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Abstract. The modernization of legacy software systems is one of the
key challenges in software industry, which requires comprehensive sys-
tem analysis. In this context, process mining has proven to be useful for
understanding the (business) processes implemented by the legacy soft-
ware system. However, process mining algorithms are highly dependent
on both the quality and existence of suitable event logs. In many scenar-
ios, existing software systems (e.g., legacy applications) do not leverage
process engines capable of producing such high-quality event logs, which
hampers the application of process mining algorithms. Deriving suitable
event log data from legacy software systems, therefore, constitutes a rele-
vant task that fosters data-driven analysis approaches, including process
mining, data-based process documentation, and process-centric software
migration. This paper presents an approach for deriving event logs from
legacy software systems by combining knowledge from source code and
corresponding database operations. The goal is to identify relevant busi-
ness objects as well as to document user and software interactions with
them in an event log suitable for process mining.
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Modernization · Process Mining

1 Introduction

Economically, one of the most important sectors in software industry concerns
the modernization of legacy software systems. These systems need to be replaced
by modern software systems showing better usability, higher performance, and
improved code quality. A successful modernization of a legacy software system
requires the analysis of the (business) processes implemented by the legacy soft-
ware, the interactions users have with the system, and the access points to system
information (e.g., source code or databases).

Process mining offers a plethora of analysis approaches to gain a broad under-
standing of the processes implemented in software systems. Process discovery, for
example, enables the derivation of process models from event logs [1]. In turn,
conformance checking correlates modeled and recorded behavior of a business



process, enabling the analysis of the observed process behavior in relation to a
given process model [2]. Finally, process enhancement allows improving business
processes based on the information recorded in event logs. In summary, most
process mining approaches highly depend on the existence of process event logs
as well as the quality of these logs.

In software modernization projects, legacy software systems need to be ana-
lyzed. In this context, the use of process mining approaches is very promising for
analyzing the processes implemented in these systems. However, most existing
legacy software systems neither have been designed based on pre-specified exe-
cutable process models nor do they provide extensive process logging capabilities.
As a consequence, the application of process mining to legacy software systems
is hampered and alternatives for obtaining models of the implemented processes
and, thus, for supporting the migration of the legacy software system to modern
technology are needed. Alternatives include, for example, extensive interviews
with key system users and process owners [3]. Both alternatives, however, are
time-consuming and prone to incompleteness.

This paper presents an approach to generate event logs from running legacy
software systems by combining knowledge from source code analysis, including
database statements, to discover the relevant business objects of a process as
well as to document user and software interactions in an event log suitable for
process mining. We consider the following research questions:

RQ1: How can we generate event logs from running legacy software systems?
RQ2: How can we ensure that the performance of legacy software systems is

not affected during event log generation?

The remainder of this paper is structured as follows: Section 2 introduces the
concepts necessary for understanding this work. Section 3 discusses the require-
ments for generating event logs from running legacy software systems. Section 4
presents the legacy software system analysis required for generating event logs.
Section 5 describes our approach and shows how one can extend a legacy software
system to generate event logs. Section 6 evaluates our work using a requirements
evaluation, a performance comparison, and a user survey. Section 7 discusses re-
lated work. Section 8 provides a short summary as well as an outlook.

2 Fundamentals

2.1 Legacy Software Systems

Legacy software systems are widespread in enterprises, but very costly to main-
tain due to bad documentation, outdated operating or development environ-
ments, or high complexity of the historically grown system code basis [4]. As
a result, the replacement of such legacy software systems is often significantly
delayed beyond the initial system lifespan. Legacy software systems consist of a
plethora of artifacts and resources such as servers, (non-normalized) databases,
source code, or user forms, which all may be used during legacy software sys-
tem analysis. Fig. 1 depicts a screenshot of an Oracle legacy software system
implemented in the 1990s. We will refer to this example in the following.



Fig. 1: Screenshot of a Legacy Software System

2.2 Event Logs

Event logs build the foundation for process mining algorithms and capture infor-
mation on cases, events, and corresponding activities [5]. In general, event logs
record events related to the execution of process instances. Mandatory attributes
of a log entry include the case identifier, the timestamp, as well as the executed
activity [5].

