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Abstract. In object-aware process management, processes are repre-
sented as multiple interacting objects rather than a sequence of activi-
ties, enabling data-driven and highly flexible processes. In such flexible
scenarios, however, it is crucial to be able to check to what degree the
process is executed according to the model (i.e., guided behavior). Con-
formance checking algorithms (e.g., Token Replay or Alignments) deal
with this issue for activity-centric processes based on a process model
(e.g., specified as a petri net) and a given event log that reflects how
the process instances were actually executed. This paper applies confor-
mance checking algorithms to the behavior of objects. In object-aware
process management, object lifecycle processes specify the various states
into which corresponding objects may transition as well as the object at-
tribute values required to complete these states. The approach accounts
for flexible lifecycle executions using multiple workflow nets and confor-
mance categories, therefore facilitating process analysis for engineers.
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1 Introduction

Activity-centric approaches to business process management focus on the control-
flow perspective of business processes, i.e., the order in which individual activities
shall be executed. Consequently, activity-centric processes consist of activities
that must be executed in a pre-specified order. While activities may require data
during their execution, their actual specification (i.e., the data provided during
activity execution) is considered as a black-box. Alternative paradigms such as
data-centric and -driven process management [21] represent a process in terms
of multiple interacting objects, allowing for greater flexibility through the use
of declarative rules and generated forms. The individual behavior of an object
is usually data-driven and described in terms of lifecycle processes. A lifecycle
process specifies the states an object may transition during its lifecycle and the
data required to complete each state. It, therefore, enables a white-box approach
regarding process data. Examples of object-centric and data-driven process man-
agement approaches include artifact-centric processes [11], case handling [5], and



object-aware process management [16]. Despite the inherent flexibility of object-
centric and data-driven approaches, the problem of not always executing a life-
cycle process according to its pre-specified behavior applies to this paradigm
as well. Deviations may be caused by users behaving differently than expected,
ad-hoc behavioral changes [7], or errors introduced during the modeling or de-
ployment of the lifecycle processes. Dynamic behavioral changes, for example,
enable a variety of runtime adaptations of the lifecycle process model of a partic-
ular object. Examples include the insertion, reordering and deletion of lifecycle
states, the insertion or deletion of object attributes, or objects in general. Fur-
thermore, dynamic changes may be applied to individual objects and lifecycle
instances (i.e., ad-hoc changes), respectively, as well as to lifecycle models in
general (i.e., lifecycle evolution).

Another layer of complexity for checking conformance of object-centric and
data-driven processes is their inherent flexibility. In a nutshell, the lifecycle pro-
cess modeled for each business object describes its guided behavior, while ac-
counting for tolerated state transitions. Nevertheless, there exist additional ex-
ecutions, which deviate from the modeled behavior, but correspond to correct
executions of a lifecycle process as well. Moreover, the latter may occur within in-
dividual lifecycle states (i.e., when setting the attributes by filling corresponding
form fields) as well as at transitions between them.

Assume a Student submits a solution to an exercise using a form. As long as
all required form fields are set, the submission may be handed in. The order in
which the form is filled, however, is arbitrary allowing for deviations from the
underlying lifecycle model that was used to generate the form and its logic (i.e.,
its guided behavior). In a nutshell, the execution of object lifecycle processes
operates within implicitly defined boundaries, and, therefore, tolerates certain
deviations during lifecycle execution.

The approach presented in this paper is capable of identifying which object
lifecycle process executions conform with the guided behavior of lifecycle pro-
cesses, which executions are tolerated due to the built-in flexibility of lifecycle
processes, and which executions constitute deviations from the lifecycle process.

The paper is structured as follows: Section 2 introduces PHILharmonicFlows,
our approach to object-centric and data-driven process management. Section 3
describes the problem addressed by the paper. Section 4 describes the gran-
ularity and flexibility of object lifecycle processes and discusses how we can
formally represent the latter through various workflow nets. In Section 5, we
introduce conformance categories derived from conformance checking results in
the context of object lifecycle processes. Section 6 evaluates our approach using
multiple event logs. In Section 7, we relate our work to existing approaches for
conformance checking. Section 8 summarizes the paper and provides an outlook.

2 Fundamentals

PHILharmonicFlows enhances the concept of object-centric and data-driven pro-
cess management with the concept of objects. Each real-world business object is



represented as one such object. The latter comprises data, represented in terms
of attributes, and a state-based process model describing object behavior in terms
of an object lifecycle model (cf. Fig. 1).

