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Abstract—The relevance of the Internet of Things (IoT) for
Business Process Management (BPM) support is increasing. IoT
devices enable the collection and exchange of data over the
Internet, whereby each physical device is uniquely identifiable
through its embedded computing system. BPM, in turn, is
concerned with analyzing, discovering, modeling, executing, and
monitoring (digitized) business processes. By enhancing BPM
systems with IoT capabilities, real-world data can be gathered
and considered during process execution to enhance process mon-
itoring as well as IoT-driven decision making. In this context, the
aggregation of low-level IoT data into high-level process-relevant
data constitutes a fundamental step towards IoT-driven decisions
in business processes. This paper presents IoT Decision Making
for Business Process Model and Notation (loTDM4BPMN) a web-
based framework for modeling, executing, and monitoring IoT-
driven decisions in real-time. We give insights into the design
and implementation of IoTDM4BPMN and provide a case study
as a first validation that applies o TDM4BPMN to the modeling,
executing, and monitoring of a real-world IoT-driven decision
process.

Index Terms—BPM, BPMN, IoT, BPM in IoT, IoT Decision,
Decision

I. INTRODUCTION

As electronic components are becoming smaller, more pow-
erful, and less expensive, the application areas of the Internet
of Things (IoT) are wide-ranging and diverse, including, e.g.,
smart home environments, medical monitoring systems, and
smart factories [2] [21]. IoT is a network of physical objects,
i.e., sensors and actuators, which collects data by sensor(s)
and action(s) are triggered by actuator(s) [1]. The use of such
interconnected physical objects allows transferring an environ-
mental context from the physical to the digital world [3]. While
IoT enables the collection and exchange of data about the
physical world, Business Process Management (BPM) allows
analyzing, modeling, discovering, executing, and monitoring
business processes [4]. The incorporation of IoT capabilities to
BPM suites creates both business opportunities and customer
value, improving process execution, process monitoring, and
decision making. Moreover, this combination allows monitor-
ing the progress of manual tasks based on appropriate sensors
[5]. By adding IoT devices to a business process, contextual
information of its physical environment can be gathered and
exploited. This additional data can contribute to the under-
standing of the process [1]. Furthermore, IoT devices allow
for a real-world awareness of digitized business processes. [oT
devices can be further used in business processes to automate
different types of tasks, which may be digital (e.g. sending

data) or physical (e.g., moving a robot) [5]. Overall, IoT
enables us to continuously enhance process support with real-
time IoT sensor data. Such IoT-aware processes often expose
a need for context aggregation and context awareness [7]. To
meet this need, the collection and processing of IoT sensor
data should be accomplished as follows (i) sense the low-
level data (e.g., brightness, temperature, switch state) from the
physical world, (ii) aggregate and combine low-level sensor
data to high-level information, and (iii) obtain meaningful
information to enable IoT-driven decision-making [6].

In general, low-level data is generated by sensing the
physical world. These low-level data, in turn, are aggregated
and combined to high-level data, which enhances BPM with
physical context data about the real-world, i.e., IoT-driven
processes are context- and real-world-aware [7] [3].

Decisions to be made during business process execution
require high-level information about the real-world. In this
context, it is not sufficient to only retrieve data from tradi-
tional repositories, such as databases and data warehouses. In
addition, IoT sensor data, provided via in-memory databases
or complex event processing, might be useful as well [5].

The combination of IoT with BPM support has gained
significant attention in literature. In particular, several no-
tations, approaches, or extensions of the Business Process
Model and Notation (BPMN) [8] have been proposed to
integrate IoT devices in a process model in terms of resources.
Following this straightforward approach, however, [oT data is
directly used without aggregating and combining it with other
contextual data to obtain high-level information, which impairs
its potential capability [3]. Nevertheless, the integration of
IoT with BPM is limited due to the lack of a methodolog-
ical framework to connect an IoT infrastructure to BPM. In
contemporary approaches and frameworks, the involvement of
IoT devices in decision making does not become apparent. In
addition, IoT-driven decision making is indistinguishable from
other decisions. Finally, the monitoring of IoT-driven decisions
is usually neglected, which leads to difficulties in discovering
errors as well as extending, and maintaining the decision logic.

