
A.B. Chaudhri et al. (Eds.): Web Databases and Web Services 2002, LNCS 2593, pp. 199–205, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Enhancing ECA Rules for
Distributed Active Database Systems

Thomas Heimrich1 and Günther Specht2

1 TU-Ilmenau, FG Datenbanken und Informationssysteme, 98684 Ilmenau
2 Universität Ulm, Abteilung Datenbanken und Informationssysteme, 89069 Ulm

Abstract. ECA (event/condition/action) rules have been developed for central
active database systems. In distributed active database systems the problem of
inaccessibility of partial systems raises and thus the undecidability of ECA con-
ditions referring to remote systems. This work proposes an enhancement of
ECA rules for distributed active database systems to react also in the case of in-
accessibility and undecidability. Therefore, the ECA evaluation will be en-
hanced to a strict function with the inaccessibility state Ω and a new alternative
action AA enriches the classical ECA rules. The advantages and the usage of
this approach are shown by an example of maintaining data consistency in dis-
tributed active database systems.

1 Introduction

Today, distributed working becomes more and more important in service enterprises,
in field services, and many other areas. In most of these areas work cannot be done
completely autonomously: decisions are based on local and remote data, systems have
to react on changes at remote hosts or propagate own changes to remote servers. Thus
during work online connections are often necessary. However, remote systems may
be inaccessible occasionally. In case of active database systems this often leads to
undecidable ECA conditions and rules. Up to now, this results in a dissatisfying wait
state, if because of timeout people can not go on working since important information
is missing.

By enhancing ECA rules with additional actions for the case of undecidability of
ECA conditions (e.g. if remote systems are not reachable), it becomes possible for
active databases to react alternatively, which makes the entire ECA mechanism more
robust. Since abort is also an action, the classical case can be subsumed easily.

The rest of the paper is organized as follows: Section 2 starts with a brief introduc-
tion to active databases systems. Then we enhance ECA rules to strict functions and
enrich ECA rules to ECA-AA rules by alternative actions. In Section 3 we show the
advantage and the use of ECA-AA rules for maintaining data consistency in distrib-
uted active database systems. We summarize our work in Section 4.

200 T. Heimrich and G. Specht

2 The ECA Mechanism and Its Enhancement for Distributed
 Active Database Systems

Up to now ECA rules have been mainly used in central active database systems
[2,5,6]. Simple variants of ECA rules have been integrated into SQL:99 and are avail-
able in some object-relational database systems. In these simple rules events are re-
stricted to insert, delete or update operations. In distributed active databases, both
event evaluation and condition evaluation can have an indefinite result because of
unavailable subsystems. Hitherto this leads to an abort after a timeout even if this is
not desirable or necessary at all. The goal of this Section is to develop and present a
solution on this problem.

2.1 Active Databases (Short Repetition)

Active database systems [2,5,8] can react to occurring events using ECA rules. This
ability can be used, for example, to control relationships between data objects even
beyond system boundaries.

Reactions on events are specified as rules. Rules are triples of the kind (Event,
Condition, Action). These ECA rules are also known as triggers or alerters. An event
is something that occurs at a specific point in time. Conditions are predicates related
to a database. They determine under which constraint an event is important. Condi-
tions are optional. An action specifies what is to be done, if a situation of interest
occurs, i.e., event and condition evaluate to true.

Active databases distinguish between different categories of events. The two main
categories are simple and composite events. Simple events can be split into database
events, time events, and abstract events. A database event is any operation on the
database including start, commit, and abort of transactions. Time events are activated
at a specific point in time. Using abstract events, a reaction to external events occur-
ing outside of the database become possible. However, the system must be explicitly
informed about these events. In practice, this requires the explicit activation of the
rule by an application program. Simple events can be combined to composite events
using logical operators.

