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Abstract. Object-aware processes enable the data-driven generation of
forms based on the object behavior, which is pre-specified by the respec-
tive object lifecycle process. Each state of a lifecycle process comprises
a number of object attributes that need to be set (e.g., via forms) be-
fore transitioning to the next state. When initially modeling a lifecycle
process, the optimal ordering of the form fields is often unknown and
only a guess of the lifecycle process modeler. As a consequence, cer-
tain form fields might be obsolete, missing, or ordered in a non-intuitive
manner. Though this does not affect process executability, it decreases
the usability of the automatically generated forms. Discovering respec-
tive problems, therefore, provides valuable insights into how object- and
process-aware information systems can be evolved to improve their us-
ability. This paper presents an approach for deriving improvements of
object lifecycle processes by comparing the respective positions of the
fields of the generated forms with the ones according to which the fields
were actually filled by users during runtime. Our approach enables us to
discover missing or obsolete form fields, and additionally considers the
order of the fields within the generated forms. Finally, we can derive the
modeling operations required to automatically restructure the internal
logic of the lifecycle process states and, thus, to automatically evolve
lifecycle processes and corresponding forms.
Keywords: data-centric process management, event log, process im-
provement, process enhancement, generated forms

1 Introduction

Activity-centric approaches to business process management (BPM) focus on
the order in which the activities of a business process shall be executed (i.e.,
the control-flow perspective), whereas other perspectives, such as the data re-
quired during process execution, are considered as second-class citizens [17].
Moreover, the activities of a process are usually treated as a black box by the
process execution environment. As a consequence, additional efforts, such as the
manual specification of the user forms implementing a human task become nec-
essary when implementing activity-centric processes. By contrast, data-centric
and -driven approaches to BPM (see [20] for an overview) treat data as first-
class citizens by representing a business process in terms of multiple interacting



objects with a particular focus on (data-driven) object behavior and object inter-
actions. Usually, the data-driven behavior of a single object (e.g., order, invoice,
or exercise) is described in terms of a lifecycle process, which specifies the al-
lowed object states, the respective object transitions as well as the data required
(i.e., object attributes to be set) to complete each step. In turn, this enables a
white-box approach with respect to process data that allows for an increased
flexibility due to declarative rules and automatically generated forms based on
the respective lifecycle process logic decreasing implementation efforts. Exam-
ples of data-centric process management approaches include case handling [10],
artifact-centric processes [2], and object-aware processes [15].

The automated generation of forms at runtime not only decreases imple-
mentation efforts, but also introduces challenges for lifecycle modeling. While
forms are well established [7], the internal form logic is often unclear to the form
modeler and implementer, respectively. In general, the order in which the fields
of a form may be accessed (i.e., the logic for writing certain object attributes
specified by a lifecycle state) is not always evident at lifecycle process modeling
time. Moreover, end users might prefer a different sequence of filling the form
fields than the one considered as being intuitive by the modeler. If the order of
a generated form (i.e., the modeled sequence of writing object attributes within
a state) is not intuitive for users, higher mental efforts as well as more user in-
teractions are required and, thus, form completion times increase, while at the
same time user satisfaction and effectiveness decrease [14].

In the context of data-centric and -driven process management, a lifecycle
process specifies the sequence in which the various user forms as well as their
form fields are displayed to users, including more complex logic (e.g., conditional
form fields) as well. The order in which forms are displayed is specified by the
logic between states, whereas the logic of the steps within a state determines
the content of the corresponding generated form. When executing data-centric
processes, event logs record about the order in which the form fields are actually
filled. Thus, process mining techniques provide promising perspectives for evolv-
ing the user forms. Note that the ability to evolve user forms offers promising
perspectives for evolving information systems.

The approach presented in this paper is capable of analyzing an event log,
comparing it with the lifecycle process used to generate the forms, and discover-
ing potential improvements that can be realized by adding, deleting or reordering
the auto-generated forms and their corresponding fields. Moreover, the approach
is able to derive the operations required to dynamically evolve the information
system [4] and its lifecycle process, allowing for the auto-optimization of the
generated forms at runtime.

