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Abstract

Current workflow management technology does not pro-
vide adequate means for inter-workflow coordination as
concurrently executing workflows are considered com-
pletely independent. While this simplified view might suf-
fice for one application domain or the other, there are
many real-world application scenarios where workflows −−
though independently modeled in order to remain com-
prehensible and manageable −− are semantically interrelat-
ed. As pragmatical approaches, like merging interdepen-
dent workflows or inter-workflow message passing, do
not satisfactorily solve the inter-workflow coordination
problem, interaction expressions and graphs are proposed
as a simple yet powerful formalism for the specification
and implementation of synchronization conditions in gen-
eral and inter-workflow dependencies in particular. In ad-
dition to a graph-based semi-formal interpretation of the
formalism, a precise formal semantics, an equivalent op-
erational semantics, an efficient implementation of the lat-
ter, and detailed complexity analyses have been developed
allowing the formalism to be actually applied to solve re-
al-world problems like inter-workflow coordination.

1. Introduction

Inter-workflow dependencies

Current workflow management systems (WfMS), whether
commercial products or research prototypes, do not pro-
vide adequate means for inter-workflow coordination as
concurrently executing workflows are considered com-
pletely independent. While this simplified view might suf-
fice for one application domain or the other, there are
many real-world application scenarios where workflows −−
though independently modeled in order to remain com-
prehensible and manageable −− are semantically interrelat-
ed. As a simple example from the domain of medicine,
consider the examination workflows depicted in Fig. 1 de-
scribing the performance of an ultrasonography (left) and
an endoscopy (right) including necessary pre- and post-
processing steps like scheduling, report writing, etc. As
long as these workflows refer to different patients, they
might well be executed independently by a WfMS. If the

1 Author’s new address: Department of Computer Structures, University
of Ulm, Germany.

same patient is involved, however, the activities prepare2,
inform, call, and perform must be synchronized somehow
as they access a “limited resource,” that is, the patient un-
der consideration. If for example, the activities order,
schedule, prepare, and inform (if present) of both work-
flows have already been performed, the activities call are
to be executed next, i. e., they will be inserted into the
worklists of appropriate users −− e. g., medical assistants
of the ultrasonography and endoscopy departments,
respectively −− by the WfMS. As soon as one of these ac-
tivities is actually executed, however, the other one should
temporarily disappear from the worklists −− or at least be-
come marked as currently not executable −− as a patient
cannot be called to a second examination as long as he
passes through the first one. Only after completion of the
first examination (activity perform of the corresponding
workflow), activity call of the other workflow should be-
come executable again, i. e., reappear in the appropriate
worklists.

Impracticable approaches

As current WfMSs neither provide adequate means to de-
scribe nor to implement such inter-workflow dependen-
cies, one might resort to rather pragmatical approaches
like merging interdependent workflows into a single
workflow to transform inter-workflow dependencies to
ordinary intra-workflow control flows. As soon as not on-
ly two, but maybe fiv e, ten or twenty interrelated work-
flows have to be merged, however, the resulting work-
flows will reach magnitudes which are no longer compre-
hensible nor manageable in practice. Furthermore, a host
of 2n merged workflows would be necessary to capture
ev ery possible combination of n original workflows. Fi-
nally, typical intra-workflow control structures, like se-
quence, conditional and parallel branching, and possibly
loop, would force a workflow designer to prescribe a par-
ticular ordering of the examinations ultrasonography and
endoscopy (more precisely, of the activities call and per-
form of the corresponding workflows) in the example
above as these imperative language constructs do not al-
low to describe a sequential execution in either order. For
these reasons, the idea to simply “define away” in-
ter-workflow dependencies by translating them to well-
known intra-workflow control flows has to be abandoned.

2 For the sake of simplicity, only the verb of an activity (e. g., prepare in-
stead of prepare patient) is used throughout the following text.
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Figure 1: Medical examination workflows

Another apparently attractive idea uses inter-workflow
messaging or event services provided by some WfMSs to
explicitly synchronize concurrently executing workflows.
As this approach retains the structure of the original
workflows, it avoids the creation of unmanageable “mega-
workflows.” Howev er, it does not solve the “combination-
al explosion” problem as the set of messages a particular
workflow must send and receive usually depends on the
fact which other workflows are executed concurrently.
Therefore, 2n variations of each workflow would be nec-
essary in principle to describe its behaviour in every pos-
sible combination with n other workflows. Similarly, the
“mutual exclusion” problem, i. e., describing that the ex-
aminations can be performed in either order, cannot be
solved with this approach as inter-workflow messages
cannot be used to temporarily disable activities which
have already been enabled by the WfMS. Therefore, the
idea of reducing inter-workflow dependencies to bare
message passing has likewise to be abandoned.