In the context of legacy software systems, which may support multiple pro-
cess types (e.g., order-to-cash, purchase-to-pay, or checking an invoice), it might
be unclear to which process type an activity belongs. Therefore, an additional
attribute indicating the process type is required when deriving event logs from
legacy software systems.

3 Requirements

In most cases, there exist no suitable event logs for process mining in legacy
software systems. This section elicits fundamental requirements to be met when
generating event logs from user and software interactions with legacy software
systems. On one hand, we gathered the requirements from literature [5]. On the
other, we conducted interviews with domain experts (e.g., software engineers,
and process owners) to complement these requirements. Amongst others, we
identified the following requirements:

Requirement 1: (Relevance) The event log should only contain process-
relevant data that refers to those interactions with the legacy software system
that correspond to a process (e.g., filling or completing a form). If an interaction
triggers an automated procedure (e.g., invocation of an operation in the legacy
software system), the resulting changes (e.g., to the database) should be recorded
in the event log as well.

Requirement 2: (Scope) Legacy software systems often use a plethora of
database tables and source code fragments that contain business-relevant data.
Identifying and scoping process-relevant database tables and code fragments
usually requires extensive domain knowledge that might not be available. An
approach for generating event logs from legacy software systems should therefore
minimize the domain knowledge required.



Requirement 3: (Consistency) To facilitate the preprocessing of the event
log data, the event log should be consistent with respect to timestamps, data
types, and additional resources, even if different software components of the
legacy software system (e.g., database and user forms) are involved.

Requirement 4: (Performance) The event log generation from a running
legacy system should not influence its performance, i.e., the user and software
interactions should not be influenced (e.g., due to increased loading times).
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Fig. 2: Preparation Steps of our Approach

We derived the approach for generating event logs from running legacy soft-
ware systems (cf. Fig. 2) by applying design science research [6].

In the first step, we analyze the legacy software system, including source
code, database tables, and additional resources (e.g., configuration files, user
forms displayed by the running legacy software system).

In the second step, we transform the source code of the legacy application
to an abstract syntax tree in order to identify those code elements that trigger
database operations (e.g., the selection, insertion, deletion or update of tuples
in database tables). Using the database tables in combination with the informa-
tion provided from the source code (e.g., the exact SQL statement), we address
an important problem of legacy software systems, i.e., we are able to identify
relations between tables that have not been explicitly specified using foreign-key
constraints. In other words, we identify additional relations between database
tables specified in the legacy application source code.

We can further build clusters of database tables that most likely belong to
the same process based on these identified relations. In Fig. 3, for example, tables
belonging to the cluster marked in green correspond to orders, whereas tables
of the purple cluster correspond to articles. We identify the center of a cluster
using a page rank algorithm [7]. Note that checking the identified clusters with
a domain expert (if possible) might further improve the event log generation (cf.
Requirements 1 and 2 in Section 3). After having identified the clusters in the
database tables, we can determine which source code fragments are relevant for
the generation of the event log, i.e., which code fragments affect process-relevant
database tables. This information can then be used to configure and install the
code tracker into the legacy software system.

The code tracker is able to automatically inject code fragments into the
source code, which, in turn, are then executed together with the legacy software
system code enabling the generation of event logs at runtime. To ensure that
the performance of the legacy software system is not negatively affected, the
necessary data is passed using common log mechanisms (e.g., java.util.logging or
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Fig. 3: Clusters derived from Database and Source Code

Oracle message-builtIns) already available in the legacy software system. This
yields the advantage that the existing infrastructure, in which the legacy software
system operates, takes care of managing files, rotating data and, thus, providing
methods for writing data to an event log in a performant manner. Consequently,
the transfer of event log data becomes possible with minimal footprint. In a last
step, we synchronize the event log with the information from the database (e.g.,
redo logs) enabling the generation of high-quality event logs.

5 Event Log Generation

In the context of a legacy software system, a business process can be derived
from the sequences of interactions the users have with the legacy application.
Each interaction of such a sequence is then subject-bound (i.e., the interactions
of a sequence belong to the same transaction). In a legacy software system, such
processes may be initiated and terminated using pre-defined actions, for exam-
ple, menu items or key combinations. The addition of corresponding actions to
an event log, together with the associated application object (e.g., a product
identified by a unique product number, or an order identified by its order num-
ber) constitutes the basis for generating an event log. Subsequently, this event
log may then serve as input for process mining algorithms.