The data- and process-aware e-learning system PHoodle, a sophisticated ap-
plication implemented with PHILharmonicFlows, for example, includes objects
such as Lecture, Exercise, and Submission. For the Submission object (cf. Fig.
1), attributes include Exercise, E-Mail, Files, and Points. The corresponding
object lifecycle process is shown in Fig. 1. It describes the object behavior in
terms of states (e.g., Edit, Submit, Rate, and Rated) as well as state transitions.
Furthermore, each state may comprise several steps (e.g., steps Exercise, E-Mail,
and Files in state Edit), with each step referring to exactly one object attribute.
In other words, the steps of a lifecycle process define which attributes need to
be written before completing the state and transitioning to the next one.

At runtime, a lifecycle allows for the dynamic and automated generation of
forms (cf. Fig. 1). Accordingly, data acquisition in PHILharmonicFlows is based
on the information modeled in both states and steps.

The lifecycle of a Submission object (cf. Fig. 1) can be interpreted as follows:

Edit is the initial state of the Submission object as it has no incoming transi-
tions. After a student has provided data for steps Exercise, E-Mail and Files,
the Submission may transition to state Submit.
State Submit, in turn, shall enable students to alter their submission prior to the
exercise deadline by following the backwards transition. This allows returning
back to state Edit, hence enabling changes to attributes Exercise, E-Mail and
Files. A Submission automatically transitions from state Submit to Rate once
the exercise deadline is reached, and tutors may then rate the final submission.
In state Rate, a Tutor may read the provided attribute values from previous
steps, provide data for step Points, and transition the submission to state
Rated. Rated is the end state in which students may check their points.

This simple example emphasizes the importance of data executing an object
lifecycle process. While an object instance may only be in one active state at a
time, we also support choices [7, 20].
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Fig. 1. Example Object Lifecycle Process of Object Submission



Generally, a business process not only comprises one single object, but in-
volves multiple objects (e.g., Submissions, Lectures or Exercises) and their cor-
responding lifecycles. In PHILharmonicFlows, these objects are captured in a
conceptual data model together with their semantic relations (including cardi-
nality constraints) [16]. A semantic relation denotes a logical association between
two objects (e.g., a relation between a Lecture and an Exercise implies that mul-
tiple exercises may be related to a single lecture). At runtime, each object may
be instantiated multiple times, each representing an individual object instance
[7]. The lifecycle processes of different object instances are then executed concur-
rently. Additionally, relations (e.g., between a Lecture instance and an Exercise
instance) are instantiated enabling associations between two object instances.
This results in novel information (e.g., one Exercise instance belongs to another
Lecture instance), and intertwines the executed instances [16].

3 Problem Statement

Conformance checking leverages information from process event logs to correlate
a process model with reality in order to assess its quality with respect to the
behavior documented in the event log [2]. Thus, conformance checking measures
how the recorded behavior of a process fits to its modeled representation by, for
example, calculating a corresponding fitness value. Fitness measures to which
extend a model can represent the behavior documented in an event log. This
requires different representations of a process with respect to the recorded (e.g.,
an event log) and modeled behavior (e.g., a Petri net of a lifecycle process).

For activity-centric processes, where activities are mostly considered as black-
boxes, existing conformance checking algorithms relate a process model to an
event log. Deviations from the process model are identified reducing the cal-
culated fitness value between event log and process model. In the context of
object-aware process management, where the behavior of objects is modeled us-
ing a white-box approach (i.e., object behavior is explicitly modeled) and the
execution of object lifecycle processes is data-driven (i.e., based on the availabil-
ity of data) this problem is of great importance as well. However, due to the
object-centric and data-driven processing of object lifecycles and the flexibility
offered in this context [7], conformance issues are more challenging to address.

When processing object lifecycles, executions may deviate from the modeled
lifecycle process, but still remain correct executions, due to the built-in flexibil-
ity of lifecycle processes. For example, the attributes of the form generated for
state Edit in Fig. 1 may be filled in any order to complete the state (though
there is a guidance in which order the form fields shall be filled according to
the pre-specified sequence of steps within a state) or attribute values may be
changed after having been set before. Additionally, Submission objects may re-
turn to previous states using backwards transitions (cf. Fig. 1). Both scenarios
reflect tolerated execution behavior, but also deviations from the guided lifecycle
behavior (cf. Tables 1 and 2).



