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Purpose: The automation of picking is still a challenge as a high amount of flexibility is 

needed to handle different articles according to their requirements. Enabling robot picking 

in a dynamic warehouse environment consequently requires a sophisticated object 

detection system capable of handling a multitude of different articles. 

Methodology: Testing the applicability of object detection approaches for logistics 

research started with few objects producing promising results. In the context of warehouse 

environments, the applicability of such approaches to thousands of different articles is still 

doubted. Using different approaches in parallel may enable handling a plethora of different 

articles as well as the maintenance of object detection approach in case of changes to 

articles or assortments occur. 

Findings: Existing object detection algorithms are reliable if configured correctly. However, 

research in this field mostly focuses on a limited set of objects that need to be distinguished 

showing the functionality of the algorithm. Applying such algorithms in the context of 

logistics offers great potential, but also poses additional challenges. A huge variety of 

articles must be distinguished during picking, increasing complexity of the system with 

each article. A combination of different Convolutional Neural Networks may solve the 

problem. 

Originality: The suitability of existing object detection algorithms originates from research 

on automation of established processes in existing warehouses. A process model was 

already introduced enabling the transformation of laboratory trained CNNs to industrial 

warehouses. Experiments with CNNs according to this approach are published now. 
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1 Introduction 

Handling objects in logistics is often supported by loading equipment enabling 

standardization and automation of processes. Therefore, processes that require a higher 

amount of flexibility are still carried out manually (EHI Retail Institute, 2019). Such 

processes are, for example, picking in commissioning, where objects must be processed 

in amounts less than stored on a loading equipment or outer packaging. Every object 

category, e.g., cuboids, cylinders, bottles, or non-rigid objects, must be handled 

according to their special requirements to successfully pick and place the objects 

without damaging them. Consequently, enabling automated picking and placing in 

logistics, automation must be guided according to the flexible environment in order to 

identify a required object, calculate its corresponding gripping point(s), prevent 

collisions with other objects, storage facility, and the automation components 

(Wahrmann, et al., 2019). Analyzing images delivered from a vision system can be used to 

adapt to the environment. Detecting objects in images experienced a boost by using 

Convolutional Neural Networks (CNN) with suitable computing capacity within the early 

2010s (Sultana, Sufian and Dutta, 2020).  

This paper contributes to the question of how to implement an object detection system 

in logistics environments (e.g., warehouses for picking). Therefore, insights from 

research on object detection algorithms are used to build an object detection system 

facing logistics’ requirements and for handling dynamics in established processes and 

assortments.  

This paper is structured as follows. The second chapter describes related work regarding 

logistics, picking, and approaches to processes automation. This includes addressing 

object detection as a prerequisite for automated object withdrawal. Chapter 3 outlines 

the requirements of a picking system according to an object detection system. In chapter 

4 the experimental setup concerning the defined questions is described. Results are 

presented in chapter 5. The paper then concludes with a discussion, conclusion, and 

possible future research. 
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2 Related Work 

This chapter addresses two research areas: the process of picking in logistics scenarios 

as well as approaches leveraging object detection to support the automation of such 

process. 

2.1 Logistics and Picking 

A core process in warehouses is picking, which is the customer order specific composition 

of a subset from a total assortment of goods (VDI, 1994). Especially, this composition is 

often carried out manually as the number of ordered objects of each order line is smaller 

than the number of objects stored with a loading equipment. Consequently, this requires 

a specific handling according to the individual requirements of each single object. 

Therefore, a survey in 2016 showed that 80% of warehouses are still run manually 

(Bonkenburg, 2016). To assist humans in picking objects, assistance systems were 

introduced reducing searching time of objects by pick-by-voice systems (Dujmesic, Bajor, 

and Rozic, 2018) or smart glasses (Rejeb, 2021). Furthermore, by focusing on humans 

during the picking process, the goods-to-person principle was introduced in which goods 

are delivered to humans by automated storage and retrieval systems (de Koster, 2018) or 

mobile robots (Bozer and Aldarondo, 2018). Amazon Inc. introduced a picking challenge 

to find trends in robotic retrieval from shelves (Correll, et al., 2016), giving the pick-by-

robot approach a boost. This challenge was carried out three times. 

These technologies help handling the assortment which ranges, for example at Amazon 

for German warehouses, from 100,000 to 2,000,000 different articles, depending on their 

product categories (Schwindhammer, 2022). 

2.2 Object Detection 

For object detection in 2D-images, a variety of algorithms already exists (Sultana, Sufian 

and Dutta, 2020). The most used algorithms based on CNNs being Mask Regions with CNN 

features (Mask R-CNN) (He, et al., 2017), You Only Look Once (YOLO) (Redmon, et al., 2016) 
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and Single-Shot Detector (SSD) (Liu, et al., 2016) including their subsequent 

developments (Pal, et al., 2021). 