A common problem of both approaches not mentioned
so far is their fundamental inability to deal with dynamic
workflow ensembles where the number and the actual par-
ticipants of a set of concurrently executing workflows is
not known in advance and might change with time. As
currently executing workflows might always terminate
and additional workflows can be initiated by a user at any
time, however, dynamically evolving ensembles are actu-
ally the normal case and must thus be supported accord-
ingly.

Extended regular expression formalisms

In order to find a satisfactory solution to the inter-work-
flow coordination problem at all, it is absolutely neces-
sary to strictly separate inter-workflow synchronization
aspects from individual workflow descriptions and to use

an extremely flexible and declarative formalism for their
specification. In some sense, this means to reapply a basic
principle of workflow management, that is, the separation
of the overall control and data flow specification of a
workflow from the implementation of individual applica-
tion modules, one level higher: Inter-workflow synchro-
nization aspects are extracted from individual workflows
and described on a separate level using a tailored and
well-suited formalism.

In the past, similar approaches have been proposed and
successfully used for the synchronization of parallel pro-
grams [1, 5, 19]. Instead of directly encoding synchro-
nization conditions using, e. g., semaphor or message
passing operations in individual procedure implementa-
tions, an abstract formalism based on extended regular ex-
pressions is used to describe them separately in a com-
pact, legible and easily adaptable manner. The basic idea
with these formalisms is to interpret the language of an
expression, i. e., the set of words it accepts, as set of per-
missible execution sequences of actions where actions
correspond to the start or termination of individual proce-
dures or −− when applied to the problem of inter-workflow
dependencies −− workflow activities. By that means, it is
indeed possible to specify synchronization conditions in a
very flexible and declarative way that avoids the problems
mentioned before. Furthermore, as such expressions con-
stitute general integrity constraints on actions which do
not depend on their specific use in individual workflows,
the cardinality n as well as the actual members of a set of
concurrently executing workflows are irrelevant.

Despite the fact that many similar formalisms have
been proposed over the years (cf. Fig. 2), each of them
lacks one important aspect or the other. By carefully
analysing the overall spectrum of operators provided by
these formalisms, one can identify three pairs of comple-
mentary or dual operators: There are two basic composi-
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Figure 2: Formalisms based on extended regular expressions

tion operators, sequential and parallel composition, two
corresponding closure operators, sequential and parallel
iteration, and two Boolean operators, disjunction and
conjunction.3 Furthermore, the concept of parametric ex-
pressions and quantifiers can be found in a very restricted
form in some approaches. Besides the fact, that none of
the formalisms proposed so far is conceptually compre-
hensive or complete with respect to the others, most of
them do not allow operators to be arbitrarily combined,
but impose considerable restrictions on their nesting. In
path expressions, for example, the parallel iteration opera-
tor must not contain other parallel iterations, while
operands of a parallel composition in synchronization ex-
pressions must have disjoint alphabets.

Interaction expressions and graphs

This lack of orthogonality on the one hand and the con-
ceptual incompleteness of the formalisms on the other
hand calls for the development of a new formalism to de-
scribe synchronization requirements which is at least con-
ceptually complete and fully orthogonal and thus can fill
the hole depicted by the question marks in Fig. 2. Despite
its conceptual completeness, such a formalism should also
be flexibly extensible with user-defined operators in order
to be optimally useful in different application domains.
Furthermore, it should be readily comprehensible even for
mathematically ignorant persons, which suggests the use
of a graphical representation instead of or in addition to a
formal notation. Last but not least, the proposed formal-
ism must be efficiently implementable in order to be prac-
tically useful, and the implementation should be −− in con-
trast to, e. g., Petri nets and process algebras −− completely
deterministic.