Consequently, conformance checking of object lifecycle processes must ac-
count for both the guided and the tolerated lifecycle executions for individual
states as well as the transitions between states. Tolerated executions are speci-
fied with respect to the order of states (i.e., the order in which single forms shall
be processed) as well as the order of the steps within a state (i.e., the order in
which fields within a form are organized). Tables 1 and 2 illustrate the differ-
ent behavioral categories on two granularity levels for object lifecycle processes.
Process engines capable of executing object-centric processes such as PHILhar-
monicFlows [16] or FLOWer [5] may generate all three behavior categories at
runtime through the use of advanced concepts such as dynamic changes [6].

Conformance checking for object-aware lifecycle processes is multi-dimensional.
On one hand, several levels of granularity exist at which fitness needs to be mea-
sured (state- and step-level, cf. Section 4). On the other, for each granularity
level, it needs to be distinguished between guided and tolerated behavior to
identify actual deviations. Consequently, a single fitness metric might not be
sufficient to cover both dimensions.

Table 1. State Level Behavior

Behavior Description Example (cf. Fig. 1)

Guided
The lifecycle reaches its end state
without following any backwards

transitions during lifecycle execution.
< Edit, Submit, Rate, Rated >

Tolerated
The lifecycle reaches its end state, but

backwards transitions were chosen
during lifecycle execution.

< Edit, Submit, Edit, Submit,
Rate, Rated, Rate, Rated >

Deviating
The lifecycle transitions to a

non-reachable or unspecified state
during its execution.

< Edit, Submit, Edit, Rated >
< Edit, Submit, NewState, Rate,

Rated >

Table 2. Step Level Behavior

Behavior Description Example (State Edit of Fig. 1)

Guided
All fields of the form of a lifecycle

state are filled according to the
pre-specified order of steps.

< Exercise, E-Mail, Files >

Tolerated
All mandatory fields of the form have
been filled prior to state completion.

< E-Mail, Exercise, Files >
< Files, E-Mail, Exercise >

Deviating
Required steps have been skipped or
additional steps (i.e., attributes) have

been added.

< Files>
< Files, Exercise, Points >



4 Granularity and Flexibility of Lifecycle Processes

When analyzing object lifecycle executions, we need to account for the granu-
larity (i.e., state and step level), while distinguishing between guided, tolerated
and deviating behavior (cf. Tables 1 and 2). We, therefore, transform an object
lifecycle process into a set of workflow nets, while accounting for granularity as
well as the various degrees of flexible execution.

4.1 Granularity of Object Lifecycle Processes

To account for the granularity of object lifecycle processes, we analyze the be-
havior of each lifecylce process on two granularity levels, i.e., state and step level
(cf. Fig. 2). Concerning the state level, we focus on the transitions between states
(e.g., state Edit must be completed before state Submit may be activated). On
step level, we analyze the logic of the steps within a state. Note that this logic
is used to guide users through a form. Fig. 2 depicts the two granularity levels.
The transformation of an object lifecycle process into a set of workflow nets of
different granularity allows checking the conformance with respect to different
levels of an object lifecycle (i.e., state and step level) separately. Furthermore,
we are able to categorize deviations with respect to their origin, i.e., we can
analyze whether a deviation results from unplanned state changes or from the
flexible processing of a single state (i.e., the processing of its form). In turn, this
allows for a more fine-grained conformance checking enabling data-driven pro-
cess improvement. By solely considering the granularity, we are able to identify
the origin of a deviation. However, we are unable to distinguish whether or not
the latter are tolerated due to built-in flexibility. We therefore need to consider
flexibility on both levels as well.

SubmitSubmit

SubmissionSubmission

RateRate RatedRated

E-MailE-Mail FilesFilesExerciseExercise PointsPoints

EditEditState level

Step level

ObjectObject

StatesStates

StepsSteps

Granularity

Fig. 2. Granularity of Object Lifecycle Processes (derived from Fig. 1)

4.2 Flexibility in Object Lifecycle Processes

In general, object lifecycle processes define the guided behavior of an object and
provide corresponding user guidance during lifecycle execution. However, due



to their flexible execution nature [20], object lifecycle processes allow for devi-
ating behavior at both granularity levels (cf. Tables 1 and 2). When checking
the conformance of an object lifecycle process with an event log, differentiating
between these categories offers promising perspectives for lifecycle improvement
on one hand, but introduces additional challenges on the other. Note that con-
formance checking of object lifecycle processes must therefore account for both
the granularity levels and the flexible execution behavior.

