
Tuning an SQL-Based PDM System in a Worldwide Client/Server Environment

E. Müller, P. Dadam, J. Enderle
University of Ulm

Faculty of Computer Science
fmueller,dadam,jost.enderleg@informatik.uni-ulm.de

M. Feltes
DaimlerChrysler

Research and Technology Ulm
michael.feltes@daimlerchrysler.com

Abstract

The management of product-related data in a uniform and
consistent way is a big challenge for many manufacturing
enterprises, especially the large ones like DaimlerChrysler.
So-called Product Data Management systems (PDMS) are
a promising way to achieve this goal. For various reasons
PDMS often sit on-top of a relational DBMS using it (more
or less) as a simple record manager. User interactions with
the PDMS are translated into series of SQL queries. This
does not cause too much harm when DBMS and PDMS are
located in the same local-area network with high bandwidth
and little latency times. The picture may change dramati-
cally, however, if the users are working in geographically
distributed environments. Response times may rise by or-
ders of magnitude, e. g. from 1-2 minutes in the local con-
text to 30 minutes and even more in the ”intercontinental”
context. The paper shows how a more sophisticated uti-
lization of the (advanced) SQL features coming along with
SQL:1999 can help to cut down response times significantly.

1. Introduction – The Application Scenario

Product development is a time-consuming and costly pro-
cess. Keen competition forces the companies to shorten
this process more and more in order to survive. During
the last years enormous endeavours have been made to
optimize the disciplines involved in the engineering pro-
cess. Most development departments for example intro-
duced CAD (Computer Aided Design) and CAE (Computer
Aided Engineering) tools leading to remarkable increases
in productivity and significant reductions in time to market.
But for all that, such intra-disciplinary, specialized tools
are not able to support the engineering process as a whole
and, therefore, limit further improvements to single sections
of the overall process. The limitations result from poor
capabilities for searching data efficiently, missing mecha-
nisms to preserve the correctness and consistency of shared
data, scarce provision of a uniform change and configura-
tion management, and last but not least insufficient support

of working in parallel. So inter-disciplinary optimizations
became an indispensable must. – The idea of Product Data
Management (PDM) was born.

The philosophy behind PDM systems addresses two im-
portant functions in a manufacturing company: To manage
the enormous amount of information defining a product and
to control the processes employed to manage the evolution
of a product from the early stages of conception and design
through to after sales and maintenance (cf. [1], [5], [13]).

Typically, a product has a recursively defined hierarchi-
cal structure. It is composed of assemblies and single parts
(so-called components). All objects of that so-called prod-
uct structure may be described by specifications, CAD files,
work orders, simulation results, and much more. From this
point of view a product is a very complex object.

In the different stages of product development, different
users with various skills and tasks need to access the prod-
uct data. In order to perform their tasks, the users often need
different views on the product: Designers are mostly inter-
ested in shapes and surfaces, engineers need the physical
structure of a product, and users responsible for functional
modules need to see the same product decomposed into its
functional units.

Hence, a PDM system has to solve two critical problems:
At first, the large amount of data, forming a complex object
structure, and second the different views on this structure.
A common solution to this is to store the data using standard
relational database systems. Therefore, the object struc-
ture is flattened, and all objects – and the relations between
them, too – are stored in (more or less) ordinary, normalized
tables in the database system. At runtime, when a user ac-
cesses a product in his/her view the corresponding structure
information and data items are retrieved, interpreted, and
reassembled.1

1This ”flat” object respresentation looks very strange at first glance.
Using extended attribute types of object-relational DBMS instead seems
to be much better suited. But the product structure is (a) a recursive one
and (b) different hierarchical views may have to be supported in parallel on
the same set of data. Thus hierarchically structured complex objects – as
offered by some object-relational DBMS – do not help. As (c) there exist
efficient implementations for the processing of recursive SQL queries [10]
meanwhile, the ”neutral” flat representation makes in fact even sense.

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

A very typical way of using a PDM system is to navigate
through a product structure. The users start with a prod-
uct (the top level item of the product structure) and expand
the next level of the structure. They repeat this so-called
single-level expand until they find what they look for, or the
branches of interest within the structure are expanded com-
pletely. In doing so, SQL is used as a simple record (or
tuple) manager: The navigational traversal of the product
tree is translated nearly one-to-one into single, isolated SQL
queries. This stepwise ”navigational access” also works for
the so-called multi-level expand which expands the entire
object structure by recursively applying the single-level ex-
pand method. This leads to a large number of SQL queries.

Nevertheless, there is hardly any problem with this pro-
cedure in local-area networks (LANs). Because of the typ-
ically large data transfer rates and the very low latency
times in a LAN environment, acceptable response times can
be achieved. This picture changes dramatically, however,
when applying the same procedure to worldwide distributed
application environments. Response times may rise to an
extent which is far beyond that what users are willing to
accept.

Driven by some experiences in prototypical but realis-
tic PDM environments at DaimlerChrysler we were look-
ing for mechanisms to optimize such PDM systems without
questioning their entire system architecture. Our suspicion
was that the problem is caused by the large number of iso-
lated queries in conjunction with lately evaluated user ac-
cess rules resulting in many messages and a large amount
of data to be transferred. This seems not to be a PDM-
specific problem. Similar experiences have been made
within SAP R/3 (cf. [6]), distributed databases (cf. [4]), and
other client/server applications that use the data-shipping
strategy (cf. [9]). The question arises if a more function-
shipping oriented strategy would help and how an adequate
solution could look like.

Two approaches utilizing the existing power of relational
database systems and the new features introduced by the
lately issued standard SQL:1999 (cf. [2], [8]) seemed to be
very promising regarding our performance problem: The
first approach attempts to reduce the amount of transferred
data by early evaluation of access rules. The second ap-
proach takes advantage of the power of recursive queries
which can reduce the number of queries – and hence the
number of communications – significantly. But before do-
ing any implementations like customizations or prototyp-
ing we were interested in the improvements that potentially
might result from these database related ”tuning actions”
in order to decide, whether their realization is worth its –
possibly high – implementation costs or not. The results of
these investigations are presented in this paper.

