
Faculty of
Engineering and
Computer Science
Institute of Databases and
Information Systems

Enhancing ProMoEE and DyVProMo with
Additional Features to Foster Empirical
Studies in the Context of Process Models
Comprehension
Master’s Thesis at Ulm University

Submitted By:
Florian Loth
florian.loth@uni-ulm.de
994158

Reviewer:
Prof. Dr. Manfred Reichert
Prof. Dr. Rüdiger Pryss

Supervisor:
Michael Winter

2022

Version March 8, 2022

© 2022 Florian Loth

Satz: PDF-LATEX 2ε

Abstract

Business Process Management (BPM) has become an important factor on man-

agement level for enterprises, as it offers the opportunity to increase productivity

and lower cost. This has led to a wide use of BPM techniques in the industry, of-

fering the ability to describe processes, improve and automate them or respond to

changes quickly. In order to visually represent processes, notations are used. One

of the most common is Business Process Model and Notation (BPMN), which is

capable of displaying interconnected activities along with resources and other infor-

mation. A process model that does not accurately represent the real world may lead

to a reduction in above benefits. Therefore, enterprises have an interest in skilled

experts creating high quality process models. In reality a lot of untrained personnel

is involved in the modeling process. Hence, there is interest in efficient ways of

helping novices to understand modeling languages. That is why research on the

comprehension of process models is being conducted. One area of research is the

addition of constructs to the existing notation. In particular, the coloring of modeling

elements can help to distinguish and recognize them more easily.

In this thesis two pre-existing applications dealing with the assistance of conducting

research on modeling comprehension are fostered. One is an application to dy-

namically change the displayed model elements to reduce complexity or providing

help with model element names through the addition of annotations. It is fostered

by expanding its functionality to dynamically add predefined colors to the model el-

ements, providing another way of supporting understanding. The other is a survey

platform with the ability to create questionnaires including the functionality to view

and edit process models. Hence, it aims at the conduction of empirical research on

model comprehension. It is improved in its Maintainability, usability and Applicabil-

ity. Moreover, the first application is fully integrated into the second one, providing

the ability to use it for surveys in questionnaires.

iii

Acknowledgments

First and foremost, I have to thank my supervisor Michael Winter for his guidance

and support in the creation process of this thesis.

I would also like to show gratitude to Prof. Dr. Manfred Reichert and Prof. Dr. Rüdiger

Pryss for reviewing this work.

Furthermore, I would like to thank Florian Gallik for the assistance in supervision.

I also express my thanks to the staff of the Institute of Databases and Informa-

tion Systems for the interesting content in lectures and exercises during my Master

studies.

Moreover, I have to thank my friends Illari, Janosch and Julian for their encourage-

ment and patience.

Most importantly, I thank my parents for their continued moral and financial support

and my sister for her support and warm-heartedness, without them it would not

have been possible for me to finish my studies.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Structure of the Thesis . 2

2 Fundamentals 4

2.1 BPMN 2.0 . 4

2.1.1 BPMN in Color . 9

2.2 Perceptual Discriminability . 10

2.3 Secondary Notation . 11

2.4 Color Theory . 12

2.5 Usability . 12

2.6 Refactoring . 13

2.7 Node.js . 14

2.7.1 npm . 14

2.8 TypeScript . 15

2.9 Bpmn-js . 15

2.10 CSS Frameworks . 15

2.10.1 Bulma . 16

2.10.2 Bootstrap . 16

2.10.3 TailwindCSS . 16

2.11 React . 17

2.11.1 Components . 17

2.11.2 Hooks . 18

2.11.3 Create-React-App . 18

2.12 Redux . 18

v

Contents

2.13 Dropwizard . 19

3 Related Work 20

3.1 ProMoEE . 20

3.2 DyVProMo . 22

3.3 Color in process models . 23

4 Introduction to ProMoEE and DyVProMo 26

4.1 ProMoEE . 26

4.1.1 Architecture . 29

4.2 DyVProMo . 30

5 Requirements Analysis 33

5.1 Functional Requirements . 33

5.2 Nonfunctional Requirements . 34

6 Design 37

6.1 Comparison of ProMoEE and DyVProMo 37

6.2 Addition of Secondary Notation to DyVProMo 38

6.3 DyVProMo model file import and export 40

6.4 Alignment of the projects . 40

6.5 Integration of DyVProMo into ProMoEE 40

6.6 Improving ProMoEE’s Usability . 42

6.7 Refactoring ProMoEE . 44

7 Implementation 45

7.1 DyVProMo . 45

7.2 ProMoEE . 49

8 Requirements Comparison 54

8.1 Functional Requirements . 54

8.2 Nonfunctional Requirements . 56

9 Conclusion and Outlook 58

9.1 Conclusion . 58

vi

Contents

9.2 Outlook . 59

9.2.1 DyVProMo . 59

9.2.2 ProMoEE . 61

A Sources 63

Bibliography 69

vii

Listings

2.1 Example BPMN 2.0 XML Shape with color definition [44] 10

2.2 Example configuration for npm . 14

7.1 Coloring function for model elements 46

7.2 Color detection of file import . 48

A.1 Props of the BpmnViewer with default values 63

A.2 HighlightBtn Component written in JavaScript 63

A.3 HighlightBtn Component written in TypeScript 64

A.4 CreateUser written as class Component 64

A.5 CreateUser written as functional Component 67

viii

List of Figures

2.1 A BPMN Task element . 5

2.2 An Example of a Sequence Flow . 5

2.3 Example of an Exclusive Gateway, based on [47] 6

2.4 Example of a Parallel Gateway, based on [47] 6

2.5 A Start Event, a Message Intermediate Catch Event and an End Event 7

2.6 A Pool divided into two Lanes . 7

2.7 A Message Flow . 7

2.8 A Data Object and a Data Store . 8

2.9 A Text Annotation and an Association 8

2.10 An example process of ordering a pizza [46] 9

2.11 Example experiment for visual search, based on [24] 11

2.12 Different harmonic color relationships inside hue wheels [8] 12

3.1 Process model colored in Stark et al.’s color scheme [57] 25

4.1 Overview of all available questionnaires as created by Kreßmann . . 28

4.2 Analysis view of a BPMN Modeler model task as created by Kreßmann 28

4.3 Overview of all available questionnaires with new design 29

4.4 Comparison of two BPMN models inside the ProMoEE Comparator . 29

4.5 Parts of a process model in DyVProMo with overlay explanations

turned on . 31

4.6 The DyVProMo application showing a process with one lane highlighted 32

6.1 DyVProMo’s colors for their respective modeling element type 39

6.2 Packaging process for DyVProMo 41

6.3 Database scheme of ProMoEE . 42

7.1 DyVProMo with colored elements and highlighting 47

ix

List of Figures

7.2 Process model export buttons . 47

7.3 Error message on unknown colored model import 47

7.4 Visibility setting at creation of questionnaire page type “BPMN DyVProMo” 49

7.5 DyVProMo viewer in a questionnaire 50

7.6 Questionnaire overview in new design 51

7.7 Keyboard shortcuts and full-screen buttons 52

7.8 Validity of questionnaire pages / questions (left) and input fields (right) 52

7.9 New error message dialog . 52

7.10 Dates in English formatting . 53

x

List of Tables

2.1 BPMN in Color extension attributes [44] 10

6.1 Technology usage of ProMoEE and DyVProMo 38

8.1 Comparison of functional requirements 54

8.2 Comparison of nonfunctional requirements 56

xi

1 Introduction

This chapter represents the motivation for this thesis. Furthermore, the contribution

of this thesis is provided, followed by its structure.

1.1 Motivation

Business Process Management (BPM) is concerned with techniques and meth-

ods to discover, analyze, restructure, execute and monitor business processes [59].

Given its potential benefits in lowering cost and increasing efficiency it has gained

a lot of attraction in recent years [11, 68].

One way to represent such business processes is through process models, pro-

viding the ability to document, enhance and execute them. They are defined by a

notation, typically in graphical form which consists of activities, their dependencies

to each other, used data and resources [68]. One of the most widely used [20] is

the modeling language Business Process Model and Notation (BPMN) [47]. The

company-wide use of those modeling languages has led to the contact of non ex-

perts with business process modeling [3]. Being a complex matter [33], this is

potentially problematic [36]. In order to utilize above benefits, the process models

should reflect the real world as closely as possible. To do so, modeling experience

is needed. This has led to a need in understanding the process of how models are

comprehended in order to effectively train novices to do so [33]. Therefore, research

is being conducted to better understand the process of understanding process mod-

els [59]. Among other things, the usage of secondary notations [21], i.e. colors, to

improve understandability is investigated [13]. The use of colors offers the benefit

of being readily available, as it is not being used by modeling tools, which are often

using a tool-specific implementation of the modeling grammar [57].

1

1 Introduction

1.2 Contribution

To support the research on process models’ understanding, two applications were

created as Master’s theses [19, 30] before.

The first is an application to dynamically change information displayed by a pro-

cess model viewer. Often times multiple people with different capabilities regarding

process modeling work on the same models. A static approach that would help

novices, e.g. annotating modeling elements, would hinder experts, as they overload

the process model, making it harder to effectively use them. Therefore, the cre-

ated application uses a dynamic approach to bridge the gap between novices and

experts [19].

The second application is a web-based tool for surveys regarding BPMN 2.0 mod-

eling. It offers the opportunity of creating, executing and analyzing questionnaires

with tasks specific to process modeling. Questionnaire elements can be created

that include the interactive viewing or modeling of BPMN process models. The

application aims at the conduction of empirical studies in the context of process

modeling and the introduction of novices to BPMN 2.0 [30].

Goal of this thesis is the fostering of those two applications to further support re-

search on the subject of model comprehension. Therefore, the first application

should be enhanced by the functionality of dynamically changing modeling ele-

ments’ colors. Furthermore, the second application should be improved in its Us-

ability, Applicability and Maintainability. Besides that, the first application should be

integrated into the second, allowing its usage in questionnaires.

1.3 Structure of the Thesis

The rest of this thesis is structured as follows:

Chapter 2 provides needed fundamentals on BPMN, Perceptual Discriminability,

secondary notation in the context of modeling languages, basics on color theory,

Usability and refactoring, as well as details about technologies used in the imple-

mentation. Describing the research that inspired the two pre-existing applications

2

1 Introduction

and other work on color in process models is Chapter 3. Chapter 4 provides a

detailed introduction to those two applications. The requirements for the implemen-

tation are defined in Chapter 5. Chapter 6 describes the design of this thesis’ work.

The implementation is illustrated in Chapter 7. Chapter 8 is concerned with the

comparison of the implementation with the requirements. Finally, Chapter 9 sum-

marizes this thesis.

3

2 Fundamentals

This chapter provides needed fundamentals for the thesis. It is concerned with the

business process modeling language BPMN, Perceptual Discriminability, secondary

notation in the context of modeling languages, basics on color theory, Usability and

refactoring, followed by the description of technologies used in this thesis’ work.

2.1 BPMN 2.0

The Business Process Model and Notation (BPMN) standard was developed by the

Object Management Group (OMG) with version 2.0 in 2011. Visualizing business

processes as models, its goal is to bridge the gap between stakeholders in con-

tact with business process models. On the one hand it needs enough specificity,

facilitating the models’ creators to visualize a wide variety of complex processes

in detail. On the other hand, it should be easily understood by process execu-

tors and giving managers a good overview on the process landscape. Secondly

it aims at assuring the visualization of executable business processes, defined in

XML, in a business-oriented way. Therefore, the standard defines 3 diagram types:

Collaboration diagrams, Conversation diagrams and Choreography diagrams. Col-

laboration diagrams visualize the interactions between multiple business units, their

message exchange and their respective activities. Choreography diagrams define

the expected behavior between Process participants, i.e. their message exchange.

Conversation diagrams depict the logical relation of message exchanges [47]. Be-

ing used to model business processes, Collaboration diagrams are the ones used

in this thesis.