In order to meet these requirements, interaction ex-
pressions and graphs have been developed in the author’s
Ph. D. thesis [6, 7] as a simple yet powerful formalism for
the expression- or graph-based specification and imple-
mentation of inter-action dependencies, i. e., synchroniza-
tion conditions. Interaction graphs, which constitute the
graphical, user-oriented view of the formalism, are intro-

3 Note that regular expressions provide just the first operator of each
pair: sequential composition (sequence), sequential iteration (Kleene
closure), and disjunction (choice).

duced in Sec. 2, while interaction expressions, their for-
mal counterpart, are treated in Sec. 3. Sections 4, 5, and 6
dealing with the operational semantics, implementation,
and complexity of interaction expressions, respectively,
pave the way for their practical application which is illus-
trated in Sec. 7 by describing their integration with work-
flow management systems. Finally, Sec. 8 concludes the
paper.

2. Interaction graphs

In the following, the basic ideas and concepts of interac-
tion graphs will be introduced by presenting some typical
examples of synchronization conditions taken from the
domain of medical examination workflows. To sav e space
for the more technical aspects of the formalism presented
in subsequent sections, operators are not defined verbose-
ly but rather explained on the fly without going into de-
tails.

As a first example, Fig. 3 shows an interaction graph
specifying a generic integrity constraint for patients by
describing necessary synchronization requirements for the
activities prepare, inform, call, and perform. As all these
activities refer to a particular patient p as well as a partic-
ular examination x, they possess corresponding parame-
ters p and x containing, for example, a social security
number identifying a patient and a symbolic value like
sono or endo representing an examination, respectively.4

The ellipses containing flash symbols, which −− in contrast
to the predefined circular operators −− constitute a user-de-
fined operator, represent a mutual exclusion describing
that a patient p might either pass through exactly one ex-
amination x (middle branch) or be prepared for or in-
formed about several examinations x simultaneously (up-
per and lower branch, respectively). The “for some x”
quantifiers

x

. . .
x

specify that their body, i. e., the sub-

graph in between, must be traversed for exactly one arbi-
trarily chosen value of the parameter x, while the body of
the “for all p” quantifier

p

. . .
p

might be traversed con-

currently and independently for all possible values of the

4 In the workflows of Fig. 1, these parameters have been omitted for the
sake of simplicity. They might be considered global workflow variables
which are implicitly passed to all activities of a workflow.
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Figure 3: Integrity constraint for patients

parameter p. Thus, these operators constitute generaliza-
tions of the basic “either or” (disjunction) and “as well as”
(parallel composition) branchings, respectively, depicted
in Fig. 4. Finally, the “arbitrarily parallel” operators

. . . allow an arbitrary number of concurrent and in-
dependent traverses of their body.5

y

z

y

z

Figure 4: Basic branching operators:
“either or” (left) and “as well as” (right)

User-defined operators

To complete the example above, Fig. 5 shows a possible
definition of the mutual exclusion operator “flash” as a
constant repetition (sequential iteration) of an “either or”
branching containing the mutual exclusive branches x, y,
and z.6 Employing such kinds of templates does not only
simplify the graphs containing them, but also increases
their level of abstraction as a user of the “flash” operator
does not need to know its precise definition but only its
abstract meaning. Therefore, frequently occurring or fair-
ly complicated application-specific operators might be
predefined by an “interaction graph expert” and applied
afterwards even by inexperienced users.

Modular combination of graphs

Figure 6 shows another example of an interaction graph
specifying a generic capacity restriction for examination
departments by describing that for each kind of examina-

5 As a mnemonic aid, a single circle (whether small or large) expresses
that one branch must be chosen, while a double circle requires both or
all branches to be traversed. Finally, three circles represent an arbitrary
number of parallel traverses.
6 It is also possible to give a more general definition where the number
of branches is variable.

tion x (quantifier
x

. . .
x

) three concurrent and indepen-

dent instances (multiplier
3

. . .
3

) of the sequence call −−
perform might be executed repeatedly (sequential itera-
tion . . . ). Each of these sequences might be traversed
with an arbitrary patient p (quantifier

p

. . .
p

). This

means effectively, that each examination department x
can treat at most three patients p simultaneously.