This paper is structured as follows: Section 2 introduces fundamentals. Sec-
tion 3 describes our proposed approach, whereas Section 4 elaborates on deriving
corresponding positions. Section 5 describes how we identify improvements. In
Section 6 we describe how we derive suitable improvement actions. Section 7 eval-
uates our approach. In Section 8, we relate our approach to existing approaches.
Section 9 summarizes the paper and provides an outlook.



2 Backgrounds

This section introduces PHILharmonicFlows, our approach to object-centric and
data-driven process management. Further, it introduces concepts for process
model evolution and ad-changes used for form evolution.

2.1 PHILharmonicFlows

PHILharmonicFlows enhances the concept of data-centric and -driven process
management with the concept of objects. In PHILharmonicFlows, each business
object of the real world is represented as one object. An object, in turn, is
described by its data and represented in terms of attributes. Its behavior is
expressed by a state-based object lifecycle process model.

Based on PHILharmonicFlows we implemented PHoodle, a sophisticated
data- and process-aware e-learning application, and ran it over one semester
with a total of 137 users and 39890 transactions. This application includes ob-
jects such as Lecture, Exercise, Attendance, and Submission. Fig. 1 depicts the
lifecycle process of object Exercise and the auto-generated form of the corre-
sponding state Edit.

Each state of the lifecycle process (e.g., Edit, Published, Past Due and End),
in turn, may comprise several steps (e.g., steps Lecture, Name, Points, Due Date
and Exercise Files in state Edit). Each of these steps refers to a write access on
a specific object attribute. In other words, the steps of a lifecycle process define
the attributes required to complete the state. Once all required attributes have
been written, the respective state is completed, and the object may transition
to its next state.

At runtime, object lifecycle processes allow for the automated and dynamic
generation of forms (cf. Fig. 1 for the form of state Edit) based on the order
set out by the lifecycle process for the steps of the respective state. Accordingly,
data acquisition is based on the information modeled in lifecycle processes. The
auto-generated form of state Edit, which is shown in Fig. 1, orders the form fields
according to the internal logic of state Edit in the depicted lifecycle process.
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Fig. 1. Simplified Exercise Lifecycle Process with Generated Form for State Edit



Note that, in general, a business process not only comprises one single object,
but involves multiple interacting objects such as Submissions, Lectures and Ex-
ercises as well as their corresponding lifecycle processes. In PHILharmonicFlows,
a data model captures all relevant objects (including their attributes) and the
semantic relations between them (including cardinality constraints) [15]. A se-
mantic relation denotes a logical association between two objects, e.g., a relation
between a Lecture and an Exercise implies that multiple exercises may be related
to a single lecture.

At runtime, each object may be instantiated multiple times [4]. The lifecy-
cle processes of different object instances are then executed concurrently. Ad-
ditionally, relations between object instances instantiated enabling associations
between them resulting in a relational process structure at runtime [19]. This
results in novel information and intertwines the executed instances [15].

2.2 Process Model Evolution and Ad-hoc Changes

Process Model Evolution [18] and Ad-hoc changes [4] allow performing runtime
changes to object-aware processes, including lifecycle processes and, therefore,
the auto-generated forms [4]. Amongst others, corresponding changes may in-
clude the insertion, deletion and reordering of both lifecycle states and steps.

Process Model Evolution Process model evolution is concerned with changes
introduced to the process model by deploying updated process models to exist-
ing process instances [18]. In this context, deferred process model evolution is
accompanied by the introduction of new process model versions, which may
then co-exist with older model versions. Therefore, existing process instances
may be executed according to the old (i.e., outdated) process model versions.

In contrast, immediate process model evolution tries to migrate running pro-
cess model instances to the new model version, allowing for a greater flexibility
at runtime. In PHILharmonicFlows, we implemented immediate process model
evolutions [4], which additionally enable improvements of already running life-
cycle process models (e.g., the insertion, deletion or reordering of the states and
steps of a lifecycle process) [3]. In turn, this allows for the dynamic optimization
of lifecycle processes, including the auto-generated forms, at runtime.

Ad-hoc Changes Ad-hoc changes constitute a particular type of immedi-
ate process model evolution, in which a specific running process model instance
becomes changed.

Ad-hoc changes allow, for example, inserting, deleting, or reordering the steps
within a state of a lifecycle process instance. This, in turn, allows users to de-
viate from the pre-specified process model in various ways, while also reducing
model complexity as not every possible execution variant needs to be modeled in
advance [3]. For an in-depth introduction to ad-hoc changes, we refer interested
readers to [4].