Following are descriptions of the main elements used inside a Collaboration dia-

gram.

4

2 Fundamentals

Activity

Activities visualize the work that is being performed in a Process with Tasks being

a subset, describing the smallest unit of work [47]. They are depicted by a rounded

rectangle (cf. Figure 2.1).

Figure 2.1: A BPMN Task element

Sequence Flow

A Sequence Flow connects Activities, indicating the order in which those are exe-

cuted [47]. They are depicted by an arrow with a solid line (cf. Figure 2.2).

Figure 2.2: An Example of a Sequence Flow

Gateway

Gateways diverge and converge the Sequence Flow and can be used to branch,

fork, merge or join paths. They are depicted by a rhombus including an inner

marker, defining the type of gateway. The most frequent being Exclusive and Par-

allel Gateways. Exclusive Gateways diverge the Sequence Flow by creating al-

ternative paths, only one of which can be followed (cf. Figure 2.3). Parallel Gate-

ways split the Sequence Flow into multiple paths, executed simultaneously (cf. Fig-

ure 2.4) [47].

5

2 Fundamentals

Figure 2.3: Example of an Exclusive Gateway, based on [47]

Figure 2.4: Example of a Parallel Gateway, based on [47]

Event

Events occur in a Process and affect the Process flow by triggering something or

being triggered. The following three different types of Events exists: Start, Inter-

mediate and End Events. Start Events mark the beginning of a specific path in

a Process and therefore have no incoming Sequence Flow. Intermediate Events

occur in the middle of a Process. End Events mark the end of a specific path in a

Process and therefore have no outgoing Sequence Flow [47]. They are depicted by

circles with Intermediate Events having an inner marker depending on the type of

trigger (cf. Figure 2.5).

6

2 Fundamentals

Figure 2.5: A Start Event, a Message Intermediate Catch Event and an End Event

Pools and Lanes

A Pool visualizes an entity partaking in a Process. Pools can be subdivided into

Lanes, describing a specific role, system or department [47]. They are depicted by

a rectangle (cf. Figure 2.6).

Figure 2.6: A Pool divided into two Lanes

Message Flow

Message Flows visualize the flow of messages in communication between two enti-

ties partaking in a Process [47]. They are depicted by an arrow with a dashed lined

(cf. Figure 2.7).

Figure 2.7: A Message Flow

7

2 Fundamentals

Data Object and Data Store

Data Objects are objects needed during process execution. This includes physical

and informational items. Using Data Stores, information can be fetched or saved for

usage outside the Process [47].

Figure 2.8: A Data Object and a Data Store

Association and Text Annotation

Associations are connections between information or Artifacts, like Data Objects

or Data Stores, and Flow Objects, e.g. Tasks [47]. Text Annotations are a way of

providing additional information to a model element connected via Associations.

They are depicted as a dotted line (cf. Figure 2.9).

Figure 2.9: A Text Annotation and an Association

Bringing together these elements in a single process model, Figure 2.10 shows an

example process of ordering a pizza. The two Participants, Pizza Customer and

Pizza vendor are visualized by pools and their communication by message flows

between those pools. After the Pizza Customer selects and orders a pizza, the

order is received by the clerk of the Pizza vendor, who transfers the order to the

pizza chef, baking the pizza. When 60 minutes have passed without the pizza

arriving, the Pizza Customer asks the clerk for the pizza and is being calmed by

them. After the pizza has finished baking, the delivery boy delivers the pizza to the

8

2 Fundamentals

Pizza Customer, they handle the pizza’s payment, after which the Pizza Customer

can eat the pizza.

Figure 2.10: An example process of ordering a pizza [46]

2.1.1 BPMN in Color

“BPMN in Color” is a specification created by the OMG BPMN Model Interchange

Working Group (BPMN MIWG) [45] in 2014. Building on top of the BPMN meta-

model, it specifies the standard for defining colors inside a BPMN 2.0 file in or-

der to interchange elements’ colors. The color extension is defined in the http:

//www.omg.org/spec/BPMN/nonnormative/color/1.0 namespace. Its extension

attributes are shown in table 2.1 and an example of a BPMN 2.0 XML file is shown

in Listing 2.1. The colors must be provided in HEX format, leaving no option for

gradients, shadows or transparency [44].

9

http://www.omg.org/spec/BPMN/nonnormative/color/1.0
http://www.omg.org/spec/BPMN/nonnormative/color/1.0

2 Fundamentals

Table 2.1: BPMN in Color extension attributes [44]
Attribute Name Description/Usage
background-color: HexColor The background color defines the fill color of

BPMNShape.
border-color: HexColor The border color defines the color of the con-

tour line of BPMNShape and the line color of
BPMNEdge.

color: HexColor The color attribute defines the color of the text
depicted by a BPMNLabel.

1 <bpmndi:BPMNShape bpmnElement="task1" id="d1-task1"

color:background -color="#ffa500" color:border -color="

#000000">

2 <dc:Bounds x="0" y="0" width="100" height="100"/>

3 <bpmndi:BPMNLabel labelStyle="normal -text"

color:color="#ffffff"/>

4 </bpmndi:BPMNShape >

Listing 2.1: Example BPMN 2.0 XML Shape with color definition [44]

2.2 Perceptual Discriminability

Perceptual Discriminability describes the “ease and accuracy with which graphical

elements can be differentiated from each other” [40]. It can be used to differentiate

model elements from each other or to highlight (pop-out) specific elements [55].

Multiple frameworks exist [32, 40, 51], providing principles on how to develop a

notation with Perceptual Discriminability in mind. Those works are based on visual

search, which focuses on the impact of discriminators, like different kinds of shapes

in combination with colors, through the conduction of studies [55].

An example experiment, conducted by Healey et al. is provided in Figure 2.11. A

target (red circle)—only being present in pictures b, d and e—needs to be located

in between surrounding elements of different shapes and colors.

10

2 Fundamentals

Figure 2.11: Example experiment for visual search, based on [24]

2.3 Secondary Notation

Targeting the factors that determine understanding of a process model, a lot of re-

search has been conducted, rather focusing on how the process is represented, not

what it represents. This research can be split up into primary and secondary nota-

tion [21]. The former is concerned with particular symbols or the shape of modeling

elements and—by that—their meaning. In turn, the latter focuses on layout, colors

or annotations [31] to “reinforce or clarify meaning” [40] by expressing structures,

otherwise not available [21].

Changes in primary notation are often hindered by tool-specific adjustments from

the tools’ vendors, making it a very slow process [54]. Research solutions or

changes in secondary notation, however, can be implemented more quickly [21,

11

2 Fundamentals

57].

2.4 Color Theory

One important part, when thinking of color selection in the context of this thesis, is

legibility, which is determined by contrast between text and background [34].

Another part is color harmony, meaning a group of aesthetically pleasing colors.

Theories exist on how to choose these sets of colors [35, 63, 65] With colors

aligned in a hue circle, specific relationship between them should produce a har-

monic palette. A set of possible relationships is shown in Figure 2.12. It is possible

to combine those with a variation in lightness and saturation to create a desired

effect [34].

Figure 2.12: Different harmonic color relationships inside hue wheels [8]

2.5 Usability

Although playing an important role in human computer interaction, there does not

exist a single definition for the term usability that is being agreed upon [10].

For simplicity purposes, the definition given by Nielsen in [43] will be used for the

scope of this thesis. According to him, usability consists of the following five com-

ponents:

12

2 Fundamentals

• Learnability : Learning the application should be easy, making it possible to

start working fast.

• Efficiency : Using the application should be efficient, making it possible to

reach a high degree of productivity after learning it.

• Memorability : The application should be easy to memorize, making it possi-

ble to return to using it after time of absence, without the need of relearning

everything.

• Errors: The application should have a low number of errors, minimizing the

need to recover from those. Additionally, catastrophic errors must not occur.

• Satisfaction: Using the application should be subjectively satisfying to the

user.

Further, “less is more” is one of Nielsen’s slogans of importance for this thesis [43].

By that he is referring to the false need of designers to include a multitude of options

or features into an application.

For a broader overview, a summary of definitions can be found in [10].

2.6 Refactoring

During the continued development of a software project, it is modified and changed

according to new or suspended features. This enlarges the code base, making it

deviate from the original design, probably lowering the quality. Therefore, the need

for techniques to cope with this trend exists, which were given the name “refactor-

ing” [37].

Refactoring in Computer Science is defined as “the process of changing a software

system in a way that does not alter the external behavior of the code yet improves

its internal structure” [18]. Further, the result of refactoring is a software system,

maintaining a good design throughout the whole development process [18].

Although constraints in resources often hinder engineers of performing refactoring,

studies show its benefits, e.g. in lowering defects [26] or improving Maintainability

and reusability [37].

13

2 Fundamentals

2.7 Node.js

Node.js is an open source JavaScript runtime environment to run JavaScript code—

outside of a browser—on a server. In recent years it received a wide adoption with

over 1 million downloadable modules for it. Thanks to this popularity, a variety of

different applications can be built using it, e.g. HTTP web servers, microservices or

command-line applications [22].

2.7.1 npm

Npm is the default package manager of Node.js and is used to share JavaScript

software (packages). To do so, developers upload them to a public database, the

so-called registry [66]. The registry can be browsed and shared packages can be

downloaded.

In order to download and use the provided packages, a project maintainer can spec-

ify the wanted package inside the project’s configuration file. This file is called pack-

age.json. In it, dependencies to other packages are defined by stating the unique

name of the package, followed by the version to download from the network. Ad-

ditionally, packages can be imported locally by stating a file path to the package,

instead of a version. An example configuration is displayed in Listing 2.2 which

shows the syntax for both—network and local—dependency inclusion types that

are defined inside the configuration file’s dependency section [67].

Furthermore, npm is the command-line application to handle the needed interac-

tions with the registry in order to share packages and maintain projects.

Listing 2.2: Example configuration for npm

1 "dependencies": {

2 "react": "^17.0.2",

3 "dyvpromo": "file :../../ dyvpromo -0.1.0. tgz"

4 }

14

2 Fundamentals

2.8 TypeScript

The TypeScript language and compiler is a transpiler for JavaScript with the addition

of static type support, developed by Microsoft in 2014 [39]. TypeScript builds on

top of JavaScript, retaining that syntax while adding its own. Types are checked

before runtime, “making TypeScript easier to debug and test than JavaScript” [12].

It includes the TypeScript compiler (tsc), capable of transpiling TypeScript code into

JavaScript code [39].

2.9 Bpmn-js

Bpmn-js is a JavaScript library for interaction with BPMN 2.0 diagrams, developed

by Camunda Services GmbH [6]. It provides the functionality to integrate BPMN

viewers or modelers into other JavaScript projects and is split into three different

parts:

• bpmn-moddle

• diagram-js

• bpmn-js

On the one hand, bpmn-moddle handles the interaction between BPMN 2.0 XML

files and JavaScript, making it possible to read and write those files. On the other

hand, diagram-js provides the user interface, visualizing the BPMN diagrams and

supplying the user interaction methods to view or model the diagrams. Finally,

bpmn-js is the connection of the above two. It builds the bridge between them and

provides a single API for the library [6].

2.10 CSS Frameworks

Cascading Style Sheets (CSS) are used to define the presentation of HTML doc-

uments [38]. With development becoming increasingly complex, CSS frameworks

have gained popularity to simplify and streamline the development process [62].

15

2 Fundamentals

Those frameworks provide a set of predefined CSS files, filled with selectors that

follow a specific overall style or design. The framework maintainers decide on the

naming of those selectors. Therefore, with no chance of avoiding possible naming

conflicts, using multiple CSS frameworks will lead to an unexpected behavior, as

similar named selectors will override each others values.

Following, the three frameworks used in the projects of this thesis are described.