Having specified separate synchronization conditions
for patients (Fig. 3) and examination departments (Fig. 6),
a coupling operator is employed to combine these inde-
pendently developed subgraphs into a single interaction
graph representing their semantic conjunction (cf. Fig. 7).
More precisely, the combined graph permits the execution
of a particular activity if and only if it is permitted by all
subgraphs containing this activity. Applied to the graph
of Fig. 7 this means that the execution of call and perform
is permitted if and only if it is permitted by both branches
of the coupling operator . . . , while prepare and inform
are permitted as soon as they are permitted by the upper
branch. In contrast to a strict conjunction operator (denot-
ed . . . ) which permits execution of an activity if and
only if it is permitted by all its branches, the more loosely
coupling employed in Fig. 7 is usually much more intuiti-
ve and useful in practice as a subgraph should not prohibit
the execution of activities which it does not explicitly
mention. This kind of open-world assumption −− there
might be activities which are either unknown or irrelevant
at the time a graph is developed −− supports a modular de-
velopment of small interaction graphs describing particu-
lar aspects or facets of a synchronization condition and
their seamless integration into larger graphs afterwards. In
contrast, formalisms providing strict conjunction only [5]
or no explicit conjunction operator at all [16, 17] force
graph developers to augment the individually developed
subgraphs with auxiliary branches or special synchroniza-
tion symbols before combining them into larger graphs
[7].

3. Interaction expressions

Having introduced interaction graphs in a rather informal
and descriptive manner so far, interaction expressions will
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Figure 7: Coupling of independently developed subgraphs

be defined in the following as an equivalent formal nota-
tion with a precisely specified semantics. Expressed the
other way round, interaction graphs are merely a graphi-
cal notation of interaction expressions, just like syntax
charts constitute a graphical representation of context-free
grammars.

To formally define the semantics of an interaction ex-
pression x, two languages called Φ(x) and Ψ(x) are intro-
duced containing the complete and partial words of x,
respectively.7 Intuitively, a complete word w ∈ Φ(x) con-
stitutes a sequence of actions which is derived by com-

7 As another mnemonic aid, Φ (pronounced fi) contains “final” or com-
plete words, whereas Ψ (psi) contains partial words.

pletely traversing the corresponding interaction graph
from left to right according to particular rules and record-
ing the visited actions.8 Similarly, a partial word
w ∈ Ψ(x) is obtained by partially traversing the graph,
i. e., prematurely terminating the traverse. As it is possible
−− typically by inappropriate uses of the coupling
operator −− to construct graphs with “dead ends” (i. e.,

8 The rectangular nodes of an interaction graph represent so called activ-
ities possessing a positive duration in time. In contrast, actions corre-
spond to points in time without any duration. As the exact duration of an
activity A is irrelevant, it is implicitly mapped to a sequence of two ac-
tions, AS and AT, representing the start and termination of A, respec-
tively.
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graphs possessing partial but not complete words), partial
words cannot be simply derived as prefixes of complete
words but have to be defined separately.

Table 1 summarizes the definition of interaction ex-
pressions x (first and second column) where y and z con-
stitute recursively defined subexpressions. Furthermore, a
represents an abstract action

a ∈ Γ = {[a0, a1, . . ., an] 
n ∈ IN0, a0 ∈ Λ, a1, . . ., an ∈ Ω  ∪  Π}

consisting of an action name a0 ∈ Λ and zero or more ar-
guments a1, . . ., an ∈ Ω  ∪  Π which are either concrete
values ω ∈ Ω or formal parameters p ∈ Π. Here, Λ, Ω,
and Π denote arbitrary sets of names, values, and parame-
ters, respectively, for which the conditions Ω ∩ Π = ∅
and Ω = ∞ shall hold. Furthermore, for each expres-
sion x, Tab. 1 defines its set of complete and partial words
(third and fourth column, respectively) where brackets
〈. . .〉 are used to denote abstract words ∈ Γ* and Σ repre-
sents the set of concrete actions,

Σ = {[a0, a1, . . ., an] 
n ∈ IN0, a0 ∈ Λ, a1, . . ., an ∈ Ω},

whose arguments ai are all concrete values. Consequently,
a concrete word w ∈ Σ* corresponds to a sequence of
concrete actions executed in the real world.

The concatenation (U V ) and Kleene closure (U*) of
languages U , V ⊆ Σ* is defined as usual, whereas the
shuffle of words u, v ∈ Σ* and languages U , V ⊆ Σ* as
well as the corresponding closure is defined as follows
[17, 5]:9

u ⊗ v = {u1 v1 . . . un vn 
n ∈ IN, u1, v1, . . ., un, vn ∈ Σ*,
u1 . . . un = u, v1 . . . vn = v},

U ⊗ V =
u∈U , v∈V

∪ u ⊗ v

= { w ∈ Σ*  ∃ u ∈ U , v ∈ V : w ∈ u ⊗ v }.

n

i=1
⊗Ui =







{ 〈〉 }

(n−1

i=1
⊗Ui) ⊗ Un

for n = 0,

for n > 0,

U# =
∞

n=0
∪

n

i=1
⊗U =

u1, . . ., un ∈U
n∈IN0

∪ u1 ⊗ . . . ⊗ un.