We address this challenge by distinguishing between guided and tolerated
behavior. Accordingly, we use multiple workflow nets that can be derived from
lifecycle processes on both granularity levels. This allows distinguishing between
guided, tolerated, and deviating behavior on both granularity levels.

Definition 1. Workflow Net [1]
A Workflow Net is a Petri net N = (P,T,F, i, o) where:
P constitutes a finite set of places and T a finite set of transitions, P ∩T 6= ∅,
F ⊆ (P × T )∪ (T × P ) represents a set of directed arcs, called flow relation.
i is the source place (•i = ∅) and o constitutes the sink place (o• = ∅)
All other nodes are on a path from i to o.

Note that the workflow net depicted in Fig. 3 contains 6 places, 5 transitions,
and 10 arcs. We use multiple workflow nets as representations of the lifecycle pro-
cess behaviors described in Tables 1 and 2. This, in turn, allows us to distinguish
between guided, tolerated, and deviating behavior.

4.3 Flexibility on State Level

On the state level, guided behavior is affected when backwards transitions are
followed during lifecycle execution (cf. Table 1).

Guided state level behavior corresponds to activate the states of the lifecycle
process exactly according to its specified order (cf. Fig. 1 and Table 1). By
following a backwards transition, one may return to a preceding state, which
has already been passed. In turn, this indicates that this state has not been
properly processed such that object attribute changes become necessary (e.g.,
by uploading an updated file and assigning it to attribute Files in state Edit).
In one such scenario of the submission lifecycle process (cf. Fig. 1), students may
alter their submission by jumping back to state Edit following the corresponding
backwards transition. When checking conformance, such backwards transitions
still correspond to tolerated, but not to guided behavior (cf. Table 1). Regarding
the lifecycle process from Fig. 1, the guided behavior on the state level translates
to the workflow net displayed in Fig 3. Each state is translated to a place in
the workflow net, external and automatic state transitions are translated to
transitions between these places, whereas backwards transitions are neglected
(i.e., they correspond to tolerated behavior). Note that choices between states
may be represented as well.

Tolerated state level behavior covers backwards transitions, which allow re-
turning to a previous state to account for foreseeable exceptions during lifecycle



Source Edit Submit Rate RatedSource to Edit Edit to Submit Submit to Rate Rate to Rated Rated to Sink Sink

Fig. 3. Guided State Level Workflow Net for Object Submission

process execution as well. While these (still planned) deviations are not cov-
ered by the guided state behavior (cf. Fig. 3), their execution at runtime is still
tolerated. Considering the Submission lifecycle process (cf. Fig 1), for example,
tolerated behavior allows returning from state Submit to state Edit as well as
from state Rated to Rate. This enables two additional scenarios. First, students
may return their submission to state Edit, which allows them to change their
previous submissions (e.g., update uploaded files). Second, tutors may return
submissions to state Rate, which allows changing the value of the lifecycle pro-
cess step Points, e.g., if the tutor overlooked mistakes in a previously rated
submission. While the lifecycle model from Fig. 1 accounts for such scenarios,
the latter indicate that previous state completions were incorrect (e.g., upload of
a wrong file). We generate the “tolerated net” (cf. Fig. 4) similar to the guided
behavior, but do not neglect backwards transitions. Algorithm 1 describes the
generation of both guided and tolerated nets on state granularity in pseudo code.

Source Edit Submit Rate RatedSource to Edit Edit to Submit Submit to Rate Rate to Rated Rated to Sink Sink

Backwards: 
Submit to Edit

Backwards: 
Rated to Rate

Fig. 4. Tolerated State Level Workflow Net for Object Submission

Algorithm 1 Workflow Net Generation Algorithm on State Level Granularity
Require: OLP, NetType . Object lifecycle process, guided or tolerated behavior

PetriNet← new
PetriNet.addP lace(source)
PetriNet.addP lace(sink)
for all states in OLP do

PetriNet.addP lace(state)
end for
for all t in OLP do . Transitions of OLP

if t.source.state 6= t.target.state then . Transition is external or backwards
if NetType = guided AND t.type = backwards then

//Do Nothing
else

PetriNet.addTransition(t)
PetriNet.addArcs(t.source, t.target) . Arcs to connect t with in- and output places

end if
end if

end for
PetriNet.makeWFN() . Connect sink and source to places of first and last states



4.4 Flexibility on Step Level

As opposed to the state level, step level behavior covers intra-state behavior, i.e.,
the steps of a specific state and the order and constraints for their execution.