5.1 Legacy Software System Extension

After showing how process-relevant source code fragments can be identified in
the legacy software system (cf. Section 4), we discuss how to augment the legacy
software system with event log generation capabilities by installing the code



tracker. This installation utilizes our ability to parse the relevant source code
fragments and to map them as an abstract syntax tree [8].

Leveraging this source code information, we can add the code tracker nodes at
the relevant positions of the software code, i.e., “start”, “end”, “return”, “exit”,
and “exception”, surrounding a create-, read-, update- or delete-statement (CRUD-
statement). Each code tracker statement then captures the context (i.e., the
position of the relevant source code in the entire legacy software system), the
timestamp, the identifier of the corresponding user session, and, optionally, ad-
ditional parameters of the identified source code fragments.

Adding the code tracker to the legacy software system is implemented as a
pre-deployment task. Thus, no developer interaction becomes necessary. In a de-
ployment chain, relevant code is checked out, parsed, added to the tracker, saved,
compiled, and then deployed to the running legacy software system. This inte-
gration ensures that any kind of source code change or release of new software
versions can be captured, hence, preventing mismatches between the running
code and the information captured in the generated event log. As an example,
consider the code fragment depicted in Fig. 4a, which is responsible for han-
dling a user interaction event. When applying the code tracking pre-deployment
task to this code fragment, we obtain the code fragment depicted in Fig. 4b.
In the latter, the event log generation is added to lines 2, 5, 7, and 9. Note
that ScreenName and EventName constitute placeholders that are replaced by
the actual values at runtime. An example of such actual values could be OR-
DERS.MAIN CANVAS.BUTTON SAVE.WHEN BUTTON PRESSED.

(a) Source Code (b) Extended Source Code

Fig. 4: Example Source Code Fragments

During event log analysis, such values provide important contextual infor-
mation and enable a failure-free identification of documented user and software
interactions. There exists a plethora of user interactions, e.g., pressing a button,
entering a value into a form field, clicking on a check box, or navigating be-
tween elements. As long as the legacy software system implements these events
as process-relevant in the source code, the code tracker is added.

Merging user interactions with database events In addition to the user
interaction events gathered by the code tracker, we analyze all database updates
(i.e., insert, update and delete) expressed in terms of Data Manipulation Lan-
guage (DML) statements. For this analysis, we utilize the redo log capabilities
provided by the legacy software system database. Redo logs are created by trans-
actional databases, to enable recovery in case of failures (e.g., after crashes). The
information contained in a redo log consists, for each recorded operation, of the



name of the database table, the performed operation (i.e., insert, update, or
delete), the timestamp, the session-id, and the original DML statement applied
to the database [9].

From the source code extension (cf. Fig. 4b), for each event, we can also ex-
tract the timestamp, session-id, and the affected database table. Combining these
three attributes enables the allocation between user or software interactions and
the corresponding changes to the persistence layer of the legacy software system.
Leveraging the information from redo logs, again ensures that no performance
penalties emerge due to the event log generation.

Using the code tracker functions, the information captured in the event log
is significantly increased compared to an event log solely generated from the
database schema [10], as we can unambiguously link processes with both program
code and related data. Therefore, time-consuming reverse engineering and root
cause analysis are not needed as the connection between source code, data, and
processes already exists.

Finally, one valuable effect for software modernization can be achieved: miss-
ing entries in the event log indicate that process parts implemented in the legacy
software system have never been used. This information is vital for modernizing
legacy software systems as the code fragments may correspond to technical debt
and must therefore not be migrated [11].

5.2 Recording User Interactions

Once the code tracker is installed, we are able to document the interactions of
users with the legacy application, including resulting software interactions. For
recording user interactions, we support two variants [12]:

Silent Recording shall record the use of the legacy application, starting with
the login a of user until closing the legacy application. We allow specifying
which information shall be recorded and in which form. For example, personal
data may only be logged in an anonymized way. By only recording selected user
sessions (e.g., sessions of users from a certain department), we can further restrict
the recording of user interactions to relevant user groups (e.g., users handling
invoices) in a fine-grained fashion.

Dedicated Recording aims to record existing (i.e., already identified) pro-
cesses implemented in the legacy software system. Users may define the start
and end of the recording (e.g., through predefined key combinations), and pro-
vide additional information about the recorded process. This, in turn, allows for
a precise delimitation of the interactions corresponding to a process.