2.10.1 Bulma

Bulma [61] is a lightweight CSS library, as it uses a single CSS file. It provides

the opportunity to use several User Interface (UI) elements in order to style a web

page. Those include: column features for layouting, boxes, buttons, notifications,

progress bars, drop-down menus, navbars and forms. They are harmonized in

size, shape and spacing accompanied by a set of balanced colors (cf. Section 2.4).

Therefore, Bulma does not offer a lot of flexibility, but makes it easy to create a

visually appealing UI with little effort or design knowledge that works on mobile

devices as well.

2.10.2 Bootstrap

Bootstrap [4] is a CSS framework that consists of a collection of CSS and JavaScript

files to build the UI for a web page. Apart from static UI elements, used for the

page’s design, interactive elements to control those elements are provided as well.

The framework provides the possibility to either use the elements as is, or to cus-

tomize them to a great amount [29]. Further, a large selection of templates, themes,

additions and extensions exists, from which a user of the framework can choose. It

also works for desktop and mobile devices in the same manner [29].

2.10.3 TailwindCSS

TailwindCSS [60] is a CSS framework that focuses on flexibility. Providing mostly

small wrappers for CSS styling, it is very similar to writing plain CSS code, but

16

2 Fundamentals

written using its own syntax inside an HTML file. Although offering a larger flexibility,

this comes at the cost of a lot more code to write and the need for a higher degree

in CSS knowledge [49].

2.11 React

React (or ReactJS) [16] is a JavaScript library to build UIs for web pages developed

by Facebook. It uses a single-page approach, meaning that the page’s content

gets downloaded completely while being updated on interaction without using the

browser’s normal workflow of fetching new documents or reloading them when fol-

lowing hyperlinks. This aims at replicating the feeling of native applications—either

mobile or desktop [7].

In order to break a UI down into manageable parts, React uses JavaScript functions,

the so-called Components which are described by the following section. By doing

so, React is enabled to update only the specific parts that have changed when

displaying changes to the screen, making it efficient [12].

2.11.1 Components

Components define the elements of the UI in a React application [12]. The following

three types of Components exist, each having their own set of features:

• Functional Components

• Class Components

• Factory Components [12]

As their name states, functional Components are JavaScript functions, introduced

to React in August 2015 [25]. However, class Components are based on JavaScript

classes, typically used to create objects [41]. Inheriting their functionality from a

React class, they were the standard of how to build a Component, before Hooks

were introduced by Facebook (cf. Section 2.11.2).

17

2 Fundamentals

Being deprecated from React version 17 on forward, factory Components are not

further discussed.

2.11.2 Hooks

Among other drawbacks [15], class Components introduce a lot of boilerplate code [7].

Therefore, Facebook introduced Hooks in 2018 [15], bringing a new way of handling

Components’ state. Hooks are only applicable inside functional Components [15].

Although focusing on this new way of handling state, Facebook states, that the old

way using class Components will not be deprecated [15].

2.11.3 Create-React-App

Create-React-App is the official [14] and most widely used [12] way to bootstrap

a React application. It provides a multitude of templates (e.g. JavaScript or Type-

Script) to create a fully functional application from. This application consist not only

of React but also includes an orchestrated set of additional tools like a build tool, a

testing library and scripts to run the application locally, all without the need of con-

figuring them manually. Therefore, making the initial creation of a React application

very quick and easy [12].

2.12 Redux

The creators of Redux define it as “a predictable state container for JavaScript

apps” [1]. It enables the management and thereby the centralization of an appli-

cation’s state [12]. Being available for standalone JavaScript, a specific version for

React [2] exists.

In the context of React, Redux performs the task of a global state object that is

accessible from within the whole application. It shares the state between Compo-

nents, without them having to share the state variables (called local state) [12].

18

2 Fundamentals

2.13 Dropwizard

Dropwizard is a Java framework for developing RESTful web services. It consists

of a multitude of Java libraries to do so, some of them are: the Jetty HTTP server,

the mapper Jersey to map between HTTP requests and classes, the JSON library

Jackson and the relational database accessor JDBI [9].

19

3 Related Work

This chapter describes related work of this thesis, including the research that in-

spired the two applications being fostered in this thesis, as well as various research

on color in process models.

3.1 ProMoEE

ProMoEE is a surveying and questionnaire tool for the specific context of BPMN

process modeling, developed by Kreßmann during a Master’s thesis at Ulm Uni-

versity in 2019 [30]. It supports empirical research on the topic of understanding

process models by serving as platform for the creation, execution and analysis of

surveys and questionnaires on BPMN process modeling. The ability to view and

model process models is integrated into the survey workflow. This platform is one

foundation for this thesis, as it is being enhanced further. A more detailed descrip-

tion of the application’s functionality and its state before this thesis is provided in

chapter 4.

The preexisting application, influencing the creation of ProMoEE is PEx [23]. De-

veloped as part of a Bachelor’s thesis by Gutermuth in 2016 at Ulm University,

it supports the planning, execution and evaluation of experiments regarding the

optimization of processes using BPMN models. Experiments help to detect and

verify potential process optimizations and efficiency gains in business processes.

Implemented as a web application, experiments can be created, shared between

experiment creators and sent to participants. Those are guided through the experi-

ments, answering questions or creating models on the basis of given statements or

questions. Furthermore, experiment creators have the ability to evaluate the par-

20

3 Related Work

ticipants’ created models. Another feature of PEx is the ability to create alternating

work flows, making it easy to conduct control group experiments [30].

In turn, PEx ’s inspiration was the Cheetah Experimental Platform (CEP), developed

by the University of Innsbruck in 2010. It is a desktop application also supporting

experimental research on business process modeling to gain more valuable insights

compared to paper based experiments or qualitative data. According to Pinggera et

al., CEP has several benefits compared to paper based experiments. In the exper-

imental design phase, it helps to define objects, subjects and the execution order

of different tasks. Additionally, it contains the tools that are often being used in ex-

periments, like surveys, tutorials and process modeling tools. During experimental

execution its straightforward workflow keeps participants on the experiment’s path,

assuring the designed setup is being followed, leading to higher data validity. Lastly,

more sophisticated data analysis is provided through tools measuring metadata like

time spent on different tasks or model replaying abilities. As PEx does, it supports

the creation of alternating work flows for control group experiments. Centerpiece

of CEP is the so-called “Cheetah Modeler”, providing the aforementioned abilities

of model creation based on a given task and the later analysis of these models,

including replaying the exact modeling process [48].

Kreßmann, the creator of PromoEE, states as reason for the new implementation

its focus on the execution of surveys and questionnaires, as well as non-functional

requirements, like performance and stability. Additionally, as a web application,

lowering the effort by only requiring a browser, the potential participant number and

ease of use for experiment creators is increased [30].

Further inspiration was taken from the application QuestionSys, initially developed

during a diploma thesis at Ulm University by Scherle in 2014 [53]. Aiming to support

psychologists at conducting validated questionnaires, a group of mobile applications

has been developed, providing the tools to design, validate, execute and analyze

them in a process-driven manner [64].

21

3 Related Work

3.2 DyVProMo

The second foundation for this thesis is the application DyVProMo, also developed

during a Master’s thesis at Ulm University by Gallik in 2021 [19]. DyVProMo was

created to provide a tool for dynamic visibility changes of BPMN process models’

elements, aiming at improving empirical research of model comprehension, like

ProMoEE does. A more detailed description of the application’s functionality is also

given in chapter 4.

In a systematic literature review Stein Dani et al. observe the current research sta-

tus1 on the “visualization of business process models” in the context of improving

perception and comprehension [59]. Therefore, they adopt two angles. The first be-

ing the focus on similarities between the reviewed papers in order to classify them

into the following categories: “Augmentation of existing elements”, “Creation of new

elements”, “Exploration of the 3D space”, “Information visualization”, “Visual feed-

back concerning problems detected in process models” and “Perspectives”. Sec-

ondly, they analyze the papers by a visualization analysis framework leading to an

overview of the suggestions made by those. They found that user interaction fea-

tures are scarcely researched on, however half of the research is based on the

BPMN standard. Their conclusion states that, with BPMN being an ISO standard

and wildly adopted, more research is needed on that topic with their work being

an inspiration to do so [59]. As the literature review focuses on existing work, no

proposition of a visualization technique is being made by the authors.

ProView is a framework developed at Ulm University to change process views of

process-aware information systems (PAIS) in order to lower the work load on do-

main experts maintaining the process models. Being abstractions of larger, more

complex models, process views help to provide information for a distinct use case

by abstracting the large model in a specific manner (e.g. a manager needs a broad

overview, while a worker needs a very detailed part of the process model regard-

ing their specific work). ProView helps to maintain those large process models by

allowing changes in the process views to be propagated to the model. In order

to control those changes, the model has to be linked to its process views, accom-

panied by a set of instructions ensuring the correct execution of changes [27, 28].
1publishing dates between 2009–2018

22

3 Related Work

The specificity of ProView and need to configure each model on its own prevents a

general application for all process models.

3.3 Color in process models

Firstly, research on primary notation includes the connection of routing symbols—or

Gateways—to the process model comprehension [17, 50].

Secondly, the following examples for research on secondary notation are concerned

with syntax highlighting, layout and annotations, aiming at model comprehension as

well.

Reijers et al. propose a formal approach to syntax highlighting in workflow nets,

coloring matching operator pairs in the same color. They further implement this

approach and conduct a thorough study on its effectiveness. Their conclusion states

that it has a high usefulness for novices and is applicable to other process modeling

languages as well [52].

La Rosa et al. create a number of layout patterns for process models. Some of

these patterns are: language specific layout guidance, enclosure highlighting of

specific elements in a rectangular box, graphical highlighting of model elements

(especially coloring), pictorial annotations like icons or images, textual annotations.

After verifying the support by various modeling languages they conduct a usability

evaluation of the patterns with BPM practitioners [32].

Natschläger proposes a solution called Deontic BPMN which transforms BPMN

process models for a better readability by lowering their complexity. Based on path

exploration, a model is potentially simplified and tasks following an exclusive gate-

way are given a specific color according to their mandatory state. This minimizes

the required amount of process knowledge when executing a process [42].

In [31] Kummer et al. focus on cultural differences in color perception. Conducting

a study they detect a difference between two diverse cultures and provide impli-

cations for a culture dependent color scheme when coloring process models for

understandability. Further they state, cultural values should be taken into account

when conducting research on color in process models [31].

23

3 Related Work

The work of Erol determines that the coloring choices are mostly left to the mod-

eler and are often poorly supported by tools. Arguing that, for an effective use of

color to support understandability an aesthetically pleasing set of colors needs to

be used, he proposes a variety of color schemes, developed based on color theory

and creates a prototypical implementation of those [13].

Similarly, in a series of work [55, 56, 57, 58] Stark et al. created a color scheme

for BPMN process models, based on Perceptual Discriminability. Firstly, they ex-

tend the latter for application in process model language design [55, 56]. Secondly,

in a systematic approach including theories of color vision, color harmony and vi-

sual attention, they create two balanced color schemes aiming at the minimization

of visual stress [58]. Consolidating their findings in [57], where they begin with the

identification in published literature of four scenarios regarding which modeling con-

structs need to be scanned in order to answer questions for a given model. Those

scenarios include: Process flow only, Tasks and Process flow, Tasks, Process flow

and Pools, Pools and tasks [57]. Further, they determine the following free visual

variables in the BPMN 2.0 standard, not contradicting primary notation: Brightness,

Hue and Saturation. Combining those findings with the necessity to emphasize par-

ticular modeling elements in order to pop-out [40], they develop a color scheme for

BPMN 2.0 (cf. Figure 3.1) [57].

The work by Stark et al. represents the theoretical groundwork for the coloring func-

tionality developed in this thesis.