Different metrics and data sets were introduced for comparing algorithms for object 

detection (Padilla, Netto, and da Silva, 2020). Yang, et al. (2020) identified that most data 

sets provide only few classes for object detection, e.g., COCO data set includes 80 classes 

(Lin, et al., 2014), ImageNet 200 classes (Russakovsky, et al., 2015) and Open Images 

Dataset distinguishes between 19,794 classes, but only 600 are annotated with bounding 

boxes (Kuznetsova, et al., 2020) In the context of industrial settings, however, these 

numbers of classes are not sufficient as warehouses assortments can consist of 

thousands of articles. 

In general, different challenges for object detection algorithms exist, including handling 

occlusion (Saleh, Szénási and Vámossy, 2021), the imbalance problem (Oksuz, et al., 

2020), and the central or decentral allocation of computation capacities (Ren, et al., 

2018). Additional challenges are posed by the context of object detection in logistics 

scenarios: Pathaka, Pandeya and Rautaraya (2018) stated that there is a lack of data sets 

for object detection in general. Bormann, et al. (2019), and Thiel, Hinckeldeyn and 

Kreutzfeldt (2018) confirm the need for training data, particularly in the context of 

logistics applications. Li, et al. (2018) observed that “there is no public data set of logistics 

warehouse” and consequently Mayershofer, et al. (2020) introduced Logistics Objects in 

Context (LOCO) data set for warehouse surroundings like pallets or forklift. In 2015, a 

special data set for object detection in a warehouse environment was published by 

Rennie, et al. (2015), focusing on a setup such as Amazon’s picking challenge. Li, et al. 

(2019) discussed the complex task of detecting pallets in logistics, particularly 

illumination conditions and object dimensions. Mok, et al. (2021) also focused on 

detecting pallets, confirming the complexity of object detection in flexible environments 

such as logistics. Poss (2019) stated, that continuous changes in logistics, e.g., of 

containers, are problematic for object detection performance. 

Object detection results are categorized into True Positives (TP) (correct prediction: 

correct object class and location), False Positives (FP) (false prediction: false object or 

incorrect located), False Negatives (FN) (no prediction but image contains searched 

object) and True Negatives (TN) (no prediction and no known object in the image) 
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(Padilla, Netto, and da Silva, 2020). Such categorization is achieved using the Intersection 

over Union (IoU) comparing the area of overlap of the prediction with the expected result 

with the union of both. Figure 1 displays the approach of IoU and its calculation. 

According to related approaches, IoU > 0.5 leads to TP categorization. 

 

Figure 1: Intersection over Union (modified from Kaggle, 2022) 

Categorizing a set of images into TP, FP, TN and FN enables calculating scores for 

Precision, Recall and F1-score metrics (Hui, 2018): 
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Plotting Precision and Recall can be done using a curve. Calculating the Area under the 

Curve (AuC) gives the Average Precision (AP) (Hui, 2018) also called mean Average 
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Precision (mAP) in the context of Common Objects in Context data set (COCO) (Lin, et al., 

2014).  

3 Object Detection in Picking System 

In addition to the described discrepancy between number of articles stored in a 

warehouse and the possibilities to distinguish objects using existing CNN approaches, 

the topic of changes in a warehouse’s assortment has not been addressed yet. The 

packaging and design of articles, especially in commerce, is changed regularly based on 

marketing activities or product packaging redesign. Moreover, the assortment within a 

warehouse is very dynamic, concerning seasonal impact or product lifecycles. 

Most publications dealing with object detection, however, neglect such facts. Thus, the 

dynamic assortments and big number of articles in logistics environments remains 

unconsidered when designing an object detection system.  

In this paper, this issue is tackled by using multiple CNNs to distinguish between all 

articles. In a nutshell, for every article or article group respectively a CNN is designed. 

Besides the “positive” images, containing the searched object, “negative” samples must 

be applied, containing images of all other relevant articles to avoid confusion. Figure 2 

gives an idea of the lifecycle of a CNN used in a warehouse for picking. Especially re-

training is important to adapt to changes to guarantee a sufficient object detection and 

picking performance. 

 

Figure 2: Outline of CNN lifecycle 
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A setup using multiple CNNs for articles or article groups instead of one CNN for the whole 

warehouse’s assortment bears following advantages:  

• Avoidance of framework violation: For YOLO, e.g., the number of articles must 

be defined before trainings starts (Bochowskiy, 2022). Adding articles later 

may lead to problems in CNN configuration. 

• Re-Training for relevant articles: In case changes occur, only relevant CNNs 

must be re-trained. These can be defined by applying a confusion matrix to 

show articles that could be mixed up during object detection. This simplifies 

maintenance of CNNs during their lifecycle. 

Comparing the effect during CNN re-training experiments are defined in Chapter 4. 