The rest of this paper is organized as follows: Section
2 describes the formulas we are using to compute expected

response times. Different types of rules and conditions typ-
ically used in PDM systems are discussed in section 3. In
sections 4 and 5 two approaches for optimizing the response
times are discussed. The results are sumarized and rated in
section 6. Section 7 finishes with a summary and an outlook
on further work.

2. The Response Time Problem

As already mentioned, response times of user actions can
become extremely long because of limited bandwidth and
long latency times in a wide-area network (WAN). This is
true especially for actions like so-called multi-level expands
which typically retrieve a larger (sub-)tree of the complete
object structure. In a testing environment for example such
a multi-level expand was finished after only little more than
half a minute using the LAN, whereas the same operation
took up to half an hour using the WAN.

In order to find out the parameters worth for optimization
we first cast a short look at the computation (in the sense
of prediction) of response times from the view of database
accesses2. Table 1 lists some definitions we will use in the
following.

Table 1. Definitions for the computation of re-
sponse times

symbol description

dtr data transfer rate in the WAN
TLat latency time in the WAN
sizep packet size in the WAN
6 Æsizen average size of a node in the object tree
nv(t) number of visible nodes3 in a subtree t
nt(t) number of transmitted nodes of a subtree t
q number of necessary database queries
c number of necessary WAN-communications
vol data volume resulting from user action
T response time

To simplify the computation we assume that each query
can be transmitted by using only one message (packet). Us-
ing the definitions in table 1 the response time for an action
that retrieves a product structure tree can be computed as
follows:

Because of the navigational access each node is touched
and its data and the references to its subtrees or leaf nodes
are fetched. This leads to as many queries qs as there are
nodes in the tree visible to the user (s stands for ”simple”

2In the following we use the term response time of a user action as a
synonym for the ”accumulated delay caused by database accesses through
a wide area network”.

3The user may not be allowed to see all nodes in the tree (for details
see section 3).

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

navigational process):

qs = nv(t) (1)

Since every query causes an answer there are twice as
many communications cs as queries, so

cs = 2 � qs (2)

The data volume vols that has to be transmitted is the
sum of the transferred query data and the corresponding re-
sponses. To be more precise, in the average we expect the
last package of each response to be filled only half. In order
to take this fact into account we add a correcting term. The
resulting data volume can then be approximated by

vols = qs � sizep + nt(t) � 6 Æsizen + qs �
1

2
sizep (3)

By combining the equations (2) and (3) we achieve the
overall response time:

Ts = cs � TLat + vols=dtr (4)

In table 2 the results of some computations considering
queries, single-level expands, and multi-level expands are
listed. In all examples we have assumed a complete �-ary
tree (i. e. all leaves have the same depth and all internal
nodes have degree �). The parameters � and � refer to the
depth of a tree and the number of branches each node has.
The figure � refers to the probability that a user is allowed
to see a branch. This is an estimation of the effects of the
rules described in the subsequent section. In a �-ary tree the
number of visible nodes (cf. equation (1)) and the number
of transmitted nodes (cf. equation (3)) can be computed as
follows4:

nv(t) =
P�

i=1 (� � �)
i

nt(t) =

8<
:

P�

i=1 �
i for queries

� for single-level expands
� �
P��1

i=0 (� � �)
i for multi-level expands

A ”query” is assumed to retrieve all nodes of a tree (without
the structure information), a ”single-level expand” retrieves
only the direct children of the root, and the ”multi-level ex-
pand” retrieves the entire structure5. The computation re-
sults in table 2 show that – depending on the environment
and the object structure – queries and multi-level expands
result in response times from several seconds up to nearly
half an hour – and frustrated users, too!

In order to achieve acceptable response times we will
focus on minimizing the data volume by early evaluation of
rules and conditions (see section 3) as well as minimizing
the number of executed queries.

4The root object is considered to be already at the client and therefore
is not taken into account here.

5The multi-level expand uses a recursive approach: The single-level ex-
pand is applied to the root object, the resulting objects are filtered accord-
ing to the rules, and the ”surviving” objects are then expanded recursively.

3. Rules and Conditions in PDM Systems

3.1. Types of Rules

Before giving a classification of rules we will describe the
different types of rules typically used in PDM systems.

The first kind of rules is used to control the configuration
of a product. Such so-called structure options are evaluated
for controlling alternative or supplementary parts of a prod-
uct. Consequently, an object associated with a structure op-
tion is part of the current product version only if the user has
specified at least that structure option. As a result, structure
options have to be evaluated when accessing the structure
of the current product version.

Obviously, during the configuration process not every
combination of the offered features is valid. For example it
is not possible to choose a cabriolet together with a sunroof.
Such dependencies between structure options are handled
by so-called configuration rules. In contrast to the evalu-
ation of structure options, configuration rules can be eval-
uated by accessing the selected structure options only. No
access to additional data is necessary, in particular no prod-
uct data need to be retrieved from the database. Therefore
we will not look at optimization possibilities of configura-
tion rules in the rest of this paper.

Effectivities, another type of rules, are very similar to
structure options. They both are usually associated with re-
lations between objects that require additional management
based on either dates or unit numbers of parts. Effectivi-
ties are very useful to control product structures containing
objects only available during a limited time or production
period. So objects are included in a current product only if
the associated effectivity overlaps the effectivity selected by
the user.