The introduction of the Decision Model and Notation
(DMN) [9] [10] standard provides a solution to model decision
logic separately from the process logic. In addition, DMN
enables the aggregation of low-level information to high-
level one. However, in DMN neither monitoring nor error
handling are optimized for IoT-driven decisions. For example,
if a physical error occurs, it is difficult to identify the source



of the erroneous IoT device as the decision logic is defined
exclusively in decision tables.

In this paper, we present IoT Decision Making for BPMN
(IoTDM4BPMN for short), a web-based framework for mod-
eling, executing, and monitoring IoT-driven decisions in real-
world-aware business processes. The framework uses low-level
physical data from IoT devices to evaluate predefined decision
rules. In addition, the framework allows logging the sensor
data, the decision rules, and the finally made decision. Finally
IoTDM4BPMN fosters the understanding of the decision logic
through visualization techniques (e.g., coloring).

The remainder of this paper is organized as follows. Section
IT summarize the problems and issues that emerge when mod-
eling IoT-driven decisions with BPMN and DMN respectively.
Related work is discussed in Section III. Section IV defines the
requirements for the framework, which is described in detail
in Section V. Finally, Section VI summarizes and discusses
our results.

II. PROBLEM STATEMENT
A. IoT-driven decisions in BPMN

To model, execute, and monitor IoT-driven decisions in busi-
ness processes, in principle, standard BPMN elements may be
used. As BPMN 2.0 does not explicitly cover IoT capabilities,
the involvement of IoT devices in modeling, executing, and
monitoring is not apparent. On one hand, IoT devices can
be represented by services, scripts, and Business rule tasks
in BPMN. On the other, data objects, events, or resources
may be used in combination with annotations to express
IoT involvement [22]. However, when using standard BPMN
elements to represent IoT devices, no distinction between
regular BPMN tasks and IoT-related tasks can be made.

To model IoT-driven decisions, gateways may be used in
BPMN. As IoT-driven decisions often involve multiple IoT
devices, however, decision rule complexity increases with the
number of IoT devices involved. Note that this affects both
the readability and comprehensibility of IoT-driven decisions
in business processes. In addition, with a high number of
decisions and a complex nested rule logic, the process model
might become challenging to read. As another problem the
higher the number of involved IoT devices is, the more
complex the extension and maintenance of the decision logic
becomes. Finally, modeling IoT-driven decisions in BPMN
impairs the scalability and flexibility of the process model.

To illustrate the problems and issues relevant in this context,
a simplified process from the healthcare domain is used.

Example 1: Consider a system that monitors the health
status of a patient with Chronic Obstructive Pulmonary
Disease (COPD). COPD describes a disease in which the
lungs, airflow, and breathing of the patient are obstructed.
At any point in time, the patient may experience unpleasant
complications such as fast heart rate, hyperactive muscle use,
fast breathing, and a cold skin. In this context it has been
shown that loT-driven monitoring of sensor-equipped patients
can help increasing their quality of life. In order to detect
COPD, all necessary sensors are queried. Based on the values

provided by them, either no treatment, treatment with an
oxygen mask, or treatment with an inhaler is administered.

The IoT-driven process from Example I is modeled in terms
of BPMN 2.0 in Figure 1. The following issues emerge when
modeling IoT-driven decisions with BPMN:

1) The involvement of IoT does not become clear.

2) The complexity of the decision increases with the num-
ber of IoT devices involved.

3) IoT data is used without linking it to other contextual
process data.

4) With an increasing number of decisions and a complex
nested rule logic, the process model becomes less in-
comprehensible.

5) The scalability and flexibility of the resulting process
model becomes impaired

6) Any later extension or change of the specified decision
logic becomes impaired.

B. IoT-driven decisions in DMN

An JoT-driven decision can be modeled in terms of DMN
as well [9]. The decision logic, input data for making the
decision, and the decision table provided by DMN may be used
for this purpose. As DMN separates decision from process
logic, monitoring becomes challenging. When modeling deci-
sions with DMN, the respective decision rule is represented
exclusively via a Business rule task in BPMN. If an error
occurs during the execution of an IoT-driven decision in
BPMN, such as sensor failure, non-reachability of an IoT
device, or an erroneous sensor value, the Business rule task
will throw an error. To figure out which sensors are erroneous,
one must consider the DMN decision process in addition
to the BPMN process model (Figure 2). Then, all sensors
and IoT-driven decision tables must be checked. In addition,
IoT devices cannot be distinguished from other input data or
devices in DMN. This turns monitoring and troubleshooting
into a challenging task (Figure 2). As another problem, during
the execution of an IoT-driven decision it is not possible to
trace back how the DMN-based decisions are actually made.
Instead, the Business rule task only provides the final decision
(Figure 2).
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Fig. 2. Relationship between BPMN and DMN (Adapted from [10])
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Fig. 1. IoT-Driven decision process modeled with BPMN (adapted from [9] [15])