3 Proposed Approach
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Fig. 2. Proposed Approach

The goals of our approach for evolving lifecycle processes as well as their auto-
generated forms are two-fold: First, we want to identify in which way lifecycle
processes can be improved to minimize ad-hoc changes such as the insertion and
deletion of the states and steps. Ad-hoc changes usually require some intervention
from process supervisors (e.g., the approval of insertions and deletions of lifecycle
states and steps). Second, we want to improve lifecycle states and, thus, the
auto-generated forms, concerning the control flow logic in which the steps of
a state are organized and the order in which states may become active. This
allows generating more intuitive forms, that are based on actual form executions
rather than on the subjective perception of a modeler during lifecycle process
specification.

To identify corresponding improvements, we analyze the actual interactions
users have had with the implemented system documented in an event log. Note
that during these interactions, users may utilize the process flexibility enabled
by PHILharmonicFlows [4], such as filling auto-generated forms in an arbitrary
order or initiating ad-hoc changes (e.g., by dynamically adding or deleting form
fields). We (anonymously) document these user interactions with various object
instances, for example, writing attribute Points in state Edit of object instance
Exercise2, in an event log (cf. Fig. 7). The latter is then compared with the lifecy-
cle process model, which, in turn, enables us to automatically evolve the lifecycle
processes and, thus, the forms dynamically generated during their execution.

In such an event log, one may assign a position to each interaction docu-
mented. We enable the comparison between modeled and actual lifecycle process
behavior by assigning positions to the states as well as the steps of a lifecycle
processes. This way, we may compare the position of a state or step of the model
with the one recorded in the event log to discover potential improvements with
respect to both the order and assignment of steps and states. We are able to
detect whether steps (i.e., form fields) are filled in the pre-specified order, in
the pre-specified state, and whether states or steps are added or deleted at run-
time due to ad-hoc changes. Consequently, we can identify actions for evolving
and improving lifecycle process models and execute them using the concepts
introduced in Section 2.2. Our approach is illustrated in Fig. 2.



4 Position-based Lifecycle and Event Log Representation

When comparing the lifecycle process executions captured in an event log with
a given lifecycle process model, a suitable representation is required for both the
event log and the lifecycle process model. This representation should enable an
efficient comparison as well as the easy detection of deviations between actual
behavior and the behavior captured in the lifecycle process model. In the follow-
ing, we propose a position-based approach representing both event logs and the
logic of lifecycle processes in a homogeneous way.

4.1 Lifecycle Process Step Positions

Each step is associated with two positions. The first one corresponds to its
relative position within the state it belongs to (see the positions with red labels
in Fig. 3), whereas the second position expresses the relative position of the
corresponding state in the entire lifecycle process (see the positions with green
labels in Fig. 3). Note that this distinction allows positioning lifecycle steps in
relation to both the other steps of the corresponding state as well as the steps
of other states.

EditEdit

PointsPoints Due DateDue Date

PublishPublish Past DuePast Due EndEnd

1 2 3 4 5 1 1 1

1 1 1 1 1 2 3 4

Exercise FilesExercise FilesNameNameLectureLecture

Fig. 3. Positions for Lifecycle Process Submission (Red: Step, Green: State)

As discussed in Section 2, lifecycle processes capture object behavior allow-
ing for basic control flow patterns such as sequence and choice within and across
states. While choices between states (e.g., to express that an object may transi-
tion to either state A or B) are possible, an object must not be in two states at
the same time1. To be more precise, lifecycle processes must not contain parallel
splits between states. Remember that the sequence of steps within an individual
lifecycle state is utilized to auto-generate a form as well as its internal logic guid-
ing users in filling the form fields (e.g., indicating the field to be edited next after
writing a specific field). Due to the high runtime flexibility of both object-aware
processes and auto-generated forms, however, users need not adhere to this guid-
ance when filling the respective forms. As soon as all mandatory attributes are
set, a state may be completed independent from the order in which the form
fields (i.e., steps) were actually edited. Choices within a state are represented by
displaying or hiding form fields at runtime.