For an expression y, a parameter p ∈ Π, and a value
ω ∈ Ω, yω

p denotes the expression derived from y by re-
placing every occurrence of the parameter p with the
value ω . Infinite unions and intersections are defined as
usual, whereas the shuffle of infinitely many languages
Uω ∈ Σ* (ω ∈ Ω) is either empty or can be reduced to a
union of finite shuffles if all participants Uω contain the
empty word [7]:

9 Note that, in the first definition, ui and vi do not represent actions ∈ Σ,
but subwords ∈ Σ* consisting of zero or more actions.

ω ∈Ω
⊗ Uω =







ω1≠. . .≠ωn ∈Ω
n∈IN
∪

n

i=1
⊗Uω i

,

∅

if 〈〉 ∈ Uω

otherwise.
for all ω ∈ Ω,

Finally, Tab. 1  defines the alphabet α (x) of expressions x
(last column) which is needed for the definition of the al-
phabet complement κ x(y) = α (x) \ α (y). Unfortunately,
space does not permit a more detailed motivation and ex-
planation of the definitions given in this section.

Based on the definitions of Tab. 1, two interaction ex-
pressions x1 and x2 are considered equal or equivalent, if
they possess the same alphabet and accept the same com-
plete and partial words.10 Given this equivalence relation,
numerous useful properties of interaction expressions,
like commutativity, associativity, or idempotence of oper-
ators, which are intuitively evident, can be formally
proven [7].

Furthermore, interaction expressions can be compared
with well-known formalisms like regular expressions and
context-free grammars regarding their expressiveness.
While it is obvious that interaction expressions are more
expressive than regular expressions, their relation to
context-free grammars is not yet exactly determined.
On the one hand, there are expressions, e. g.,
x = ( a − b − c) (a − b − c), whose language,
Φ(x) = { 〈an, bn, cn〉  n ∈ IN0 }, is not context-free. On
the other hand, there are context-free grammars specify-
ing, e. g., palindromes, whose language is presumably not
expressible with interaction expressions as they −−
deliberately −− do not allow recursive expressions. As
these questions are of little relevance for practical applica-
tions of interaction expressions, they hav e not been inves-
tigated in more detail.

4. Operational semantics of interaction
expressions

Given the formal semantics of interaction expressions, it
is possible in principle to construct an algorithm solving
the word problem −− giv en an interaction expression x and
a concrete word w, decide whether w is a partial or com-
plete word of x −− by more or less directly transforming
the definitions of Ψ(x) and Φ(x) into executable code.
The problem with this algorithm is, however, that it is
hopelessly inefficient as its complexity grows exponen-
tially with respect to the length of the word w ev en for
very simple expressions x [18, 7]. In order to obtain a
more efficient and practically useful implementation of
interaction expressions, it is thus necessary to introduce
an operational state model comparable in some sense to
finite state machines (FSM) typically used for the imple-
mentation of regular expressions.

10 More precisely, as x1 and x2 might contain unbound parameters, every
pair of concretizations (x1)

ω1, . . ., ωk
p1, . . ., pk

and (x2)
ω1, . . ., ωk
p1, . . ., pk

(for arbitrary pa-
rameters p1, . . ., pk ∈ Π and values ω1, . . ., ωk ∈ Ω) must accept the
same complete and partial words.
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Table 1: Formal semantics of interaction expressions

Category x Φ(x) Ψ(x) α (x)
atomic expression a { 〈a〉 } ∩ Σ* { 〈〉, 〈a〉 } ∩ Σ* { a }
option y Φ(y) ∪ { 〈〉 } Ψ(y) α (y)
sequential composition y − z Φ(y) Φ(z) Ψ(y) ∪ Φ(y) Ψ(z) α (y) ∪ α (z)
sequential iteration y Φ(y)* Φ(y)* Ψ(y) α (y)
parallel composition y z Φ(y) ⊗ Φ(z) Ψ(y) ⊗ Ψ(z) α (y) ∪ α (z)
parallel iteration y Φ(y)# Ψ(y)# α (y)
disjunction y z Φ(y) ∪ Φ(z) Ψ(y) ∪ Ψ(z) α (y) ∪ α (z)
conjunction y z Φ(y) ∩ Φ(z) Ψ(y) ∩ Ψ(z) α (y) ∪ α (z)

