
Case-Base Maintenance for
CCBR-Based Process Evolution

Barbara Weber1, Manfred Reichert2, and Werner Wild3

1 Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@utwente.nl

3 Evolution Consulting, Innsbruck, Austria
werner.wild@evolution.at

Abstract. The success of a company more and more depends on its
ability to flexibly and quickly react to changes. Combining process man-
agement techniques and conversational case-based reasoning (CCBR) al-
lows for flexibly aligning the business processes to new requirements by
providing integrated process life cycle support. This includes the adap-
tation of business processes to changing needs by allowing deviations
from the predefined process model, the memorization and the reuse of
these deviations using CCBR, and the derivation of process improve-
ments from cases. However, to effectively support users during the whole
process life cycle, the quality of the data maintained in the case base
(CB) is essential. Low problem solving efficiency of the CCBR system
as well as inconsistent or inaccurate cases can limit user acceptance. In
this paper we describe fundamental requirements for CB maintenance,
which arise when integrating business process management (BPM) and
CCBR and elaborate our approach to meeting these requirements.

1 Introduction

The economic success of an enterprise more and more depends on its ability
to flexibly align its business processes to quickly react to changes, e.g., in the
market or in technology requiring flexible ”process-aware” information systems
(PAIS) [1] to effectively support this alignment [2,3]. Authorized users must be
allowed to deviate from the pre-defined process model to deal with unanticipated
situations. For example, in a specific patient treatment process the patient’s cur-
rent medication may have to be changed due to an allergic reaction, i.e., the
process instance representing this treatment procedure may have to be dynami-
cally adapted (e.g., by deleting, adding or moving process activities). In addition
to such instance-specific changes, PAIS must be able to adapt to changes of the
underlying business processes themselves, e.g., due to reengineering efforts [4] or
the introduction of new laws. For instance, it might become necessary to inform
not only newly admitted patients about the risks of a medical treatment, but
also patients with an ongoing treatment process who have not obtained their
medication yet.

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 106–120, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Case-Base Maintenance for CCBR-Based Process Evolution 107

The need for more flexible PAIS has been recognized for several years [2,3].
Existing technology supports ad-hoc changes at the process instance level (i.e.,
run time adaptations of individual process instances) as well as changes at the
process type level (i.e., changes of a process model) [5]. In CBRFlow [6], for
example, we have applied conversational case-based reasoning (CCBR) to assist
users in defining ad-hoc changes and in capturing contextual knowledge about
these changes; furthermore, CBRFlow supports the reuse of information about
ad-hoc changes when defining new ones. CCBR is an extension of the CBR
paradigm, which actively involves users in the inference process [7]. A CCBR
system can be characterized as an interactive system that, via a mixed-initiative
dialogue, guides users through a question-answering sequence in a case retrieval
context (cf. Fig 3). In [8,9] we have extended our approach to a complete frame-
work for integrated process life cycle support as knowledge from the case base
(CB) is applied to continuously derive improved process models.

To provide adequate process life cycle support, the quality of the data main-
tained in the CB is essential. For example, the presence of inconsistent or inac-
curate cases in the CB is likely to reduce problem-solving efficiency and solution
quality and limit user acceptance. The need for CB maintenance arises as cases
covering ad-hoc deviations are added by users and not by experienced process
engineers and the CB incrementally evolves over time. New cases are added in
exceptional situations which have never been dealt with before. To ensure accu-
racy of the cases and to improve the performance of the CB, CB maintenance
becomes crucial when the CB grows. Due to environmental changes and process
evolution updates of the CB itself become necessary. Potential process improve-
ments are suggested by the CCBR system, leading to changes in the process
model. To maintain consistency of the cases in the CB and to avoid redundan-
cies between the updated process model and the CB, cases leading to or affected
by these updates must be revised or possibly removed from the CB version. The
process engineer must be supported by suitable maintenance policies and tools.

In our previous work we focused on the integration of business process man-
agement (BPM) and CCBR. We developed detailed concepts for memorization
and reuse of process instance changes, which allow to derive process (model)
improvements from cases [6,9,10]. So far, CB maintenance issues have not been
considered in detail, but are a logical next step to provide comprehensive support
for process life cycle management. Section 2 introduces basic concepts related
to process life cycle support. Section 3 discusses fundamental requirements for
CB maintenance in the BPM domain. How we meet these requirements in our
approach is described in Section 4. Section 5 discusses related work. We conclude
with a summary and an outlook in Section 6.

2 Integrated Process Life Cycle Support Through CCBR

2.1 Business Process Management Fundamentals

PAIS enable users to model, execute, and monitor a company’s business processes.
In general, orchestration of a business process is based on a predefined process

108 B. Weber, M. Reichert, and W. Wild

model, called a process schema, consisting of the tasks to be executed (i.e., ac-
tivities), their dependencies (e.g., control and data flow), organizational entities
performing these tasks (i.e., actors) and business objects which provide data for
the activities. Each business case is handled by a newly created process instance
and executed as specified in the underlying process schema.