4 Experiments 

A custom data set was designed for first experiments showing effort and effects of the 

setup described in Chapter 3. 

4.1 Data Collection and Preparation 

Images were recorded with a Picture Recording Machine (cf. Figure 3), hence, enabling 

automated recording with a custom definition of number of images at a possible object 

rotation of 360° and camera movement of 90° each in steps of 1°-movement. 

Next, recorded images were annotated using YOLO Mark (Bochowskiy, 2020), and object 

detection was done using YOLOv4 (Bochowskiy, Wang and Liao, 2020), where 2,000 

training iterations for each article of the set is recommended (Bochowskiy, 2022). The 

training was run on a working station equipped with a Nvidia GeForce RTV 3090. During 

training the images are augmented. In other words, changes to the images are being 

applied for training purpose increasing the robustness of trained CNNs with respect to 

changes in images, lighting, or surroundings. For YOLOv4 MixUp, CutMix, Mosaic, Bluring 

data augmentation, and label smoothing regularization methods are applied 

(Bochowskiy, Wang and Liao, 2020). 
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4.2 Data Set 

The data set contains 16 different ceramic cups and is used for initial testing with, 

showing effort and effects of the setup described in Chapter 3. 

For each object, pictures were recorded in 9°-steps on the turning table and 5°-steps with 

camera movement, resulting in 760 images per object class. Example images for classes 

one to three are depicted in Figure 4 (surrounding cut off to focus the objects). On the 

left-hand side with a view of about 45° and with 0° camera view (recording starts from top 

view) on the right-hand side to emphasis the challenge of object detection dependent on 

perspective to the object. Figure 5 displays all sixteen articles. 

 

Figure 3: Picture Recording Machine 
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Figure 4: Pictures of ceramic cups (article one - three, from top) 

The pictures of the data set are allocated randomly to either training (60%), testing (20%) 

or validation (20%) subsets. Training and testing subsets are used during training for 

adjustment of CNN parameters. The validation subset is used for experiments. The 

separation is done to avoid a CNN to “know” validation images from training. As the 

distribution to training, testing in validation subsets is done for the whole setup the 

numbers may differing between the classes. 
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Figure 5: Pictures of articles one to sixteen, starting in upper left 

4.3 Setup 

This section describes the setup of the experiments conducted. Figure 6 supports the 

understanding of follow up sections by describing used CNNs and their configurations. 
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Figure 6: Pipeline of experiments 

4.3.1 Extension of number of articles 

When training CNNs, first the number of classes (objects to distinguish) must be defined. 

In case other articles are added at a later stage, the configuration of the CNN must be 

adapted accordingly. To test the effect of re-training, a YOLOv4 CNN was configured and 

trained using fifteen classes with object classes two to sixteen (CNN_1). Later, article one 

was added to the training set for re-training (CNN_1a). 

The alternative test is the configuration with sixteen articles but only handing over 

samples of article two to sixteen (CNN_2) and using all sixteen articles for re-training 

(CNN_2a). 
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4.3.2 Use of negative samples 

Further tests evaluating the impact of re-training onto object detection performance 

were conducted: CNN_2 was used to show “unlearning” of a CNN by re-training with 

images of all classes (CNN_2a) and images of article one only (CNN_2b). The object 

detection performance was then compared according to TP and FP. 

4.3.3 Amount of negative samples 

When equipping each article with a CNN begs the questions which images to use for 

training as training requires images of other articles to avoid erroneous object detection. 

Considering the number of articles in a warehouse, an additional follow-up question 

regarding the number of images required to train for one article arises. 

Using the result from previous sections, CNN_2 was used as basis and CNN_2a as 

benchmark. For re-training articles of all sixteen classes were used, differing in the 

amount of negative samples: CNN_2c with 20%, CNN_2d with 10 %, CNN_2e with 5% and 

CNN_2f with 1% of training and testing samples as well as CNN_2g without training and 

testing images of classes two to sixteen.  

5 Results 

This section presents the results of experiments introduced in Chapter 4. Figures 7-10 

display the first 2,000 iterations of training, as biggest changes of loss and mAP occur in 

this training phase. Training loss is displayed in black color. Additionally, Figures 7-10 

indicate the mAP in red color located on the upper right as continuous line, starting with 

iteration 1,000. In most cases mAP is very low for previous iterations and the mAP 

calculation starts from iteration 1,000 to safe computation power (Bochowskiy, 2022).  

5.1 Extension of number of articles 

This section shows the comparison of adding an article to a CNN when configuration 

must be changed for re-training (increasing the number of classes) (cf. Figure 7) 
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compared to a configuration with the final number of classes at the beginning of the 

training (cf. Figure 8).  