In the following, we present the patterns that may be used to model the
behavior of a lifecycle state, the forms that can be auto-generated from these
patterns, and the positions assigned to the steps of the respective state.
1 Note that PHILharmonicFlows allows for the concurrent processing of multiple life-
cycle process instances (of same or different type) in the context of a multi-object
business process. The concurrent processing is controlled by a coordination process.



Sequence If the steps of a state are organized sequentially (cf. Fig. 4), their
position can be derived in a straightforward manner. To each step its position is
assigned according to the order of the steps within the state (see the red numbers
in Fig. 4). The form and its cursor control during form processing are organized
accordingly.
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Choices of equal length If the steps of a state are organized using a choice
construct of equal length (i.e., the alternative paths all have the same number
of steps, cf. Fig. 5), we derive their position by allocating the same position to
multiple steps in different paths. For example, in Fig. 5, alternative steps D and
B both have the same position.
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Fig. 5. A State with Choice and the Generated Form

Choices of different lengths If the steps of a state are organized using a
choice construct with paths of different lengths (i.e., the alternative paths do not
all comprise the same number of steps, cf. Fig. 6), the above approach must not
be applied. In the lifecycle process from Fig. 6, for example, the position of the
step following both alternative paths (i.e., step E in Fig. 6) depends on the path
previously chosen based on the attribute value provided in the context of step B
in Fig. 6. In this example, the position of step E will be 3 if the bottom path is
chosen, and 6 if the top path is taken. In general, we treat each possible path of
steps through the lifecycle process as an individual sequence. This enables us to
properly represent positions for choice constructs of different lengths. Note that
if no step joins the choice construct, each possible path through the lifecycle
state is also represented as an individual sequence.
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4.2 Lifecycle Process State Positions

To each state of a lifecycle process we assign a relative position as well. We
can accomplish this based on the same patterns as presented in Section 4.1.
Additionally, we assign to each step the relative position of its state as well.
Consequently, to all steps of a specific lifecycle state the same number is assigned
in this context. An example derived from the lifecycle process illustrated in Fig.
1 is presented in Tab. 1.

4.3 Leveraging Lifecycle Process Model Positions

Based on the presented patterns, to each step we can assign its relative position
within its corresponding state. Moreover, to each state we can assign its relative
position within the lifecycle process (cf. Tab. 1 for the representation of object
Exercise). Note that the lifecycle process of object Exercise does not contain a
choice construct, and, consequently, only pattern sequence is used.

Table 1. Representation of Exercise Lifecycle Process Model (derived from Fig. 1)

ObjectType State Step Step Position State Position

Exercise Edit Lecture 1 1

Exercise Edit Name 2 1

Exercise Edit Points 3 1

Exercise Edit Due Date 4 1

Exercise Edit Exercise Files 5 1

Exercise Publish Silent 1 2

Exercise Past Due Silent 1 3

Exercise End Silent 1 4

4.4 Event Log Positions

We now describe how we represent the position of a step regarding the ac-
tual execution of the instances of the corresponding lifecycle process. An event
log generated by an object-centric and data-driven approach like PHILharmon-
icFlows comprises information about the execution of an object-aware process.
Fig. 7 depicts an extract of the event log corresponding to the execution of state
Edit of the Exercise lifecycle process instance Exercise Sheet 1. In general, the
event log records which user (column User ID) executes which operation (col-
umn Method) on which object instance (column Instance) at what point in time
(column Timestamp). Additionally, each entry of the event log contains infor-
mation on which parameter values have been passed (columns Parameter1 and
2 ), the current state of the object instance at the time the event was recorded
(column State), and the object type (column Type). Columns Position and First
Position (c.f., Fig. 7) are explained in the following.



When interacting with a form at runtime, users may write a form field multi-
ple times, e.g., in case a value provided in a previous form field becomes changed.
This behavior is then documented in the event log in terms of multiple write
access events corresponding to the same form field (i.e., step). To represent the
order in which the auto-generated form was actually filled at runtime, we sort
the recorded events according to their timestamps and add two columns for each
event log entry of an object instance. Column Position assigns multiple write
accesses of a form field their respective positions each time. Each write access
is assigned its position in the event log. Column First Position only reflects the
order concerning first write access to a form field as only the first event log entry
corresponding to a write access is documented. The difference is illustrated for
step Description in the event log from Fig. 7. Column Position assigns to this
step the positions 4, 6, and 7, whereas First Position assigns position 3 to the
first access, neglecting subsequent entries. This differentiation allows customiz-
ing our approach by utilizing domain knowledge, e.g., when users change form
fields regularly, First Position might be more suitable, whereas Position is able
to account for, e.g., multiple interactions with a form field. Positions of states
are derived in a similar way.