For each business process (e.g., booking a business trip or handling an order)
a process type T has to be defined. One or more process schemes may exist
reflecting different versions of T . In Fig. 1, for example, process schemes S and
S′ correspond to different versions of the same process type. Based on a process
schema new process instances I1, . . . , Im can be created and executed.

completed

activated

Process Type Level

A

C

B
AND-Split

AND-Join

OR-Split

OR-Join

Process Instance I1
(original):

Process Instance Level

A

C

B

d=‘yes’

d=‘no’

Process Schema S: Process Schema S‘:

Process Instance I2
(ad-hoc changed):

completed

activated

Process Instance I3
(ad-hoc changed):

Process Type
Change

Process Type T

Fig. 1. Different Levels of Process Change

As motivated above PAIS must support process type as well as process in-
stance changes. Changes to a process type T that are necessary to cover the
evolution of real-world business processes are performed by the process engineer
[5,11,12]. As a result we obtain a new schema version S′ of the same type T
(cf. Fig. 1) and the execution of future process instances is then based on S′.
In contrast, ad-hoc changes of individual process instances are performed by
process participants (i.e., end users). Such changes become necessary to react to
exceptional situations [2,6,13]. The effects of such instance-specific changes are
kept local to the respective process instance, i.e., they do not affect other process
instances of the same type. In Fig. 1 instance I2 has been individually modified
by dynamically deleting activity B. Thus the respective execution schema of I2
deviates from the original process schema S this instance was derived from.

2.2 Integrated Process Life Cycle Support - Overview

Fig. 2 shows how integrated process life cycle support can be achieved by com-
bining BPM technology and CCBR. At build time an initial representation of

Case-Base Maintenance for CCBR-Based Process Evolution 109

a business process is created either by process analysis or by process mining
(i.e., by observing process and task executions) (1). At run time new process
instances can then be created from the predefined process schema (2). In gen-
eral, process instances are executed according to the process schema they were
derived from, and activities are assigned to process participants to perform the
respective tasks (3). However, when exceptional situations occur at the process
instance level, process participants must be able to deviate from the predefined
schema. Users can either define an ad-hoc deviation from scratch and document
the reasons for the changes in the CB, or they can reuse a previously specified
ad-hoc modification from the CB (4). The PAIS monitors how often a particular
schema is instantiated and how often deviations occur. When a particular ad-hoc
modification is frequently reused, the process engineer is notified that a process
type change may have to be performed (5). The process engineer can then evolve
the process schema (6). In addition, existing cases which are still relevant for
the new process schema version are migrated to a new version of the CB (7).

Case BaseS‘

Process
Participant

Examine
patient

Make
appointm

ent

Ente
r

orde
r

Inform
patient

Make
appointm

ent

Schema S:

Process
Engineer

Create Process Type

Schema

A B C ED

In
s
ta

n
ti
a
ti
o
n

Pro
ce

ss
Exe

cu
tio

n

Notify

Process Engineer
(frequent

deviation) and
Suggest Process

Improvements

Change Pro
ce

ss
Typ

e Sch
ema

Process Instance I:

A B DC

Ad-hoc changed Process
Instance I:

Ad-hoc Change
of Process Instance

by Adding or Reusing Cases

Migrate Case-Base

Case BaseS

A B D
X

C E

Schema S‘:

Fig. 2. Integrated Process Life Cycle Support (adapted from [10])

2.3 Case Representation and Reuse

In this section we describe how CCBR is used to capture the semantics of process
instance changes, how these changes are memorized, and how they can be re-
trieved and reused when similar situations occur (for details see [8]).

Case Representation. In our approach a case c represents a concrete ad-
hoc modification of one or more process instances. It provides the context of
and the reasons for the deviation (cf. Fig. 3). If no similar cases can be found
when introducing a process instance change, the user adds a new case with the
respective change information to the system. A case consists of a textual problem
description pd which briefly describes the exceptional situation that led to the

110 B. Weber, M. Reichert, and W. Wild

ad-hoc deviation. The reasons for the change are described as question-answer
(QA) pairs {q1a1, . . . , qnan} each of which denotes one particular condition; QA
pairs are also used to retrieve cases when similar problems arise in the future. The
solution part sol (i.e., the action list) contains the applied change operations.

Definition 1 (Case). A case c is a tuple (pd, qaSet, sol) where

– pd is a textual problem description
– qaSet = {q1a1, . . . , qnan} denotes a set of question-answer pairs
– sol = { opj | opj = (opTypej, sj, paramListj), j = 1, ..., k} is the solution

part of the case denoting a list of change operations (i.e., the changes that
have been applied to one or more process instances)1.