In PHILharmonic Flows, the behavior on step level is reflected by the control
flow logic for processing the corresponding form. The behavior on step level is
therefore directly connected to the actual data acquisition, i.e., steps of a state
and their order are used to automatically generate role-specific forms at runtime.

Each step of a state corresponds to a single attribute that may be set while
the state is active. A state may only be completed once all mandatory attributes
have been set, i.e., its corresponding form has been properly filled. Note that
the transitions between the steps of a given state are used to organize fields in
the generated forms (and cursor control). For the step level, guided behavior
means obeying the pre-specified execution logic of the steps when setting the
attributes (cf. Table 2). Each attribute may be changed any number of times
when processing the respective form field, and conditional attributes are possible
as well. Considering the generated forms, guided behavior corresponds to the
form being filled according to the pre-specified order of steps (cf. Table 2). Fig.
5 depicts the guided net derived for state Edit of the Submission object.
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Fig. 5. Guided Step Level Workflow Net for State Edit

For the tolerated state level behavior there only exist two constraints. First,
an attribute (i.e., a step) needs to be set before it may be changed. Second, a
state may only be completed once all mandatory attributes have been set. The
workflow net depicted in Fig. 6 represents this behavior for state Edit of the
Submission object (cf. Fig. 1).
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Fig. 6. Tolerated Step Level Workflow Net for State Edit



On step level, conditional steps (e.g., suppose a statement would be required
if step Points in state Rate is below a certain threshold) may be represented
through choice constructs and corresponding, additional state completion tran-
sitions. Algorithm 2 generates both the guided and tolerated workflow net (cf.
Fig 6) on step level in pseudo code.

Algorithm 2 Workflow Net Generation Algorithm on Step Level Granularity
Require: OLP, NetType, OLPstate . object lifecycle process, guided/tolerated, selected state

PetriNet← new
PetriNet.addP lace(source)
PetriNet.addP lace(sink)
for all step in OLP.getSteps(OLPstate) do

PetriNet.addBehavior(step,NetType) . one or two places & transitions (Set & Change)
end for
if NetType = tolerated then

PetriNet.addAndConnect() . Use tolerated syntax to connect places with Sink and Source
else

for all t in OLP do . Transitions of OLP
if t.source.state = t.target.state AND t.source = OLPState then

PetriNet.connectSteps(t) . Connect steps according to transition of OLP
end if

end for
end if
PetriNet.makeWFN() . Add & connect one place (guided), connect sink and source

5 Conformance Checking of Lifecycle Processes

After having shown how to generate the workflow nets for each granularity level
while at the same time accounting for lifecycle flexibility, we utilize these nets
to check conformance for each level individually. On both granularity levels,
however, using workflow nets that reflect guided behavior (e.g., Figs. 3 or 5)
only enables us to check whether an object lifecycle was executed according to
the guided behavior (i.e., both states and steps are executed based on the order
described by the guided behavior). Deviations from this behavior may, in turn,
be tolerated by the object lifecycle process due to its built-in flexibility.

A similar scenario arises when only using workflow nets representing tolerated
behavior (e.g., Figs. 4 or 6), which represents all lifecycle executions that may
be realized without any interventions from process supervisors (i.e., all correct
executions). Based on the fitness value between the workflow nets representing
tolerated behavior on one hand and an event log on the other, we are only
able to check whether an object lifecycle process instance changed states, or
a state was processed according to the tolerated behavior. We are unable to
figure out which object lifecycle process instances were executed according to
guided behavior (i.e., whether states were transitioned, or steps were processed
according to the guided behavior).

When considering both nets of a granularity level in combination (e.g., Figs.
3 and 4 or 5 and 6), we can calculate two fitness values for both the state and



the step level (i.e., for each state). One fitness value corresponds to the fitness
regarding guided behavior, the other to tolerated behavior for a selected level
of granularity (i.e, state or step level). In combination, the two fitness values
allow categorizing each lifecycle process instance according to the behavior and
granularity levels described in Tables 1 and 2. Furthermore, we can distinguish
whether deviations from the guided behavior are due to exceptions or due to the
flexibility inherent to object-aware processes.