Φ(y) ⊗ κ x(y)* ∩ Ψ(y) ⊗ κ x(y)* ∩
Φ(z) ⊗ κ x(z)* Ψ(z) ⊗ κ x(z)*synchronization y z α (y) ∪ α (z)

disjunction quantifier
p

y
ω ∈Ω
∪ Φ(yω

p )
ω ∈Ω
∪ Ψ(yω

p )
ω ∈Ω
∪ α (yω

p )

parallel quantifier
p

y
ω ∈Ω
⊗ Φ(yω

p )
ω ∈Ω
⊗ Ψ(yω

p )
ω ∈Ω
∪ α (yω

p )

synchr. quantifier
p

y
ω ∈Ω
∩ Φ(yω

p ) ⊗ κ x(yω
p )*

ω ∈Ω
∩ Ψ(yω

p ) ⊗ κ x(yω
p )*

ω ∈Ω
∪ α (yω

p )

conjunction quantifier
p

y
ω ∈Ω
∩ Φ(yω

p )
ω ∈Ω
∩ Ψ(yω

p )
ω ∈Ω
∪ α (yω

p )

For that purpose, every interaction expression x is as-
signed an initial state σ (x) where a state −− in contrast to
FSMs −− might be a complex, hierarchically structured
mathematical object. Furthermore, a state transition
function τ is defined which maps a state s and an action a
to a successor state s′ = τa(s). Finally, two state predi-
cates, ψ (s) and ϕ(s), are introduced which correspond di-
rectly to the sets Ψ(x) and Φ(x) of the formal semantics
(cf. below). The nature of these definitions allows them to
be transformed to executable program code quite directly.
To further improve the efficiency of the so constructed
implementation, an equivalence relation is introduced for
states based on the predicates ψ and ϕ and an optimiza-
tion function ρ is defined which maps some states s to
equivalent, but less complex states ŝ = ρ(s) which can be
processed more efficiently.

Intuitively, the state model formalizes the descriptive
idea of traversing an interaction graph. That means, the
initial state σ (x) of an expression x describes the starting
position of a walker (or a group of walkers) who wants to
walk through the corresponding interaction graph, while a
state transition τa(s) represents the traverse of an ac-
tion a. A successor state σw(x), derived from the initial
state σ (x) by applying a sequence of state transitions cor-
responding to a word w, describes the set of all possible
positions the walker(s) might have reached after travers-
ing the sequence of actions w. Such a state is said to be
valid , which is equivalent to its predicate ψ being true, if
the sequence w is permissible, i. e., constitutes a partial
word of x. It is called a final state, which is equivalent to
its predicate ϕ being true, if the walker(s) might have
reached the end of the graph after traversing the actions
of w.

To actually guarantee the correctness of the state mod-
el with respect to the formal semantics of interaction ex-
pressions, the following equivalences must hold for every
word w ∈ Σ*:

w ∈ Ψ(x) ⇔ ψ (σw(x)) = true,

w ∈ Φ(x) ⇔ ϕ(σw(x)) = true.

The corresponding proof constitutes a very large struc-
tural induction using several smaller computational induc-
tions (verifying properties of the states σw(x) for the dif-
ferent categories of expressions x) as lemmas. Further-
more, an auxiliary theorem must be proven in parallel to
make sure that quantifier expressions, though constituting
conceptually infinite expressions, can nevertheless be im-
plemented using states of final size [7].

5. Implementation of interaction expressions

As already mentioned in Sec. 4, the nature of the defini-
tions of the functions σ , τ , ψ , ϕ, and ρ allows them to be
transformed to executable program code quite directly. It
turns out, however, that the state predicate ψ is dispens-
able if invalid states are already recognized by the opti-
mization function ρ and mapped to a special null state.
Furthermore, as the state transition function τ and the op-
timization function ρ are always applied successively, it
makes sense to combine them into a single optimized
state transition function τ̂a(s) = ρ(τa(s)). The remaining
functions, σ (x), τ̂a(s), and ϕ(s), can be readily imple-
mented using any suitable programming language.