III. RELATED WORK

There exist several approaches [16] [17] [18] that integrate
IoT devices into BPMN models in terms of specific artifacts,
IoT tasks, and physical entities. Most approaches focus on
automating process execution or improving performance effi-
ciency. Regarding the modeling of IoT-aware processes, vari-
ous concepts for representing IoT devices at the modeling level
have been proposed. For example, many existing approaches
integrate IoT entities as a resource in business process models.
However, this straightforward approach does not utilize IoT
data for context reasoning and decision making [18].

In [3], a framework is presented to bridge the gap be-
tween IoT infrastructure and context-aware Business Process
Management (BPM) by integrating IoT data into context on-
tologies. This integration intends to improve business process
decision making. A BPM ecosystem with four components
is proposed contextual process models, contextual models,
decision models, and contextual process execution. However,
the framework does not allow for the monitoring of IoT-driven
decisions in real-time. As decisions are considered separately
from the process flow, in addition their comprehensibility
becomes challenging.

In [19], IoT data is used for data analysis to improve
decision making. For this purpose, a model for logistics
management based on RFID technology is proposed. This
model enables the detection of inconsistencies based on IoT-
driven decisions. However, the developed model is specific to
logistics management and cannot be used in other domains.
Moreover, the decisions are not modeled separately, but are
hard-coded in the model. Finally, the modeling, execution, and
monitoring of the decisions are not based on BPMN.

[20] introduces an Industry 4.0 process modeling language
(I4PML) that extends BPMN 2.0 with the following elements:
cloud app, IoT device, device data, actuation task, sensing
task, human computer interface, and mobility aspect. I4PML
does not include any solution for modeling, executing, and
monitoring IoT-driven decisions.

None of the discussed works provides a complete approach
for modeling, executing, and monitoring IoT-driven decisions.
Most works extend BPMN with IoT-related elements to foster
a better understanding of IoT-driven processes. When inte-
grating IoT entities in terms of resources, however, IoT data
is used directly without linking and aggregating it with other
contextual data. No engine for processing loT-driven decisions
in the context of BPMN models exists to the best of our
knowledge. Another missing aspect concerns the monitoring of
IoT-driven decisions. During the processing of decision rules
it is crucial to be able to monitor the current decision rule
processing state, possible errors, intermediate results, and the
structure of the decisions.

IV. REQUIREMENTS

Based on various application scenarios and our literature
review, we can define requirements that shall address the
described problems in modeling, execution, and monitoring
IoT-driven decisions in BPMN 2.0.

o RQ1: The modeling, executing, and monitoring of IoT-
driven decisions shall be supported.

o RQ2: The involvement of IoT-related data in process de-
cisions shall become apparent in the modeling, execution,
and monitoring of IoT-driven decisions.

e RQ3: The approach shall be detached from the IoT
infrastructure and support the most common protocols.

e RQ4: The modeling of IoT-driven decisions shall be
feasible in BPMN.

e RQ5: IoT-driven decisions shall be executed and moni-
tored in real time.

e RQ6: Sensor polling should be enabled in real time based
on suitable protocols.

o RQ7: Non-availability, runtime errors, or timeouts of
sensors must be discovered by the decision engine and
be explicitly displayed during decision rule monitoring.

¢ RQ8: Any error occurring during decision rule process-
ing shall be traceable, e.g., in terms of an event log.



e« RQ9: Low-level sensor data shall be aggregatable to
high-level information or events.

e RQ10: The definition of decision rules shall be enabled
in a visual and intuitive form.

o RQI11: The defined decision rules shall be processed by
the decision engine.

¢ RQ12: The results of a processed decision rule shall be
used in the process.

o RQ13: When monitoring the execution of a decision rule,
it should be possible to distinguish between erroneous
sensors, sensors in execution, and sensors that have
already been executed.

e RQ14: It shall be possible to visually display the re-
trieved sensor values as well as the decisions made in
the monitoring component.