The last kind of rules we want to look at are the (mes-
sage) access rules. Not every user is allowed to perform
each operation on – in other words: to send each message
to – an arbitrary object. Object access has to be limited
therefore. As we are only interested in messages involving
database access we focus on messages like multi-level ex-
pand (object tree expansion) and check-out/check-in (gain-
ing exclusive access to an object for updates).

In general message access rules are applied either to per-
mit or to prohibit access to data under certain conditions6.
We can conceive those rules as 4-tupels: A user is permitted
to perform an action on an instance of an object type, if the
condition is met.

6In the following we assume that rules only permit users to perform
certain actions (that is, we assume to have a negative biased rule process-
ing system). This is no real restriction because the positive biased rule
processing system can be achieved by negating the conditions.

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

Table 2. Response times for several scenarios in today’s environments
sizepacket = 4kB � = 3, � = 9, � = 0:6 � = 9, � = 3, � = 0:6 � = 7, � = 5, � = 0:6

6 Æsizenode = 512Byte Query Exp MLE Query Exp MLE Query Exp MLE

TLat = 0.15 0.30 0.30 57.91 0.30 0.30 133.52 0.30 0.30 984.00
dtr = 256 12.98 0.33 41.19 461.48 0.23 95.01 1526.05 0.27 700.39
Ts = � 13.28 0.63 99.10 461.78 0.53 228.53 1526.35 0.57 1684.39

TLat = 0.15 0.30 0.30 57.91 0.30 0.30 133.52 0.30 0.30 984.00
dtr = 512 6.49 0.16 20.60 230.74 0.12 47.51 763.02 0.13 350.20
Ts = � 6.79 0.46 78.50 231.04 0.42 181.02 763.32 0.43 1334.20

TLat = 0.05 0.10 0.10 19.30 0.10 0.10 44.51 0.10 0.10 328.00
dtr = 1024 3.25 0.08 10.30 115.37 0.06 23.75 381.51 0.07 175.10
Ts = � 3.35 0.18 29.60 115.47 0.16 68.26 381.61 0.17 503.10

Data transfer rate dtr in kBits per second, latency time Tlat and response time Ts in seconds;
response times are split into the two parts caused by the latency time and the data transfer

Examples:
1. user: Scott

action: multi-level expand
type: assembly
cond: assembly :make or buy 6= 0buy 0

permits user Scott to perform a multi-level expand on an in-
stance of ”assembly” if it is not bought from a supplier.

2. user: *
action: check-out
type: tree(assembly)
cond: 8n 2 tree(assembly) : n:checkedout 6= TRUE
permits every user to check-out an entire subtree (which
root is of type ”assembly”) if all nodes n in this subtree are
checked-in.

For evaluation purposes it would be desireable to
represent the structure options and effectivities in the same
way the message access rules are represented. And, indeed,
this can be achieved rather easily: We stated that structure
options and effectivities are associated with relations
between objects. If we regard these relations as ”first class”
objects, we can formulate the rules for structure options
(and effectivities) as follows:
3. user: *

action: access
type: relation
cond: relation.strc opt overlaps user strc opt
permits every user to access (traverse) the relation if the set
of structure options associated with this relation overlaps the
user-selected ones.

So, in the following we will handle these conditions ex-
actly in the same way we handle the message access rules.

3.2. Classification of Conditions

After discussing the different types of rules in section 3.1
we will now turn towards the conditions which may occur
in the rules. Figure 1 shows a classification tree of the con-
ditions we must be able to handle.

condition

tree condition row condition

8rows
condition

9structure
condition

tree-aggregate
condition

Figure 1. Classification of conditions

First of all, we distinguish between tree conditions and
row conditions. The former describes a rule involving the
whole object tree, whereas the latter involves only one sim-
ple object within a tree (typically the root object). Example
1 in section 3.1 uses a row condition, whereas example 2
uses a tree condition.

The row conditions can be very simple ones that can be
evaluated by the use of standard SQL predicates using the
conventional comparison operators (<;>;�; : : :). If these
SQL predicates are not sufficient to evaluate the condition,
like the comparisons of sets or intervals, stored functions
([3], [7], [12]) performing the checks have to be provided at
the server.

Tree conditions can be split into three subclasses: The
first includes all conditions which use the ”for-all” quantor
(cf. example 2 in section 3.1). All nodes in the tree have
to meet the given condition which itself is a row condition.
We will call these conditions ”8rows conditions”.

The second subclass which we call ”9structure condi-
tions” contains all conditions which refer to related objects
of the tested object. For example, the state of a com-
ponent cmp (i. e. a single part) may be frozen (i. e. un-
changeable in the future) only if there exists a specifi-
cation related to that component. Those conditions are
written as ”9s 2 SPEC : cmp specified-by

- s, cmp 2

nodes(tree(root obj))\components”, where SPEC is the
class of specifications and specified-by represents the rela-
tion between components and specifications.

The last subclass of the tree conditions contains all con-
ditions which include a tree aggregate or tree function.
Those conditions cannot be evaluated at a single node (or
object) because they involve the entire tree (for example
the number of nodes in the tree or the average of an at-
tribute common to all nodes in the tree). Those condi-
tions may be written as e. g. ”count(tree(assy)) � 10”
or ”average(tree(assy.weight)) � 12”. We will call these
conditions ”tree-aggregate conditions”.

In the next two sections we will analyze how these con-
ditions and rules can be expressed using SQL, and how the
queries used so far have to be modified accordingly. In sim-
ple cases the WHERE-clause will be extended by additional

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

”AND”-conditions, in other cases more complex modifica-
tions become necessary. To simplify the discussion we first
focus on finding appropriate SQL predicates in an isolated
fashion. The combination of such predicates with existing
queries in order to create more powerful queries is treated
in section 5.5.

