubMed

Initial Seed Dataset Dataset Dataset Dataset

Network Analysis Citation, Co-citation,
Bibliographic coupling Citation Citation, Co-citation,

Bibliographic coupling
Citation, Co-citation,
Bibliographic coupling

Community Detection + + + +

Lexical Analysis + − − +

Graph
Visualization + + + +

− = not available, + = available/supported, N/A = not applicable.



Future Internet 2021, 13, 203 26 of 29

Table A2. Tool overview.

Aspect Tethne Bibliometrix Bibliotools Metaknowledge

Developer
Digital Innovation
Group, Arizona
State University

Community-driven,
Department of Economics and
Management, Università della
Campania Luigi Vanvitelli

Sébastian Grauwin Netlab, University
of Waterloo

Primary Use Case

Programming
Library for
Bibliometric
Analysis

Programming
Library for Bibliometric
Analysis

Programming
Library for Bibliometric
Analysis

Programming
Library for
Bibliometric
Analysis

Application Type-
/Architecture

Programming
Library

Programming
Library

Programming
Library, Desktop
(BiblioMaps)

Programming
Library

Programming
Languages

Python R Python Python

Automatic
Data Retrieval − − − −

Pre-Processing − + Data and networks
reduction −

Bibliometric
Data Source

WoS, JSTOR,
Scopus

WoS, Scopus,
Dimensions, Cochrane,
PubMed

WoS, Scopus WoS, Scopus,
PubMed

Initial Seed Dataset Dataset Dataset Dataset

Network Analysis

Citation,
Co-citation,
Bibliographic
coupling

Citation, Co-citation,
Bibliographic
coupling

Citation, Co-citation,
Bibliographic
coupling

Citation,
Co-citation,
Bibliographic
coupling

Community
Detection − + + −

Lexical Analysis − + − −

Graph
Visualization − plot − (with Bibliomaps) -

− = not available, + = available/supported, N/A = not applicable.

Table A3. Tool overview.

Aspect CoCites ConnectedPapers Inciteful Ambalytics

Developer

Rollins School of
Public Health of
Emory
University, Atlanta

Tel Aviv
University unknown

Institute of Databases and
Information Systems, Ulm
University and Institute of
Clinical Epidemiology and
Biometry, University of Würzburg

Primary Use Case Discovery of related
publications

Discovery of
related
publications

Discovery of
related
publications

Publication search, discovery of
related publications,
bibliometric analysis

Application
Type/Architecture

Browser
Plugin/unknown

Web-
based/unknown

Web-
based/unknown

Web-based/Micro-service
architecture + Kubernetes

Programming
Languages unknown unknown Rust, React.js Java, Python, Vue.js

Automatic
Data Retrieval + + + +



Future Internet 2021, 13, 203 27 of 29

Table A3. Cont.

Aspect CoCites ConnectedPapers Inciteful Ambalytics

Pre-Processing N/A unknown unknown De-duplication, data and
networks reduction

Bibliometric
Data Source

NIH Open
Citation
Collection
(NIH-OCC)

SemanticScholar Microsoft Academic,
SemanticScholar

Microsoft Academic (WoS,
Scopus, PubMed planned)

Initial Seed Single
Publication Single Publication Single Publication,

extensible
Included keyword-based search:
Single Publication, extensible

Network Analysis Co-citation
Combination of
Co-citation and
bibliographic coupling

Citation,
Co-citation

Citation, Co-citation,
bibliographic coupling

Community
Detection − − − +

Lexical Analysis − − − +

Graph
Visualization − + − +

− = not available, + = available/supported, N/A = not applicable.

References
1. Havemann, F. Einführung in die Bibliometrie; Gesellschaft für Wissenschaftsforschung: Berlin, Germany, 2009.
2. Ozdemir, S. Principles of Data Science; Packt Publishing: Birmingham, UK, 2016.
3. Göster, M. Citarics—A Microservice Platform for Bibliometric Network Analysis and Visualization. Master’s Thesis, Ulm

University, Ulm, Germany, 2020.
4. Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975.

[CrossRef]
5. Van Eck, N.J.; Waltman, L. CitNetExplorer: A New Software Tool for Analyzing and Visualizing Citation Networks. J. Informetr.