6 Evaluation

The evaluation of our approach is threefold: First, we assess whether the iden-
tified requirements are met. Second, we analyze the performance of an Oracle



legacy software system to which we applied our approach. Third, we applied
process discovery algorithms to the derived event logs and evaluate the resulting
process models with domain experts. In total, the legacy software system used
to evaluate the approach comprises 589 database tables with 9977 columns. Ad-
ditionally, 60712 database statements (including more than 8000 different state-
ments) were implemented in a total of over 5 million lines of code. Furthermore,
the legacy software system comprises 1285 forms and 6243 different screens. The
event log was created using dedicated recording (cf. Section 5). In other words,
the users in this event log were able to provide additional information of the
recorded business process (e.g., name and description of the process). Addition-
ally, we applied the approach using silent recording to the legacy software system
of an insurance company1.

6.1 Requirements Evaluation

To evaluate Requirement 1 (Relevance), according to which the event log shall
solely contain process-relevant information, we conduct an in-depth and auto-
matic analysis of the legacy software system by identifying and clustering im-
portant tables and source code fragments (cf. Section 4). This enables us to
distinguish between relevant and non-relevant information. As a result, we are
able to configure the code tracker to ensure that only relevant data is collected.

Requirement 2 (Scope) deals with the scope of the legacy software system
and aims to minimize the amount of domain knowledge needed for the analysis.
By analyzing the source code, we are able to identify which code fragments refer
to which database tables. Clustering the database tables (cf. Section 4) allows
grouping the tables that belong to the same context. This enables a best guess
approach that may be checked by domain experts to further improve the event
log generation. Compared to alternative approaches (e.g., extensive interviews),
our approach requires significantly less domain knowledge.

Requirement 3 (Consistency) refers to consistency with respect to data types,
timestamps, and resources. While we account for consistency regarding data
types (e.g., timestamp formats and variables), due to the automated nature of
our approach, the fulfillment of this requirement also depends on the consistency
of the analyzed legacy software system as well as the underlying database.

According to Requirement 4 (Performance) the event log generation must not
affect the performance of the legacy software system or user interactions with
the legacy application. Typically, the generation of redo log files, archive log
files based on the redo log files, as well as the log rotation capabilities are tuned
to not influence the performance of the analyzed legacy software system. For
further analysis, the generated event log is extracted asynchronously to ensure
that the extraction neither impacts users nor the performance of the running
legacy software system. Additionally, the logging of user interactions focuses
on the relevant actions identified during legacy software analysis. Furthermore,
the logging is running in a separate, isolated transaction to the user session.

1 Event logs provided: https://cloudstore.uni-ulm.de/s/7jYeRnXtcsk2Wfd



Finally, the collected event data is also persisted in a separate storage to not
affect performance.

6.2 Performance Analysis

To further evaluate the performance effects of our approach on the considered
legacy software system, we executed the same 3 processes multiple times (N=10)
with and without event log generation and measured the duration of the follow-
ing performance metrics: navigation, loading time, and function call. Note that
due to limitations of the legacy software system, timestamps could only be col-
lected every 10 milliseconds. In other words, differences of up to 20 ms might
exist. Figs. 5 - 7 depict the collected performance metrics. When navigating
through the legacy software system the average duration decreased by 25 ms.
The average loading times decreased by 30 ms after adding the event log gener-
ation. These differences are in range of the timestamp limitations of the legacy
software system. Therefore, we can conclude that the event log generation does
not significantly impact navigation and loading times. On average, the duration
of function calls increased by 0.65 seconds (+18.2%) per function call. However,
after closer inspection, this increase is mainly due to recursive function calls that
generate event log entries with each iteration. We are able to only record one
event log entry for recursive function calls, consequently reducing the increase
to the level of non-recursive function calls. Concerning the latter, we observed
an average increase of 14 ms (1.73%). Across all observed performance metrics,
the differences do not impact typical user and software interactions.

Fig. 5: Navigation Fig. 6: Loading Time Fig. 7: Function Calls

6.3 Initial Process Discovery

We applied several process discovery algorithms to the event logs generated with
our approach using default algorithm configurations. Next, we showed the re-
sulting process models to domain experts (N=13) and asked them to evaluate
to which degree they are able to recognize the legacy software system in each
process model on a 5-Point Lickert scale from not at all to completely. Overall,
the domain experts rated the process model generated by the Heuristic Miner
(threshold = 0.9) best (Mean = 4.45, SD = 0.63). This indicates that process
models discovered from the generated event log adequately represent the behav-
ior of processes implemented by the legacy software system.