4. Approach 1: Reducing the Transferred Data
Volume by Early Rule Evaluation

In our environment expands e.g. for digital mockups need
to retrieve the entire structure from the root down to each
single leaf. Therefore special solutions like stopping the re-
cursive descent if predicates that exploit the semantics of the
hierarchy indicate the irrelevance of deeper levels (cf. [14])
do not work. We propose the reduction of data volume by
early evaluation of access rules instead.

4.1. Query Modification for Early Rule Evaluation

Because of the navigational approach each query that is part
of a tree request retrieves all (and only) the directly related
(sub-)objects of one object. As only a small part of the
tree is accessed one cannot evaluate arbitrary tree condi-
tions within such a navigational query in general. Therefore
we can restrict our discussion to the representation of row
conditions and their evaluation at this point.

Row conditions are based on comparisons containing ob-
ject attributes, constants, variables of the user’s environment
and functions calculated upon these values. Obviously such
conditions can be transformed straightforward into an SQL
WHERE clause. The condition in example 1 could be em-
bedded into an existing query as follows:

SELECT ... FROM ..., assembly
WHERE ... AND assembly.make or buy<>’buy’
Row conditions may also refer to so-called transient at-

tributes which are computed by the PDM system. If this
computation cannot be directly transformed into an equiva-
lent SQL expression, a user-defined function performing the
respective computation has to be provided at the database
server.

This means that the row conditions can be transformed
quite easy into equivalent SQL WHERE clauses. In order
to minimize the transformation effort at runtime, it is appro-
priate to automatically transform the conditions only once
into an equivalent SQL predicate directly after the definition
of a new rule. The transformed representation can be stored
together with the corresponding rule (cf. section 3.1) in a ta-
ble at the client. By doing this the query modificator can de-
termine which conditions apply (by simply accessing the ta-
ble) and therefore which SQL clauses have to be integrated
into the WHERE clause of the current query. Two or more
qualifying conditions are always connected via the ”OR”

operator, and the resulting predicate is either appended to
an already existing WHERE clause with an ”AND” or a
new WHERE clause has to be generated. Obviously, query
modification is very simple for row conditions.

4.2. Maximal Improvement

As the number of queries did not change in section 4.1, the
only improvement can be expected by the reduction of the
retrieved data volume. Let � (0 � � � 1) denote the se-
lectivity of a rule with respect to a query q. Then 1 � �
denotes the share of objects returned by q but not visible to
the user. Assume oq to be the number of objects returned by
the query q. Then the maximally achievable improvement
will be Tdi� �

(1��)�oq�6 Æsizenode
dtr

. For our examples in ta-
ble 2 this would lead to the improved results shown in table
3: Response times of query actions go down from nearly
half an hour to approximately one minute or even less. In
contrast, the benefit gained by a multi-level expand is very
low. Only a few seconds can be saved, leaving response
times still beyond the level users are willing to accept.

Conclusion: It is not enough to reduce the data volume
by evaluating access rules within the queries. Obviously,
the more critical point is to reduce the number of round trips
to the database in order to save latency times. We will focus
on this aspect in the next section.

5. Approach 2: Reduction of Round Trips to
the Database

5.1. Method

In order to reduce the number of round trips to a database
we must achieve a reduction of the number of transmit-
ted SQL-calls necessary to perform the requested user ac-
tion. In our application context, the compilation of previ-
ously isolated queries resulting from a certain tree-oriented
user action – like a multi-level expand – into one combined
query appears to be very promising. Here we will take ad-
vantage of the recursive structure of the object trees.

5.2. Utilization of Recursive SQL

In principle, with recursive SQL (as defined in the
SQL:1999 standard, cf. [2] and [8]) we are able to collect
all nodes of a recursively defined object tree in one query.
However, one query implies one result type. This is no prob-
lem at least if all nodes in the tree are of the same type. But
in general an object tree may consist of nodes of many dif-
ferent types, so the objects have to be unified regarding their
type without loosing their object type information7.

7First attempts to solve this problem in the context of inheritance can
be found in the IBM DB2 UDB V6 [10] and in the Informix Dynamic
Server.2000 Version 9.2 [11].

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

Table 3. Response times for several scenarios with early rule evaluation
sizepacket = 4kB � = 3, � = 9, � = 0:6 � = 9, � = 3, � = 0:6 � = 7, � = 5, � = 0:6

6 Æsizenode = 512Byte Query Exp MLE Query Exp MLE Query Exp MLE

TLat = 0.15 0.30 0.30 57.91 0.30 0.30 133.52 0.30 0.30 984.00
dtr = 256 3.19 0.27 39.19 7.13 0.22 90.39 51.42 0.23 666.23
Ts = � 3.49 0.57 97.10 7.43 0.52 223.90 51.72 0.53 1650.23

saving in % 73.74 8.96 2.02 98.39 3.51 2.02 96.61 5.52 2.03

TLat = 0.15 0.30 0.30 57.91 0.30 0.30 133.52 0.30 0.30 984.00
dtr = 512 1.59 0.14 19.60 3.56 0.11 45.19 25.71 0.12 333.12
Ts = � 1.89 0.44 77.50 3.86 0.41 178.71 26.01 0.42 1317.12

saving in % 72.12 6.06 1.27 98.33 2.25 1.28 96.59 3.61 1.28

TLat = 0.05 0.10 0.10 19.30 0.10 0.10 44.51 0.10 0.10 328.00
dtr = 1024 0.80 0.07 9.80 1.78 0.05 22.60 12.86 0.06 166.56
Ts = � 0.90 0.17 29.10 1.88 0.15 67.10 12.96 0.16 494.56

saving in % 73.19 7.73 1.69 98.37 2.96 1.69 96.61 4.69 1.70

A feasible solution for this unification is to define a new
(result-) type enfolding all attribute definitions of all object
types appearing in the result plus an additional attribute –
if it does not exist anyway – containing the original object
type information. The attribute values of a resulting object
can then be mapped to the corresponding attributes in the re-
sult type and the remaining attributes are filled with NULL
values. – We will point out the basic idea with a little ex-
ample.