2014, 8, 802–823. [CrossRef]
6. Van Eck, N.J.; Waltman, L. VOSviewer Manual. Available online: https://www.vosviewer.com/documentation/Manual_

VOSviewer_1.6.8.pdf (accessed on 11 June 2021).
7. Persson, O.; Danell, R.; Schneider, J.W. How to Use Bibexcel for Various Types of Bibliometric Analysis. In Celebrating Scholarly

Communication Studies: A Festschrift for Olle Persson at his 60th Birthday; International Society for Scientometrics and Informetrics:
Berlin, Germany, 2009 ; Volume 5, pp. 9–24.

8. Knutas, A.; Hajikhani, A.; Salminen, J.; Ikonen, J.; Porras, J. Cloud-Based Bibliometric Analysis Service for Systematic Mapping
Studies. In Proceedings of the 16th International Conference on Computer Systems and Technologies, Dublin, Ireland, 25–26 June
2015; pp. 184–191.

9. Zammit, A.; Penza, K.; Haddod, F.; Abela, C.; Azzopardi, J. ACE: Big Data Approach to Scientific Collaboration Patterns Analysis.
In Proceedings of the Scientometrics and Enabling Decentralised Scholarly Communication, Portorož, Slovenia, 28 May 2017;
Volume 1878.

10. Cyberinfrastructure for Network Science Center, Indiana University at Bloomington. Sci2 Tool. 2009. Available online:
https://sci2.cns.iu.edu/ (accessed on 6 May 2021).

11. Sinha, A.; Shen, Z.; Song, Y.; Ma, H.; Eide, D.; Hsu, B.J.; Wang, K. An Overview of Microsoft Academic Service (MAS)
and Applications. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May
2015; pp. 243–246.

12. Weber, B.; Reichert, M.; Rinderle-Ma, S. Change Patterns and Change Support Features—Enhancing Flexibility in Process-aware
Information Systems. Data Knowl. Eng. 2008, 66, 438–466. [CrossRef]

13. Hoppenstedt, B.; Pryss, R.; Stelzer, B.; Meyer-Brötz, F.; Kammerer, K.; Treß, A.; Reichert, M. Techniques and Emerging Trends for
State of the Art Equipment Maintenance Systems—A Bibliometric Analysis. Appl. Sci. 2018, 8, 916. [CrossRef]

14. Ellegaard, O.; Wallin, J.A. The Bibliometric Analysis of Scholarly Production: How Great is the Impact? Scientometrics 2015,
105, 1809–1831. [CrossRef]

15. Manning, C.D.; Raghavan, P.; Schütze, H. An Introduction to Information Retrieval; Cambridge University Press: Cambridge,
UK, 2008.

16. Stelzer, B.; Meyer-Brötz, F.; Schiebel, E.; Brecht, L. Combining the Scenario Technique With Bibliometrics for Technology Foresight:
The Case of Personalized Medicine. Technol. Forecast. Soc. Chang. 2015, 98, 137–156. [CrossRef]

http://doi.org/10.1016/j.joi.2017.08.007
http://dx.doi.org/10.1016/j.joi.2014.07.006
https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.8.pdf
https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.8.pdf
https://sci2.cns.iu.edu/
http://dx.doi.org/10.1016/j.datak.2008.05.001
http://dx.doi.org/10.3390/app8060916
http://dx.doi.org/10.1007/s11192-015-1645-z
http://dx.doi.org/10.1016/j.techfore.2015.06.008


Future Internet 2021, 13, 203 28 of 29

17. Meyer-Brötz, F. A Bibliometric Technique for Quantitative Technology Foresight. Ph.D. Thesis, Universität Ulm, Ulm, Germany,
2019. [CrossRef]

18. Price, D.J.D.S. Networks of Scientific Papers. Science 1965, 149, 510–515. [CrossRef] [PubMed]
19. Tokunaga, T.; Makoto, I. Text Categorization Based on Weighted Inverse Document Frequency; Special Interest Groups and Information

Process Society of Japan: Tokyo, Japan, 1994; pp. 33–39.
20. Meyer-Brötz, F.; Schiebel, E.; Brecht, L. Experimental Evaluation of Parameter Settings in Calculation of Hybrid Similarities:

Effects of First- and Second-order Similarity, Edge Cutting, and Weighting Factors. Scientometrics 2017, 111, 1307–1325. [CrossRef]
21. Salton, G.; Buckley, C. Term-Weighting Approaches in Automatic Text Retrieval. Inf. Process. Manag. 1988, 24, 513–523. [CrossRef]
22. Glänzel, W.; Thijs, B. Using ‘Core Documents’ for the Representation of Clusters and Topics. Scientometrics 2011, 88, 297–309.