Table 1: Domain Expert Recognition of Discovered Process Models (N=13)

Inductive Inductive
DFG

Heuristic Heuristic Heuristic
(Tree) (BPMN) (thold=0.75) (thold=0.9) (thold=0.95)

Mean (SD) 3.08 (1.07) 3.08 (0.73) 2.31 (1.2) 4.15 (0.77) 4.46 (0.63) 3.38 (1.27)

While the results could be improved using additional process discovery algo-
rithms or fine-tuning parameters, they emphasize the high quality of generated
event logs as no additional event log preparation was required.

7 Related Work

This paper is related to event log generation, robotic process automation, and
legacy software system analysis.

Process mining algorithms require event logs and, therefore, the generation
of event logs from various sources has gained great attention [13]. Databases
are often used as the main resource for extracting event data from information
systems [10, 14]. A quality-aware and semi-automated approach to extract event
logs from relational data is presented in [15]: users may select event log attributes
from available data columns, assisted by data quality metrics. In the context
of legacy software systems, however, relying solely on the information present
in databases is not sufficient, as important process-relevant knowledge is often
captured in the source code as well as the displayed user forms, but cannot be
discovered from the database solely. For example, legacy databases are often not
normalized and miss important information, e.g., foreign key constraints.

In the field of Robotic Process Automation (RPA) [16], user interface in-
teractions and software robots are used to replicate human tasks. An approach
for recording the interactions with user interfaces and the generation of user
interface event logs is presented in [17]. A pipeline of processing steps enabling
robotic process mining tools to generate RPA scripts from UI logs is presented
in [18]. [19] presents an UI logger that generates an event log from multiple user
interfaces. As opposed to [17–19], our approach accounts for the effects on the
legacy software system (e.g., exact database statements), i.e., it does not only
consider the user interface interactions in isolation.

In [20], a framework to recover workflows from an e-commerce scenario is
presented, leveraging static analysis to identify business knowledge from source
code. Similarly, [21] presents an approach for recovering business knowledge from
legacy application databases by inspecting the data stored within the database.
As our approach also aims to identify business knowledge from legacy software
systems, it differs from [20, 21]. Instead of extracting business knowledge from
static analysis, we generate event logs that represent business knowledge using
interactions with the legacy software systems.

[22] deals with the generation of event logs from legacy software systems
by first extending the source code and then recording the event logs. In con-
trast, our approach requires less domain knowledge for generating the event logs
as we derive relevant source code fragments from the clusters identified in the



database (including foreign-key constraints specified in the source code) rather
than domain experts or system analysts. Additionally, we support two event
log generation variants (silent and dedicated) that enable further insights into
specific processes implemented in the legacy software system.

8 Summary and Outlook

This paper presented an approach for generating event logs from running legacy
software systems with minimal domain knowledge. We combine information from
source code analysis and the database structure to identify tables and source code
fragments relevant in the context of supported business processes.

Further, we identify which database tables and source code fragments may
correspond to a specific process (e.g., handling an invoice) using a cluster anal-
ysis. We then automatically inject event log generation functions to the legacy
software system to track user and software interactions with the legacy soft-
ware system, while at the same time recording the resulting database transac-
tions. Next, we document user interactions with the application and the resulting
database changes from the running legacy application in a user-decided fashion.
We then combine both logs to correlate user interactions with corresponding
database changes to obtain event logs suitable for process mining.

We evaluated the approach based on the requirements identified with domain
experts, a performance analysis of the legacy software system, and the applica-
tion and evaluation of initial process discovery algorithms. The requirements are
met, enabling the generation of comprehensive event logs from legacy software
systems with the approach. A performance evaluation using an Oracle legacy
software system has shown that our event log generation does not impact the
performance of the legacy software system, and initial process models discovered
were able to adequately represent the legacy software system for domain experts
using the event logs generated with the approach.

In future work, we will apply the presented approach to additional legacy
software systems. Additionally, we will increase the quality of the discovered
process models for non-experts using more intuitive event log labels based on
the legacy software system.
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