
REQUIREMENTS FOR THE WORKFLOW-BASED SUPPORT OF
RELEASE MANAGEMENT PROCESSES IN THE AUTOMOTIVE SECTOR

Ulrich Bestfleisch, Joachim Herbst

DaimlerChrysler AG
Research and Technology

Data and Process Management (REI/ID)
P.O. Box 2360

D-89013 Ulm, Germany
E-mail: ulrich@bestfleisch.de,

joachim.j.herbst@daimlerchrysler.com

Manfred Reichert
University of Twente

Computer Science Department
Information Systems Group

P.O. Box 217
NL-7500 AE Enschede, The Netherlands

E-Mail: m.u.reichert@cs.utwente.nl

KEYWORDS

Workflow management, release processes, hierarchical
workflows, workflow synchronization

ABSTRACT

One of the challenges the automotive industry currently has
to master is the complexity of the electrical/electronic
system of a car. One key factor for reaching short product
development cycles and high quality in this area are well-
defined, properly executed test and release processes.

In this paper we show why workflow management tech-
nology is needed to support these processes and how this
support should look like. We further confront these
requirements with the features of contemporary workflow
technology and discuss which extensions become
necessary.

INTRODUCTION

In modern cars up to 70 electronic control units (ECU),
wired by kilometres of cable, cooperate to realize
innovative functions for drivers and passengers. But with
growing complexity, product quality has become a serious
issue in this domain. In this context the development
process plays a key role since its quality is correlated with
the resulting product quality. Therefore the automotive
industry makes great efforts to improve this process and to
provide computerized support for it (Knippel and Schulz
2004).

In the development process of the electrical/electronic
system (EE-system) of a car one can distinguish four phases
(Wehlitz 2000): The requirements analysis and conception
phases are followed by the phase during which the different
components of the car (e.g. control units and corresponding
software) are developed. This is done in parallel and in
cooperation with external suppliers. Before producing the
car, the components have to be integrated, tested and
released. In order to obtain high quality, these steps are
continuously repeated during the ongoing development
process (cf. Figure 1).

ConceptionRequirements
analysis

Component development

Component development

Component development

Component development

Maturity
Continuous integration, test and release

Final
integration,

test
and release

100%

Figure 1: EE-development process
according to (Wehlitz 2000)

RELEASE OF HIERARCHICAL PRODUCT
CONFIGURATIONS

Subject of integration, test and release are (product)
configurations which may comprise different versions of
components. As a simple example consider the
configuration for a particular ECU, which consists of a
version of the ECU’s hardware and a version of the ECU’s
software.

In our context a configuration expresses a certain degree of
compatibility in the sense that components contained in the
configuration correctly work together as specified.

Before testing and releasing a configuration this
compatibility is assumed by the person who assembles the
configuration. After these test and release steps,
compatibility is considered as verified such that other
activities in the development process can rely on a certain
degree of maturity. However, this does not guarantee total
correctness since tests only contribute to identify errors but
cannot prove their absence.

In this context a promising approach is to incrementally
assemble hierarchical configurations according to the
logical structure of the total EE-system and to integrate the

EE-system in a bottom-up approach (cf. Figure 2). This
means that, first of all, configurations are assembled, tested
and released at the lowest level. Based on this, further
configurations can be assembled from lower level
configurations and can be tested and released as well. This
is continued until the top of the configuration structure is
reached.

Configuration
System A

Configuration
System B

Configuration
ECU 1

Configuration
ECU 2

Configuration
ECU 3

Configuration
Total System

HW1
v1.1

SW1
v1.4

HW2
v1.0

SW2
v1.3

HW3
v1.7

SW3
v1.1

Figure 2: Example of hierarchical configurations

An example is depicted in Figure 2. In this example, the
configuration of a single electronic control unit (here
consisting of a hardware and a software component in
certain versions) constitutes a configuration at the lowest
level of the overall configuration. A configuration on a
level above could be a system configuration, comprising all
ECU configurations for a specific subsystem.

Taking a process-oriented view, each configuration is
associated with a release process (cf. Figure 3). The term
“release process” is used for all steps executed in a certain
order to ensure compatibility between the components of a
configuration. These steps can be real dynamic tests like
breadboard-tests or Hardware-in-the-loop-tests. Steps can
also be of formal nature like the official approval of the
configuration by a committee.