The above selection shows a multitude of research on colors to improve model

comprehension, while agreeing on the benefits of using colors [13, 31, 57], a lot of

effort is put into finding a suiting color scheme, balancing the benefits of Perceptual

Discriminability and the introduction of visual stress. In trying to find the perfect

balance they propose different fixed changes to the process model, none are using

a step-wise, dynamic approach. Therefore, this thesis adopts the different scenarios

identified in [57] to visualize them in a dynamic way in order to support further

research on the topic of model comprehension.

24

3 Related Work

Figure 3.1: Process model colored in Stark et al.’s color scheme [57]

25

4 Introduction to ProMoEE and

DyVProMo

This chapter provides detailed information about the two projects that are being en-

hanced in this thesis. It includes the process of their development, their functionality,

as well as their respective technologies.

4.1 ProMoEE

As already stated in Section 3.1, ProMoEE (short for Process Modeling Experimen-

tal Editor) was initially developed by Kreßmann during his Master’s thesis in 2019

at Ulm University. It is a web application to conduct empirical research in the field

of process model comprehension through surveys and questionnaires.

On completion of the thesis, a questionnaire could consist of at least one page with

one of the following types:

• Question

• BPMN Viewer

• BPMN Modeler

A BPMN Modeler is a standalone questionnaire page that provides a BPMN 2.0

process modeling tool. No questions or other elements can be displayed on that

page. The model for participants to start with can be created during the ques-

tionnaire creation process. Questionnaire participants have to answer one line of

statement or question with a business process model.

26

4 Introduction to ProMoEE and DyVProMo

A BPMN Viewer questionnaire page shows a BPMN process model on top that

can be zoomed in and out or panned interactively, followed by a minimum of one

question.

Questions are typical questionnaire question elements that either are part of a

BPMN Viewer or a questionnaire page consisting only of questions. They can have

one of the following types:

• Text input,

• Text area,

• Single choice,

• Multiple choice.

The application supports the creation and management of these questionnaires.

Users are able to view their created questionnaires and share, edit or delete them.

The overview of their questionnaires, shown in Figure 4.1, is presented to every

user. Questionnaires are shared by link with which a participant is eligible to fill it in.

Completed questionnaire answers can be viewed and analyzed by questionnaire

creators. The latter process is supported by statistics for each participants’ created

model, e.g. the number of tasks and the prettiness of the sequence flows is shown

(cf. Figure 4.2). Furthermore, the answers can be exported as Excel file. In order

to manage users, an admin user is able to create and delete those.

Following the Master’s thesis of Kreßmann, the application was further developed

by students within the framework of two projects. During those, TailwindCSS was

introduced to parts of the application, resulting in a new design (cf. Figure 4.3).

Moreover, a new question type was created: the scale. Also, a new questionnaire

page type was introduced: the BPMN Comparator, which allows putting two process

models side by side while highlighting differences between them.

In order to reconstruct the modeling steps of a BPMN Modeler page, a modeling

history was introduced, allowing questionnaire creators to see each modeling step

a participant made. Furthermore, the ability to upload process models during ques-

tionnaire creation was added.

27

4 Introduction to ProMoEE and DyVProMo

Figure 4.1: Overview of all available questionnaires as created by Kreßmann

Figure 4.2: Analysis view of a BPMN Modeler model task as created by Kreßmann

28

4 Introduction to ProMoEE and DyVProMo

Figure 4.3: Overview of all available questionnaires with new design

Figure 4.4: Comparison of two BPMN models inside the ProMoEE Comparator

4.1.1 Architecture

The ProMoEE project consists of two parts: the front-end, responsible for displaying

the UI and the back-end, responsible for data delivery and persistence. Hence, the

project’s architecture is a Client-Server architecture.

29

4 Introduction to ProMoEE and DyVProMo

The front-end was created using the Create-React-App tool (cf. Section 2.11.3) and

therefore uses React and Node.js. TypeScript was chosen as language and Redux

for state management.

The back-end service was developed using the Dropwizard framework. This can

also be broken down into two pieces. Firstly, the RESTful API which is respon-

sible for exchanging the data via HTTP protocol between Client and Server. And

secondly, the database which is accountable of persisting the application’s data

(especially questionnaire and answer data).

4.2 DyVProMo

The creation of DyVProMo (short for Dynamic Visualization of Process Models) was

part of Gallik’s Master’s thesis in 2021 at Ulm University. The application allows to

dynamically change and highlight elements of a BPMN 2.0 process model in the

context of process model comprehension.

It consists of two views: the start-page and a BPMN viewer. On the start-page users

have to upload the intended BPMN model file, either via drag and drop or by clicking

the upload field. A successful upload leads them to the main screen—the BPMN

viewer. Here, the model is displayed, accompanied by the tools to dynamically

change it [19].

The Detail-Slider to change the visibility of model elements is positioned in the

bottom center. It has 4 distinct positions, each with a predefined setting for the

visibility of Annotations, Data Object, Data Stores and overlay explanations. Overlay

explanations are small text boxes hovering aside an element, containing its name.

Each explanation exists once for each included element type of the model [19].

Figure 4.5 displays this behavior. Following the different levels and their respective

changes are described.

30

4 Introduction to ProMoEE and DyVProMo

• Level 1: Data Objects, Data Stores, Annotations and overlay descriptions are

not visible.

• Level 2: Data Objects and Data Stores are visible; Annotations and overlay

descriptions are not visible.

• Level 3 (default): Data Objects, Data Stores and Annotations are visible (ef-

fectively no changes to the model); overlay descriptions are not visible.

• Level 4: Data Objects, Data Stores, Annotations and overlay descriptions are

visible [19].

Figure 4.5: Parts of a process model in DyVProMo with overlay explanations turned
on

Apart from its own positioning, the slider level is displayed as a table describing

each level’s visibility changes, while highlighting the current level. This supports the

users understanding of the different detail levels [19].

Additionally, visibility checkboxes, to change the elements’ visibility independently

of the slider setting, are located on the top left. Apart from the slider’s elements,

the visibility of the Message Flows is controllable. A new setting of the detail slider

will override the checkbox state for those element types affected by the new slider

position. Gallik states, that the reason for the Message Flows’ exclusion in the detail

slider is their essential role for understanding the model’s sequence flow, e.g. a Mes-

sage Flow starting a process. However, as they have the ability to overcrowd the

31

4 Introduction to ProMoEE and DyVProMo

model, a possibility to toggle their visibility, which is provided this way, must be

given [19].

The ability to highlight Pools and Lanes is given by the Highlight tool, consisting

of one checkbox for each Pool or Lane. It is located on the top right. Toggling

a checkbox will highlight the background of the respective element in green color,

depicted in Figure 4.6.

The exit button on the top right closes the BPMN viewer and brings users back to

the start-page.

Figure 4.6: The DyVProMo application showing a process with one lane highlighted

Architecture

The application was built using the Create-React-App tool (cf. Section 2.11.3) with

JavaScript. Hence, it uses the React library with Node.js.

32

5 Requirements Analysis

This chapter is concerned with the requirement analysis, listing the needed require-

ments that need to be met in order to successfully ensure the function of the sys-

tem. It is split into functional and nonfunctional requirements, which in turn are split

into the two projects—DyVProMo and ProMoEE. They are abbreviated accordingly:

“FRD” for functional requirement DyVProMo, or “NFRP” for nonfunctional require-

ment ProMoEE.

5.1 Functional Requirements

FRD1: Dynamic secondary notation

DyVProMo should be able to display secondary notation for BPMN 2.0 diagrams on

a dynamically changeable basis. The type of secondary notation should be colored

model elements.

FRD2: Highlighting functionality still intact

The above colors should not affect the already implemented highlighting feature.

FRD3: Export process models

DyVProMo should be able to export the displayed process models as they appear

on the screen. The file formats to export should be; (1) BPMN 2.0 XML file and (2)

SVG vector graphics file. Potentially existing colors of the model should be stored

in the exported files.

33

5 Requirements Analysis

FRD4: Detect color in imported models

DyVProMo should be capable of detecting the color of imported models. Hereby a

distinction between colors that DyVProMo is capable of displaying and other (un-

known) colors should be made.

FRP1: DyVProMo in questionnaire

ProMoEE should be able to create questionnaire pages displaying the DyVProMo

viewer. Participants then should be able to use a fully functional DyVProMo viewer

as part of a questionnaire.

FRP2: Visibility of DyVProMo interaction elements in ProMoEE

The visibility of DyVProMo’s interaction elements should be adjustable during ques-

tionnaire creation.

FRP3: Applicability

ProMoEE should be utilizable for conducting surveys.

FRP4: English language support

ProMoEE should be available in the English language, besides German.

5.2 Nonfunctional Requirements

NFRD1: Integration capability

DyVProMo should be capable of being integrated into other projects.

34

5 Requirements Analysis

NFRD2: Standalone application

The capacity of being integrated should not affect DyVProMo’s functionality as stan-

dalone application.

NFRD3: Visibility of interaction elements

The visibility of interaction elements should be adjustable by applications integrating

DyVProMo.

NFRD4: Usability DyVProMo

The Usability of DyVProMo should be high according to the definition by Nielsen [43]

(cf. Section 2.5).

NFRP1: Alignment

In order to integrate DyVProMo into ProMoEE, the projects should use the same

underlying technology.

NFRP2: Usability ProMoEE

ProMoEE should offer a high degree of Usability.

• Learnability : Learning how to create and manage questionnaires should be

quick.

• Efficiency : Creating and managing questionnaires should be efficient.

• Memorability : The creation and management of questionnaires should be

easy to memorize.

• Errors: Errors should be minimized while using the application. If Errors occur,

they should be well visible and instructive.

• Satisfaction: Using the application should be subjectively satisfying to the

user.

35

5 Requirements Analysis

NFRP3: Maintainability ProMoEE

The Maintainability of ProMoEE ’s code base should be high. New maintainers

should be capable to acquaint themselves with the project quickly.

36

6 Design

This chapter describes the design of this thesis’ work: the implementation of en-

hancements to the two existing applications DyVProMo and ProMoEE in the context

of model comprehension. Firstly, their technologies are compared to each other. Af-

ter that, the enhancements of DyVProMo are discussed. Then the steps needed to

integrate it into ProMoEE are illustrated. Finally, the enhancements of the latter are

shown.

6.1 Comparison of ProMoEE and DyVProMo

Chapter 4 already describes the applications’ functionality. As they are integrated

into each other, they need to be aligned before that (cf. Section 6.4). For a more

detailed technical overview, this section provides their used technologies and com-

pares them to each other.

Similarities

Both projects are single-page web applications, created with the use of React. They

equally were initially created using the Create-React-App tool. Therefore, they both

employ a Client-Server architecture utilizing Node.js. Hence, a user only needs

a browser in order to run one of the applications, making them independent of

operating systems.

37

6 Design

Differences

While ProMoEE uses class components, DyVProMo uses the newer functional

components with hooks. The former utilizes Redux for a centralized state manage-

ment, e.g. to handle application wide login state. The latter uses React ’s default:

local state. Another difference is the used programming language, with ProMoEE

using TypeScript and DyVProMo using JavaScript. Furthermore, they both use dif-

ferent CSS frameworks: DyVProMo uses Bootstrap, ProMoEE uses Bulma and

TailwindCSS.

In addition to the front-end, ProMoEE ’s project includes a back-end service, han-

dling the application’s data, primarily user and questionnaire data. A continued

network connection is needed in order to use the application effectively, sending

and receiving data between client and server. DyVProMo on the other hand uses

the server to solely serve the Front-End application. After opening the application,

the client’s browser can be used offline henceforward, still capable of importing and

viewing locally stored BPMN model files.

Comparing the two applications, Table 6.1 juxtaposes their characteristics.

Table 6.1: Technology usage of ProMoEE and DyVProMo
ProMoEE DyVProMo

Programming language TypeScript JavaScript
Front-End library React React
State management Redux local state
Component type Class Components Functional Components
Used CSS-Framework Bulma, TailwindCSS Bootstrap
Back-End present yes no

6.2 Addition of Secondary Notation to DyVProMo

Adding to its intitial functionality, dynamically changing the displayed model’s ele-

ments, DyVProMo is being enhanced to support the dynamic adjustment of sec-

ondary notation—in this case color (FRD1).