The question of a QA pair is usually free text, however, to reduce duplicates it
can also be selected from a list of already existing questions in that CB. The
answer can either be free text or a structured answer expression (cf. Fig 3).
Answer expressions allow using contextual information already kept in the PAIS
(e.g., due to legal requirements), thus avoiding redundant data entry. Questions
with answer expressions can be evaluated automatically by retrieving values for
their context attributes from existing data in the system, i.e., they do not have to
be answered by users, thus preventing errors and saving time. Free text answers
are used when no suitable context attributes are defined within the system or the
user is not trained to write answer expressions. For instance, the second QA pair
in Fig. 3 contains an answer expression using the context attribute Patient.age
and can be evaluated automatically. In contrast, the answer in the first QA pair
is free text provided by the user.

All information on process instance changes related to a process schema ver-
sion S is stored as cases in the associated CB of S.

Additional lab test requiredTitle

Description An additonal lab test has to be performed as
the patient has diabetes and is older than 40

Question-Answer Pairs

Question Answer

Patient has diabetes? Yes

Is the patient’s age greater than 40? Patient.age > 40

Actions

Insert LabTest

Operation Type Subject Parameters

Select Operation Type Insert

Select Activity/Edge Lab Test

Please Answer the Questions

Question Answer

Patient has diabetes? Yes

Is the patient’s age greater than 40? Yes

Lab Test required

Title

125

Case ID

100%

Similarity

25

Reputation Score

Display List of Cases

Into S Between Preparation and Examination

Fig. 3. Sample CCBR Dialogs - Adding a New Case and Retrieving Similar Cases

Definition 2 (Case Base). A case base CBS is a tuple (S, {c1, . . . , cm}, freqS)
where

– S denotes the schema version the case base is related to
1 An operation opj := (opTypej, sj , paramListj) (j = 1, ..., m) consists of operation

type opTypej , subject sj of the change, and parameter list paramListj .

Case-Base Maintenance for CCBR-Based Process Evolution 111

– {c1, . . . , cm} denotes a set of cases (cf. Def. 1)
– freqS(ci) ∈ N denotes the frequency with which case ci has been (re–)used

in connection with schema version S, formally: freqS: {c1, . . . , cm} �→ N

Case Retrieval. When deviations from the predefined process schema become
necessary the user initiates a case retrieval dialogue in the CCBR component (cf.
Fig 3). The system then assists her in finding already stored similar cases (i.e.,
change scenarios in our context) by presenting a set of questions. Questions with
an answer expression are evaluated by automatically retrieving the values of the
context attributes. Based on this the system then searches for similar cases by
calculating the similarity for each case in the CB and it displays the top n ranked
cases (ordered by decreasing similarity) with their reputation score (for details
see Section 4.1). Similarity is calculated by dividing the number of correctly
answered questions minus the number of incorrectly answered questions by the
total number of questions in the case. The user then has different options:

1. The user can directly answer any of the remaining unanswered questions (in
arbitrary order), similarity is then recalculated and the n most similar cases
are displayed to the user.

2. The user can apply a filter to the case-base (e.g., by only considering cases
whose solution part contains a particular change operation). Then all cases
not matching the filter criteria are removed from the displayed list of cases.

3. The user can decide to review one of the displayed cases. The case description
is then shown to the user.

4. The user can select one of the displayed cases for reuse. The actions specified
in the solution part of the case are then forwarded to and carried out by the
PAIS. The reuse counter of the case is incremented.

3 Requirements for CB Maintenance

In this section we derive fundamental requirements for CB maintenance in the
described scenario. The requirements are aligned with the three top-level per-
formance objectives for CBR systems (cf. [14]): problem-solving efficiency (i.e.,
average problem solving time), competence (i.e., range of target problems solved)
and solution quality (i.e., average quality of a proposed solution).

Req. 1 (Accuracy of the Cases): When using CCBR for memorization
and reuse of ad-hoc modifications the CB incrementally evolves over time as
new cases are added by end users when exceptions occur. Our approach already
guarantees syntactical correctness of the solution part, i.e., the application of
change operations to a process schema always results in a syntactically correct
process schema [2]. However, semantical correctness of cases must be ensured as
well. When cases are added to the CB by inexperienced users it can not always
be prevented that inaccurate or low quality cases are added to the CB; however,
it must at least be ensured that incorrect cases will not be reused.

112 B. Weber, M. Reichert, and W. Wild

Req. 2 (Refactoring QA Pairs): Whenever possible, answer expressions
which can be automatically evaluated should be used instead of free text to
ease the retrieval process and to increase problem solving efficiency. However,
in practice free text QA pairs are entered for good reasons, e.g., the user is
unaware of relevant context attributes, she is not trained to formulate answer
expressions, or there are no suitable context attributes available in the system
when entering the case. The process engineer should be supported in all of the
scenarios described above to refactor free text to answer expressions later on.