 

Figure 7: Training of CNN_1 

Comparing Figures 7 and 8 shows that by re-training after adding an article in CNN’s 

configuration, training seems to start from beginning. This is indicated by the fact that 

the course of training loss is similar for Figures 7 and 8. On the other hand, Figure 9 shows 

the initial training and Figure 10 the re-training resulting in a different course in Figure 10 

meaning that the CNN’s weights can be refined during re-training (Figure 10) in contrast 

to re-configuration (Figure 8).  

Comparing Figure 7 and 9 regarding to mAP, training with an “empty” class at CNN_2 

(Figure 9, no images of class one are used) affects the CNN’s detection performance 

negatively in early training stage as mAP does not reach 100%. 
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Figure 8: Training of CNN_1a 

 

Figure 9: Training of CNN_2 
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Figure 10: Training of CNN_2a 

5.2 Use of negative samples 

Numbers in Figures 11-16 are related to the validation data sets to which 20% of the 

images belong. The distribution for class differs, as distribution was defined by random 

numbers. Compensating this, presented numbers are relative, providing the rate of TP 

and FP for different classes in relation to the number of images. A rate higher than 100% 

results from multiple detections for one image that can occur in early stages of training 

but normally disappears with training duration. 

Figure 11 shows the course of TP and FP for class one and the average for classes two to 

sixteen over the re-training phase after every 100th iteration. For re-training only images 

of class one have been used resulting in a constantly decreasing TP-rate for classes two 

to sixteen. 
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Figure 11: Re-training without negative samples (CNN_2b) 

 

Figure 12: Retraining with 100% of Negative Samples (CNN_2a) 

Figure 12 shows the result for the same experiment but using all images off all classes. 

This results in TP-rates for all classes near 100% and rates of near 0% as well.  

Consequently, the data of existing classes is crucial for re-training to remain sufficient 

object detection performance for these classes. 
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5.3 Amount of negative samples 

This section presents results from re-training a CNN that was trained with images from 

classes two to sixteen with images of all class. The share of images of classes two to 

sixteen used varies between 0% to 100% in different steps, all images of class one were 

used. Figures 13 and 14 show the number of TP for class one (cf. Figure 13) and classes 

two to sixteen (cf. Figure 14). The lower the number of images of classes two to sixteen, 

the faster a TP-share of around 100% is reached for class one. For all experiments, except 

0%, the number of TP-share for classes two to sixteen remain at about 100% with some 

outliers above 100% resulting from multiple detections for one image. 

 

Figure 13: True positive detections for class one 

A similar effect regarding FP can be observed comparing Figures 15 and 16. A faster 

decrease of FP-share of class one results from a higher number of images of classes two 

to sixteen (Figure 15). The share of FP for classes two to sixteen increase after re-training 

start near zero but coming back to the area of zero after some peaks. 
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Figure 14: True positive detections for classes two to sixteen one 

 

 

Figure 15: False positive detections for class one 
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Figure 16: False positive detections for classes two to sixteen 

6 Conclusion 

This paper introduced state-of-art approaches of automating logistics warehouses and 

object detection for picking. Further, the requirements for object detection in dynamic 

logistic scenarios were discussed and from an industrial approach view. Experiments 

with CNNs examining the configuration and maintenance of CNNs for object detection in 

warehouse were conducted. Therefore, a custom data set of similar looking ceramic cups 

was defined and images recorded by a Picture Recording Machine. YOLO algorithm was 

used to train different CNNs to compare the object detection performance of different 

CNN configurations. 

While the general use of CNNs for object detection is well established, the use of CNNs for 

object detection in the context of industrial settings can be expended. Existing 

approaches do not cover industrial settings, and most existing research only addresses 

the problem regarding a limited number of classes being treated by one single CNN. In 

the context of product lifecycles, changes to warehouse assortments occur frequently, 

and remains unconsidered in object detection research. For industrial applications, 

however, this resembles a serious challenge.  
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The experiments conducted in this paper provide an idea of how an object detection 

system for picking in logistics environment may be designed using multiple CNNs instead 

of one CNN processing the whole assortment. Therefore, different states of CNNs were 

compared and the impact of increased number of classes as well as the amount of images 

from known classes during re-training was analyzed. The results indicate that multiple 

CNNs are suitable for object detection in warehouses if a concept for continuous data 

gathering and CNN update, respectively maintenance, is applied. The experiments have 

been conducted in a laboratory environment, but the transformation from a laboratory 

CNN to warehouse employment was treated yet (Rieder and Verbeet, 2020). 

In further research two different domains must be addressed: First, real-world 

applications in the field of logistics must further validate the presented results. The 

application of the presented approach to an industrial warehouse can also help to 

overcome the limitation of using laboratory images only. Furthermore, the number of 

articles must be increased to a real-world scenario. 

Second, further investigations of how multiple CNNs interact with each other must be 

conducted. This provides the potential that different CNNs might be configured in a less 

complex way, leading to shorter training phases, increased picking performance and less 

resource usage in general.  
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