Assuming corresponding functions init(), trans(),
and final() in C++, it is easily possible to implement
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functions word() and action() solving the following
problems (cf. Fig. 8):

// Return initial state of expression x.
State init(Expr x);

// Perform an optimized state transition
// of state s with action a.
State trans(State s, Action a);

// Determine whether s is a final state.
bool final(State s);

// Solve the word problem for expr. x.
int word(Expr x, Action* w, int n) {

State s = init(x);
for (int i = 0; i < n; i++) {

s = trans(s, w[i]);
}
if (final(s)) return 2; // Complete,
else if (s) return 1; // partial,
else return 0; // or illegal word.

}

// Solve the action problem for expr. x.
void action(Expr x) {

State s = init(x);
while (true) {

Action a = ReadNextAction();
if (State t = trans(s, a)) {

printf("Accept.\n"); s = t;
}
else printf("Reject.\n");

}
}

Figure 8: Solution of the
word and action problems

1. The function word() solves the word problem, i. e., it
decides whether a sequence w of n actions is a com-
plete, partial, or illegal word of an interaction expres-
sion x and returns a corresponding integer value. For
that purpose, the initial state s of x is computed (func-
tion init()) and successively transformed using the
actions w[i] of w (function trans()). If the resulting
state s is a final state (function final()), w consti-
tutes a complete word of x; otherwise, if s is valid
(i. e., different from the null state), w is a partial word
of x; otherwise, w is illegal.

2. The function action() solves the so called action
problem. After computing the initial state s of the ex-
pression x, it successively reads actions a (function
ReadNextAction()) and decides whether each such
action is currently permissible. For that purpose, a
“tentative” state transition is performed to check

whether the successor state t is valid. If it is, a is ac-
cepted and the state transition is actually performed by
replacing the current state s with the successor state t.
Otherwise, a is rejected and the current state s remains
unchanged.

As will be explained in Sec. 7, solving the action problem
is highly relevant for practical applications of interaction
expressions, while the solution of the word problem is
more or less a by-product of primarily theoretical interest.

6. Complexity of interaction expressions

Despite the fact that statements about the computational
complexity of interaction expressions are highly relevant
for practical applications, space does not permit to treat
this topic in much detail. Nevertheless, the main results
providing the basis for a successful practical employment
shall be briefly presented.

Generally, there is good news and bad news about the
complexity of interaction expressions. The bad news is, it
is possible to construct “malignant” expressions, i. e., ex-
pressions for which the complexity of a state transition (in
the current implementation) grows exponentially with re-
spect to the length of the action sequence processed so far.
The good news is, those expressions do not seem to occur
in practical applications. In order to substantiate this ad-
mittedly vague statement, extensive and detailed analyses
about the growth and evolution of states of expressions
have been carried out. These studies revealed several use-
ful subclasses of interaction expressions, e. g., qua-
si-regular expressions, completely and uniformly quanti-
fied expressions, etc., for which detailed criteria for their
“benignity” have been elaborated. For example, it can be
shown that quasi-regular expressions (i. e., expressions
not containing parallel iterations or quantifiers) are
“harmless” (the complexity of a state transition remains
constant) and that completely and uniformly quantified
expressions (which constitute the normal case of quanti-
fied expressions in practice) are “benign” (the complexity
of a state transition grows polynomially with respect to
the length of the action sequence processed so far). Fur-
thermore, these propositions can be used in combination
to evaluate step by step that a given expression is benign.

To put it in a nutshell, all practical examples consid-
ered so far −− including those presented in this paper −−
have been formally proven benign using the complexity
propositions developed in [7]. Furthermore, the actual de-
gree of the polynomial growth is rarely greater than 1
or 2. It turned out, that the careful selection of the opti-
mization function ρ (cf. Sec. 4) plays a crucial role in that
context as some of these expressions would indeed behave
malignant without optimization.

On the other hand, malignant expressions −− including
a suitable word for which they actually behave
malignant −− hav e to be selectively constructed and do not
seem to have any practical relevance.
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7. Integration with workflow management
systems

Having designed interaction expressions and graphs
(Sec. 2), defined their formal semantics (Sec. 3), devel-
oped, verified, and implemented an equivalent operational
semantics (Secs. 4 and 5), and finally proved its efficiency
for practically relevant expressions (Sec. 6), the question
remains how interaction expressions and graphs can actu-
ally be employed to synchronize the execution of real-
world activities. Assuming that these activities will be ex-
ecuted by some kind of interaction clients (typically
workflow management systems), a central scheduler or
interaction manager and a suitable coordination protocol
is needed to monitor and control the execution of actions
(cf. Fig. 9, left side).