V. SYSTEM FRAMEWORK

This section introduces the main functions and architecture
of the IoTDM4BPMN, i.e., our framework for modeling,
executing, and monitoring IoT-driven decisions in BPMN
models.

A. Main Functions

The IoTDM4BPMN framework offers four main functions
to improve IoT-driven decisions during real-time:

e Modeling To be able to explicitly model IoT-driven
decisions, BPMN 2.0 is extended with the following IoT
elements; loT sensor artifact, loT decision container, loT
decision table, and loT decision task. These elements
shall make IoT involvement more explicit and, thus,
fosters the distinctiveness between IoT- and Non-IoT-
driven decisions.

o Execution IoT-driven decisions can be executed in real
time by the o-TDM4BPMN decision engine.

o Monitoring The IoT-driven decisions can be monitored
in real-time. In this context, intermediate and final re-
sults as well as the sensors involved may be displayed.
Different color patterns are used to indicate the status of
processing a decision rule, i.e., under execution, success-
fully completed, or failed.

o Logging To be able to trace IoT sensor failures back to
the respective sources, various parameters are logged in-
cluding decision logic, involved IoT devices, timestamp,
process id, name of the IoT decision container, and IoT
decision table.

B. IoT-related BPMN elements

To explicitly cover 10T involvement in decision modeling,
we extend BPMN 2.0 with the four elements shown in
Figure 3:

o Sensor artifact: A sensor artifact represents different
sensor types relevant in the context of IoT-driven decision
modeling, e.g., electrocardiography sensor, temperature
sensor, GPS sensor, switch, or camera. Using this arti-
fact, the involvement of sensors in IoT-driven decision
modeling becomes apparent. Furthermore, at runtime this

artifact can be queried in real-time to evaluate the condi-
tion of the respective decision rule. Note that all necessary
information about the sensor (e.g., address, type, or name)
is captured in this artifact during modeling [23].

e IoT decision table and container: For defining IoT-
driven decisions, the IoT decision container may be used
in combination with the IoT decision table and the sensor
artifacts. The IoT decision table is part of the IoT decision
container. It uses the sensor artifacts as input elements to
define decision rules. Each IoT decision container may
consist of n IoT decision containers and likewise n sensor
artifacts.

e IoT decision task: The IoT decision container is con-
nected to the IoT decision task using an association.
The IoT decision task may incorporate both final (root
IoT decision container) and partial decisions (child IoT
decision container) into the process model (Figure 3). In
addition, the IoT decision task can extend or collapse
the decision logic. Finally, an IoT-driven decision is
distinguishable from other decisions such as a DMN
decision by the new icons.
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Fig. 3. Example IoT-driven decision process in BPMN in [oTDM4BPMN

Figure 3 shows an IoT-driven decision process and illus-
trates the above mentioned elements. The Status root IoT
decision container includes the Vacuum Gripper and High-bay
warehouse child decision container. These, in turn, contain
sensor artifacts representing various physical IoT devices.
Through the IoT decision table, decision rules can be defined
for each IoT decision container based on the physical IoT
devices (sensor artifacts). The IoT decision table allows for
any mathematical comparison. For example, decision rule
HBW.LimitSwitchl == 0&&H BW.LimitSwitch2 ==
is defined in the HBW IoT decision table. When this decision
rule becomes satisfied, the HBW IoT decision container returns
result not Ready. This result, in turn, is used by the root IoT
decision container Status to check the following decision rule:
VG.error||HBW.error. The result of the root IoT decision
container can be subsequently used in the process by the IoT
decision task. Extending BPMN with the sensor artifact, IoT
decision container, and IoT decision task fulfills RQ2.

C. Architecture

[oTDM4BPMN is implemented as a web-based software
application. This makes the framework platform-independent
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and accessible to the public. ['oTDM4BPMN is hosted by a
Node.js' web server. For modeling and monitoring IoT-driven
decisions, Bpmn.io2 is used, which is available as a Node.js
package. The storage of the values of the queried sensors, the
intermediate results of the decisions, and the final decisions are
provided by the in-memory database redis®. For the parallel
query of the sensors the thread pool design pattern is applied.
The workpool* package supports this pattern and enables the
execution of parallel tasks by offloading tasks from the main
event loop to workers. The logs generated for each IoT-driven
decision process by cTDM4BPMN are stored in a MongoDB
database via a REST interface. The sensors can be queried
via a REST interface as well as via MQTT. Figure 4 shows
the components of [e-TDM4BPMN and their interactions. The
individual components of the framework are described in detail
below. The defined architecture fulfills RQ1, RQ3, and RQ5.