Only if all steps of a release process are executed
successfully (i.e., all steps are completed and no errors are
found) the respective configuration is considered as correct
and can therefore be “released”. By contrast, if errors are
found in one or more process steps the configuration is
considered as incorrect and can therefore be not released.

If the release processes were executed in a strict sequential
order across the different levels of a configuration hierarchy
(as described above), this would require a significant long
time until the top configuration could be released. For this
reason, release processes on different levels are allowed to
be executed in parallel. However, in this context certain
conditions must be met:

• A configuration on a higher level may only be
released after all of its subconfigurations have
been released.

• Certain steps of a release process may only be
executed after particular steps in the release
processes of the corresponding subconfigurations
have been executed successfully.

Reason for the latter restriction is that test activities on a
higher level are usually more expensive than those on a
lower level. Therefore a certain maturity of the lower level
configuration has to be reached before steps on an upper
level should actually be carried out.

One example for such a dependency between processes at
different levels of a hierarchy is the test step of
“flashability” for an ECU: Nowadays many ECUs can be
flashed, which means that their software can be replaced
arbitrarily often. Testing the flashability of an ECU verifies
whether the hardware is able to be flashed in accordance to
the rules the automotive manufacturer has specified for the
ECU software. On the level of an ECU configuration this
test step constitutes the precondition for all dynamic tests
on the configuration level above (the systems level). At this
level tests cannot be carried out if the software cannot be
flashed on the ECUs. This example illustrates just one of
many possible inter-process dependencies.

Configuration
System A

Configuration
System B

Configuration
ECU 1

Configuration
ECU 2

Configuration
ECU 3

Configuration
Total System

Figure 3: Configurations and associated release processes

WHY DO WE NEED WORKFLOW-SUPPORT?

In a modern car there are up to 70 ECUs. During
development time this results in hundreds of hierarchical
configurations, as for each ECU numerous versions for
hardware and software exist. Each configuration is
associated with a corresponding release process, which
does not only coordinate related tasks, but also controls the
dependencies to other release processes.

Given these facts it becomes obvious that users need an
adequate IT support for coordinating the execution of these
processes in terms of workflow management. The main
goal for the computerized support of release processes is to
ensure their correct execution. In particular, this includes
the control and monitoring of their dependencies with other
release processes. Manual process coordination and
synchronization would be too time-consuming and error-
prone in this context. By achieving this main goal workflow
support contributes to reach economic goals like cost-
reduction and shortening of process cycle times.

VISION OF WORKFLOW SUPPORT

How should an ideal workflow support for the release
processes look like? Important requirements are discussed
in the following.

1. Starting release workflows for configurations

The person in charge should be able to start a release
process for a specific configuration at an arbitrary point in
time. However, a release process for a super-configuration
may only be started if the release processes of its
subconfigurations have already been started or have already
been finished successfully.

2. Giving users support to execute test steps

For each step in a release workflow the corresponding actor
should have access to the configuration and the test task he
must carry out with this configuration. After completion of
this task the user should be able to report to the system
whether any error was detected or not. The kind of
workflow support therefore does primarily not concern the
automation of single test steps (e.g., by calling software
applications) but the coordination of the release workflow
and its synchronization with other release processes. This
means tests steps of a release process are thought to be
executed outside the scope of the workflow system – only
the result of a test step (whether errors were found or not) is
reported back to the workflow system. Thus the test steps
here are considered to be coarse-grained.

3. Enable flexible reactions to test errors in a particular
release process

If one or more errors are found in a configuration the
person responsible for this configuration should be notified
and be able to decide about further actions. Doing so, he
should have the following two options:

• Cancel the workflow as further tests are
unnecessary and would not lead to (more)
important test results.

• Let the workflow execution continue with the
possibility to exclude certain steps from execution.
There may be some steps that produce interesting
test results that are important for the ongoing
development process, whereas other steps may not
do so (like formal approval steps).

4. Set appropriate release state of configuration

After completing a release process the appropriate release
state of a configuration should be set. In case at least one
error was found the state is set to “not released” otherwise
to “released”. This release state can be accessed and viewed
by all actors needing access to the configuration during the
development process.

Note that a configuration must not obtain the release state
“released” if not all of its subconfigurations own the same
state.