Note that we use Alignments [3] to calculate the resulting fitness values
- alignments are the de-facto standard approach to evaluate fitness [12] and
are able to cope with log entries unrelated to the lifecycle process model (e.g.,
executing an unmodeled step or state). Alignments connect execution traces
with a valid execution sequence from a process model through log, model or
synchronous moves [3, 10]. Fitness is then calculated using costs of identified log
and model moves. Other algorithms (e.g., Token Replay [8]) may be used as well.

5.1 Conformance Categories

When categorizing lifecycle process executions, we either focus on the state
changes (i.e., state level) or individual states (i.e., step level) recorded in the
event log. Usually, event data are recorded during the execution of a process and
consist of cases and activities [2]. In the context of object lifecycle processes,
we use cases to identify individual object instances. A case comprises informa-
tion on object lifecycle process states and steps (i.e., on whether the form field
corresponding to a step has been set, changed or an object instance has tran-
sitioned to another state) in terms of activities. Note that this allows for the
use of existing conformance checking algorithms (e.g., alignments) to lifecycle
processes. During conformance checking, we consider event log subsets based on
the granularity levels of each lifecycle process. Fig. 7 depicts an example event
log from the Phoodle scenario.

Case ActivityFilter TimestampAttribute ValueUser

Fig. 7. Event Log Example for State Edit of Object Tutorial (anonymized due to
GDPR)

Concerning the state level, we consider those event log entries that are re-
lated to state changes (i.e., the transitions in Figs. 3 + 4). In contrast, the step



level conformance checking considers events related to the writing of object at-
tributes (i.e., the transitions in Figs. 5 + 6). Consequently, an event log subset
either documents how object instances transitioned between object states or how
individual states were processed (i.e., in which order the fields of its correspond-
ing form, i.e., object attributes, were set). Aligning a log subset with the two
corresponding workflow nets (cf. Figs 3 + 4 for the state level of object lifecycle
Submission or Figs. 5 + 6 for state Edit), we obtain two fitness values. Based
on the latter, we can categorize each lifecycle process instance into one of the
following categories, depending on the behavior captured in the event log:

– Guided behavior: The fitness value obtained for the guided net equals to
1. The tolerated fitness also equals to 1 as it generalizes the guided behavior.
• State level: the state changes of the object lifecycle process instance

fully comply with the guided behavior.
• Step level: the steps of a state were executed according to the guided

behavior (i.e., the generated form was filled in from top to bottom).
– Tolerated behavior: The fitness from the guided net is below 1, but the

fitness from the tolerated net still equals 1. Deviations from the guided be-
havior model captured in this category are correct executions due to the
built-in flexibility. However, process improvements might be possible.
• State level: the object lifecycle process instance changed states cor-

rectly, though its execution utilizes the built-in flexibility of lifecycle
processes (e.g., by follwoing backwards transitions)

• Step level: the steps were executed correctly with respect to the built-in
flexibility of the generated forms (e.g., the form was filled in any order).

– Deviating behavior: Both fitness values are below 1. Deviations occurred
that are not tolerated by the built-in flexibility of object lifecycle processes.
• State level: deviations include, but are not limited to states not be-

ing reachable from the currently active state, to ad-hoc (i.e., not pre-
specified) backwards transitions, or to state changes not allowed by the
object lifecycle process.

• Step level: deviations may result from states that are completed while
not all required attributes (i.e., steps) are set, steps not being part of
the lifecycle process state are set, steps are changed after the state is
completed or steps are changed before being set.

5.2 Leveraging Conformance Categories for Process Analysis

When analyzing object-centric and data-driven processes, the introduced con-
formance categories provide useful insights for process engineers into potential
model improvements. In turn, this facilitates problem detection through the dis-
covery of actual deviations and tolerated behavior. To identify whether object
lifecycle instances deviate from the lifecycle model (e.g., through ad-hoc changes
executed by process supervisors) or are executed according to the tolerated be-
havior yields useful information for improving and evolving lifecycle processes.

Deviating behavior on the state level, for example, indicates that ad-hoc
changes were required during lifecycle process execution. In this scenario, the



lifecycle model does not allow for all the behavior required in practice, i.e., is has
turned out to be too restrictive during the processing of certain state transitions.

Furthermore, tolerated behavior in the processing of a certain state may
indicate that the ordering of the steps within this state might not be optimal.