Req. 3 (Detecting and Handling Inter-Case Dependencies): Occasion-
ally, more than one case may have been applied to a particular process instance.
Such dependencies between cases can be observed by analyzing log data (e.g.,
whenever case c1 has been applied to a process instance, case c2 has been applied
to this instance as well, i.e., inter-case dependencies exist). When two cases are
only used in combination they should be merged to increase problem solving
efficiency. When two cases are not always used in combination, but their co-
occurrence is frequent, the system should remind users to consider applying the
dependent case(s) as well (e.g., by displaying dependent cases).

Req. 4 (Support for CB Migration): Even if cases have been accurate
when they were added to the CB, they can become outdated over time. For
instance, the evolution of a process schema S (i.e., continuous adaptation schema
S to organizational and environmental changes) may reduce the accuracy of parts
of the schema-specific CB. After a process type change a subset of the knowledge
encoded in the cases may now be captured in the new process schema version
S′. The challenge is to migrate only those cases to the new CB version which
are still relevant. Cases affected by the process change must be revised by the
process engineer or removed from the CB if they are no longer needed.

Additional Requirements. When a CB evolves iteratively, the risk of in-
consistencies due to duplicate cases increases and should be mitigated. Duplicate
cases are either identical, or have the same semantics but are expressed differ-
ently. In addition, QA pairs with the same semantics, but different wording,
should be avoided, e.g., when entering a new case the user should be supported
to reuse already existing QA pairs.

4 Approach to CB Maintenance

In this section we present our approach to CB maintenance and describe how
we address the requirements from Section 3.

4.1 Accuracy of the Cases

The accuracy of the cases maintained within a CB is crucial for the overall perfor-
mance of the CBR system and consequently for the trust users have in it. Particu-
larly, if cases are added by end users adequate evaluation mechanisms for ensuring
quality become essential. Like Cheetham and Price [15] we propose to augment
the CBR cycle with the ability to determine the confidence users have in the ac-
curacy of individual solutions. In [8], we use the concept of reputation to indicate

Case-Base Maintenance for CCBR-Based Process Evolution 113

Fig. 4. Feedback forms

how successfully an ad-hoc modification – represented by a case – was reused in
the past, i.e., to which degree that case has contributed to the performance of the
CB, thus indicating the confidence in the accuracy of this case.

Whenever a user adds or reuses a case she is encouraged to provide feedback
on the performed process instance change. She can rate the performance of
the respective ad-hoc modification with feedback scores 2 (highly positive), 1
(positive), 0 (neutral), -1 (negative), or -2 (highly negative); additional comments
can be entered optionally (cf. Fig. 4); the reputation score of a case is then
calculated as the sum of feedback scores. While a high reputation score of a case
is an indicator of its semantic correctness, negative feedback probably results
from problems after performing a process instance change. Negative feedback
therefore results in an immediate notification of the process engineer, who may
deactivate the case to prevent its further reuse. The case itself, however, remains
in the system to allow for learning from failures as well as to maintain traceability.

During case retrieval the CCBR system displays the overall reputation score
(cf. Fig. 3) and the ratings for the past 7 days, the past month, and the past 6
months are also available to the user (cf. Fig. 4). Upon request the user can read
all comments provided in the past and decide whether the reputation of the case
is high enough for her to have confidence in its accuracy.

4.2 Refactoring QA Pairs

As mentioned cases are used to support memorization and reuse of ad-hoc de-
viations, whereas QA pairs describe the reasons for the deviation. A question is
always free text, an answer can be free text or a structured answer expression
(cf. Section 2.3). Whenever possible, answer expressions should be used instead
of free text to increase problem solving efficiency. While answer expressions can
be automatically evaluated by the system (i.e., answer values are automatically
inferred from existing data), free text answers have to be provided by the user.
However, in practice it is not always feasible to use answer expressions instead of

114 B. Weber, M. Reichert, and W. Wild

free text. In the following we describe three scenarios where free text QA pairs
are entered into the system, and we sketch maintenance policies for refactoring
free text answers to formal answer expressions.

Scenario 1: The end user applies CCBR to handle an exception, but is not
knowledgeable enough to specify formal answer expressions. As the exceptional
situation has to be resolved quickly, the user enters free text QA pairs to cap-
ture the reasons for the deviation and applies the case immediately. In order to
increase problem solving efficiency the respective QA pair should be refactored
to a formal answer expression later on, if feasible. Thus, whenever the frequency
of answering a particular QA pair exceeds a predefined threshold a notification
is sent to the process engineer to accomplish this refactoring.