Fig. 7. Event Log Positioning Phoodle Excercise State Edit

After grouping all event log entries by (object) type, (object) state and (ob-
ject) instance, we assign positions (cf. Section 4) to each write access in the event
log (i.e., methods ChangeAttributeValue, ChangeAttributeListValue, and Instat-
icateObjectTypeAndLink in Fig. 7). Note that we additionally filter the event log
for the different paths of a choice construct if necessary.

We then calculate the “average position” for each step across all object in-
stances (cf. Fig. 8). The latter correspond to the average position in which the
form field is filled in by users, according to the event log. In addition, this allows
ordering the fields (i.e., the lifecycle process steps) of a form (i.e., the lifecy-
cle process states) using a ranking. Thereby, the rank of each step documents
the position in which the form field was filled, whereas the rank of each state
documents the position in which the form was displayed in relation to the other
forms of the lifecycle process. Fig. 8 depicts the positions (columns Position Step
Log and Position State Log) as well as resulting ranks (columns Rank Step Log
and Rank State Log) from a real-world deployment of PHoodle (cf. Section 7
for more details on the event log). The average position according to which, for
example, step Description was edited is 4.6. After ranking all steps and states
based on their average position in the event log, we obtain the order in which



the auto-generated form fields of state Edit of object Exercise are usually filled
as well as the position in which the form was displayed.

Fig. 8. Position and Rank Event Log of State Edit

5 Data-driven Evolution of Forms

The following approach utilizes the positions of the states and steps in a lifecycle
process as well as the positions of the corresponding entries in the event log to
identify possible improvements of the lifecycle process.

In a first step, we join the two representations using an SQL-like full outer
join syntax on (object) type, (object) state, and step, respectively. This enables us
to compare the actual position of states and steps, as documented in the event
log, with the corresponding positions according to the modeled lifecycle process.

We compare the position of a state according to the event log (cf. column
Position State Log in Fig. 9) with the position of this state in the lifecycle process
model (cf. column Position State Model in Fig. 9) and calculate the difference
between the two. This enables us to check whether or not the order in which
the forms are displayed to the users complies with the modeled order. If the two
positions deviate from each other, we can determine the new position of the state.
Note that for object Exercise (cf. Fig. 9) the order in which the forms have been
displayed complied with the lifecycle process model, whereas the analysis for
object Submission revealed that the ordering of states Rated and Waiting may
be changed for the model to better comply with the actual execution recorded
by the event log.

Fig. 9. State Position Analysis Objects Exercise and Submission



Furthermore, we can check whether certain steps (i.e., form fields) were never
written, were written in another state (i.e., form) than pre-specified, or steps were
added to a state, indicated by NaN values in the corresponding columns of the
outer join. Step Solution Files in Fig. 10, for example, has not been specified in
the lifecycle model as column Step Position Model is NaN, but set at (average)
position 6.6 (or rank 8 respectively) in the event log. Additionally, the silent
steps in states Publish, Past Due, and End have not been documented in the
event log, indicated by the NaN-values in columns Position Log and Rank Log
in Fig. 10 respectively. Note that silent steps are not recorded in the event log
as no attribute is written when executing them.

Subsequently, we calculate the difference between the position recorded in
the event log and the one reflected by the lifecycle model by subtracting the
step position in the model from the corresponding rank in the event log (cf.
column Difference in Fig. 10). This enables us to check which steps are placed
at the correct position (i.e., column Difference equals 0) and which ones need to
be relocated (i.e., column Difference does not equal 0). Steps with a difference
of NaN are either not contained in the event log or the lifecycle model and are
possible candidates for addition or deletion.

Fig. 10. Step Position Analysis Object Exercise

6 Lifecycle Process Improvement Actions

This section introduces process improvement patterns for lifecycle processes and
the improvement actions that can be derived from them. Following the patterns,
we can automatically derive the modeling operations needed to evolve the cor-
responding process model accordingly. That means, we are able to dynamically
evolve the forms during runtime using the concepts introduced in Section 2.2.