Conformance categories are capable of prioritizing improvement efforts. On
both granularity levels, tolerated behavior captures behavior inherently sup-
ported by the built-in flexibility and, thus, not requiring any interventions by
process supervisors. This indicates improvement potential with respect to us-
ability (i.e., forms may be optimized by reordering steps of a state with highly
tolerated behavior). Deviating behavior, in turn, covers behavior due to either
implementation mistakes or explicit interventions by process supervisors (e.g.,
through ad-hoc changes at runtime). As a result, when analyzing object lifecycle
processes, deviating behavior should be investigated with higher priority. Our
approach provides guidance for process engineers in analyzing and improving
lifecycle processes.

6 Experimental Evaluation1

To demonstrate the applicability of our approach for checking the conformance
of lifecycle processes, we implemented a proof-of-concept prototype. The latter
includes a translator that enables the generation of the different workflow nets
based of an object-aware process [16]. The implementation of this translator
uses python and the pm4py framework [9]. The implemented algorithms are
illustrated in terms of pseudo-code in Algs. 1 and 2. To evaluate the conformance
checking approach described in Section 5, we used multiple event logs to check
their conformance with each of the derived workflow nets. First, we generated
event logs using the extended Petri net playout feature of pm4py for the derived
workflow nets to simulate all allowed process executions. For this purpose, we
generated all traces that are allowed according to each workflow net, up to a
trace length of 10. However, any other trace length would be possible as well.
The resulting event logs contain 6 (tolerated state level), 1 (guided state level),
8334 (tolerated step level) and 56 (guided step level) traces respectively.

Table 3. Object Submission - Playout

% of traces
State Level Step Level (State Edit)

Guided Log Tolerated Log Guided Log Tolerated Log

Guided Behavior 100 % 16.66 % 100 % 0.6719 %

Tolerated Behavior 0 % 83.34 % 0 % 99.3281 %

1 All event logs are provided at https://www.researchgate.net/project/Lifecycle-
Conformance-Checking-RCIS



The results from Table 3 show that we are able to distinguish between tol-
erated and guided behavior using the described workflow nets for conformance
checking. The generated event logs, however, do not contain actual deviations
(cf. Section 5) as they represent all allowed playouts of the derived workflow nets.
All simulated traces, therefore, belong to either guided or tolerated behavior. On
state level (cf. Table 3), 16.66% of the tolerated traces fit the guided behavior
(i.e., Category Guided Behavior State Level for Tolerated Log). Concerning the
step level granularity of state Edit (cf. Table 3), only 0.6719% of the tolerated
traces fit to the actual guided behavior (i.e., Category Guided Behavior Step
Level for Tolerated Log). This indicates the high degree of flexibility an object
lifecycle process allows for a state with only 3 steps and a trace length up to 10.

To evaluate whether the approach is able to identify deviating behavior in an
event log, we generated an additional event log that contains deviating behavior
as well. For this purpose, we randomly simulate behavior within an event log
that may not only represent tolerated and guided, but also deviating behavior,
by randomly picking from the set of transitions. In practice, such behavior can
be observed in the context of ad-hoc changes or implementation mistakes (e.g.,
while collecting event logs). Alg. 3 indicates how we generated the event logs used
for checking conformance. We generated event logs with 1000 traces of random
length between 5 and 8 in order to group traces according to the categories
presented in Section 5.

Algorithm 3 Algorithm to Generate Event Logs with Deviations
Require: PetriNet, TraceNumber, TraceLength . Petri net, number of log traces and length

OriginalTransitions = PetriNet.transitions.copy()
for trace = 0 to TraceNumber do

Transitions = OriginalTransitions
Eventlog.add(Initial State) . Activate State or Source to first state
for i = 0 to TraceLength do

Transition = random.choice(Transitions) . Pick random transition from net
if Transition = ”Set:” then . Probibit, that one step is set multiple times in a trace

Eventlog.add(Transition)
Transition.remove(Transition)

else
Eventlog.add(Transition)

end if
end for
Eventlog.add(FinalState) . State completed or last state to sink

end for

Table 4 shows the categories into which the randomly generated traces are
assigned according to their behavior documented in the event log. We are not
only able to differentiate between guided and tolerated behavior but can also
identify deviating behavior with the approach. However, note that the event
logs used in the sketched evaluation constitute two edge cases of object lifecycle
process executions, as they either contain no deviations (cf. Table 3) or a high
ratio of deviations (cf. Table 4).