assy type obid name dec
assy 1 Assy1 +

assy 2 Assy2 +

assy 3 Assy3 +

assy 4 Assy4 +

assy 5 Assy5 �

assy 6 Assy6 �

assy 7 Assy7 �

assy 8 Assy8 �

comp type obid name
comp 101 Comp1
comp 102 Comp2
comp 103 Comp3
comp 104 Comp4
comp 105 Comp5
comp 106 Comp6
comp 107 Comp7

link type obid left right eff from eff to
link 1001 1 2 1 3
link 1002 1 3 4 10
link 1003 2 4 1 10
link 1004 2 5 1 10
link 1005 4 101 6 10
link 1006 4 102 1 5
link 1007 5 103 1 10
link 1008 5 104 1 10

1

2 3

4 5

101 102 103 104

1001 1002

1003 1004

1005 1006 1007 1008

Figure 2. Tables for assemblies, components, and
their relation, forming a tree

Figure 2 shows the tables for the assemblies, compo-
nents, and the links between them. The relation named
”assy” contains several assemblies, each of which has an
object ID, a name and a flag indicating whether the assem-
bly is decomposable without destroying it or not (see at-
tribute ”dec”). The relation called ”comp” contains sev-
eral single parts, each of which has an object ID and a
name. The structural relationship between assemblies and
components is stored in the relation ”link”. Each link
refers with its attribute ”left” to an assembly while ”right”
refers to a contained assembly or component. The attributes
”eff from” and ”eff to” contain the beginning and ending

number of the effectivity (e.g. lot numbers) respectively.
The following recursive query retrieves the whole tree

stored in the three tables of figure 2 and generates the ”uni-
form” result table8:
WITH RECURSIVE rtbl (type, obid, name, dec) AS
(SELECT type, obid, name, dec
FROM assy
WHERE assy.obid = 1

UNION
SELECT assy.type, assy.obid, assy.name, assy.dec
FROM rtbl JOIN link ON rtbl.obid=link.left

JOIN assy ON link.right=assy.obid
UNION

SELECT comp.type, comp.obid, comp.name, ’’
FROM rtbl JOIN link ON rtbl.obid=link.left

JOIN comp ON link.right=comp.obid
)
SELECT type, obid, name, dec AS "DEC",

cast (NULL AS integer) AS "LEFT",
cast (NULL AS integer) AS "RIGHT",
cast (NULL AS integer) AS "EFF_FROM",
cast (NULL AS integer) AS "EFF_TO"

FROM rtbl
UNION

SELECT type, obid, ’’ AS "NAME", ’’ AS "DEC",
left, right, eff_from, eff_to

FROM link
WHERE (left IN (SELECT obid FROM rtbl)

AND right IN (SELECT obid FROM rtbl))
ORDER BY 1,2

In this query we ignored potentially existing access rules,
structure options, and effectivities. The first part of the
query beginning with the ”WITH...” clause walks through
the object tree and collects all contained assemblies and
components. In the second part of the query all those parts
are selected and casted to the result type. As this informa-
tion is not sufficient to reconstruct the original object tree,
the last part of the query retrieves all necessary link objects
and casts them to the result type, too. – The result of this
query is shown in figure 3.

Of course, if there exist access rules we do not want to
transmit the entire object tree. This would cause unnec-
essary network traffic again and thus worsen the response
time of the action. In order to achieve acceptable response
times we must combine the rule evaluation with the recur-
sive query statement in an analogous way we did in section
4. Row conditions can be handled as described in section
4.1. Therefore only the procedure of translating tree condi-
tions and the appropriate modification of the recursive query
are discussed in the next sections.

8All recursive queries in this paper can be evaluated with minor syntac-
tical changes by IBM DB2 UDB V6.

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

TYPE OBID NAME DEC LEFT RIGHT EFF FROM EFF TO

assy 1 Assy1 + - - - -
assy 2 Assy2 + - - - -
assy 3 Assy3 + - - - -
assy 4 Assy4 + - - - -
assy 5 Assy5 � - - - -
comp 101 Comp1 - - - - -
comp 102 Comp2 - - - - -
comp 103 Comp3 - - - - -
comp 104 Comp4 - - - - -
link 1001 - - 1 2 1 3
link 1002 - - 1 3 4 10
link 1003 - - 2 4 1 10
link 1004 - - 2 5 1 10
link 1005 - - 4 101 6 10
link 1006 - - 4 102 1 5
link 1007 - - 5 103 1 10
link 1008 - - 5 104 1 10

Figure 3. Result of recursive query without rule
evaluation

5.3. Representation of Tree Conditions in SQL

In the following we analyze which kind of predicates can be
mapped to which kind of query.

5.3.1. 8Rows Conditions. 8rows conditions are of the fol-
lowing form:
8obj 2 nodes(tree(root obj)) : row cond(obj)
where ”nodes” is a set-valued function returning all

nodes in a tree with root root obj, and ”row cond” is a valid
row condition which has to be met by all these nodes. This
means that the resulting tree contains all nodes visible to
the user if all nodes meet the row cond. If at least one node
does not meet this condition the result tree is empty!

Now the question arises how to transform such a condi-
tion into an SQL statement. Assume that rec table contains
all nodes of the tree without computing the 8rows condi-
tion. Then we can implement the ”all-or-nothing” principle
as follows:

SELECT * FROM rec table WHERE NOT EXISTS (
SELECT * FROM rec table WHERE NOT row cond)

If the subselection retrieves at least one object that does
not meet the row cond, then the outer select returns no ob-
ject. If the subselection does not find a match then the
outer select returns all objects included in the rec table.
(Please note that rec table occurs in the outer and in the
inner clause! But an intelligent query optimizer will recog-
nize that the inner clause needs to be evaluated only once,
as it is an uncorrelated sub-query.)