5. Consider hierarchical control flow dependencies

The various control flow dependencies between release
processes of configurations on different levels should be
enforced. The release process of a configuration on an
upper level may not be continued at a certain point until all
release processes of its subconfigurations have reached
particular states in their execution.

6. Enable flexible reaction on test errors in sub- and
superconfigurations

Assume that errors are found in a configuration during the
release process. This has not only consequences for the
release process of the directly affected configuration (see
Requirement 3) but also for the release processes of sub-
and superconfigurations. Like for Requirement 3 the
persons responsible for these configurations should be
notified. In particular, they should then be able to react in
the same flexible way to detected errors in sub- and
superconfigurations. As this reaction may depend on the
state of the respective release processes of the other
configurations they must be able to get a quick status
overview of these related processes.

But which configurations (and respectively their release
processes) have to be considered when an error is detected
for a particular configuration?

First of all – taking the notion of “bottom-up error-
handling” – all superconfigurations have to be considered
consecutively to the top (cf. Figure 4). This is required
since a configuration may not reach the state “released” if
any subconfiguration has not been successfully released.
Therefore, when an error has been detected for a particular
configuration, the person responsible for the super-
configuration has to decide whether it makes sense to
continue (or even start) the corresponding release process
although the superconfiguration cannot be released. In
addition to Requirement 3 he must also decide which
dependencies to other processes are still important and
which are not.

Configuration
System A

Configuration
System B

Configuration
ECU 1

Configuration
ECU 2

Configuration
ECU 3

Configuration
Total System

1

2 2

3

Figure 4: Bottom-up error-handling

Let’s consider the example above: An error was detected,
when executing a step in the release process of the
configuration ECU 2. At first the corresponding person in
charge of this configuration is notified and can make his

decision. In a second step persons in charge for
configurations of System A and System B are notified and
can react to the situation. Finally the person in charge for
the release process of the whole system configuration is
notified.

Additionally, when detecting an error in a configuration it
is possible that the subconfiguration causing this error can
be identified. If the release process of this subconfiguration
is still running the responsible person should be notified
and have the possibilities as described in the context of
Requirement 3. This “top-down error-handling” usually
causes additional “bottom-up error-handling” for all of its
superconfigurations.

Figure 5 shows an example: An error is detected in the
configuration System A. This error can be deduced to an
error in the configuration ECU 2. So after reaction to the
error of configuration System A the person in charge for
ECU 2 is notified and can influence the release process. To
maintain consistency the “bottom-up error handling” starts
for the System B configuration and afterwards for the total
system configuration. (Remark: Since the total system
configuration is a super configuration of the System A
configuration the error handling for the total configuration
would also have been initiated if the top-down error-
handling had not been executed.)

Configuration
System A

Configuration
System B

Configuration
ECU 1

Configuration
ECU 2

Configuration
ECU 3

Configuration
Total System

2

1 3

4

Figure 5: Top-Down and resulting bottom-up error-
handling

SPECIAL REQUIREMENTS FOR WORKFLOW-
MANAGEMENT-SYSTEMS (WFMS)

Attempts to capture the discussed requirements by means of
contemporary workflow management systems have been
unsuccessful. In particular, they have revealed the fact that
it is not possible to implement these requirements without
expensive and cumbersome workarounds – mainly by
invoking external applications implementing the above
described requirements as a hard-wired black-box. Possible
consequences of this approach are high maintenance costs,
bad adaptability to organizational changes and new
processes, etc..

The following special requirements (not supported by
contemporary workflow management systems) can be
identified:

• Modelling and enforcing of control flow
dependencies between parallel workflows
depending on data associated with a workflow.

• Dynamic adaptation of these dependencies at
runtime.

• Dynamic deletion of steps from a workflow
instance (and its impact to concurrently running
workflow instances).

• Built-in-support for special kinds of “error-
handling” as described in the context of
Requirements 3 and 6. It is important to notice that
these errors may not be mistaken for errors as
normally considered in the context of workflow
management systems (cf. Eder and Liebhart 1995).
In contrast to the common understanding where an
error of an activity means a failure in the execution
of the activity itself, in our context error denotes a
regular result of an activity.

• Features enabling decision makers to get a quick
overview of the state of all release processes
directly or indirectly associated with a
configuration, e.g. in case of test errors and the
decision about the further proceeding.