We further evaluated the approach using an event log we collected from a
real-world deployment of Phoodle (cf. Section 2) in which 133 students used the



Table 4. Categories for Object Submission - Random

% of traces (#) state level step level (state Edit)

Guided Behavior 0.1 % (1) 0.4 % (4)

Tolerated Behavior 0.2 % (2) 7.0 % (70)

Deviating Behavior 99.7 % (997) 92.6 % (926)

system during a university course over a period of 4 months (cf. Fig. 7). When
applying the approach, all 51 lifecycle process instances of object Tutorial showed
deviating step level behavior for state Edit (cf. Table 5). Upon closer inspection,
according to the event log, attribute Lecture was set in state Edit (cf. lines 3
and 14 in Fig. 7), while the lifecycle process required attribute Tutor. In the
next step, we repaired the event log to set the correct attribute, and thus 28 of
51 tutorial lifecycle process instances corresponded to guided and 4 to tolerated
behavior. Note that the remaining 19 instances had additional deviations not
related to the repaired deviation (e.g., attributes were changed after the state
had been completed using ad-hoc changes [7]).

Table 5. Phoodle Log Tutorial - State Edit

% of traces (#) Initial Repaired

Guided Step Level Behavior 0 % (0) 54.90 % (28)

Tolerated Step Level Behavior 0 % (0) 7.85 % (4)

Deviating Step Level Behavior 100 % (51) 37.25% (19)

Overall, the evaluation has shown that we are able to pinpoint which gran-
ularity level of an object lifecycle process is non-conforming (i.e., deviations
regarding state transitions or individual states). Additionally, we can account
for the flexible (i.e., tolerated) execution of object lifecycle processes through
the use of multiple workflow nets, therefore enabling sophisticated and holistic
deviation detection.

7 Related Work

This work is related to two research areas: conformance checking and object-
/data-centric process management. In [19], conformance checking is presented
as multidimensional quality metrics for processes and their corresponding event
logs. Furthermore, best-effort metrics to assess the different quality dimensions
are introduced. One algorithm to check conformance is Token Replay [19], which
can identify those parts of the process model and event log that fit together. Fur-
thermore, it enables diagnostics related to deviations by replaying the event log



on a Petri net covering the execution behavior of the process model. Additional
algorithms have emerged that enable conformance assessment by aligning pro-
cess model and event log [3]. Alignments have already been adapted to various
scenarios, e.g., large processes [18] or declarative processes [17]. Recently, an-
other token replay approach emerged [8]. Finally, first approaches for discovering
object-centric Petri nets have been proposed [4].

Some conformance checking approaches exist for artifact-centric conformance
checking [13–15] as well. To some degree these approaches are similar to ours.
However, differences arise due to the fact that we focus on business objects in-
stead of proclets, artifacts, or UML diagrams. Compared to [13], our approach
does not use UML state and activity diagrams to generate the Petri net. While
[14] uses conformance checking, the presented approach is able to identify behav-
ioral and interaction conformance with respect to proclets (Petri nets, including
communication ports). As a result, no translation from proclets to Petri nets is
required. The work presented in [15] focuses on the interaction between multiple
artifacts rather than the behavior of object lifecycle processes in isolation. Fur-
thermore, to the best of our knowledge, none of the existing approaches accounts
for flexibility during conformance checking of data-centric and -driven processes.

8 Summary and Outlook

This paper presented an approach for checking the conformance of single object
lifecycle processes. We introduced two granularity levels for enacting lifecycle
processes granularity levels as well as built-in flexibility concepts. We then in-
corporate them during conformance checking to differentiate between guided,
tolerated, and deviating behavior. Checking conformance with multiple nets al-
lows categorizing each lifecycle execution based on the behavior captured in the
event log. Furthermore, we are able to account for the flexible nature of object
lifecycles through conformance categories that allow us to distinguish between
deviations tolerated due to the flexibility of object lifecycles and actual devia-
tions. Additionally, we can account for flexibility regarding transitions between
states, and the behavior of individual states. When analyzing data-centric and
-driven processes, conformance categories provide guidance for process engineers
with respect to which parts of object lifecycle processes are of particular interest.

In future work, we plan to extend the presented approach in a two-fold man-
ner: First, we plan to incorporate constraints between object lifecycle processes.
This will allow us to further improve conformance checking of object-centric
processes regarding the inter-object granularity level. The latter considers con-
straints between different object lifecycle processes, rather than lifecycle pro-
cesses in isolation. Second, we want to provide detailed information on the origin
of the deviation to further facilitate process improvement.
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