We will show the effect of this clause by our example
(see figure 2). Assume that all assemblies in the resulting
tree have to be decomposable. The appropriate row condi-
tion for this is: assy :dec = ’ + ’. If there exists at least one
assembly in the tree which is not decomposable the result is
empty. The following query achieves this:
WITH RECURSIVE rtbl (type, obid, name, dec) AS
(... as in section 5.2 ...)

SELECT type, obid, name, dec AS "DEC",
cast (NULL AS integer) AS "LEFT",
cast (NULL AS integer) AS "RIGHT",
cast (NULL AS integer) AS "EFF_FROM",
cast (NULL AS integer) AS "EFF_TO"

FROM rtbl
WHERE NOT EXISTS (SELECT * FROM rtbl

WHERE (type=’assy’ AND dec!=’+’))
UNION

SELECT type, obid, ’’ AS "NAME", ’’ AS "DEC",
left, right, eff_from, eff_to

FROM link
WHERE (left IN (SELECT obid FROM rtbl)

AND right IN (SELECT obid FROM rtbl))
AND NOT EXISTS (SELECT * FROM rtbl

WHERE (type=’assy’ AND dec!=’+’))
ORDER BY 1,2

The result of this query is empty because of assembly
number five. It is not decomposable, so no tree will be re-
turned.

5.3.2. 9structure Conditions. As we showed in section 3.2
9structure conditions are of the following form:
9u 2 U : o rel

- u; o 2 nodes(tree(root obj)) \ O
This condition means that there must exist an object u

of type U so that the tested object o of type O is related to
that u via the relation rel. In order to decide whether there
exists such an object u, we have to join the tables O, rel,
and U . For being able to do so we need some additional
information about how this join has to be performed. We
assume that the objects o and u both can be identified by an
attribute called ”obid”, and the relation between them refers
to o and u with an attribute called ”left” and ”right” respec-
tively. Then we can implement the 9structure condition as
follows:

SELECT * FROM O WHERE EXISTS (
SELECT * FROM rel JOIN U ON rel.right=U.obid
WHERE O.obid=rel.left)
Remark: The object o may be an arbitrary node within

the tree. If the tree contains objects of different types, O
need not necessarily be the type of the root object. As a
result, although the 9structure conditions are defined at the
root object, they have to be evaluated at objects of type O!

Again, we will show the effect of this condition by an
example. We extend our example from above by a rela-
tion called ”spec” containing specification documents for
assemblies and components, and a relation called ”speci-
fied by” that links the specifications to the objects. Then
we want to query for all objects in the tree with the restric-
tion that components are visible only if they are specified
by at least one document (9s 2 spec : c specified by

- s,
c 2 nodes(tree(1)) \ comp):
WITH RECURSIVE rtbl (type, obid, name, dec) AS
(SELECT type, obid, name, dec
FROM assy
WHERE assy.obid = 1

UNION
SELECT assy.type, assy.obid, assy.name, assy.dec
FROM rtbl JOIN link ON rtbl.obid=link.left

JOIN assy ON link.right=assy.obid
UNION

SELECT comp.type, comp.obid, comp.name, ’’
FROM rtbl JOIN link ON rtbl.obid=link.left

JOIN comp ON link.right=comp.obid
WHERE EXISTS (SELECT * FROM specified_by AS s JOIN spec

ON s.right = spec.obid WHERE s.left = comp.obid)
)
SELECT ... as in section 5.2 ...

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

5.3.3. Tree-Aggregate Conditions. Quite similar to the
8rows conditions the tree-aggregate conditions exclude ei-
ther the whole tree or nothing. Obviously the translation
into SQL conditions will not look very differently.

Tree-aggregate conditions use aggregate functions like
AVG, COUNT, MAX, MIN, and SUM which refer to the
entire object tree. They may have the following form:

agg func(o:x)
 expr; o 2 nodes(tree(root obj))
where agg func is one of the aggregate functions,
 is one
of the common compare operators, and expr is an expres-
sion that may contain aggregate functions, constants and at-
tribute values of the root object of the tree.

Since our recursive query retrieves all accessible nodes
of the tree, we can evaluate the tree-aggregate functions on
that set of nodes. Assume that rec table is the result of the
recursive query. The translation of such a tree-aggregate
condition looks as follows:

SELECT * FROM rec table WHERE (
SELECT agg func(attr) FROM rec table)
 expr

If the aggregate function of the tree-aggregate condition
should be evaluated only on a subset of all nodes in the tree,
the WHERE clause of the subselection has to be adapted
accordingly.

Finally we will show the effect of this condition by our
example. The assumed user may only retrieve trees contain-
ing at most ten assemblies (again, the type-discriminating
attribute in the homogenized result of the recursion must be
used to identify tuples of the considered type):

WITH RECURSIVE rtbl (type, obid, name, dec) AS
(... as in section 5.2 ...)
SELECT type, obid, name, dec AS "DEC",

cast (NULL AS integer) AS "LEFT",
cast (NULL AS integer) AS "RIGHT",
cast (NULL AS integer) AS "EFF_FROM",
cast (NULL AS integer) AS "EFF_TO"

FROM rtbl
WHERE (SELECT COUNT(*) FROM rtbl WHERE type=’assy’)<=10

UNION
SELECT type, obid, ’’ AS "NAME", ’’ AS "DEC",

left, right, eff_from, eff_to
FROM link
WHERE (left IN (SELECT obid FROM rtbl)
AND right IN (SELECT obid FROM rtbl))
AND (SELECT COUNT(*) FROM rtbl WHERE type=’assy’)<=10

ORDER BY 1,2

In our example the tree contains only five assemblies, so
the entire tree would be returned.