38

6 Design

To help with process model comprehension, the process models’ elements can be

colored in several stages. The colors are different for every model element type

and are based on the work of Stark et al. [57]. The gradient suggested by them is

omitted, as the export function (cf. Section 6.3) is only capable of using HEX values

which cannot display those. In order to cover all flow objects and swimlanes, the two

missing element types of other than Parallel and Exclusive Gateways and Events

are allotted colors, as well. Following the approach of Stark et al. [57], those colors

are in harmony with the existing ones, ensured by choosing colors analogous to

them (cf. “V type” of Figure 2.12). Being more frequent, Events are colored in blue

color, as the sensitivity to it is much lower compared to red or green [34].

The user is able to change those colors dynamically by choosing a level on a slider.

The different levels are three of the four scenarios identified by Stark et al. [57],

leading to the following colored element levels:

• Level 1: No element is being colored, view the model as it is (default)

• Level 2: Color all Gateways and Events

• Level 3: Color all Gateways, Events and Tasks

• Level 4: Color all Gateways, Events, Pools and Lanes

Those colors and their respective element type are shown in Figure 6.1.

Figure 6.1: DyVProMo’s colors for their respective modeling element type

39

6 Design

6.3 DyVProMo model file import and export

Based on the BPMN in Color specification [44] (cf. Section 2.1.1) the currently

viewed model can be exported as displayed on screen (including colors), either

as BPMN XML file or as SVG vector graphics file (FRD3). The bpmn-js library (cf.

Section 2.9) handles the export of colors according to the standard. Other modeling

tools, that also support it, will be able to view the colors embedded in the XML file.

Moreover, on a model import the colors are detected, and the slider is positioned

on its respective position. If an imported model contains colors other than the ones

used by the application (cf. Figure 6.1), a notification is shown to the user (FRD4).

6.4 Alignment of the projects

In order to effectively integrate DyVProMo into ProMoEE, the differences between

them (cf. Section 6.1) need to be minimized by aligning the projects (NFRP1).

Firstly, this is achieved through updates of the shared dependencies, especially

React. Furthermore, DyVProMo is converted to Typescript, as types improve the

development process of the integration (cf. Section 2.8). However, as DyVProMo

is integrated into ProMoEE and uses the default local state, there is no need to

change the state management in either of the projects.

6.5 Integration of DyVProMo into ProMoEE

This section explains the steps required to integrate DyVProMo into ProMoEE. The

former has to be adapted in order to make it capable of being integrated into other

projects (NFRD1). Subsequently, the latter has to be adapted in order for the inte-

gration to work in questionnaires.

40

6 Design

Changes to DyVProMo

To create the possibility of being used in other projects, the TypeScript compiler

(tsc) (cf. Section 2.8) is used to compile the source code into plain JavaScript files.

In order for other projects to reference those files as dependency, they have to be

packaged. This is handled by the pack command of npm, which bundles the project

files into a gzipped tar file. Afterwards, this file can be used as parameter for npm’s

install command to add DyVProMo while handling the dependency resolution.

This process is illustrated in Figure 6.2.

Figure 6.2: Packaging process for DyVProMo

To fulfill requirement NFRD3, the ability to programmatically set the visibility of

DyVProMo’s tools is added. Furthermore, getting and setting of those tools’ state

from a using entity is added as well.

Despite those changes, as initially intended, DyVProMo can still be used and further

developed as standalone application (NFRD2).

Integration into ProMoEE

Now it is possible to integrate DyVProMo into ProMoEE (FRP1). It is integrated

as new questionnaire page type BPMN DyVProMo which is similar to the BPMN

Viewer, as it allows participants to view process models while having to answer at

least one question of the Question type.

When creating such page, the tools’ visibility for the DyVProMo viewer is settable

(FRP2). This enables questionnaire creators to test the different types of DyVProMo’s

tools in isolation. In order to do so, the state of the tools has to be persisted on ques-

tionnaire creation. This alters the database scheme. The new scheme, including

the new table DyvpromoToolState, is displayed in Figure 6.3.

41

6 Design

Figure 6.3: Database scheme of ProMoEE

6.6 Improving ProMoEE’s Usability

When first introduced to ProMoEE, the usability was perceived to be moderate.

Given the multiple project stages (cf. Section 4.1), features were implemented with-

out emphasizing consistent design and usability. Therefore, improving those was

made a key part of this thesis’ work.

The two biggest identified weaknesses were the questionnaire creation process and

the interaction with bpmn-js’ integrated tool.

42

6 Design

When creating a questionnaire, every step needed to be saved, making it an error-

prone process, as it could easily be forgotten. Further, minimal requirements in

text length for input fields and number of questions per page type exist that were

only communicated when trying to save or preview the questionnaire. This led to

another problem: the error messages when one of the above requirements was

not met, were only capable of showing one message a time. This, in turn, led to

backtracking the error, potentially followed by another error that had to be navigated

to, making the questionnaire creation a cumbersome process.

The interaction with the bpmn-js tool was limited to the basic core of its potential

functionality—for viewer and modeler alike. There was no option to zoom the dis-

played model. Given the restricted space (415 pixels in height), this limited the

possible size of a model by a large amount, with larger models being very “move-

ment intensive”. Moreover, during modeling there was no way of undoing the recent

modeling steps.

Furthermore, notifications were placed in between other UI elements, pushing suc-

cessive elements down during occurrence, resulting in an unpleasant looking effect.

In an effort to improve those issues, the following steps are taken to improve the

usability (NFRP2), create a better modeling experience and overall increase the

Applicability of the project (FRP3). Firstly, removing the need to save during the

questionnaire creation process lowers the error rate of losing changes by a large

amount. Furthermore, providing feedback for obligatory minimal requirements of in-

put length for input fields upfront, giving an overview of met requirements for ques-

tionnaire pages and collecting potential error messages in one list lower the error

rate and increases the Efficiency and Satisfaction while using it. This is also the

case for the added copy button on Comparator page creation, making it easier to

create differences between process models (cf. Figure 4.4). Additionally, the min-

imal question requirement is handled by automatically adding questions on page

creation. Moreover, introducing features from the demo of the bpmn-js project [5]

like keyboard shortcuts, zooming the model and the ability to view the modeling

tool full-screen increase the Efficiency, Memorability and Satisfaction. By removing

of one used CSS framework (cf. Section 6.7), using only the left one—Bulma—a

more consistent design that is built to work on mobile devices, is achieved, resulting

in better Learnability and Memorability. Lastly, hovering notifications lead to more

43

6 Design

Satisfaction using the application.

6.7 Refactoring ProMoEE

To create a better code Maintainability (NFRP3), the whole application is refactored

to use functional components (cf. Section 6.1), hence new maintainers only have

to learn one component type (as DyVProMo already uses them). Furthermore,

unnecessary or deprecated libraries are removed for the same reason. For exam-

ple an XML parser used for BPMN 2.0 files during model analysis is replaced by

bpmn-moddle of bpmn-js (cf. Section 2.9). Another example is the substitution of

a deprecated date parsing library that was replaced by JavaScripts own date pars-

ing function, leading to better maintainable code, as maintainers working with the

application should already be familiar with the JavaScript documentation (FRP4).

44

7 Implementation

This chapter describes the implementation of the requirements in detail. It provides

the changes made to the respective application, whether being technical or changes

to the UI.

7.1 DyVProMo

In this section the changes made to the DyVProMo application are described.

Those include the addition of the secondary notation, exporting of process mod-

els and recognizing colors during model import and the control over its tool state.

Secondary Notation

To enable further research on model comprehension, the ability to dynamically

change secondary notation, i.e. color, is added.

A function is added to color model elements, using the coloring functionality pro-

vided by the bpmn-js library. This function is described in Listing 7.1. It takes two

arguments, a list of model elements and the color as String in HEX format to color

them in. Further, it passes this information to the Modeling entity of the bpmn-js

viewer, which handles the coloring.

To control the coloring of respective elements, a slider comprised of multiple levels is

added, as described in Section 6.2. Fulfilling the usability requirements set by initial

creator [19], it is the same slider design that users are already familiar with, pro-

viding Learnability and Memorability of NFRD4. Figure 7.1 shows the DyVProMo

application with the slider in the bottom center. Its color level is set to 4, coloring

45

7 Implementation

the displayed model accordingly. It further shows the still intact highlighting feature

highlighting lane “clerk” in green color (FRD2).

Listing 7.1: Coloring function for model elements

1 const colorElement = (elem: ModelElement [], color:

string) => {

2 [...]

3

4 if (filter.length) {

5 modeling.setColor(filter , {

6 fill: color ,

7 });

8 }

9 };

Export of process models

The feature to export the currently viewed process model, either as BPMN 2.0 XML

or SVG, is added. On export the currently displayed colors are embedded in the

file (FRD3) as specified by the BPMN in Color specification [44] (cf. Section 2.1.1).

Figure 7.2 shows the added buttons in order to do so.

The file import is enhanced, detecting colors that were exported with above process

and setting the color slider to the appropriate level according to the colors contained

in the model.

Listing 7.2 shows the detection part executed during file import. The coloring is

checked for each element of the given type. If all elements contain the given color,

it sets the internal state (setColorLevel) which is read by the coloring unit which

in turn sets the color slider’s level. Additionally, it checks if the model contains a

different color than the expected one. When that is the case, an error message is

shown to expect possibly unintended behavior (cf. Figure 7.3).

46

7 Implementation

Figure 7.1: DyVProMo with colored elements and highlighting

Figure 7.2: Process model export buttons

Figure 7.3: Error message on unknown colored model import

47

7 Implementation

Listing 7.2: Color detection of file import

1 const setInitialColorLevel = (

2 color: string ,

3 level: SliderLevel ,

4 elements: ModelElement []

5) => {

6 if (elements.some((e) => e.businessObject.di?.["

background -color"])) {

7 if (

8 elements.every(

9 (e) => e.businessObject.di?.["background -color"]

=== color

10)

11) {

12 setColorLevel(level);

13 } else {

14 setShowForeignColoringAlert(true);

15 }

16 }

17 };

Controlling tool state

To integrate DyVProMo effectively, communication from and to the main compo-

nent’s (BpmnViewer) tool state is added. The application’s standalone functionality

is not affected, as those communication parameters are given default values or can

be NULL (cf. Appendix Listing A.1).

Switch to TypeScript

Aligning the projects, the whole application was rewritten using TypeScript. Ex-

emplifying this, the same component (HighlightBtn) is shown in JavaScript (cf.

48

7 Implementation

Appendix Listing A.2) and TypeScript (cf. Appendix Listing A.3), with the major dif-

ference being the type declaration for the props on the top, providing useful infor-

mation about their types for development.

7.2 ProMoEE

In this section the enhancements made to the ProMoEE application are described.

Those include the integration of DyVProMo, the improvement of its Usability and

Refactoring for maintainability purposes.

Integration of DyVProMo

DyVProMo is integrated into ProMoEE as a new questionnaire page type. As with

the BPMN Viewer type, a minimum of one question needs to be added to the ques-

tionnaire page. Creators of those are able to set the visibility of DyVProMo’s tools

(cf. Figure 7.4), allowing to test the different functions in isolation. Furthermore,

the slider positions and highlighted elements are saved, making the tool appear for

the participants as seen by the creator. Figure 7.5 shows DyVProMo as part of a

questionnaire.

Figure 7.4: Visibility setting at creation of questionnaire page type “BPMN
DyVProMo”

49

7 Implementation

Figure 7.5: DyVProMo viewer in a questionnaire

In order to be displayed properly, DyVProMo needs the Bootstrap library, which is

incompatible with the already present Bulma library. This is solved by providing the

CSS file bootstrap.min.css which consists of only the Bootstrap CSS classes being

used by DyVProMo.