[CrossRef]
23. Herman, I.; Melancon, G.; Marshall, M.S. Graph Visualization and Navigation in Information Visualization: A Survey. IEEE

Trans. Vis. Comput. Graph. 2000, 6, 24–43. [CrossRef]
24. Cabena, P.; Hadjinian, P.; Stadler, R.; Verhees, J.; Zanasi, A. Discovering Data Mining: From Concept to Implementation; Prentice-Hall,

Inc.: Hoboken, NJ, USA, 1998.
25. Everitt, B.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ,

USA, 2011.
26. Guidotti, R.; Coscia, M. On the Equivalence Between Community Discovery and Clustering. In Smart Objects and Technologies for

Social Good; Springer: Cham, Switzerland, 2018; pp. 342–352.
27. Fortunato, S. Community Detection in Graphs. Phys. Rep. 2010, 486, 75–174. [CrossRef]
28. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech.

Theory Exp. 2008, 2008, P10008. [CrossRef]
29. Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software tools: Review, Analysis, and

Cooperative Study Among Tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [CrossRef]
30. Kortgen, A.; Niederprüm, P.; Bauer, M. Implementation of an evidence-based “standard operating procedure” and outcome in

septic shock. Crit. Care Med. 2006, 34, 943–949. [CrossRef]
31. Stellman, A.; Greene, J. Applied Software Project Management; O’Reilly: Newton, MA, USA, 2006.
32. Richards, M.; Ford, N. Fundamentals of Software Architecture: An Engineering Approach; O’Reilly: Newton, MA, USA, 2020.
33. Brown, S. Software Architecture for Developers. Available online: http://static.codingthearchitecture.com/sddconf2014-

software-architecture-for-developers-extract.pdf (accessed on 6 May 2021).
34. Linux Foundation. Kubernetes. 2020. Available online: https://kubernetes.io/ (accessed on 6 May 2021).
35. Linux Foundation. Cloud Native Computing Foundation. 2020. Available online: https://www.cncf.io/ (accessed on 6

May 2021).
36. Linux Foundation. Kubernetes Documentation. 2020. Available online: https://kubernetes.io/docs/ (accessed on 6 May 2021).
37. Ushio, T. Kubernetes in Three Diagrams. 2018. Available online: https://medium.com/@tsuyoshiushio/kubernetes-in-three-

diagrams-6aba8432541c (accessed on 6 May 2021).
38. Matsuda, K.; Lea, R. WebGL Programming Guide: Interactive 3D Graphics Programming with WebGL; Addison-Wesley: Boston, MA,

USA, 2013.
39. Moral Muñoz, J.A.; Herrera Viedma, E.; Santisteban Espejo, A.; Cobo, M.J. Software Tools for Conducting Bibliometric Analysis

in Science: An up-to-Date Review. 2020. Available online: http://hdl.handle.net/10498/22857 (accessed on 7 July 2021).
40. Hug, S.E.; Ochsner, M.; Brändle, M.P. Citation Analysis with Microsoft Academic. Scientometrics 2017, 111, 371–378. [CrossRef]
41. Visser, M.; van Eck, N.J.; Waltman, L. Large-scale Comparison of Bibliographic Data Sources: Scopus, Web of Science, Dimensions,

Crossref, and Microsoft Academic. Quant. Sci. Stud. 2021, 2, 20–41. [CrossRef]
42. Vicknair, C.; Macias, M.; Zhao, Z.; Nan, X.; Chen, Y.; Wilkins, D. A Comparison of a Graph Database and a Relational Database: A

Data Provenance Perspective. In Proceedings of the 48th Annual Southeast Regional Conference, Oxford, MS, USA, 15–17 April
2010. [CrossRef]

43. Meyer, U.; Sanders, P. Algorithms for Memory Hierarchies: Advanced Lectures; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2003; Volume 2625.