5.4. Maximal Improvement

Now we want to estimate the benefit we can achieve with
the recursive SQL approach. In contrast to the navigational
access method, we need only one query and receive only
one result set. So two communications between the client
and the database server are sufficient.

The data volume itself is reduced significantly: On the
one hand, only those objects are transferred which are visi-
ble to the user. On the other hand, by reducing the number
of queries the number of packets transferred for querying
(each query uses at least one packet) could be minimized,

Table 4. Response times for multi-level expands
with recursive queries

� = 3, � = 9, � = 7,
� = 9, � = 3, � = 5,

sizepacket = 4kB � = 0:6 � = 0:6 � = 0:6

6 Æsizenode = 512Byte MLE MLE MLE

TLat = 0.15 0.30 0.30 0.30
dtr = 256 3.19 7.13 51.42
Ts = � 3.49 7.43 51.72

saving in % 96.48 96.75 96.93

TLat = 0.15 0.30 0.30 0.30
dtr = 512 1.59 3.56 25.71
Ts = � 1.89 3.86 26.01

saving in % 97.59 97.87 98.05

TLat = 0.05 0.10 0.10 0.10
dtr = 1024 0.80 1.78 12.86
Ts = � 0.90 1.88 12.96

saving in % 96.97 97.24 97.42

too. As the recursive query may become quite large, we
have to bear in mind that the query potentially needs more
than one packet to be transmitted to the server. Therefore
qr in formula (5) denotes the number of packets needed to
transmit the query instead of the number of queries (as in
formulas (1), (2), and (3)). So the data volume and the re-
sponse time for an action retrieving an object tree are as
follows:

vol r = qr � sizep + nv(t) � 6 Æsizen + qr �
1

2
sizep (5)

Tr =2 � TLat+ volr=dtr (6)

In our examples (see table 2) the action’s response time
shrinks down to the values shown in table 4. As this ap-
proach only addresses actions involving an object tree in-
stead of a single object, only the column of the MLE action
is shown. The benefit gained amounts to more than 95 per-
cent in all examples! Just as desired, the latency time now
only plays a minor role compared to the delay caused by the
data transfer.

Conclusion: If a user action is to retrieve an entire tree
from a database, the combination of recursive querying to-
gether with early rule evaluation can significantly reduce
response times.

5.5. Adding Rules to Queries

In the last sections the transformation of conditions into
SQL-conformal clauses has been discussed. Now we will
show in more detail (1) how the application rules are in-
troduced into the system, (2) when the transformation of
conditions is performed, and (3) how the recursive queries
have to be modified in order to gain benefit from early rule
evaluation.

Rules are introduced into a system by authorized users
only (for example administrators). Typically new rules are
necessary if a new user is registered. The introduction of

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

new object types and actions also requires the creation of
new rules, but this is only necessary when extensions to the
PDM system (product update or customizations) are per-
formed.

In order to create a new rule, the administrator has to
choose the user, object type, and action and to enter the
desired condition which is subsequently translated into the
SQL-conformal representation (cf. section 5.3). Translated
conditions are stored – together with the four components
defining the rule – in an appropriate data structure (e.g. a
table, called ”rule table” in the following) at each client. In
the following we will assume that a flag qualifies the dif-
ferent condition types. In order to perform the necessary
modifications of recursive queries this rule table is used as
follows:

A. Handling of 8rows conditions

1. Fetch all relevant9 8rows conditions.
2. Form the disjunction of all conditions found.
3. Append that condition to the WHERE clauses (us-

ing ”AND”) of all SELECT statements outside the
recursive part of the query.

B. Handling of tree-aggregate conditions

4. Fetch all relevant tree-aggregate conditions.
5. Form the disjunction of all conditions found.
6. Append that condition to the WHERE clauses (us-

ing ”AND”) of all SELECT statements outside the
recursive part of the query.

C. Handling of 9structure conditions

7. Fetch all relevant 9structure conditions.
8. Group the conditions by object type O (cf. 5.3.2).
9. Form the disjunctions of all conditions within the

same group.
10. Append disjunctions to the WHERE clauses (us-

ing ”AND”) of SELECT statements inside the re-
cursive part of the query which refer to O in their
FROM clause.

D. Handling of ”ordinary” row conditions

11. Fetch all row conditions according to the current
user, referring to any object type t occurring in the
query, and action = ”access”.

12. Group the conditions by object type t.
13. Form the disjunctions of all conditions within the

same group.
14. Append disjunctions to the WHERE clauses (us-

ing ”AND”) of SELECT statements inside and out-
side the recursive part of the query which refer to
t in their FROM clause.

Remark: This ”procedural” description may create the
impression that the incorporation of these facilities into a
PDM system is rather straightforward. However, it is more
complicated than it seems to be. The combination of dif-
ferent kinds of conditions, e.g. of 8rows conditions and
9structure conditions, is not trivial: The initial translation
of the 9structure conditions has to be modified according

9”relevant” in this context means that the condition refers to the user,
the object type, and the action under consideration

to the context of the 8rows conditions! As the 9structure
condition now has to be evaluated outside the recursive part
of the query, the structure of the original JOIN operation
changes, and type information of the homogenized result
tuples has to be considered. Another problem arises if the
recursive query (or a part of it) is hidden in a view. As the
query structure is not visible to the query modificator, the
proposed modifications cannot be performed.

6. Achievements

Our aim was to find a solution which helps to significantly
shorten response times of structure oriented user actions in
PDM systems. Our computations show that early rule eval-
uation in combination with recursive queries will lead to
acceptable results.