Improving Usability

In removing the TailwindCSS framework (cf. Section 6.6), a more consistent, mod-

ern design is achieved which is depicted in Figure 7.6.

The user experience when creating a questionnaire is drastically improved. Changes

to the questionnaire are saved automatically, making the creation process more ef-

50

7 Implementation

Figure 7.6: Questionnaire overview in new design

ficient. Moreover, the added shortcuts are explained by clicking on a button which is

present in every viewer and modeler of the application, fostering Learnability. Next

to this button, also in every viewer and modeler a button that resizes the modeling

area to full-screen, exists. Those buttons are shown in Figure 7.7.

The validity of questionnaire pages and questions is shown in the questionnaire

overview, providing the minimal requirement of input length for input fields upfront,

giving clearer instructions to the user and minimizing Errors. Each questionnaire

page and question has an internal state (isValid), which is checked and if all

requirements are met, the background of the respective element in the overview

turns from red to blue, indicating that this page is valid. This behavior is shown in

Figure 7.8. Additionally, the error messages hinting unmet minimal requirements

combines the potential errors of the whole questionnaire, providing better feedback

to the user (cf. Figure 7.9).

Further, notifications throughout the whole application are taken from being inte-

grated into the applications elements to being hovering. This leads to a more mod-

51

7 Implementation

ern design, a better Learnability because of the known paradigm of hovering noti-

fications from mobile devices and a higher Satisfaction when using the application

caused by the lack of repositioned UI elements. Figure 7.6 shows such a notification

in the top right corner of the screen.

Figure 7.7: Keyboard shortcuts and full-screen buttons

Figure 7.8: Validity of questionnaire pages / questions (left) and input fields (right)

Figure 7.9: New error message dialog

52

7 Implementation

Refactoring

In order to create a better Maintainability, the whole application was rewritten using

functional Components. This simplifies the learning effort for new maintainers, as

they only need to learn one Component type. The difference in code is shown in

the Appendix’ Listing A.4 and Listing A.5.

With the removal of the deprecated MomentJS library, date parsing is handled by

JavaScript’s own parser (Intl.DateTimeFormat). Adding the benefit of parsing

dates in the correct format according to the user’s browser language. An example

of a parsed date for the English language is shown in Figure 7.10.

Figure 7.10: Dates in English formatting

53

8 Requirements Comparison

This chapter compares the requirements set in Chapter 5 with the work of this thesis

shown in Chapter 7. It is subdivided into functional requirements and nonfunctional

requirements.

8.1 Functional Requirements

The following table shows the implementation status of the functional requirements.

Table 8.1: Comparison of functional requirements
Code Requirement Implementation status
FRD1 Dynamic secondary notation implemented
FRD2 Highlighting functionality still intact implemented
FRD3 Export process models implemented
FRD4 Detect color in imported models implemented
FRP1 DyVProMo in questionnaire implemented
FRP2 Visibility of DyVProMo interaction elements in

ProMoEE
implemented

FRP3 Applicability implemented
FRP4 English language support partially implemented

FRD1: Dynamic secondary notation

Implemented. DyVProMo can dynamically display colors for different model ele-

ments.

54

8 Requirements Comparison

FRD2: Highlighting functionality still intact

Implemented. The coloring of the elements does not interfere with the coloring from

the already existing highlighting functionality.

FRD3: Export process models

Implemented. DyVProMo is capable of exporting colored BPMN 2.0 XML and SVG

files.

FRD4: Detect color in imported models

Implemented. DyVProMo can detect colors in imported model files and set the color

slider accordingly. If a model includes unknown colors, the user is notified.

FRP1: DyVProMo in questionnaire

Implemented. DyVProMo is integrated into ProMoEE, enabling to create question-

naires with a DyVProMo viewer as part of them.

FRP2: Visibility of DyVProMo interaction elements in ProMoEE

Implemented. The visibility of DyVProMo’s tools can be set on questionnaire cre-

ation.

FRP3: Applicability

Implemented. The modelers and viewers of ProMoEE have a broader functionality

and bugs were fixed, ensuring a higher Applicability.

55

8 Requirements Comparison

FRP4: English language support

Partially implemented. Because of time-constraints the translation of the application

could not be implemented, only the localization of dates was.

8.2 Nonfunctional Requirements

The following table shows the implementation status of the nonfunctional require-

ments.

Table 8.2: Comparison of nonfunctional requirements
Code Requirement Implementation status

NFRD1 Integration capability implemented
NFRD2 Standalone application implemented
NFRD3 Visibility of interaction elements implemented
NFRD4 Usability DyVProMo implemented
NFRP1 Alignment implemented
NFRP2 Usability ProMoEE implemented
NFRP3 Maintainability ProMoEE implemented

NFRD1: Integration capability

Implemented. DyVProMo can be packaged and used as dependency in other

projects.

NFRD2: Standalone application

Implemented. DyVProMo can still be used and further developed as standalone

application.

56

8 Requirements Comparison

NFRD3: Visibility of interaction elements

Implemented. DyVProMo’s tool visibility can be set programmatically.

NFRD4: Usability DyVProMo

Implemented. DyVProMo’s Usability is not affected, as the newly integrated tools

follow the same design principles as the existing ones.

NFRP1: Alignment

Implemented. Both projects now use TypeScript with functional Components on the

same React version.

NFRP2: Usability ProMoEE

Implemented. ProMoEE ’s Usability was vastly improved.

• Learnability : New consistent design with hovering notifications.

• Efficiency : Creation of questionnaires is now substantially more efficient.

• Memorability : Modern design and auto saving make it easier to use.

• Errors: Errors while creating a questionnaire are minimized by auto saving

and more concise information about required input from the user.

• Satisfaction: The new design and above error reduction make it more satis-

factory to use.

NFRP3: Maintainability ProMoEE

Implemented. The removal of multiple dependencies and the usage of functional

components lead to a lowered learning effort when starting to work with the projects.

57

9 Conclusion and Outlook

This chapter concludes the thesis. Moreover, the second section provides an overview

of potential future functionalities for the applications that have been enhanced in this

work.

9.1 Conclusion

This thesis evolves two pre-existing applications developed during Master’s theses

and integrates one into the other. Both of them have the purpose of supporting

research on process model comprehension.

The first application is capable of viewing BPMN 2.0 process models and dynam-

ically changing their displayed elements in order to improve the understanding of

them. It is enhanced by the inclusion of a secondary notation. In detail this means

the ability to dynamically add color to the displayed elements to further increase

understanding of the model. Each element type is given a distinct color to easier

distinguish them from each other. Those colors a meticulously selected based on

recent research to ensure a high increase in understanding while keeping the visual

distraction low. The colors are adjustable by a slider with various setting options,

each of which is coloring a specific set of elements. Furthermore, the application

was extended to export the process models including the colors as set, offering the

possibility to exchange the colored models files with other supporting tools. Ad-

ditionally, the files’ colors are recognized on import and the slider position is set

accordingly.

The second application is a web-platform assisting the creation and conduction of

surveys regarding Business Process Modeling. Therefore, it provides the function-

58

9 Conclusion and Outlook

ality to create, fill and analyze questionnaires. Their elements include the interactive

viewing or modeling of business process models. For analysis, the ability to replay

the creation process of such modeling tasks, exists. It is enhanced regarding its

Usability, Applicability and Maintainability. The questionnaire creation process is

made more error resistant and the design of the entire application is updated, in-

creasing its Usability. Furthermore, the functionality of the integrated modeling tools

is improved by the addition of keyboard shortcuts and a full-screen ability, further

increasing Usability and Applicability. Additionally, the code base is refactored to

use fewer dependencies and making it easier to learn.

To further enhance the functionality of the second application, the first one is in-

cluded into it, providing the possibility to use the process model viewer, including

the newly added secondary notation, in questionnaires. To ensure flexibility doing

so, the various tools of the first application can be changed in visibility for a to be

created questionnaire. The integration can be achieved because both applications

use the React library.

With the provision of these tools, the possibility is offered to conduct empirical re-

search on the comprehension of process models.

9.2 Outlook

This section covers the potential future functionalities enhancing the applications of

this thesis, subdividing it into them respectively. Although progress was made, the

focus of this thesis is the inclusion of DyVProMo, the improvement of Usability and

Maintainability of the code bases. Therefore, the improvements stated by the initial

creators are included as well, marked by an asterisk.

9.2.1 DyVProMo

Saving of process models*

To improve the Applicability of the application, a database to distribute models be-

tween multiple users could be added. This removes the need to store the model

59

9 Conclusion and Outlook

files locally and upload them each time the application is used.

Overlay explanation*

The current implementation of overlays is limited to the name of the element. A

more sophisticated explanation given in a larger overlay could help novices to gain

a faster understanding of the modeling language.

Settings*

Another enhancement could be the provision of a settings dialog to the application in

order to only allow dynamic changes to a subset of elements or restrict the number

of available tools. The foundation for this is given based on the work of this thesis,

as the tools’ visibility can be changed programmatically.

Visibility of Swimlanes*

The current version of the application only allows for the highlighting of specific

Pools or Lanes. Larger process models may include many of those, making the

highlighting feature not sufficient. Therefore, the ability to show only one selected

Swimlane could be added.

Traceability of Message Flows

To improve the traceability of Message Flows in large models, a functionality to

only show the Lanes that interact with a selected Lane could be added, hiding all

others. This may significantly reduce the amount of displayed elements, making the

process more comprehensible.

60

9 Conclusion and Outlook

9.2.2 ProMoEE

Access rights for users*

At the moment, users can only see questionnaires they created themselves. Only

admins have the right to view all questionnaires. Access rights management to

grant users access to specific questionnaires could be added to the application.

Performance on large amounts of answers*

Answers for a single questionnaire are fetched all at once, lowering the performance

on large amounts of answers. A paginated approach with dynamic reloading could

fix this problem.

Deletion of questionnaires*

Questionnaires cannot be deleted by users at the moment. In production this could

lead to a large amount of outdated questionnaires. The ability to delete specific

questionnaires or answers could be added.

Alternating questionnaires*

The creation of a functionality for automatically alternating questionnaires could

improve the empirical research conducted with support of the application.

Adding color support to modeling

Adding DyVProMo’s coloring of elements to the modeler, offering the possibility to

research the effect of colored models on model creation, could be added.

61

9 Conclusion and Outlook

Adding color support to Comparator

To compare models with different coloring or no coloring with each other in a more

efficient manner, the color support could be added to the Comparator.

Support for the English language

Being only available in German, the application could be enhanced to support the

English language. This enables the opportunity to conduct international surveys.

62

A Sources

This Appendix lists multiple source code files.

Listing A.1: Props of the BpmnViewer with default values

1 const BpmnViewer = ({

2 fileData ,

3 setFileData ,

4 explicitColorLevel ,

5 colorLevelCallback ,

6 explicitDetailLevel ,

7 detailLevelCallback ,

8 explicitDetailCheckboxState ,

9 detailCheckboxCallback ,

10 explicitHighlightedElementIds ,

11 highlightedElementIdsCallback ,

12 viewerIsEmbedded = false ,

13 showDownloadButtons = true ,

14 showHighlightBar = true ,

15 showColorSlider = true ,

16 showToolbar = true ,

17 }: BpmnViewerProps) => {

18 [...]

19 }

Listing A.2: HighlightBtn Component written in JavaScript

1 const HighlightBtn = ({ setShowHighlighter }) => {

2 return (

63

A Sources

3 <button

4 className="btn btn -dark bdv -highlight -btn"

5 onClick ={() => {

6 setShowHighlighter(true);

7 }}

8 >

9 Open Highlighter

10 </button >

11);

12 };

Listing A.3: HighlightBtn Component written in TypeScript

1 interface HighlightBtnProps {

2 setShowHighlighter: React.Dispatch <React.