D. Modeler

For modeling IoT-driven decisions, the open-source
BPMN.io library is used. This library allows extending and
embedding the standard BPMN 2.0 libraries such as bpmn-
Js, diagram-js, and custom provider. BPMN.io is built on
top of the web modeler and the rendering toolkit bpmn-js.
The library can be used both as a modeler and as a viewer.
The modeler can be used to create BPMN 2.0 diagrams
within an application. To enable this, bpmn-js builds on two
other libraries (cf. Figure 4): digram-js and bpmn-moddle;
diagram-js extends bpmn-js with the renderer and the modeler
component. Custom elements may be created through a custom
provider. The customized elements of bpmn-js are registered

Uhttps://bpmn.io/
Zhttps://bpmn.io
3https://redis.io/
“https://www.npmjs.com/package/workerpool

with diagram-js, which renders them in the modeler. The
bpmn-moddle library provides the BPMN meta model. When
importing a BPMN diagram, a JavaScript object tree is parsed,
which can be edited during modeling. Furthermore, the library
validates BPMN 2.0 diagrams, provides suitable modeling
rules, and allows exporting the revised JavaScript object tree
into an XML document. The IoT decision elements introduced
in Section V-B are created in BPMN.io as Custom Elements.
The Custom Renderer is used to define the shape, color, and
size of the Custom Elements. The Custom Rule Provider is
then used to specify the behavior rules of the Custom Elements.
For example, it is defined that each IoT decision container
may contain n IoT decision containers and likewise n sensor
artifacts. The IoT decision table is populated by the Custom
Properties Panel. Each IoT decision container has its own IoT
decision table. Clicking on an IoT decision container displays
the Custom Properties Panel with the IoT decision table.
The extension modules Custom Elements, Custom Renderer,
Custom Properties Panel, and Custom Rules are passed to
the Modeler by the Custom Provider as additonalModules.
After modeling IoT-driven decisions in the IoTDM4BPMN
Modeler, the bpmn-moddle library generates an XML file that
is passed to the Viewer. The developed Modeler fulfills RQ4,
RQY, and RQI10. Figure 5 shows the Modeler. As each IoT
decision container may contain n IoT decision containers and
likewise n sensor artifacts, a tree structure is obtained. The
conversion of this nesting in XML into a JavaScript tree can
be achieved with Algorithm 1. The tree must be converted
into a JavaScript tree, which can be read and executed by
the IToTDM4BPMN decision engine. Furthermore, the tree
contains information such as name, address, and IoT decision
table, which were all defined during modeling. Finally, the
dependency and execution order of the IoT decision containers
can be derived from the tree. For this purpose, the root IoT
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decision container is passed to the mainNode object. Then, it
is checked whether mainNode has child elements. Afterwards,
each childNode is iterated and it is checked whether it has type
iotDecisionContainer. In this case, the childNote is pushed into
the mainNode object and the algorithm is recursively invoked
with the new root IoT decision container.

Algorithm 1 Algorithm for creating recursion tree

function createTree (mainNode)
1: if mainNode has childNode then
2: for each childNode do

3 if childNode type is iotDecisionContainer then

4. mainNode.descendants.push(createTree(childNode))
5: end if

6: end for

7: end if

8: return mainNode
end function

The tree object built by Algorithm 1 represents the root
IoT decision container as the tree root, the child IoT decision
containers as the inner nodes, and the sensor artifacts as the
leaves. While the left part (1) of Figure 6 shows the general
structure of the tree, the right part (2) shows the decision tree
of the IoT-driven decision process shown in Figure 5.