Scenario 2: The end user is unaware of the application context and cannot
find suitable context attributes for specifying answer expressions even though
they are available in the system. Therefore, the user enters free text to capture
the reasons for the deviation. The process engineer is not informed immediately,
but only when the respective QA pair has been answered frequently enough,
exceeding a threshold value. He can then refactor the free text to an equivalent
answer expression to be used during case retrieval instead.

Scenario 3: No suitable context attributes are available within the system
to describe the concrete ad-hoc modification. In this scenario, the user must
specify the QA pair using free text. As in Scenarios 1 and 2 the process engineer
is informed when the QA pair has been answered frequently enough. He can then
decide whether to extend the application context and to add the required context
attribute. When a new context attribute is inserted into the system, suitable
software components (adapters) for retrieving the context attribute values during
run time must be provided.

4.3 Detecting and Handling Inter-case Dependencies

Generally, several ad-hoc changes may be applied to a particular process instance
over time, and consequently several cases may exist which affect this instance.
In Figure 5, case c1 and c2 were both applied to process instance I1. Case c1 led
to the insertion of an additional activity Z between activities B and C, while the
application of case c2 resulted in the deletion of activity D.

Cases applied to the same instance may be independent of each other, or
inter-case dependencies may exist. In a medical treatment process, for example,
magnet resonance therapy (MRT) must not be performed if the patient has a
cardiac pacemaker. However, a different imaging technique like X-ray may be
applied instead. As the deletion of the MRT activity triggers the insertion of
the X-ray activity, a semantic dependency between these two ad-hoc changes
exists. Discovering such inter-case dependencies is crucial to better assist users
in defining changes for other instances later on. In order to discover inter-case
dependencies we apply process mining techniques and analyze change logs. In
our example the change log reveals that cases c1 and c2 were not coincidentally
applied together to I1 only, but always appear in combination.

Case-Base Maintenance for CCBR-Based Process Evolution 115

Case Base

c1: (..., {Insert(S, Z, B, C)}),
c2: (..., {delete(S, D)}),
c3: (..., {Insert(S, Y, A, B)}),
…
cn: (..., {deleteAct(S, F)}),

A FB C

D

E
X

A FB C

D

E
X

Process Instance I1 (ad-hoc changed):

A FB C

D

E
Z

I1, c1, 27.12.2005 09:45

I1, c2, 27.12.2005 10:00

I2, c3, 30.12.2005 17:45

I3, c1, 05.01.2006 13.20

I3, c2, 05.01.2006 14:05

I4, cn, 20.01.2006, 19:23

…

Change Log

Fig. 5. Discovery of Inter-Case Dependencies

Definition 3 (Strong Inter-Case Dependency). Let S be a process schema
with associated case base CBS and process instance set InstanceSetS. Further,
for case c ∈ CBS let InstanceSetc ⊆ InstanceSetS denote the set of all process
instances to which case c was applied. Then:

A strong inter-case dependency between c1 ∈ CBS and c2 ∈ CBS exists if
InstanceSetc1 = InstanceSetc2, i.e., case c2 has been applied to all process
instances to which c1 has been applied and vice versa.

If a strong inter-case dependency between c1 and c2 exists and the total number
of co-occurrences of these two dependent cases exceeds a given threshold n, the
process engineer is notified about the option to merge c1 and c2. In this situation
a new case c′ will be created and the original cases c1 and c2 be deactivated.2 The
problem description and the QA pairs of c1 and c2 are manually merged by the
process engineer; the solution parts sol1 and sol2, in turn, can be automatically
merged by combining the change operations of the original cases in the correct
order.

Very often cases co-occur frequently, but do not always co-occur; i.e., there is
no strong inter–case dependency between them (cf. Def. 3). In such a scenario
the cases cannot be merged. Nevertheless advanced user support can be provided
when reusing a case. Assume, for example, that case c2 has been frequently
reused for process instances on the condition that case c1 has been applied to
these instances as well (but not vice versa). When a user applies case c1 to a
process instance and the (conditional) co-occurrence rate CO(c2|c1) (see below)
exceeds a predefined threshold m <= 1, our system will suggest to also consider
applying case c2 to this instance as well.

Definition 4 (Conditional Co-Occurrence Rate). Let S be a process schema
with case base CBS and let c1, c2 ∈ CBS be two cases. The conditional co-occurence
rate CO(c2|c1) denotes the relative frequency of case c2 on the condition that case
c1 has been applied as well. Formally:

2 For traceability reasons respective cases are not deleted, but only deactivated.

116 B. Weber, M. Reichert, and W. Wild

CO(c2|c1) ≡ |instanceSetc1 ∩ instanceSetc2 |
|instanceSetc1 |

Generally, when reusing a case c ∈ CBS at the instance level we present the
user all cases ck ∈ CBS \ {c} with a conditional co-occurence rate CO(ck|c)
exceeding threshold m. The qualified user can then select one or more of the
displayed cases and apply them in addition to the previously applied one.