0

50

100

150

200

250

late eval early eval recursion

Query Expand MLE

Figure 4. Response times for �=9, �=3, �=0.6,
TLat=150ms, dtr=512kBit/s

0

200

400

600

800

1000

1200

1400

1600

1800

late eval early eval recursion

Query Expand MLE

Figure 5. Response times for �=7, �=5, �=0.6,
TLat=150ms, dtr=256kBit/s

In figures 4 and 5 the results of two computation series
are represented. Not very astonishing, the response time of
a single-level expand does not benefit very much from our
approach of early rule evaluation. Response times less than
one second – without any optimizations – are already in an
acceptable range. The problems are rather query actions and
multi-level expands. Query actions gain significant benefit

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

(in many cases over 95 percent) by the early evaluation of
rules. The savings for the multi-level expands are very low
(only two percent), however. The response times of multi-
level expands only shrink to an acceptable level when com-
bining the early evaluation of rules with recursive queries:
Hereby, 95 percent and more of the original delay can be
eliminated.

Unfortunately, our approach cannot solve the perfor-
mance problems of all kinds of typical PDM actions. The
check-out action, for example, which retrieves a structured
object and prepares it for the exclusive update by one user,
cannot be represented in one single query. An update of
the database, setting the checked-out flag of the retrieved
objects, has to be performed in a separate WAN commu-
nication. In order to avoid such additional communica-
tions, application-specific functionality performing the de-
sired user action has to be installed at the database server
(or servers if there are more than one).

In the described environment transmission costs are the
dominating limitation factor. Therefore local query evalua-
tion costs were ignored in the computational estimations. In
higher bandwidth environments, however, it may be reason-
able to take local query execution time into consideration.

7. Summary and Outlook

The application of PDM systems which organize all
product-related data in a logically centralized manner has
proved to be beneficial, especially in large companies.
Therefore, company-wide usage of such systems – even in
worldwide application environments – is under investiga-
tion. However, tests at DaimlerChrysler (where clients and
servers were distributed between Germany and Brazil) have
shown that the usage of PDM systems in such environments
can lead to (extremely) long response times. As described
in this paper, the cause of this problem is that the underlying
relational database is used rather inefficiently: On the one
hand access rules are evaluated too late, thus resulting in a
large amount of unnecessarily transferred data. On the other
hand user actions are translated into series of isolated SQL
queries causing a large number of messages each of which
burdened with the latency time of the wide-area network.

The interesting question was whether an appropriate uti-
lization of (advanced) SQL features could help to reduce
these response times to an acceptable level. That is, the
focus of this investigation was to gain insights into the po-
tentially achievable improvements. Only if these improve-
ments are large enough, it makes sense to think about the
required modifications to existing systems.

The analyses have shown that significant improvements
can be achieved. In case of set-oriented queries, early rule
evaluation can help to reduce the amount of transferred data
(and thus response time) by orders of magnitude. The same

is true for multi-level expands when utilizing early rule
evaluation in combination with recursive queries facilities.
Therefore it is worth to pursue this approach further and
to develop strategies for the integration of these techniques
into PDM systems.

This is not as trivial as it may look at first glance. For
most systems this may require significant changes of major
system components: It affects rule/constraint specification
and evaluation, query generation, result processing, and ob-
ject management. In addition, multi-server environments in
conjunction with distributed data management as well as an
efficient processing of check-out/check-in operations have
to be taken into consideration. The treatment of these is-
sues is beyond the scope of this paper, however, and will
be subject of further investigations and prototypical imple-
mentations.

References

[1] PDM Information Center. www.pdmic.com.
[2] ANSI/ISO/IEC 9075-2:1999 (E). Database Language SQL

– Part 2: Foundation (SQL/Foundation), September 1999.
[3] ANSI/ISO/IEC 9075-4:1999 (E). Database Language SQL

– Part 4: Persistent Stored Modules (SQL/PSM), September
1999.

[4] S. Banerjee and P. K. Chrysanthis. Network Latency Op-
timizations in Distributed Database Systems. Fourth Inter-
national Conference on DATA ENGINEERING, pages 532–
540, February 23-27, 1998.

[5] CIMdata, Inc., CIMdata World Headquarters, Ann Arbor,
MI 48108 USA. Product Data Management: The Defini-
tion. An Introduction to Concepts, Benefits, and Terminol-
ogy, fourth edition, September 1997.

[6] J. Doppelhammer, T. Höppler, A. Kemper, and D. Koss-
mann. Database Performance in the Real World. ACM SIG-
MOD, 26(2):123–134, May 1997.

[7] A. Eisenberg. New Standard for Stored Procedures in SQL.
ACM SIGMOD Record, 25(4):81–88, December 1996.

[8] A. Eisenberg and J. Melton. SQL:1999, formerly known as
SQL3. ACM SIGMOD Record, 28(1):131–138, March 1999.

[9] M. J. Franklin, B. T. Jónsson, and D. Kossmann. Perfor-
mance Tradeoffs for Client-Server Query Processing. In
H. V. Jagadish and I. S. Mumick, editors, Proceedings of the
1996 ACM SIGMOD International Conference on Manage-
ment of Data, Montreal, Quebec, Canada, June 4-6, 1996,
pages 149–160. ACM Press, 1996.

[10] IBM Corporation. IBM DB2 Universal Database – SQL Ref-
erence – Version 6, 1999.

[11] Informix Corporation. Informix Guide to SQL – Tutorial,
December 1999.

[12] J. Melton. Understanding SQL’s Stored Procedures. A Com-
plete Guide to SQL/PSM. Morgan Kaufmann Publishers,
Inc, 1998.

[13] A. Obank, P. Leaney, and S. Roberts. Data mangement
within a manufacturing organization. Integrated Manufac-
turing Systems, 6(3):37–43, 1995.

[14] A. Rosenthal, S. Heiler, and F. Manola. An Example
of Knowledge-Based Query Processing in a CAD/CAM
DBMS. Proceedings of the 10th VLDB Conference, pages
363–370, 1984.

Proceedings of the 17th International Conference on Data Engineering (ICDE �01)
1063-6382/01 $10.00 © 2001 IEEE