Root
loT decision
container

Inner :
node

Sensor
Artifact

loT decision
container

Fig. 6. Decision tree structure generated by Algorithm 1

E. Viewer

The IoTDM4BPMN viewer consists of the decision engine
and the monitoring component. The XML file generated by

the Modeler contains the structure of both the process model
and the decision logic. The process is executed using an
open-source BPMN 2.0 JavaScript workflow engine’, which
is extended by the elements introduced in Section V-B. The
IoTDM4BPMN decision engine converts the XML file created
by the Modeler into a JavaScript object tree. If an IoT
decision container is detected during process execution, the
evaluation of the modeled decision rule will be triggered. As
the monitoring is directly connected to the IoTDM4BPMN
decision engine, the individual steps of the decision evaluation
can be displayed and monitored in real-time. The associated
tree is built following a bottom-up approach. Thereby, the
results of the inner nodes are passed from the bottom to
the top until the root IoT decision container delivers a final
decision. Finally, the evaluation is performed using a recursive
algorithm, which is described in the following.

Consider Algorithm 2, the function treeResult receives as
input parameter the root IoT decision container. If the latter
contains sensor artifacts, these are stored in the sensorinputs
array (cf. Algorithm 2 Lines 4-10). Then, it is checked whether
the root IoT decision container comprises other IoT decision
containers as descendants. In this case, the function recursively
calls itself for each individual descendant (cf. Algorithm 2
Lines 11-14). Once all descendants have returned their results,
the query of the sensors, starting at the lowest level of the
tree, is executed according to the thread pool design pattern.
The sensors can be queried via HTTP using axios or via
MQTT. Their polling in real-time fulfills RQ6. During query
processing, the sensors are colored orange (cf. Lines 15-18).
If a sensor reports an error during the query processing, an
error is thrown and the sensor is colored red (cf. Lines 20-
23). The detection of an error and the corresponding coloring
fulfills RQ7. After successfully querying the sensors of the
deepest IoT decision container (cf. Line 19), the previously
filled IoT decision table is evaluated with the extractedDeci-
sionSeatteldPromise function. For this purpose, the decisions
of the corresponding IoT decision container are detected from
the generated tree via the ID. These decisions are then passed

Shttps://github.com/paed01/bpmn-engine



Algorithm 2 Algorithm for the execution of the decision logic

function treeResult (treeRoot)
1: childrenPromises < []
2: workerArr <+ []
3: sensorlnputs < []
4: if treeRoot.child is sensorArtifact then
5:  for each bpmnViewer.elem do
6.
7
8
9

if bpmnViewer.elem.id is treeRoot.child.id then
sensorInputs.push(treeRoot.child)
end if
: end for
10: end if
11: if treeRoot.descendants.length > 0 then
12:  for each trecRoot.descendants do
13: childrenPromises.push(treeResult(treeRoot.descendants)
14:  end for
15:  return Promise.allSettled(childrenPromises){
16:  if childrenPromises.rejected is O then

17: extreactedDecision(iotInputs, treeRoot)

18: highlightElement(treeRoot, orange)

19: return extractedDecisionSeatteldPromise()}
20:  else

21: highlightElement(treeRoot, red)

22: return Proimise(new Error)

23:  end if

24: end if

25: extractedDecisionSeatteldPromise() {

26: return Promise.allSettled(workArr){

27: if workArr.rejected is O then

28:  decisionResult <— evaluateDecision(treeRoot.ID)
29:  highlightElement(treeRoot, green)

30:  addOverlay(treeRoot.vakue, decisionResult)}}
31: end if

32: return extractedDecisionSeatteldPromise()

end function

to the evaluateDecision function. The evaluation of decision
rules from the IoT decision table satisfies RQ11. If the latter
does not throw an error, the IoT decision container will be
colored green, otherwise it will be colored red (cf. Lines 26-
30). Coloring according to the status fulfills RQ13. Function
treeResult is called recursively until all decision containers of
the described procedure will have been traversed. The query
and evaluation of the sensor artifacts and the IoT decision con-
tainers are performed in parallel using the pool design pattern.
The results provided by the individual sensors, decision rules,
and results of the individual IoT decision containers, and final
decision are stored in a redis in-memory database, i.e. the
results can be further used by the business process.

The IoTDM4BPMN decision engine is linked to the monitor-
ing system. In order to visualize that sensors or IoT decision
containers are active, they are colored orange (Figure 7)
(RQ13). If the query and evaluation are successful, they will
be colored green (Figure 7), otherwise red (RQ13). Further-
more, two labels with designation Decision and Result are
attached to the upper corners of each IoT decision container.
Hovering over the Decision label displays a table with all
decisions and results of the IoT decision container. In turn,
hovering over the Results label displays a table with all sensors
and their results. The monitoring of the results and sensor

values fulfills RQ14. After executing the decision rule, the
result can be used in the process via the IoT decision task and
thus fulfills RQ12. All information generated by the viewer
(decision engine and monitoring) is stored in a MongoDB
database and therefore fulfills RQS8. This database stores
information such as timestamps, results of queried sensors,
decision rules (IoT decision containers), intermediate decisions
of each IoT decision container, final decision of the root IoT
decision container, and generated tree.