4.4 Support for CB Migration

As discussed in Section 2.1 a PAIS must not only support ad-hoc changes of
individual process instances, but also cope with changes at the process type level.
An adaptation of process type T may become necessary to react to environmental
changes (e.g., the introduction of a new law) or to cover the evolution of business
processes. It may also be triggered by the monitoring component of the PAIS,
if a particular ad-hoc instance modification has been frequently reused and the
process engineer decides to pull this change up to the type level.

Formally, a process type change ΔT = op1 . . . opn comprises a sequence of
parameterized change operations which are applied to the original type schema
S. As a result we obtain a new schema version S′ = S + ΔT for this type. The
challenging questions are how to treat already running process instances of this
type and how to evolve case base CBS .

The execution of future process instances is based on S′ whereas already
running instances are either continued according to the old schema S or migrated
to the new one. Among other constraints the ability to migrate a particular
process instance from S to S′ depends on its current state; i.e., process instances
which have not progressed too far may be migrated to S′ and then be executed
according to the new schema, whereas instances whose state is not compliant
with S′ are still executed according to S [5]. On the one hand this enables
flexibility when dealing with environmental changes, on the other hand it ensures
consistency and correct execution behavior after the change [16,2].

When changing process schema S to S′ = S + ΔT and migrating selected
process instances to S′ we must evolve the case base CBS too. A naive solution
would be to ignore all ”old” cases for S′ (i.e., CBS′ := ∅); another extreme is
to associate all existing cases with S′ as well (i.e., CBS′ = CBS). While the
former approach discards all experiences gathered in the past, the latter leads
to an inaccurate (i.e., outdated) case base. Note that when applying change ΔT

= op1 . . . opn to process schema S a subset of the knowledge encoded in the
cases from CBS may then be captured by S′. This particularly holds true if the
type change has been triggered by the PAIS itself when the reuse counter of a
particular ad-hoc modification (i.e., case) has exceeded a given threshold.

The challenge is to migrate only those cases to CBS′ (i.e., to add them to
CBS′) which remain relevant for future reuse scenarios. This necessitates ad-
vanced mechanisms that allow to decide which cases from CBS can be retained
unchanged for CBS′ , which cases have to be adapted before adding them to
CBS′ , and which cases shall be left out of CBS′ . In order to answer these ques-
tions we have to differentiate whether the process type change triggered by one

Case-Base Maintenance for CCBR-Based Process Evolution 117

or more cases is relevant for all process instances based on S′ or only for a
particular subset of instances (e.g., an additional activity is only conditionally
inserted) [9]. In the following we focus on the former scenario where the solution
parts of the triggering cases are directly reflected in the new process schema S′

and take a closer look at the relationship between the solution part of a case
and the type change ΔT . Let ΔT = op1 . . . opn be a process type change applied
to schema S with associated case base CBS , resulting in the new type schema
S′. We consider an arbitrary case c = (pdc, qaSetc, solc) ∈ CBS (with solution
part solc = a1, . . . , ak) and compare it with ΔT . As the changes are relevant
for all instances we can factor out qaSetc and focus on solc only. comparison of
parameterized change operations.

– solc and ΔT are equivalent (i.e., k = n ∧ aν ≡ opν , ν = 1 . . . n): Cases
whose solution part equals ΔT are not added to CBS′ . Their ”effects” are
the same as those of the type change (e.g., case c1 in Fig 6).

– solc is a subset of ΔT (i.e., ∃ μ1 . . . μk : 1 ≤ μ1 < . . . < μk ≤ n : aν ≡
opμν , ν = 1 . . . k): Cases whose solution part is a subset of ΔT are not added
to CBS′ as their effects are completely covered by the type change (e.g., case
c3 in Fig 6).

– solc and ΔT are disjoint (i.e., aν �= opμ, ν = 1 . . . k, μ = 1 . . . n): Since
the effects of case c are not covered by S′ c should be added to CBS′ . Later
reusability requires that actions a1, . . . , ak remain correctly applicable to
S′. Note that this might not always be possible due to conflicting change
operations. Change ΔT , for example, might delete an activity from S (e.g.,
(delete, B)) to which another operation a from solc refers (e.g., a = (insert,
X, Between A and B)). We use advanced conflict tests to detect such situa-
tions. If no conflicts between solc and ΔT exist, case c can be added to CBS′

without further adaptation. Otherwise, the process engineer has to adapt the
case in a way that it becomes applicable to S′ as well (e.g., by changing the
parameterization of actions from solc) (e.g., case c2 in Fig 6).