2.2 Requirements for ECA Mechanisms in Distributed Active Database Systems

2.2.1 Decentralized Event Detection

A general architecture for heterogeneous active database systems is introduced in [6].
This architecture enables event detection within distributed active databases. The
main components are a central "shared knowledge repository" and a central ECA rule
base. The shared knowledge repository contains transformation information and pro-
cedures. Based on them, different data models, data manipulation languages, and
object representations of diverse database systems can be accessed by an "intelligent
agent". System-wide rules are also being held in a central way. Local event detectors

Enhancing ECA Rules for Distributed Active Database Systems 201

signal occurring events to local components, and pass all events that are of global
interest to the central ECA rule base.

The disadvantage of this architecture is its central approach. Sending events to the
central rule base makes it necessary to establish a connection to the rule base. For
mobile systems, for example, such a connection cannot be guaranteed over a longer
period of time. As a consequence a buffering of occurred events is proposed in [6].
The central event detector can react to these events only with delay. But late reactions
can lead to undesired effects due to the fact that the state of the database system may
have changed in the meantime. Especially, it may happen that attribute values are set
to an old or incorrect value due to late update.

Furthermore, a central event detection is not adequate for distributed database sys-
tems with high autonomy degree. For this kind of system a decentralized event detec-
tion and a decentralized ECA rule base is required.

Up to now, all ECA mechanisms and architectures for distributed heterogeneous
active database systems assume a very limited autonomy of the individual subsys-
tems.

2.2.2 Strictness of ECA Rules

In central databases, the evaluation of events and conditions of ECA rules is always
possible. This cannot be ensured in distributed database systems with high degree of
autonomy. For them the event or condition evaluation may be indefinite (Ω) due to
unaccessability. Thus our second requirement for ECA mechanisms in distributed
active database systems is the strictness of ECA rules in order to treat the special case
of indefiniteness.

2.3 Enhancing the ECA Mechanism for Distributed Active Database Systems
 with High Autonomy Degree

The ultimate goal of the enhancement is a more flexible ECA mechanism, which
allows us to continue work even if subsystems are not reachable. This is achieved by
adding strictness to event and condition evaluation.

We consider the condition evaluation first. The evaluation of a condition c for-
mally corresponds to function f(c) which either evaluates to TRUE or FALSE (see
equation (1)). Usually c is recursively composed by c1, c2, … , cn subconditions, which
are concatenated by boolean operators. Atomic conditions are all kind of equations,
inequations and boolean values. Of course, ci can also refer data in remote subsystems
and subconditions may even be evaluated on remote hosts. Thus we get:

},{: falsetrueCf → (1)

f(c)= h(h(… h(f@1(c1), f@2(c2)), …), f@k(cn))
(2)

202 T. Heimrich and G. Specht

ci condition i)0(ni ≤≤ ,
 evaluated at (remote) subsystem j, denoted by f@j if important
 (omitted later on) (0 =j=k=n).

 @j1 and @j2 are not necessarily different and may be even the local host

h any boolean operator

In distributed active systems, subsystems may be unreachable. Thus, f@i(ci) can be
indefinite. We denote this by Ω and extend both, the domain and the codomain of f(c),
with the Ω element (indefinite). The introduction of Ω formally turns f(c) into a total
function. We call f a strict function, if holds: f evaluates to Ω, if any input parameter
of f is Ω [1]. Of course, h has to be total and strict as well.

},,{: Ω→ falsetrueCf (3)

Analogous to condition evaluation, evaluation of events (e) can be defined as a to-
tal and strict function g(e). Like f(c), also g(e) maps to the codomain {true, false, Ω}.

},,{: Ω→ falsetrueEg (4)

true: event Ee ∈ did occurre
false: event e has not occurred
Ω : it is indeterminable whether the event e occurred or not

The firing of an ECA rule is defined as follows:

)}()({ cfegif ∧ then execute A [else don’t execute A] fi (5)

If one of the parameters in the if-condition is Ω, the firing of the ECA rule leads to the
processing of the else-case (nothing happens). Up to now, indefiniteness in one of the
if-conditions is not considered explicitly. That is the reason of enhancing the ECA
mechanism with a new, alternative action (AA), which is executed in the Ω-case1. Of
course, the alternative action can activate further rules and thus further (alternative)
actions.