RELATED WORK

In the conventional workflow world hierarchical workflows
are understood quite differently. For example, in MQ Series
Workflow hierarchical means, that an activity of a
workflow can also be implemented as another workflow.
During runtime then another workflow is initiated as a
subworkflow for this activity. After completion of the
subworkflow the calling workflow continues with its
execution (Leymann and Roller 2000). This understanding
of hierarchical workflows is also shared, for example, by
many workflow execution models like Petri Nets (Aalst and
Hee 2002), FunSoft Nets (Deiters and Gruhn 1994), or
State- and Activitycharts (Harel 1987).

By contrast, in our case hierarchical means that workflows
are executed in parallel with control flow dependencies
between them depending on the hierarchical structure of the
configurations they are associated with. As discussed this
raises a number of requirements with respect to the
workflow execution model not covered by today’s
approaches.

The synchronization of “real” parallel processes has been
subject of some research approaches (e.g. Kamath and
Ramamritham 1998, Hagen and Alonso 1999, Heinlein
2001). However, none of them allows to express control
flow dependencies based on data associated with a
workflow the way it is needed here.

Many research approaches (e.g. Reichert and Dadam 1998,
Weske 1998, Casati et al. 1998) are dealing with adaptive
workflows. But as far as the authors knowledge concerns,

the issue has not been considered in combination with
synchronization of workflows and dynamic adaptation of
dependencies between them.

CONCLUSIONS AND OUTLOOK

For a successful implementation of release processes in the
electrical/electronic domain it is a necessity to support them
by workflow technology. However, the requirements
identified for such a support are not met by current
workflow technology. Research has already been dealing
with main issues here – but in a rather separate and non-
integrated approach. So the next step is to develop an
integrated, coherent workflow concept for this domain.

REFERENCES
Aalst van der, W., Hee van, K. (2002). Workflow Management,

MIT Press, 2002.

Casati, F.; Ceri, S.; Pernici, B.; Pozzi, G. (1998). Workflow
Evolution. In: Data & Knowledge Engineering, Vol. 24, No.
3, January 1998, pp. 211-238.

Deiters, W.; Gruhn, V. (1994). The FUNSOFT Net Approach to
Software Process Management. In: Int’l Journal of Software
Engineering and Knowledge Engineering, Vol. 4, No. 2,
1994, pp. 229–256.

Eder, J.; Liebhart, W. (1995). The Workflow Activity Model
WAMO. In: Proc. 3rd Int’l Conf. in Coop. Inf. Systems,
Vienna (1995).

Harel, D. (1987). Statecharts: A Visual Formalism for Complex
Systems, Science of Computer Programming, Vo. 8, 1987

Hagen, C.; Alonso, G. (1999). Beyond the Black Box: Event-based
Inter-Process Communication in Process Support Systems.
In: Proc. Int’l Conf. Distributed Computing Systems (1999),
pp. 450-457.

Heinlein, C. (2001). Workflow and process synchronization with
interaction expressions and graphs. In: Proc. Int’l Conf.
Data Eng., Heidelberg (2001), pp. 243–252.

Kamath, M.; Ramamritham, K. (1998). Failure Handling and
Coordinated Execution of Concurrent Workflows. In: Proc.
Fourteenth Int’l Conf. Data Eng., Orlando (1998), pp. 334-
341.

Knippel, E.; Schulz, A. (2004). Lessons Learned from
Implementing Configuration Management within
Electrical/Electronic Development of an Automotive OEM.
In: Proc. 14th Annual International Symposium of the Int’l
Council on Systems Eng., Toulouse (2004).

Leymann, R.; Roller, D. (2000). Production workflow. Prentice
Hall, 2000.

Reichert, M.; Dadam, P. (1998). ADEPTflex – Supporting Dynamic
Changes of Workflows Without Losing Control. In: Journal
of Intelligent Information Systems, Special Issue on
Workflow Mgmt Sys, Vol. 10, No. 2, March 1998, pp. 93–
129.

Wehlitz, P. (2000). Nutzenorientierte Einführung eines
Produktdatenmanagement-Systems. Dissertation at the
Technical University of Munich, Faculty of Mechanical
Engineering.

Weske, M. (1998). Flexible Modeling and Execution of Workflow
Activities. In: Proc. 31st Hawaii Int’l Conference on System
Sciences, Software Technology Track, 1998, pp. 713-722.