6.1 Correct Positions

Ideally, the states and steps are correctly positioned and the position in the
lifecycle process model complies with the rank of the average position in the event
log. Consequently, no actions would be required in this case as the generated form
(i.e., the lifecycle state) is displayed and executed exactly according to the logic



used for its generation; e.g., this applies to steps Lecture, Name, Begin Date,
Due Date, and Maximum Points in Fig. 10. The steps are correctly positioned if
column Difference equals to 0. Consequently, no improvement action is required.

6.2 Missing States and Steps

Missing states and steps can be identified based on the NaN values contained
in the comparison depicted in Fig. 10. Certain states and steps may be missing
either in the event log, if a state is never reached or a form field is never filled,
or the lifecycle process model, in case a state or step is added by executing
corresponding ad-hoc changes at runtime [4].

Missing states in the event log indicate that either the state has never been
reached during lifecycle process execution, or it does only contain one silent
step, and, therefore, no events related to that state are recorded in the event
log. Note that such states are candidates for being deleted. However, as silent
states are often used in the context of coordinating interacting objects, checking
coordination constraints prior to the deletion becomes necessary.

If the missing state in the event log is not part of any process coordination
constraint [19], it may be deleted.

Missing steps in the event log indicate that the corresponding form field has
never been filled. This may be the case, for example, if steps are deleted in an
ad-hoc manner or alternative paths of a choice construct have never been used.
Furthermore, silent steps (e.g., the steps in states Publish, Past Due, and End
of Fig. 1) correspond to steps in which no attribute needs to be set. To be more
precise, there may be no event log entries for silent steps, as no object attributes
are required. We can identify missing steps in the event log, if the step is not a
silent step (i.e., column Step != “Silent”) and columns Position Log or Rank Log
contain empty values. If a step is missing in the event log, we may execute the
corresponding modeling operations, i.e., the identified step and its transitions
are deleted from the lifecycle process. Additionally, we reconnect the remaining
steps according to the previously defined order.

Assume, for example, that step Due Date in state Edit (cf. Fig. 1) is missing
in the event log, i.e., the event log does not contain any events related to this
step. Step Due Date as well its two transitions are then deleted. Moreover, step
Points is connected with step Exercise Files through a directed transition.

Missing states in the lifecycle process model indicate that an object
reached a state that has not been foreseen in the lifecycle process model. This
may happen if ad-hoc changes are applied to a lifecycle process at runtime, due
to which a new state (and at least one corresponding step) was added to the
object instance. If such dynamically defined states are recorded in the event
log, they can be added to the lifecycle process at the identified position. This



requires the insertion of the state, the corresponding steps, and the transitions
to correctly integrate the new state into the lifecycle process model.

Suppose a new state Pending with attribute Date is added to the lifecycle
of object Exercise between states Edit and Publish (cf. Fig. 1). This would then
require the insertion of state Pending and attribute Date, the insertion of a
new transition between state Date and the silent step in state Publish, and the
re-linking of the existing transition from step Exercise Files to step Date.

Missing steps in the lifecycle process model indicate that steps (i.e.,
form fields) have been written during the execution of lifecycle process instances
that were previously not specified in the lifecycle process (state). Such steps are
represented in the lifecycle process part of the outer join (e.g., columns Step
Position and State Position in Fig. 10). We can discover missing steps in the
lifecycle process model through NaN values in columns State Position and Step
Position (e.g., an additional form field might be required, or an attribute be
written in a state other than the one foreseen in the lifecycle process model). In
Fig. 10, step Solution Files was executed according to the event log, but is not
contained in the lifecycle process and, therefore, should be added at the position
suggested by the event log (cf. column Step Position New in Fig. 10).

As example assume, that the additional step Solution is required after exe-
cuting step Exercise Files in state Edit (cf. Fig. 1). The needed operations are to
add step Solution, link it to step Exercise Files (through an additional lifecycle
transition), and re-link the existing transition from step Exercise Files to step
Solution.