Enhanced ECA rules:
An enhanced ECA rule, called ECA-AA is defined as a 4-tuple (Event, Condition,
Action, Alternative Action). The alternative action is executed (instead of action)
when the condition evaluation of C returns Ω. An ECA-AA rule will become a tradi-
tional ECA rule if no alternative action is defined.

Usually we are only interested in defining alternative actions if E did occur and C is
indeterminable (Ω). There are only very limited use cases where also the evaluation of
E to Ω is important, like in security systems. For instance in a security control system

1 Deviating from the definition in [1] it is completely sufficient, if the if-then-else statement is

only strict concerning the condition and the entered branch (and not globally strict).

Enhancing ECA Rules for Distributed Active Database Systems 203

the interruption of operation of an external video camera, acting as event initiator,
should cause an additional alternative action, like closing a door and ringing an alarm
bell. But usually only positive events cause an ECA rule evaluation, since otherwise
the absence of any external event initiator would cause an infinite call of AA, which
is in general not intended. We distinguish between both cases. Herewith, the ECA
evaluation definition (5) becomes:

Usual mode:
)}()({ cfegif ∧ then execute action A

else })()({ Ω=∧ cfegif then execute alternative action AA
else do not execute any action

fi

Security mode:
)}()({ cfegif ∧ then execute action A

else })()({ Ω=∧ cfegif then execute alternative action AAC

else })({ Ω=egif then execute alternative action AAE

 /* usually includes suspending this rule
 in order to avoid infinite calls */

else do not execute any action
fi

3 Using Enhanced ECA Rules for Maintaining Data Consistency

In the following we show how ECA-AA rules (in the usual mode) can be used in
order to guarantee data consistency in a distributed active database system.

3.1 Specification of Consistence Constraints

Dependences between data objects can generally be described by the tuple
<S,D,P,C,A>, also known as D3 (data dependency descriptor) [7]. S stands for the
source objects and D for the destination objects. Source objects and destination ob-
jects can be arbitrary database objects (e.g., tables, tuples, attribute values).

P is a predicate which describes the data dependencies between source and desti-
nation objects. According to the ECA rules, the point in time at which P evaluates to
true can be considered as an event.

C specifies a condition that, if fulfilled, leads to the execution of action A. C also
can specify a point in time at which P must be true. It is worth mentioning that C
specifies no consistency conditions about the dependencies between source and desti-
nation objects (see example below). A is an action which can call further actions and
which must be executed to achieve the consistency of the overall system. This action
makes sure that P is fulfilled.

The use of the tuple <S,D,P,C,A> is illustrated by the following example. The
source objects are the attributes s1 to sn, which are distributed over different databases

204 T. Heimrich and G. Specht

on different computers. These computers can be mobile computers, like laptops,
which are not permanently reachable. The destination is supposed to be the attribute
d. Destination objects and source objects are in a consistent state if s1 + ... + sn= d is
satisfied (e.g., planned amount of money for the adjustment of an insured loss must be
greater or equal than the sum of all partial damages). This consistency condition is
only valid if attribute c is greater than 100. Attribute c can also reside on a remote
database.

The notation using the tuple <S,D,P,C,A> looks as follows:
S: s1 , ... , sn source objects
D: d destination object
P: s1 + ... + sn =d consistency relationship between source

objects and destination object
C: c>100 consistency condition
A: d := s1 + ... + sn action

Inaccessibility of systems can always occur in distributed databases. P or C can be
indefinite in the above example. As a consequence it is also indefinite whether action
A is to be executed or not.