To make sure that a client does not execute an action
which is currently not permitted by the given interaction
graph, the client has to ask the interaction manager for
permission first (step 1). Depending on the current state of
the graph, the interaction manager replies either yes or no
(step 2). If a positive answer is received, the client actual-
ly executes the respective action (step 3) and confirms its
execution (step 4) causing the interaction manager to per-
form a corresponding state transition of the graph
(step 5). Otherwise, the client must refrain from executing
the action now and try again later.

In order to avoid busy waiting in that case causing un-
necessary communication and interaction manager work-
load, a client can subscribe to a particular action (step 1,
right side of Fig. 9) causing the interaction manager to in-
form him about every status change of the respective ac-
tion (step 2), i. e., the client receives informational mes-
sages whenever the status of a subscribed action changes
from permissible to non-permissible or vice versa. These
messages can be used on the one hand to keep users’
worklists up to date (step 3) and on the other hand to wait
passively for the right moment to ask again for permission
to execute an action. Finally, if a client is no longer inter-
ested in the status of an action, a corresponding cancel
message (step 4) tells the interaction manager to stop
sending informations about this action.

In [7], these coordination and subscription protocols as
well as several alternative protocols, possessing different
complexity and particular advantages and disadvantages,
are discussed in more detail. Furthermore, to avoid the in-
teraction manager to become a bottleneck in a large sys-
tem, the protocols are generalized to application scenarios
involving multiple interaction managers. Finally, the em-
ployment of persistent message queues for the communi-
cation between interaction managers and clients as well as
recovery strategies for interaction managers are described.

8. Conclusion

Interaction expressions and graphs constitute a flexible
and expressive formalism for the specification and imple-
mentation of synchronization conditions in general and
inter-workflow dependencies in particular. In addition to a

declarative semi-formal interpretation (traversing interac-
tion graphs), a precise formal semantics, an equivalent op-
erational semantics, an efficient implementation of the lat-
ter, and detailed complexity analyses have been developed
allowing the formalism to be actually applied to solve re-
al-world problems like inter-workflow coordination.

Compared to approaches like workflow merging or in-
ter-workflow message passing, the employment of inter-
action graphs leads to a clean separation of synchroniza-
tion conditions and individual workflow definitions. Fur-
thermore, it supports the specification of general integrity
constraints on activities which are independent of their ac-
tual use in particular workflows. In contrast to other for-
malisms based on extended regular expressions, interac-
tion expressions are conceptually comprehensive and
completely orthogonal. Compared to other well-known
approaches for the specification of concurrent systems,
especially Petri nets [15, 11] and various kinds of process
algebras [8, 9, 14], their behaviour is fully deterministic,
ev en though this heavily complicates their operational se-
mantics and implementation [7].

Despite the fact that inter-workflow dependencies oc-
cur frequently in practical applications, they hav e not re-
ceived much attention in the workflow community yet.
Neither special issues of journals devoted to the overall
topic of workflow management [21−−25] nor books re-
flecting the state of the art in that field [20, 10] have really
addressed the problem so far. The same holds for confer-
ence and workshop proceedings in general where the
number of publications dealing with other workflow man-
agement problems, e. g., flexibility and scalability, is
steadily increasing. Two noteworthy exceptions are [2]
and [12]. Both approaches, however, are not able in prin-
ciple to deal with dynamically evolving workflow ensem-
bles whose participants are not known in advance and
might change with time. Therefore, the thorough develop-
ment of interaction expressions and graphs and their ap-
plication to coordinate dynamically evolving workflow
ensembles constitutes a pioneering approach towards a
general solution of the inter-workflow coordination prob-
lem.

In addition to a very mature core implementation of in-
teraction expressions based on the formally verified oper-
ational semantics (cf. Sec. 5), a syntax-driven editor for
interaction graphs has been developed to facilitate their
creation in practice. Furthermore, early versions of the co-
ordination and subscription protocols described in Sec. 7
have been implemented and tested for the WfMS ProMI-
nanD [13]. Their integration into the next generation
WfMS ADEPT [3] is a topic of future work.
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