6.3 Auto-Adjusting the Form Logic

While the previously discussed improvement actions have dealt with the addition
or deletion of steps from a lifecycle process, another important aspect is to
identify of the correct logic of the steps within a state (i.e., the execution order
of the steps). Recall that this logic is utilized by PHILharmoniFlows to auto-
generate a form with corresponding user guidance. A step executed in the context
of a state might not be ideally positioned for a user filling out the form, but
users may flexibly choose the order in which they actually fill in the form. The
event log that records the order of the latter, therefore, contains the information
“how” users interact with the form. Consequently, the actual order of the steps
discovered from the event log allows re-organizing the ordering of the steps within
a state. By subtracting the step position of the lifecycle process model from the
rank in the event log (cf. column Difference in Fig. 10), we obtain the difference
between the position in the event log and the position in the lifecycle process
model. If this difference does not equal 0, the steps within the state are not
ideally ordered, i.e., users prefer filling the form in another order. Furthermore,
we can identify the new position for each step of a lifecycle process by adding
columns Difference and Step Position Model.

In the comparison presented in Fig. 10, this is the case for steps Descrip-
tion and Exercise Files. According to the event log, the rank of the average



position over all lifecycle process instances of step Exercise Files is 3, and 4 for
step Description (i.e., step Exercise Files is executed before step Description),
essentially switching their positions.

The modeling operations needed to implement this change are to delete the
associated transitions between the states and to add new ones according to the
new ordering. In the scenario described in Fig. 10, this includes the deletion
of transitions between steps Name, Description, Exercise Files, and Begin Date
and their re-linking by adding new transitions between steps Name and Exercise
Files, Exercise Files and Description, and between Description and Begin Date.

7 Evaluation

To evaluate the presented approach, we applied it to an event log2 we obtained
in the context of a real-world deployment of our data- and process-aware e-
learning system PHoodle, which we had implemented with PHILharmonicFlows.
During its use, PHoodle replaced the established Moodle e-learning platform for
a course with more than hundred students from Management Science over one
semester. During this experiment we gathered the system logs from the PHILhar-
monicFlows process engine, including data of users (anonymized due to General
Data Protection Regulation), object instances, object states, object types, and
provided attribute values, together with the corresponding timestamps (cf. Fig.
7 for an example event log). In total, the e-learning system event log consists
of 39890 entries including information on 848 object instances of 9 different ob-
ject types (cf. Table 2). Note that column Number of log entries corresponds to
the number of interactions such as the setting of an attribute, including users
displaying an object at a given state (e.g., a student checks the due date of an
exercise). Column Number of interactions represents those log entries that refer
to the setting of an attribute value (e.g., a supervisor provides files in step Exer-
cise Files of state Edit - cf. Fig. 1) or to transitions between states of a lifecycle
process (e.g., state Edit is completed and an exercise transitions to state Publish
cf. Fig. 1).

When applying our approach to this PHoodle scenario (with First Position
for lifecycle steps, cf. Section 4.4), we identified several potential improvements:
For object Attendance (cf. Fig. 11), we could derive the following improvements:

States Regarding the lifecycle process states of object Attendance, the com-
parison of event log and lifecycle process suggests moving state Unas-
sign Tutorial to position 1, and state Start to position 2, essentially
switching positions of the two states. States Assign Tutorial and End
are positioned correctly.

Steps Regarding steps, the approach suggests adding steps Lecture (posi-
tion 1) and Person (position 2) to state Unassign Tutorial, while
moving the existing step Tutorial to position 3. Furthermore, step
Person in state Start should be removed as it has never been set in
the event log.

2 Event log provided: https://www.researchgate.net/project/CoopIS-Phoodle-Data



Table 2. PHoodle Log Statistics

Object Number of objects Number of log entries Number of interactions

Person 133 290 274

Attendance 137 3233 584

Download 14 4574 152

Employee 2 14 8

Exercise 5 7323 110

Lecture 1 11741 14

Submission 498 10689 3920

Tutor 6 116 18

Tutorial 52 1910 443

Total: 848 39890 5523

For object Exercise (cf. Fig. 11), we propose the following improvement actions:

States The ordering of the states of object Exercise complies with the one
recorded in the event log. Therefore, no improvement is needed.

Steps The steps corresponding to state Edit of object Exercise may be
improved by switching the positions of steps Exercise Files and De-
scription and adding the step Solution Files at position 8.