– solc is a superset of ΔT (i.e., ∃ ν1 . . . νn : 1 ≤ ν1 < . . . < νn ≤ k :
opμ ≡ aνμ , μ = 1 . . . n): Cases whose solution part is a proper superset of the
type change are not directly migrated to CBS′ . Instead, the process engineer
decides whether to add c to CBS′ and, if so, how to adapt it. The default
adaptation in our system suggests (logically) removing those actions from
the solution part of the case whose effects are already captured by S′ (i.e.,
sol′c:= solc¬{aν1 . . . aνn}) (e.g., case c4 in Fig 6).

– solc and ΔT are partially overlapping: Cases in this category are not
automatically migrated to CBS′ . The system supports the process engineer
by determining those actions of solc whose effects are not reflected by S′

(i.e., by calculating the difference set solc¬ΔT). The process engineer might
then decide to migrate case c, after adapting its solution part from solc to
solc¬ΔT .

Generally, it is not sufficient to only compare the solution parts of the cases
and the process type change. When a process type change triggered by a case is
only relevant for a particular subset of process instances (e.g., a lab test should

118 B. Weber, M. Reichert, and W. Wild

only be performed for patients older than 40 years suffering from diabetes), we
must also look at the corresponding QA pairs and their semantics. Reusing a
case at the instance level applies the change operations in its solution part only;
the context for this ad-hoc modification is reflected in the case’s QA pairs and
must be considered by the process engineer when pulling the solution part of
the case up to the process type level. Currently we only provide CB migra-
tion policies when a process type change is relevant for all process instances.
However, we are also investigating migration policies for the scenario just de-
scribed.

S:

A B

C

D

E F A B X EC F

X Process Type
Change

T: Insert(S,X,C,E),
delete(S,D)

S‘:

Process Type Change:

C1: (… {Insert(S,X,C,E), delete(S,D)})

C2: (… {delete(S,B)})

C3: (… {delete(S,D)})

C4: (… {Insert(S,X,C,E), delete(S,D),
Insert(S,Y,E,F) })

….

Case-Base CBS

CB Migration C1: (… {Insert(S‘,X,C,E), delete(S‘,D)})

C2‘: (… {delete(S‘,B)})

C3: (… {delete(S‘,D)})

C4‘: (… {Insert(S‘,X,C,E), delete(S‘,D),
Insert(S‘,Y,E,F) })

….

Case-Base CBS‘

Process
Engineer

CB Migration

Fig. 6. CB Migration

5 Related Work

Previous research has addressed many aspects of CB maintenance. In general,
research on CB maintenance is driven by performance concerns [17] (i.e., problem
solving efficiency, CB competence and solution quality of problems solved [18]).

To improve problem solving efficiency while preserving CB competence, strate-
gies for controlling the growth of the CB [19] as well as for selective case reten-
tion have been proposed (e.g., [20,21]). In our approach, cases are used for the
memorization and the reuse of ad-hoc changes due to exceptions in the business
process. In this scenario cases cannot be deleted or only selectively added as
traceability of ad-hoc changes must be guaranteed. However, case base migra-
tion as proposed by our approach tries to tackle the same problems, aiming to
keep the size of the CB compact while preserving competence. When performing
CB migration the size of the CB is compressed without reducing the competence
of the overall system. Only cases that are still relevant are migrated to the new
version of the CB, the removed cases are covered by the new version of the
process schema (cf. Section 4.4).

Case-Base Maintenance for CCBR-Based Process Evolution 119

Although a significant body of research exists on CB maintenance none of
these approaches deals with inter-case dependencies (i.e., the application of one
case triggers the application of another case). In our approach CCBR is not used
as a standalone application, but in the broader context of a process management
system. This allows us to provide additional context information (e.g., two cases
have been applied to the same process instance, i.e., business transaction) facil-
itating the detection of inter-case dependencies (cf. Section 4.3).

The accuracy of the cases in the case base is crucial for the overall performance
of the CB. Therefore Cheetham and Price [15] proposed to augment the CBR
cycle with the ability to determine the confidence in the accuracy of individual
solutions. However, in our approach accuracy cannot be determined automati-
cally as the semantics of the QA pairs are unknown to the system. Instead, we
use the concept of reputation to indicate how successfully a case has been reused
in the past, thus indicating the degree of confidence in the accuracy of this case
(cf. Section 4.1).

To our knowledge refactoring of free text to answer expressions in a CCBR
system has not yet been addressed by existing approaches. They either support
structured or unstructured QA pairs, but not both at the same time.

While systematic approaches to CB maintenance like SIAM [22] provide a
general framework for building better maintainable CBR systems, this paper
focuses on the specifics of the BPM domain.