Figure 7 shows an executed decision process in the monitor-
ing view. The modeled decision logic can be either shown or
hidden during the execution of the business process by clicking
on the WLAN or decision icon of the IoT decision task (1).
According to their status, the sensor artifacts, IoT decision
container, and IoT decision task are colored. The requested
sensor values as well as intermediate and final decisions of the
individual containers can be displayed by hovering on labels
Decision (2) or Results (3). Through the coloring and the labels
(2, 3) the erroneous elements are illustrated, which facilitates
error handling. In parallel to the coloring of the elements,
additional information such as the HTTP request and response,
MQTT request results, and evaluation of the decision rules are
logged and monitored by the [oTDM4BPMN decision engine
(4). In case of an error, therefore, specific information can be
read off (Figure 7). Finally, the generated log is stored in the
database for each decision process.

The decision process from Figure 7 refers to different
sensors (e.g., limit switch, light barrier, encoder position, and
compressor pressure) in order to determine the state of the
high-bay warehouse and the vacuum gripper. Based on the
final result of the root IoT decision container with label Status,
either Workpiece 1 is unloaded from the high-bay warehouse
or the process ends. After unloading Workpiece 1 its quality is
determined based on the environmental condition that refers to
a temperature sensor, humidity sensor, and brightness sensor.
In case of damage, the Workpiece is transported to the post-
processing station.

A video of the execution of the process from Figure 7 by the
IoTDM4BPMN decision engine can be viewed on YouTube®.
It shows the decision engine, the monitoring, and the behavior
of the Fischertechnik’, a small scale physical smart factory
model, in real-time.

VI. CONCLUSIONS

With IoTDM4BPMN this paper presented a frame-
work for web-based IoT Decision Making in BPMN. The
IoTDM4BPMN framework enables modeling, executing, and
monitoring of IoT-driven decisions in BPMN. Starting with
problem investigation and a literature review, we were able
to show that there are no approaches for modeling, executing,
and monitoring IoT-driven decisions with the IoT involvement
becoming apparent. Based on various application scenarios
and our literature review, we defined requirements that shall

Ohttps://youtu.be/Eou_HTS8vmA4
https://www.fischertechnik.de/


https://youtu.be/Eou_HT8vmA4

loT decision
container

loT decision
task

4 Execution X

HTTP GET successfully completed

Nane: humidity, Value: 14.00

mpleted

663.33
mpleted
HTTP GET su pleted
Nane: brightness, Value: 665.83
HTTP GET successfully completed

Nane: tenperature, Value: 24.00

Fig. 7. IoTDM4BPMN Viewer - Decision engine and monitoring example

address the described problems in modeling, execution, and
monitoring IoT-driven decisions in BPMN 2.0. For this pur-
pose, the BPMN standard has been extended with IoT decision
task, IoT decision container, sensor artifact, and IoT decision
table. While the IoT decision task, the IoT decision container,
and the sensor artifact make the IoT involvement apparent,
the IoT decision table enables the definition of decision
rules referring to physical IoT devices. The modeled IoT-
driven decision processes can be passed to the e TDM4BPMN
decision engine, whose thread pool design enables execution
of tasks such as querying sensors or executing the decisions
in Multithreading. [oTDM4BPMN enables querying over both
HTTP and MQTT. The values of the queried sensors as well
as the decisions are stored in a redis in-memory database
for performance reasons and can be reused during process
execution. The monitoring system of [oTDM4BPMN is linked
to the decision engine and can therefore display the behav-
ior in real time. During runtime, erroneous, successful, and
sensors in execution can be distinguished from each other
by different color representations. Information such as sensor
values, partial decisions, final decisions, execution duration,
IoT decision table, and the generated trees are stored in a
MongoDB database in order to be able to identify the cause
in the event of an error.

In future work we will perform various experiments and
studies with different users such as BPMN modelers or domain
experts to investigate the completeness of loTDM4BPMN.
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