Fig. 11. Excerpt of the PHoodle Comparison - Lifecycle Process vs. Event Log

We also applied the identified improvement actions to the corresponding life-
cycle processes. Depending on the respective action, this either resulted in an
alternative ordering of the displayed forms or forms that better comply with the
actual execution through the addition, reordering or deletion of lifecycle steps.
Fig. 12 depicts the improvement of State Edit for the lifecycle process of object
Exercise including the generated and improved forms.
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Fig. 12. Improvement of State Edit for Object Exercise

8 Related Work

The work presented in this paper is part of two research areas: user forms in
information systems and business process improvement.

User forms have already been subject to research for a long time, e.g., align-
ment of user form labels [12] and guidelines for usable web forms [7]. The guide-
lines tackle user form elements such as, for example, content, layout, input types,
error handling, and the submission of user forms. However, the ordering of fields
in a form is only mentioned as “keep questions in an intuitive sequence”. The
presented approach enables us to automatically derive such an intuitive sequence
from the event log and to auto-adapt the generated forms accordingly at runtime
using techniques known from process model evolution [18].

Process improvement is concerned with model repair and extension. Model
repair changes a process model for it to better fit real executions, whereas ex-
tension is concerned with adding additional perspectives to a process model.
Regarding model repair, [13] proposes a technique that preserves the original
model structure by introducing subprocesses to the model in order to permit
replaying a given event log on the repaired model. Conformance checking re-
sults are used to identify in which part of the process a subprocess needs to be
added, whereas discovery algorithms mine the to-be-added subprocesses. As our
approach does not follow the activity-centric paradigm (like [13] does), similar-
ity is not a concern. Our approach changes the logic of user forms generated at
runtime rather than the actual “control-flow” of the business processes. In other
words, our approach improves the order and logic of forms presented to users
rather than the activities to be executed. Furthermore, due to the flexible nature
of forms in the context of data-driven processes, deviations (e.g., filling a form
in a different order) from the modeled logic are implicitly tolerated as well.

The repair approach presented in [5] transforms BPMN process models and
event logs into a Prime Event Structure (PES) to identify patterns regarding
task, sequence flow, and gateway modifications. Identified discrepancies are then
displayed to users on top of the model to decide on individual fixes. In con-
trast, our approach focuses more on the usability aspect during process execution
rather than the ordering of activities.



The work presented in [11] focuses on repairing inconsistencies in declarative
process models, which are more flexible compared to imperative models. The
approach identifies and then deletes the smallest possible set of constraints to
regain consistent models at design time. An approach for repairing declarative
process models at runtime is presented in [16]. In our approach, we focus on the
logic of steps (and therefore the logic of forms displayed at runtime) encapsulated
in object lifecycle process states, used to guide users through the corresponding
form. However, as long as forms are fully filled, no inconsistencies occur.

According to [1], model extension is “a type of process enhancement where
a new perspective is added to the process model by cross-correlating it with
the log.”. Typically, model extension focuses on the organizational or tempo-
ral perspective. The temporal perspective [6] focuses on identifying the process
fragments with extended times as interesting for process improvement actions.
In contrast, the organizational perspective [9] focuses on adding associations
between roles and the execution of processes to a model.

9 Conclusions and Outlook

This paper presented an approach for automatically improving lifecycle processes
based on the behavior that can be observed in an event log. We introduced
various control flow patterns of lifecycle processes as well as their auto-generated
form at runtime. We then characterize the steps and states of object lifecycle
processes by allocating their positions. Additionally, we assign corresponding
positions to the relevant log entries. The latter are then analyzed and aggregated
for the event log, allowing for a representation of the average position of a step
as recorded in the event log. In other words, we analyze in which order users
filled in forms at runtime.

We further compare this position for each step with the modeled position.
This, in turn, enables us to identify obsolete and missing steps in the lifecycle
process model. Additionally, we are able to check whether the logic within life-
cycle states (i.e., the user guidance when filling in forms) is ideal, or whether the
user guidance can be improved by adapting the logic used to generate the form.

Additionally, we are able to derive the required modeling operations that en-
able PHILharmonicFlows to perform the corresponding process model evolution
that implements identified improvements.

In future work we will extend the presented approach in a two-fold manner:
First, we plan to combine it with conformance categories [8] and heuristics to
further account for the frequency of changes to lifecycle process models. Sec-
ond, we plan to use the infrequent (user-specific) behavior to individually adapt
lifecycle processes based on previous executions from individual users.
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