SetStateAction <boolean >>;

3 }

4

5 const HighlightBtn = ({ setShowHighlighter }:

HighlightBtnProps) => {

6 return (

7 <button

8 className="btn btn -dark bdv -highlight -btn"

9 onClick ={() => {

10 setShowHighlighter(true);

11 }}

12 >

13 Open Highlighter

14 </button >

15);

16 };

Listing A.4: CreateUser written as class Component

1 interface Params {

2 token: string;

64

A Sources

3 }

4

5 interface Props {

6 requestLoading: boolean;

7 requestFailedText ?: string;

8 }

9

10 interface Actions {

11 handleReturnToUserOverview: () => void;

12 handleCreateUser: (token: string , userName: string ,

password: string) => void;

13 }

14

15 interface State {

16 userName: string;

17 password: string;

18 inputErrorText ?: string;

19 error: boolean;

20 showPasswort: boolean;

21 }

22

23 class CreateUserComponent extends React.Component <

24 Params & Props & Actions ,

25 State

26 > {

27 constructor(props: Params & Props & Actions) {

28 super(props);

29 this.state = {

30 userName: "",

31 password: "",

32 error: false ,

33 showPasswort: false ,

34 };

35 }

65

A Sources

36

37 public componentDidUpdate(prevProps , prevState ,

snapshot) {

38 if (this.props.requestFailedText !== prevProps.

requestFailedText) {

39 this.setState ({ error: true });

40 }

41 }

42

43 public render () {

44 const { requestLoading , requestFailedText ,

handleReturnToUserOverview } =

45 this.props;

46 const { error , showPasswort } = this.state;

47

48 return (

49 <>

50 [...]

51 </>

52);

53 }

54

55 [...]

56 }

57

58 function mapStateToProps(state: AppState): Props {

59 return {

60 requestLoading: state.intern.requestLoading ,

61 requestFailedText: state.intern.requestFailedError ,

62 };

63 }

64

65 function mapDispatchToActions(dispatch: AppDispatch):

Actions {

66

A Sources

66 return {

67 handleReturnToUserOverview: () => dispatch(

enterUserManagement ()),

68 handleCreateUser: (token , userName , password) =>

69 dispatch(createUser(token , userName , password)),

70 };

71 }

72

73 export const CreateUser = connect(

74 mapStateToProps ,

75 mapDispatchToActions

76)(CreateUserComponent);

Listing A.5: CreateUser written as functional Component

1 interface CreateUserProps {

2 token: string;

3 }

4

5 export const CreateUser = (props: CreateUserProps): JSX.

Element => {

6 const requestLoading = useSelector(

7 (state: AppState) => state.intern.requestLoading

8);

9 const requestFailedText = useSelector(

10 (state: AppState) => state.intern.requestFailedError

11);

12 const dispatch = useDispatch <AppDispatch >();

13

14 const [userName , setUserName] = useState("");

15 const [password , setPassword] = useState("");

16 const [inputErrorText , setInputErrorText] = useState("

");

17 const [error , setError] = useState(false);

18 const [showPasswort , setShowPasswort] = useState(false

67

A Sources

);

19

20 const prevRequestFailedText = useRef <string |

undefined >(undefined);

21

22 useEffect (() => {

23 if (requestFailedText !== prevRequestFailedText.

current) {

24 setError(true);

25 }

26 prevRequestFailedText.current = requestFailedText;

27 });

28

29 [...]

30

31 return (

32 <>

33 [...]

34 </>

35);

36 };

68

Bibliography

[1] Abramov, Dan. Getting Started with Redux | Redux. 2022. URL: https://

redux.js.org/introduction/getting-started (visited on 03/06/2022).

[2] Abramov, Dan. React Redux. 2022. URL: https://react-redux.js.org/

(visited on 03/06/2022).

[3] Becker, Jörg, Rosemann, Michael, and Uthmann, Christoph von. “Guidelines

of business process modeling.” In: Business process management. Ed. by

van der Aalst, W., Desel, J., and Oberweis, A. Lecture Notes in Computer

Science. Springer, 2000, pp. 30–49.

[4] Bootstrap team. Bootstrap · The most popular HTML, CSS, and JS library in

the world. 2022. URL: https://getbootstrap.com/ (visited on 03/06/2022).

[5] Camunda Services GmbH. BPMN editor | demo.bpmn.io. 2022. URL: https:

//demo.bpmn.io/ (visited on 03/07/2022).

[6] Camunda Services GmbH. bpmn-js walkthrough. 2022. URL: https://bpmn.

io/toolkit/bpmn-js/walkthrough (visited on 03/05/2022).

[7] Choi, David. Full-Stack React, TypeScript, and Node. 1st ed. Boston, MA:

Packt Publishing, 2020. ISBN: 978-1-83921-993-1.

[8] Cohen-Or, Daniel et al. “Color harmonization.” In: ACM Trans. Graph. 25.3

(2006), pp. 624–630. ISSN: 0730-0301. DOI: 10.1145/1141911.1141933.

[9] Dropwizard Team. Home - Dropwizard. 2022. URL: https://www.dropwizard.

io/en/latest/ (visited on 03/06/2022).

[10] Dubey, Sanjay Kumar and Rana, Ajay. “Analytical roadmap to usability defi-

nitions and decompositions.” In: International Journal of Engineering Science

and Technology 2.9 (2010), pp. 4723–4729.

69

https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://react-redux.js.org/
https://getbootstrap.com/
https://demo.bpmn.io/
https://demo.bpmn.io/
https://bpmn.io/toolkit/bpmn-js/walkthrough
https://bpmn.io/toolkit/bpmn-js/walkthrough
https://doi.org/10.1145/1141911.1141933
https://www.dropwizard.io/en/latest/
https://www.dropwizard.io/en/latest/

Bibliography

[11] Dumas, Marlon et al. Fundamentals of business process management. Vol. 1.

Springer, 2013. DOI: 10.1007/978-3-642-33143-5.

[12] Elrom, Elad. React and Libraries: Your Complete Guide to the React Ecosys-

tem. 1st ed. New York: Apress, 2021. ISBN: 978-1-4842-6696-0.

[13] Erol, Selim. “Coloring support for process diagrams: a review of color theory

and a prototypical implementation.” In: Vienna University of Economics and

Business (2015).

[14] Facebook, Inc. Getting Started | Create React App. 2022. URL: https://

create-react-app.dev/docs/getting-started (visited on 03/06/2022).

[15] Facebook, Inc. Introducing Hooks – React. 2022. URL: https://reactjs.

org/docs/hooks-intro.html (visited on 03/06/2022).

[16] Facebook, Inc. React - A JavaScript library for building user interfaces. 2022.

URL: https://reactjs.org/ (visited on 03/06/2022).

[17] Figl, Kathrin, Recker, Jan, and Mendling, Jan. “A Study on the Effects of Rout-

ing Symbol Design on Process Model Comprehension.” In: Decision Support

Systems 54.2 (2013), pp. 1104–1118. ISSN: 0167-9236. DOI: 10.1016/j.

dss.2012.10.037. URL: https://www.sciencedirect.com/science/

article/pii/S0167923612003119.

[18] Fowler, Martin. Refactoring: Improving the Design of Existing Code. 2nd ed.

Boston: Addison-Wesley, 2019. ISBN: 978-0-13-475768-1.

[19] Gallik, Florian. “Dynamic Visualization of Additional Information in Process

Models.” Master’s Thesis. Ulm University, 2021.

[20] Genon, Nicolas, Heymans, Patrick, and Amyot, Daniel. “Analysing the cog-

nitive effectiveness of the BPMN 2.0 visual notation.” In: Proceedings of the

Third international conference on Software language engineering. Ed. by Mal-

loy, Brian, Staab, Steffen, and van den Brand, Mark. Lecture Notes in Com-

puter Science. Springer, 2010, pp. 377–396.

70

https://doi.org/10.1007/978-3-642-33143-5
https://create-react-app.dev/docs/getting-started
https://create-react-app.dev/docs/getting-started
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/
https://doi.org/10.1016/j.dss.2012.10.037
https://doi.org/10.1016/j.dss.2012.10.037
https://www.sciencedirect.com/science/article/pii/S0167923612003119
https://www.sciencedirect.com/science/article/pii/S0167923612003119

Bibliography

[21] Green, T. R. G. and Petre, M. “Usability Analysis of Visual Programming

Environments: A ’Cognitive Dimensions’ Framework.” In: Journal of Visual

Languages & Computing 7.2 (1996), pp. 131–174. ISSN: 1045-926X. DOI:

10.1006/jvlc.1996.0009. URL: https://www.sciencedirect.com/

science/article/pii/S1045926X96900099.

[22] Griggs, Bethany. Node Cookbook. 4th ed. Boston: Packt Publishing, 2020.

ISBN: 978-1-83855-875-8.

[23] Gutermuth, Jonas. “Konzeption und Implementierung einer webbasierten An-

wendung zur Durchführung von Modellierungsexperimenten.” Bachelor’s The-

sis. Ulm University, 2016.

[24] Healey, C. and Enns, J. “Attention and Visual Memory in Visualization and

Computer Graphics.” In: IEEE Transactions on Visualization and Computer

Graphics 18.7 (2012), pp. 1170–1188. DOI: 10.1109/TVCG.2011.127.

[25] Jin, Fang and Kale, Sagar. Designing React Hooks the Right Way. 1st ed.

Boston, MA: Packt Publishing, 2022. ISBN: 978-1-80323-595-0.

[26] Kim, Miryung, Zimmermann, Thomas, and Nagappan, Nachiappan. “A field

study of refactoring challenges and benefits.” In: Proceedings of the 20th In-

ternational Symposium on the Foundations of Software Engineering. Cary,

North Carolina: Association for Computing Machinery, 2012, Article 50. ISBN:

9781450316149. DOI: 10.1145/2393596.2393655.

[27] Kolb, Jens, Kammerer, Klaus, and Reichert, Manfred. “Updatable Process

Views for Adapting Large Process Models: The proView Demonstrator.” In:

Demo Track of the 10th International Conference on Business Process Man-

agement. Lecture Notes in Computer Science. Springer, 2012, pp. 6–11. URL:

http://dbis.eprints.uni-ulm.de/847/.

[28] Kolb, Jens and Reichert, Manfred. “A Flexible Approach for Abstracting and

Personalizing Large Business Process Models.” In: Applied Computing Re-

view 13.1 (2013), pp. 6–17. URL: http://dbis.eprints.uni-ulm.de/914/.

[29] Krause, Jörg. Introducing Bootstrap 4: create powerful web applications using

Bootstrap 4.5. 2nd ed. Berkeley, CA: Apress, 2020. ISBN: 978-1-4842-6203-0.

71

https://doi.org/10.1006/jvlc.1996.0009
https://www.sciencedirect.com/science/article/pii/S1045926X96900099
https://www.sciencedirect.com/science/article/pii/S1045926X96900099
https://doi.org/10.1109/TVCG.2011.127
https://doi.org/10.1145/2393596.2393655
http://dbis.eprints.uni-ulm.de/847/
http://dbis.eprints.uni-ulm.de/914/

Bibliography

[30] Kreßmann, Fabian. “Konzeption und Entwicklung einer Web-Plattform für die

Definition, Durchführung und Auswertung von Studien im Kontext von Busi-

ness Process Management.” Master’s Thesis. Ulm University, 2019.

[31] Kummer, Tyge-F., Recker, Jan, and Mendling, Jan. “Enhancing Understand-

ability of Process Models through Cultural-dependent Color Adjustments.”

In: Decision Support Systems 87 (2016), pp. 1–12. ISSN: 0167-9236. DOI:

10.1016/j.dss.2016.04.004. URL: https://www.sciencedirect.com/

science/article/pii/S0167923616300574.

[32] La Rosa, M. et al. “Managing Process Model Complexity via Concrete Syn-

tax Modifications.” In: IEEE Transactions on Industrial Informatics 7.2 (2011),

pp. 255–265. DOI: 10.1109/TII.2011.2124467.