44. Apache Software Foundation. Apache Spark. 2020. Available online: https://spark.apache.org/ (accessed on 6 May 2021).
45. White, C. Why Not Airflow? 2020. Available online: https://medium.com/the-prefect-blog/why-not-airflow-4cfa423299c4

(accessed on 6 May 2021).
46. Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Meneghin, M.; Torquati, M. An Efficient Unbounded Lock-free Queue for Multi-core

Systems. In European Conference on Parallel Processing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 662–673.
47. Bankar, R.S.; Lihitkar, S.R. Science Mapping and Visualization Tools used for Bibliometric and Scientometric Studies: A

Comparative Study. J. Adv. Libr. Sci. 2019, 6, 382–394.
48. Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and Knowledge Discovery in Bibliographic Databases. In

Proceedings of the AMIA Annual Symposium Proceedings. American Medical Informatics Association, Washington, DC, USA,
22–26 October 2005; Volume 2005, p. 724.

49. Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. SciMAT: A New Science Mapping Analysis Software Tool. J.
Am. Soc. Inf. Sci. Technol. 2012, 63, 1609–1630. [CrossRef]

http://dx.doi.org/10.18725/OPARU-11869
http://dx.doi.org/10.1126/science.149.3683.510
http://www.ncbi.nlm.nih.gov/pubmed/14325149
http://dx.doi.org/10.1007/s11192-017-2366-2
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1007/s11192-011-0347-4
http://dx.doi.org/10.1109/2945.841119
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1002/asi.21525
http://dx.doi.org/10.1097/01.CCM.0000206112.32673.D4
http://static.codingthearchitecture.com/sddconf2014-software-architecture-for-developers-extract.pdf
http://static.codingthearchitecture.com/sddconf2014-software-architecture-for-developers-extract.pdf
https://kubernetes.io/
https://www.cncf.io/
https://kubernetes.io/docs/
https://medium.com/@tsuyoshiushio/kubernetes-in-three-diagrams-6aba8432541c
https://medium.com/@tsuyoshiushio/kubernetes-in-three-diagrams-6aba8432541c
http://hdl.handle.net/10498/22857
http://dx.doi.org/10.1007/s11192-017-2247-8
http://dx.doi.org/10.1162/qss_a_00112
http://dx.doi.org/10.1145/1900008.1900067
https://spark.apache.org/
https://medium.com/the-prefect-blog/why-not-airflow-4cfa423299c4
http://dx.doi.org/10.1002/asi.22688


Future Internet 2021, 13, 203 29 of 29

50. Grauwin, S.; Jensen, P. Mapping Scientific Institutions. Scientometrics 2011, 89, 943–954. [CrossRef]
51. McLevey, J.; McIlroy-Young, R. Introducing metaknowledge: Software for Computational Research in Information Science,

Network Analysis, and Science of Science. J. Informetr. 2017, 11, 176–197. [CrossRef]
52. Roberts, R.J. PubMed Central: The GenBank of the Published Literature. 2001. Available online: https://www.pnas.org/content/

98/2/381.full (accessed on 6 May 2021).
53. Ammar, W.; Groeneveld, D.; Bhagavatula, C.; Beltagy, I.; Crawford, M.; Downey, D.; Dunkelberger, J.; Elgohary, A.; Feldman, S.;

Ha, V.; et al. Construction of the Literature Graph in Semantic Scholar. arXiv 2018, arXiv:1805.02262.
54. Adamic, L.A.; Adar, E. Friends and Neighbors on the Web. Soc. Netw. 2003, 25, 211–230. [CrossRef]

http://dx.doi.org/10.1007/s11192-011-0482-y
http://dx.doi.org/10.1016/j.joi.2016.12.005
https://www.pnas.org/content/98/2/381.full
https://www.pnas.org/content/98/2/381.full
http://dx.doi.org/10.1016/S0378-8733(03)00009-1

	Introduction
	Bibliometric Analysis
	Bibliometric Networks
	Computing Hybrid Research Fronts
	The Louvain Algorithm for Community Detection in Graphs
	Bibliometric Analysis Process

	Ambalytics Bibliometric Platform
	Objectives and Challenges
	User Stories
	Requirements Analysis
	Software Architecture
	System Context
	System Architecture
	System Containers
	Process View
	Infrastructure View
	Data Model
	User Interface

	Results and Discussion
	Architectural Decisions
	Technological Selection
	Related Work

	Conclusions
	Overview of Bibliometric Tools
	References