6 Summary and Outlook

We have derived basic requirements for CB maintenance in the BPM domain
(accuracy of cases, refactoring of QA pairs, detecting and handling of inter-
case dependencies, and support for CB migration), and we have presented our
approach to meeting these requirements. To maintain case quality we apply
the concept of reputation score indicating how successfully a case has been
applied in the past. Refactoring QA pairs from free text to answer expres-
sions and our approach to dealing with inter-case dependencies contribute to
increased problem solving efficiency. Finally, in the context of process evolu-
tion we suggest CB migration to deal with outdated cases, keeping the CB
compact, while preserving its competence. Ongoing work includes the evalua-
tion of our prototype in a real world scenario. Future work will address the
problem of inconsistencies due to redundant cases as we currently only support
the reuse of QA pairs by displaying existing ones to the user when adding a
new case. We further plan the extension of our CB maintenance approach to
also provide policies for CB migration when process type changes are not rele-
vant for all process instances, but only for a particular subset. In this situation
the semantics encoded in the QA pairs must be considered when performing a
process type change. In summary, CCBR techniques contribute significantly to
enriching BPM systems with more semantics and to improving process life cycle
support.

120 B. Weber, M. Reichert, and W. Wild

References

1. Dumas, M., ter Hofstede, A., van der Aalst, W., eds.: Process Aware Information
Systems. Wiley Publishing (2005)

2. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. JIIS 10 (1998) 93–129

3. Jørgensen, H.D.: Interactive Process Models. PhD thesis, Norwegian University of
Science and Technology, Trondheim, Norway (2004)

4. Hammer, M., Stanton, S.: The Reengineering Revolution – The Handbook. Harper
Collins Publ. (1995)

5. Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria for Dynamic Changes
in Workflow Systems – A Survey. DKE 50 (2004) 9–34

6. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling Adaptive Workflow Man-
agement Through Conversational Case-Based Reasoning. In: ECCBR’04, Madrid
(2004) 434–448

7. Aha, D.W., Muñoz-Avila, H.: Introduction: Interactive Case-Based Reasoning.
Applied Intelligence 14 (2001) 7–8

8. Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–Driven Business Process
Evolution. In: ICCBR’05, Chicago (2005) 610–624

9. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating Process Learning and
Process Evolution - A Semantics Based Approach. In: BPM 2005. (2005) 252–267

10. Weber, B., Reichert, M., Rinderle, S., Wild, W.: Towards a Framework for the
Agile Mining of Business Processes. In: BPM 2005 Workshops. (2005) 191–202

11. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow Evolution. Data and Knowl-
edge Engineering 24 (1998) 211–238

12. Weske, M.: Workflow Management Systems: Formal Foundation, Conceptual De-
sign, Implementation Aspects. Univ. of Münster, Germany (2000) Habil Thesis.

13. Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception Handling in Workflow Sys-
tems. Applied Intelligence 13 (2000) 125–147

14. Smyth, B., McKenna, E.: Footprint-Based Retrieval. In: ICCBR’99. (1999)
343–357

15. Cheetham, W., Price, J.: Measures of Solution Accuracy in Case-Based Reasoning
Systems. In: ECCBR’04. (2004) 106–118

16. Rinderle, S., Reichert, M., Dadam, P.: Flexible Support of Team Processes
by Adaptive Workflow Systems. Distributed and Parallel Databases 16 (2004)
91–116

17. Leake, D.B., Wilson, D.C.: Remembering Why to Remember: Performance-Guided
Case-Base Maintenance. In: EWCBR’00. (2000) 161–172

18. Smyth, B., McKenna, E.: Footprint-Based Retrieval. Lecture Notes in Computer
Science 1650 (1999) 343–357

19. Smyth, B., Keane, M.T.: Remembering to Forget: A Competence-Preserving Case
Deletion Policy for Case-Based Reasoning Systems. In: IJCAI’95. (1995) 377–383

20. Smyth, B., McKenna, E.: Building Compact Competent Case-Bases. Lecture Notes
in Computer Science 1650 (1999) 329–342

21. Zhu, J., Yang, Q.: Remembering to Add: Competence-preserving Case-Addition
Policies for Case Base Maintenance. In: IJCAI’99. (1999) 234–241

22. Roth-Berghofer, T.: Knowledge maintenance of case-based reasoning systems. The
SIAM methodology. PhD thesis, University of Kaiserslautern (2002)

	Introduction
	Integrated Process Life Cycle Support Through CCBR
	Business Process Management Fundamentals
	Integrated Process Life Cycle Support - Overview
	Case Representation and Reuse

	Requirements for CB Maintenance
	Approach to CB Maintenance
	Accuracy of the Cases
	Refactoring QA Pairs
	Detecting and Handling Inter-case Dependencies
	Support for CB Migration

	Related Work
	Summary and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