[33] Leopold, H., Mendling, J., and Günther, O. “Learning from Quality Issues of

BPMN Models from Industry.” In: IEEE Software 33.4 (2016), pp. 26–33. ISSN:

1937-4194. DOI: 10.1109/MS.2015.81.

[34] MacDonald, L. W. “Using color effectively in computer graphics.” In: IEEE

Computer Graphics and Applications 19.4 (1999), pp. 20–35. DOI: 10.1109/

38.773961.

[35] Matsuda, Y. Color Design. Asakura Shoten, 1995.

[36] Mendling, Jan, Reijers, Hajo A., and Cardoso, Jorge. “What makes process

models understandable?” In: International Conference on Business Process

Management. Ed. by Alonso, G., Dadam, P., and Rosemann, M. Lecture

Notes in Computer Science. Springer, 2007, pp. 48–63.

[37] Mens, T. and Tourwe, T. “A survey of software refactoring.” In: IEEE Transac-

tions on Software Engineering 30.2 (2004), pp. 126–139. DOI: 10.1109/TSE.

2004.1265817.

[38] Meyer, Eric A. and Weyl, Estelle. CSS: The Definitive Guide: Visual Presen-

tation for the Web. 4th ed. Sebastopol, CA: O’Reilly Media, 2018.

[39] Microsoft. TypeScript: Documentation - The Basics. 2022. URL: https://

www.typescriptlang.org/docs/handbook/2/basic-types.html (visited

on 03/06/2022).

72

https://doi.org/10.1016/j.dss.2016.04.004
https://www.sciencedirect.com/science/article/pii/S0167923616300574
https://www.sciencedirect.com/science/article/pii/S0167923616300574
https://doi.org/10.1109/TII.2011.2124467
https://doi.org/10.1109/MS.2015.81
https://doi.org/10.1109/38.773961
https://doi.org/10.1109/38.773961
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://www.typescriptlang.org/docs/handbook/2/basic-types.html
https://www.typescriptlang.org/docs/handbook/2/basic-types.html

Bibliography

[40] Moody, D. “The "Physics" of Notations: Toward a Scientific Basis for Con-

structing Visual Notations in Software Engineering.” In: IEEE Transactions on

Software Engineering 35.6 (2009), pp. 756–779. DOI: 10.1109/TSE.2009.

67.

[41] Mozilla Foundation. Classes - JavaScript | MDN. 2022. URL: https://developer.

mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes (visited

on 03/06/2022).

[42] Natschläger, Christine. “Deontic BPMN.” In: International Conference on Database

and Expert Systems Applications. Ed. by Hameurlain, A. et al. Lecture Notes

in Computer Science. Springer, 2011, pp. 264–278.

[43] Nielsen, Jakob. Usability Engineering. Morgan Kaufmann, 1994. ISBN: 0125184069.

[44] OMG BPMN Model Interchange Working Group. BPMN in Color Specifica-

tion. 2014. URL: https://github.com/bpmn-miwg/bpmn-in-color/blob/

master/BPMN%20in%20COLOR.pdf (visited on 03/04/2022).

[45] OMG BPMN Model Interchange Working Group. The BPMN Model Inter-

change Working Group. 2022. URL: https://www.omgwiki.org/bpmn-

miwg/doku.php (visited on 03/04/2022).

[46] OMG. BPMN 2.0 by Example. 2010. URL: https://www.omg.org/cgi-

bin/doc?dtc/10-06-02.pdf (visited on 03/05/2022).

[47] OMG. Business Process Model and Notation (BPMN). 2014. URL: https:

//www.omg.org/spec/BPMN/2.0.

[48] Pinggera, Jakob, Zugal, Stefan, and Weber, Barbara. “Investigating the Pro-

cess of Process Modeling with Cheetah Experimental Platform.” In: Proceed-

ings of the 1st Empirical Research in Process-Oriented Information Systems.

Ed. by Mutschler, B. et al. CEUR, 2010, pp. 13–18.

[49] Rappin, Noel. Modern CSS with Tailwind. 1st ed. Boston, MA: Pragmatic

Bookshelf, 2021.

[50] Recker, Jan. “Empirical Investigation of the Usefulness of Gateway Constructs

in Process Models.” In: European Journal of Information Systems 22.6 (2013),

pp. 673–689. ISSN: 0960-085X. DOI: 10.1057/ejis.2012.50.

73

https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://github.com/bpmn-miwg/bpmn-in-color/blob/master/BPMN%20in%20COLOR.pdf
https://github.com/bpmn-miwg/bpmn-in-color/blob/master/BPMN%20in%20COLOR.pdf
https://www.omgwiki.org/bpmn-miwg/doku.php
https://www.omgwiki.org/bpmn-miwg/doku.php
https://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf
https://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf
https://www.omg.org/spec/BPMN/2.0
https://www.omg.org/spec/BPMN/2.0
https://doi.org/10.1057/ejis.2012.50

Bibliography

[51] Recker, Jan et al. “Business Process Modeling-A Comparative Analysis.” In:

Journal of the association for information systems 10.4 (2009), pp. 333–363.

ISSN: 1536-9323. DOI: 10.17705/1jais.00193.

[52] Reijers, H. A. et al. “Syntax highlighting in business process models.” In: De-

cision Support Systems 51.3 (2011), pp. 339–349. ISSN: 0167-9236. DOI:

10.1016/j.dss.2010.12.013. URL: https://www.sciencedirect.com/

science/article/pii/S0167923611000042.

[53] Scherle, Steffen. “Konzeption und Evaluierung einer domänenspezifischen

Modellierungsumgebung für prozessorientierte Fragebögen.” Diploma The-

sis. Ulm University, 2014.

[54] Schrepfer, Matthias et al. “The Impact of Secondary Notation on Process

Model Understanding.” In: IFIP Working Conference on The Practice of Enter-

prise Modeling. Ed. by Persson, A. and Stirna, J. Lecture Notes in Business

Information Processing. Springer, 2009, pp. 161–175.

[55] Stark, J., Braun, R., and Esswein, W. “Perceptually Discriminating Chunks

in Business Process Models.” In: Proceedings of the 18th Conference on

Business Informatics. 2016, pp. 84–93. ISBN: 2378-1971. DOI: 10.1109/CBI.

2016.18.

[56] Stark, Jeannette. “Perceptual Discriminability in Conceptual Modeling.” In:

Proceedings of the 6th Enterprise Engineering Working Conference. Ed. by

Aveiro, D., Pergl, R., and Gouveia, D. Lecture Notes in Business Information

Processing. Springer, 2016, pp. 103–117.

[57] Stark, Jeannette and Esswein, Werner. “Using Secondary Notation to Im-

prove the Cognitive Effectiveness of BPMN-Models.” In: Proceedings of the

25th European Conference on Information Systems. Ed. by Ramos, Isabel,

Tuunainen, Virpi, and Krcmar, Helmut. Association for Information Systems,

2017. ISBN: 978-989-20-7655-3. URL: https://aisel.aisnet.org/ecis2017_

rp/35.

[58] Stark, Jeannette, Esswein, Werner, and Braun, Richard. “Systemizing Colour

for Conceptual Modeling.” In: Proceedings of the 13th International Confer-

ence on Wirtschaftsinformatik. Ed. by Leimeister, J. M. and Brenner, W. 2017,

pp. 256–270.

74

https://doi.org/10.17705/1jais.00193
https://doi.org/10.1016/j.dss.2010.12.013
https://www.sciencedirect.com/science/article/pii/S0167923611000042
https://www.sciencedirect.com/science/article/pii/S0167923611000042
https://doi.org/10.1109/CBI.2016.18
https://doi.org/10.1109/CBI.2016.18
https://aisel.aisnet.org/ecis2017_rp/35
https://aisel.aisnet.org/ecis2017_rp/35

Bibliography

[59] Stein Dani, Vinicius, Dal Sasso Freitas, Carla Maria, and Thom, Lucinéia

Heloisa. “Ten years of visualization of business process models: A systematic

literature review.” In: Computer Standards & Interfaces 66 (2019), p. 103347.

ISSN: 0920-5489. DOI: 10.1016/j.csi.2019.04.006. URL: https://www.

sciencedirect.com/science/article/pii/S0920548918303295.

[60] Tailwind CSS - Rapidly build modern websites without ever leaving your HTML.

2022. URL: https://tailwindcss.com/ (visited on 03/06/2022).

[61] Thomas, Jeremy. Bulma: Free, open source, and modern CSS framework

based on Flexbox. 2016. URL: https://bulma.io/ (visited on 03/06/2022).

[62] Tobias Paul Bleisch. “An Empirical Study of CSS Code Smells in Web Frame-

works.” Master’s Thesis. California Polytechnic State University, 2018. DOI:

10.15368/theses.2018.105.

[63] Tokumaru, M., Muranaka, N., and Imanishi, S. “Color design support system

considering color harmony.” In: Proceedings of the IEEE International Con-

ference on Fuzzy Systems. 2002, pp. 378–383. DOI: 10.1109/FUZZ.2002.

1005020.

[64] Ulm University. QuestionSys - A Generic and Flexible Questionnaire System

Enabling Process-Driven Mobile Data Collection. 2013. URL: https://www.

uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/questionsys

(visited on 03/02/2022).

[65] Wong, Wucius. Principles of Color Design: Designing with Electronic Color.

Van Nostrand Reinhold, 1997.

[66] npm, Inc. About npm. 2022. URL: https://docs.npmjs.com/about-npm

(visited on 03/05/2022).

[67] npm, Inc. package.json | npm Docs. 2022. URL: https://docs.npmjs.com/

cli/v8/configuring-npm (visited on 03/05/2022).

[68] van der Aalst, Wil M. P. et al. “Business Process Management: A Compre-

hensive Survey.” In: ISRN Software Engineering (2013). DOI: 10.1155/2013/

507984.

75

https://doi.org/10.1016/j.csi.2019.04.006
https://www.sciencedirect.com/science/article/pii/S0920548918303295
https://www.sciencedirect.com/science/article/pii/S0920548918303295
https://tailwindcss.com/
https://bulma.io/
https://doi.org/10.15368/theses.2018.105
https://doi.org/10.1109/FUZZ.2002.1005020
https://doi.org/10.1109/FUZZ.2002.1005020
https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/questionsys
https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/questionsys
https://docs.npmjs.com/about-npm
https://docs.npmjs.com/cli/v8/configuring-npm
https://docs.npmjs.com/cli/v8/configuring-npm
https://doi.org/10.1155/2013/507984
https://doi.org/10.1155/2013/507984

Name: Florian Loth Matrikelnummer: 994158

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Florian Loth

flo
08.03.2022

	Introduction
	Motivation
	Contribution
	Structure of the Thesis

	Fundamentals
	BPMN 2.0
	BPMN in Color

	Perceptual Discriminability
	Secondary Notation
	Color Theory
	Usability
	Refactoring
	Node.js
	npm

	TypeScript
	Bpmn-js
	CSS Frameworks
	Bulma
	Bootstrap
	TailwindCSS

	React
	Components
	Hooks
	Create-React-App

	Redux
	Dropwizard

	Related Work
	ProMoEE
	DyVProMo
	Color in process models

	Introduction to ProMoEE and DyVProMo
	ProMoEE
	Architecture

	DyVProMo

	Requirements Analysis
	Functional Requirements
	Nonfunctional Requirements

	Design
	Comparison of ProMoEE and DyVProMo
	Addition of Secondary Notation to DyVProMo
	DyVProMo model file import and export
	Alignment of the projects
	Integration of DyVProMo into ProMoEE
	Improving ProMoEE's Usability
	Refactoring ProMoEE

	Implementation
	DyVProMo
	ProMoEE

	Requirements Comparison
	Functional Requirements
	Nonfunctional Requirements

	Conclusion and Outlook
	Conclusion
	Outlook
	DyVProMo
	ProMoEE

	Sources
	Bibliography