We enhance the tuple <S,D,P,C,A> with an entry for alternative action (AA). Then
it is possible to execute a defined action even in case of indefiniteness of P or C. In
the above example an alternative action may set the attribute d to a maximal value.
The notation of the example with the new tuple <S,D,P,C,A,AA> looks as follows:

S: s1 , ... , sn source objects
D: d destination object
P: s1 + ... + sn =d consistency relationship between source

objects and destination object
C: c>100 consistency condition
A: d := s1 + ... + sn action
AA: d := maximal value alternative action

3.2 Transformation into Enhanced ECA Rules

Enhanced ECA rules may directly evaluate Data Dependency Descriptors of the form
<S,D,P,C,A,AA>. The following rule shows the general mapping of the tuple
<S,D,P,C,A,AA> to an enhanced ECA rule and, in addition, an instantiation on the
base of the above example.

Event: not P Point in time on which d >= s1 + ... + sn

is not true for the first time.
Condition: C c>100
Action: A d := s1 + ... + sn

Alternative Action: AA d := maximal value

Enhancing ECA Rules for Distributed Active Database Systems 205

3.3 Advantages of Enhanced ECA Rules

Using enhanced ECA rules, a system architecture without central event detection and
central rule base can be built. Therefore every subsystem must consist of an active
database system, and it must be able to detect events across systems.

Every subsystem can specify its consistency conditions in the form of enhanced
ECA rules. Thus a decentralized rule base is build up. The event detection is decen-
tralized, too, because every subsystem can also detect events in remote subsystems.

With the proposed ECA-AA rules every subsystem can react in case of indefinite
event or condition evaluation. Thereby a high degree of autonomy of the subsystems
is provided. Data consistency in distributed database systems can only be achieved if
the indefinite event and condition evaluation is taken into account.

4 Conclusions

This paper proposes an enhancement of the well-known ECA rules. Traditional ECA
rules are enhanced by an element for alternative actions. The alternative action is
executed if the event or condition evaluation is indefinite. In contrast to traditional
ECA rules, the new ECA-AA rules always provide a defined reaction. An example
about maintenance of data consistency in distributed active database systems has
shown the practical applicability of the approach.

References

[1] Bauer F.L., Wössner H.: Algorithmische Sprachen und Programmentwicklung, Springer-
Verlag 1981

[2] Dittrich K. R., Gatziu S.: Aktive Datenbanksysteme – Konzepte und Mechanismen,
dpunkt.verlag 2000

[3] Helal A. A., Heddaya A. A., Bhargave B. B.: Replication Techniques in Distributed
Systems, Kluwer Academic Publishers 1996.

[4] Oezsu M. T., Valduriez P.: Principles of distributed database systems, 2nd Ed. Prentice-
Hall 1999.

[5] Paton N. W.: Active Rules in Database Systems, Springer-Verlag 1998
[6] Pissinou N., Vanapipat K.: Active Database Rules in Distributed Database Systems. Intl.

Journal of Computer Systems, 11(1), January 1996, pp. 35–44
[7] Rusinkiewicz M., Sheth A., and Karabatis G.: Specifing interdatabase dependencies in a

multidatabase environment. IEEE Computer, 24(12), December 1991. Special Issue on
Heterogeneous Distributed Databases, pp. 46–53.

[8] Zimmermann J.: Konzeption und Realisierung eines aktiven Datenbanksystems: Archi-
tektur, Schnittstellen und Werkzeuge, Logos-Verl., 2001

	1 Introduction
	2 The ECA Mechanism and Its Enhancement for Distributed
	2.1 Active Databases (Short Repetition)
	2.2 Requirements for ECA Mechanisms in Distributed Active Database Systems

	3 Using Enhanced ECA Rules for Maintaining Data Consistency
	3.1 Specification of Consistence Constraints
	3.2 Transformation into Enhanced ECA Rules
	3.3 Advantages of Enhanced ECA Rules

	4 Conclusions
	References

